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Chapter 1

Introduction

1.1 Motivation and state of the art

The aim of the thesis is to develop and compare different numerical techniques
for solving elliptic equations with highly heterogeneous coefficients. The heteroge-
neous nature of the coefficients, when varying at several scales, makes it difficult
and sometimes impossible to solve the problem by standard numerical methods.
In order to take into account all the fine scale variations, one needs to discretize
the problem on the fine scale, which leads to a huge discretization matrix with all
the usual difficulties arising from that.

A great number of natural and human made substances in the world are porous.
For instance, rocks, soils, human bones, foams, ceramics, etc. are considered to be
porous media. Their detailed description and, in particular, description of flows
inside the porous media constitutes an important and at the same time challeng-
ing and difficult task. There is a number of applications, where the simulation
of the flow in porous media is essential - water and gas filtration, hydrogeology,
construction engineering, oil reservoir modeling, etc.

However, these simulations, if not done efficiently, take a lot of computer time
and memory. An obvious way to solve the problem would be to discretize the
initial equation to be able to represent all the fine scale variations of the solution.
In this way it is, however, almost impossible to find a solution due to heterogeneity
of the coefficients and their complex spacial distributions. Moreover, even if the
problem is solved, in a number of cases one is not interested in all the fine scale
details of the solution. In many cases one only needs coarse solution with some
fine scale information in it.
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For this reason a number of multiscale methods was introduced for the heteroge-
neous porous media flows. Currently, there are multiscale finite-element (MsFEM)
methods [1], mixed multiscale finite-element (mixed MsFEM) methods [2], [3], [4]
and multiscale finite volume (MSFV) methods [5], [7], where only the MMSFE
and MSFV methods provide conservative fine scale velocity fields. All these meth-
ods can be used to find an approximation of the fine scale solution at a reduced
computational cost.

1.2 Aim of the thesis

The main focus of this thesis will be in the MSFV method ([5], [6], [7]) and
it’s modifications, e.g. iterative MSFV method ([8]). Apart from classical MSFV
method it allows to iteratively update MSFV solutions on each step, and, moreover,
it converges to the fine scale solution of the problem.

1.3 Structure of the thesis

In the next section problem formulation with all notations will be presented. Later
in Section 2.3 the MSFV method will be explained. In chapter 3, iMSFV method
together with its modifications will be presented. Alternating Schwarz methods
will be considered in chapter 4. The iMSFV method in both dual and primal coarse
cells will be presented in chapter 5. Numerical experiments will be considered in
chapter 6 and, finally, the reader will find the conclusion of the thesis in chapter
7.
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Chapter 2

Problem formulation

Consider the following elliptic problem

−∇ · (λ · ∇p) = q (2.1)

in the rectangular domain Ω with Dirichlet boundary conditions p(x) = g on the
boundary ∂Ω, with highly heterogeneous coefficients λ. It describes saturated flow
in porous media ([9], [10]).

Consider as an example an incompressible flow of two immiscible phases in het-
erogeneous porous media. The governing conservation equations are:

φ
∂Sj
∂t

+∇ · uj = qj, j = 1, 2 (2.2)

where Sj is the saturation and uj is the velocity of the phase j. The porosity of
the medium is φ, qj is the source term. Now express the velocity as a function of
pressure using the Darcy’s law, i.e:

uj = −k kj
µj
∇p, (2.3)

where k, kj and µj - absolute permeability, permeability and viscosity of the phase
j, respectively.

Adding the two equations (2.2) and noting that S1 + S2 = 1, one obtains:

∇u = q, (2.4)

where u = u1 + u2 and q = q1 + q2. Darcy’s law for the total velocity is:

u = −λ∇p, (2.5)
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with total mobility λ,

λ = k

(
k1

µ1

+
k2

µ2

)
The equation for pressure (2.1) is obtained by substitution of Eq. (2.5) into Eq.
(2.4).

2.1 Solving the problem on the fine scale

In order to get used to the problem and notations, we will present the Finite Vol-
ume approach for solving the equation (2.1) on the fine scale.

We impose the fine grid ω, which resolves all the variations of the coefficients,
on the domain Ω. The grid consist of X cells in x-direction and Y cells in y-
direction. The size of the domain Ω is Lx × Ly. Hence the size of each cell Ωl is

hx × hy = Lx

X
× Ly

Y
. The grid is cell-centered, i.e the points of the grid are located

in the centers of the fine cells Ωl, see Figure 2.1.

ω =

{
(xi, yj) | x0 = 0, x1 =

hx
2
, ..., xi =

hx
2

+ (i− 1) · hx, ..., xX+1 = Lx,

y0 = 0, y1 =
hy
2
, ..., yj =

hy
2

+ (j − 1) · hy, ..., yY+1 = Ly, i = 1, ..., X, j = 1, ..., Y

}
(2.6)

In order to obtain the finite volume discretization, one needs to integrate the initial
equation (2.1) over all fine cells Ωl, i.e:

−
∫

Ωl

∇ · (λ · ∇p)dΩ =

∫
Ωl

qdΩ (2.7)

By applying Gauss theorem, one obtains:

−
∫
∂Ωl

(λ · ∇p) · ndΓ =

∫
Ωl

qdΩ (2.8)

In order to find a discrete system, one needs to approximate the equation (2.8).
The right-hand side can be easily approximated by the use of midpoint rule:∫

Ωl

qdΩ = |Ωl| · qi,j = hxhy · qi,j, (2.9)

where |Ωl| = hxhy is the size of the fine cell Ωl, and qi,j is the value of the source
term q in the middle of the cell.
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Figure 2.1: Domain Ω with imposed fine grid

Note that the left-hand side can be expressed as follows:∫
∂Ωl

(λ · ∇p) · ndΓ =

∫
ΓW

(λ · ∇p) · nWdΓ +

∫
ΓE

(λ · ∇p) · nEdΓ

+

∫
ΓN

(λ · ∇p) · nNdΓ +

∫
ΓS

(λ · ∇p) · nSdΓ, (2.10)

where ∂Ωl = ΓE + ΓW + ΓN + ΓS, see Figure 2.2. Using midpoint rule for every
integral in the expression above, one obtains:

λi+ 1
2
,j∇pi+ 1

2
,j · hy − λi− 1

2
,j∇pi− 1

2
,j · hy

+λi,j+ 1
2
∇pi,j+ 1

2
· hx − λi,j− 1

2
∇pi,j− 1

2
· hx = −qi,j · hxhy (2.11)

and hence, approximating the values ∇p with central differences, one obtains the
5-point scheme, so that the equation (2.1) in the point (i, j) for the case when
2 ≤ i ≤ X and 2 ≤ j ≤ Y is approximated as follows:

1

h2
x

(
λi− 1

2
,jpi−1,j + λi+ 1

2
,jpi+1,j

)
−

(
λi− 1

2
,j + λi+ 1

2
,j

h2
x

+
λi,j− 1

2
+ λi,j+ 1

2

h2
y

)
pi,j

+
1

h2
y

(
λi,j− 1

2
pi,j−1 + λi,j+ 1

2
pi,j+1

)
= −qi,j (2.12)
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Figure 2.2: 5-point stencil in index notation

The stencil in index notation is represented in Figure 2.2.

The discretization near the left boundary (i.e when i = 1 and 2 ≤ j ≤ Y ) looks as
follows:

1

h2
x

(
2 · λ0,jp0,j + λ 3

2
,jp2,j

)
−

(
2 · λ0,j + λ 3

2
,j

h2
x

+
λ1,j− 1

2
+ λ1,j+ 1

2

h2
y

)
p1,j

+
1

h2
y

(
λ1,j− 1

2
p1,j−1 + λ1,j+ 1

2
p1,j+1

)
= −q1,j (2.13)

The discretization near the right boundary (i.e when i = X and 2 ≤ j ≤ Y ) looks
as follows:

1

h2
x

(
λX− 1

2
,jpX−1,j + 2 · λX+ 1

2
,jpX+1,j

)
−

(
λX− 1

2
,j + 2 · λX+ 1

2
,j

h2
x

+
λX,j− 1

2
+ λX,j+ 1

2

h2
y

)
pX,j

+
1

h2
y

(
λX,j− 1

2
pM,j−1 + λX,j+ 1

2
pX,j+1

)
= −qX,j (2.14)

In the similar way one can discretize the equation near the lower (j = 1) and the
upper (j = Y ) boundaries.

Numerical results for this discretization will be presented in Section 6.1 of the
thesis.
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2.2 Notations and meshes for the MSFV method

The MSFV method requires 2 coarse grids to be imposed on the domain of interest
Ω with the underlying fine grid. The first one is the primal coarse grid consisting
of M cells Ω̄i, the second one is the dual coarse grid consisting of N cells Ω̃i, as
illustrated in Figure 2.3. Moreover

Ω̄ =
M⋃
i=1

¯̄Ωi =
N⋃
i=1

¯̃Ωi

The bold black line in the figure is the boundary of the domain Ω. The boundaries
∂Ω̄i of the primal coarse cells are represented by blue lines. The boundaries ∂Ω̃i

of the dual coarse cells are represented by dashed red lines. Note that each coarse
cell (dual and primal) consists of several fine cells, and, in general, could be much
coarser than the fine cell. The number of the fine cells per primal coarse cell is
chosen to be odd, so that the center of the primal coarse cell coincides with the
center of a fine cell. Moreover, each primal coarse cell contains one node xk (black
dots) of the dual coarse cell, which is actually a center of the primal cell. All nodes
xk belonging to one dual coarse cell Ω̃i will be denoted as ∂∂Ω̃i. Each dual coarse
cell, except for the boundary ones, contains 4 points xk.

In the figure 2.4 the dual coarse cell Ω̃i together with it’s boundaries is presented.
The dashed red lines with the exception of the corners constitute the boundary
∂Ω̃i, the bold circles in the corners of the cell form ∂∂Ω̃i. The inner part of the
square cell is Ω̃i.

2.3 The MSFV algorithm

As it was originally introduced by P. Jenny in [8], the approximation p′ to the fine
pressure pf can be described with the following expression:

pf (x) ≈ p′(x) =
N∑
i=1

(
M∑
k=1

Φk
i (x)p̄k + Ψi(x)

)
, (2.15)

where:

• p̄k - pressure in the nodes xk;

• Φk
i - basis functions;

• Ψi - correction functions.
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Figure 2.3: Domain Ω with imposed grids. The bold black line in the figure is the
boundary of the domain Ω; blue lines are the boundaries of the primal coarse cells
∂Ω̄i; dashed red lines are he boundaries ∂Ω̃i of the dual coarse cells; black nodes
are the centers of the primal coarse cells.

The basis functions Φ and the correction functions Ψ are local numerical solutions
(i.e. solutions on each dual coarse cell) of the problem (2.1) without and with right-
hand side, respectively, with different boundary conditions. They should capture
important fine scale features of the global problem ([11, 12]). To solve each local
problem one must impose reduced problem boundary conditions on each ∂Ω̃i.

Note that the approximation p′ mainly differs from the fine pressure pf on the
boundaries and the corners of the dual coarse cells, since the artificial localization
boundary conditions are imposed there. For this reason, several methods will be
introduced in the following parts of the thesis.

In other words, the following problems must be solved on each dual coarse cell:
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Figure 2.4: Dual coarse cell Ω̃i together with it’s boundaries. The dashed red lines
with the exception of the corners constitute the boundary ∂Ω̃i; the bold circles in
the corners of the cell form ∂∂Ω̃i; the inner part of the square cell is Ω̃i.

1. For the basis functions:

−∇ · (λ · ∇Φk
i ) = 0 in Ω̃i

∂

∂τ
λ
∂Φk

i

∂τ
= 0 on ∂Ω̃i\∂∂Ω̃i

Φk
i (xl) = δkl for all xl ∈ ∂∂Ω̃i

(2.16)

(2.17)

(2.18)

2. For the correction functions:

−∇ · (λ · ∇Ψi) = q in Ω̃i

− ∂

∂τ
λ
∂Ψi

∂τ
= q on ∂Ω̃i\∂∂Ω̃i

Ψi(xl) = 0 for all xl ∈ ∂∂Ω̃i

(2.19)

(2.20)

(2.21)

In total, 5 problems should be solved on each dual coarse cell - 4 problems for
basis functions and one problem for correction functions.

Note, that basis functions sum up to the solution of homogenized problem in each
coarse cell. Adding the correction functions allows to take the inhomogeneities
into account, since the approximation of the solution only by basis functions is
inefficient, see [13].
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The linear system for the coarse pressure values p̄k is derived as follows:

• Substitute expression (2.15) into equation (2.1).

• Integrate the resulting equation over Ω̄l:

−
∫

Ω̄l

∇ · (λ · ∇p′)dΩ = −
∫

Ω̄l

∇ ·

(
λ · ∇

N∑
i=1

(
M∑
k=1

Φk
i (x)p̄k + Ψi(x)

))
dΩ

=

∫
Ω̄l

qdΩ (2.22)

for all l ∈ [1,M ]

• By using the Gauss theorem:

−
∫

Ω̄l

∇ ·

(
λ · ∇

N∑
i=1

(
M∑
k=1

Φk
i (x)p̄k + Ψi(x)

))
dΩ =

−
∫
∂Ω̄l

(
λ ·

N∑
i=1

(
M∑
k=1

p̄k∇Φk
i (x) +∇Ψi(x)

))
· n̄ldΓ = (2.23)

M∑
k=1

p̄k

N∑
i=1

∫
∂Ω̄l

(−λ ·∇Φk
i (x)) ·n̄ldΓ+

N∑
i=1

∫
∂Ω̄l

(−λ ·∇Ψi(x)) ·n̄ldΓ =

∫
Ω̄l

qdΩ,

where n̄l - the unit normal vector, pointing out of Ω̄l

• Construct linear system
Alkp̄k = bl (2.24)

for unknown p̄k where

Alk =
N∑
i=1

∫
∂Ω̄l

(−λ · ∇Φk
i (x)) · n̄ldΓ (2.25)

bl =

∫
Ω̄l

qdΩ−
N∑
i=1

∫
∂Ω̄l

(−λ · ∇Ψi(x)) · n̄ldΓ (2.26)

As it can be seen from (2.25) and (2.26), the coarse matrix A, as well as the right-
hand side b, contains the effects of the fine-scale fluxes across ∂Ω̄l induced by basis
and correction functions, respectively.

Once the coarse pressure values p̄k are found, approximation of fine-scale pres-
sure can be found from equation (2.15).
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Chapter 3

Iterative MSFV method

3.1 Classical iMSFV method

The MSFV method gives a good approximation for the fine scale solution, but, un-
fortunately, it can not be used as a solver for the fine scale solution of the problem.
That is why Iterative Multiscale Finite Volume Method (iMSFV) was introduced,
which solution converges to the fine scale solution of the problem, see [5, 8, 14].

Consider now the fine scale discretization (2.12), (2.13) and (2.14) of the initial
problem (2.1) as it was done in Section 2.1. Solving the system of equations ob-
tained from this discretization is very challenging task and needs special iterative
methods. Our goal is to present iterative method, based on the MSFV, which
allows to compute the fine scale solution.

Compare fine scale approximation with the MSFV approximation in every point:

• On the boundaries of Ω both methods have Dirichlet boundary conditions.

• Inside the dual coarse cell Ω̃i in the MSFV method the following equations
are solved:

1. −∇ · (λ · ∇Φk
i ) = 0 for the basis functions Φk

i .

2. −∇ · (λ · ∇Ψi) = q for the correction functions Ψi.

Summing up these equations with the help of (2.15) one obtains (2.1). Hence,
in every point inside the dual coarse cells Ω̃i the initial equation (2.1) is satis-
fied and the MSFV discretization coincides with the fine scale discretization
(2.12),(2.13) and (2.14).

• On the boundaries of the dual coarse cells ∂Ω̃i the following 1D problems
are solved:
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1. ∂
∂τ
λ
∂Φk

i

∂τ
= 0

2. − ∂
∂τ
λ∂Ψi

∂τ
= q

Hence, if one sums up the 2 equations above, one obtains − ∂
∂τ
λ∂pi

∂τ
= q, i.e.,

in the MSFV method, the normal component of the initial equation (2.1) is
not taken into account on the boundaries of the dual coarse cells.

• In the corners of the dual coarse cells ∂∂Ω̃i the equation (2.1) is not dis-
cretized explicitly on the fine scale. One has Φk

i (xl) = δkl for the basis
functions Φk

i and Ψi(xl) = 0 for the correction functions Ψi. There is, how-
ever, a coarse scale finite volume discretization and the corresponding linear
system (2.24) for the pressure values in the points of ∂∂Ω̃i.

The idea of iMSFV method, which comes out of the considerations above, is to
take the solution of the MSFV method and use it for the normal component of the
new local boundary conditions on the dual cells for correction functions, recalcu-
late the correction functions and construct the new approximation of the solution,
which should again be used for the new local boundary conditions. In this way,
the initial equation (2.1) will be satisfied everywhere, including the boundaries of
the dual coarse cells, except for the corners of the dual coarse cells.

More precisely, from the computational point of view it is more convenient that
the coarse matrix A is computed only once in the beginning, i.e. the basis func-
tions should not be changed from the ones computed in the MSFV method. As it
was already noticed above the solution of the MSFV method mainly differs from
the fine scale solution on the boundaries ∂Ω̃i and ∂∂Ω̃i of the dual coarse cells,
because the initial equation (2.1) is satisfied only inside the dual coarse cells Ω̃i,
whereas the boundary conditions do not satisfy it. Hence, if the discretization
on the boundaries of the dual coarse cells satisfied the equation (2.1), the MSFV
solution would coincide with the fine scale solution.

Furthermore, as it follows from the considerations above, the normal component
of the initial equation (2.1) is not taken into account on the boundaries. Hence, if

− ∂

∂τ
λ
∂Ψi

∂τ
= q +

∂

∂n
λ
∂

∂n
pf

together with (2.17) (since the basis functions Φk
i should not be changed) then the

basis functions Φk
i , k = 1, ...,M and the correction functions Ψi, i = 1, ..., N will

sum up to the fine solution pf . In other words, if the normal component of the fine
pressure is taken into account on the boundaries, then the MSFV discretization
will coincide with the fine scale discretization (with the exception of the points in

14



∂∂Ω̃i).

Hence, in order to improve the solution of the MSFV method iteratively, one needs
to update the values of the correction functions Ψi, i = 1, ..., N on the boundaries
of the dual coarse cells ∂Ω̃i using the fine scale solution from the previous iteration.

This leads us to the following problem of the j-th iteration:

−∇ · (λ · ∇Ψi) = q in Ω̃i

− ∂

∂τ
λ
∂Ψ

(j)
i

∂τ
= q +

∂

∂n
λ
∂

∂n
S1(piMSFV,(j−1), q) on ∂Ω̃i\∂∂Ω̃i

Ψi(xl) = 0 for all xl ∈ ∂∂Ω̃i

(3.1)

(3.2)

(3.3)

where S1 is the smoothing operator, which will be described later.

As in the MSFV method, these problems should be solved on each dual coarse
cell. After that, coarse system

Ap̄
(j)
k = b(j)

should be solved to obtain new values of coarse pressure p̄
(j)
k in the coarse nodes

xk. Then the iMSFV approximation on the j-th iteration can be written as

piMSFV,(j)(x) = S2

[
N∑
i=1

(
M∑
k=1

Φk
i (x)p̄

(j)
k + Ψ

(j)
i (x)

)
, q

]

where S1 and S2 are smoothing operations that should be applied between iter-
ations. Practical experiments show that Jacobi or Gauss-Seidel smoothings can
be applied together with line relaxation ([8]). From the numerical studies one can
conclude, that classical iMSFV method heavily depends on the type of smoothings
and the number of smoothing steps between the iterations.

It will be shown in the numerical results, that in this implementation of iMSFV
method converges to some approximation of the exact solution, where it stagnates.
Moreover, the largest error is located on the ∂∂Ω̃i boundary, i.e in the centers of
the primal coarse cells. As it was explained earlier, the initial equation (2.1) is
satisfied everywhere on the fine scale with the exception of the points in ∂∂Ω̃i;
only the coarse scale finite volume approximation of the initial equation (2.1) is
done in these points. Indeed, only conditions (2.18) and (2.21) are defined for the
points in ∂∂Ω̃i on the fine scale. This fact leads us to the following section.
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3.2 Modification of the iMSFV method

In the previous section it was shown, that the only points where the initial equa-
tion (2.1) is not satisfied, when classical iMSFV method is applied, are the points
in ∂∂Ω̃i. Hence, it should be possible to improve the method by explicitly writ-
ing the equation in these points for correction functions, instead of condition (3.3).

Af before the grid consist of M primal coarse cells. Let us introduce a new
notation for M , such that M = Mx × My, i.e. the grid consists of Mx pri-
mal coarse cells in x-direction and My primal coarse cells in y-direction. Let
ix = 1, ...,Mx and iy = 1, ...,My. Moreover, let us introduce a new notation p̃,

where
∑M

k=1 Φk(x)p̄k = p̃.

Hence for the point (ix, iy), ix = 1, ...,Mx, iy = 1, ...,My one has:

−∇ · (λ · ∇pix,iy) = −∇ · (λ · ∇(p̃ix,iy + Ψix,iy)) = q (3.4)

This leads to the following implementation for the j-th iteration:

−∇ · (λ · ∇Ψ
(j)
ix,iy

) = q +∇ · (λ · ∇p̃(j−1)
ix,iy

) (3.5)

and then
Ψ

(j)
ix,iy

=
(
q +∇ · (λ · ∇p̃(j−1)

ix,iy
)+

1

h2
x

(λix− 1
2
,iy

Ψ
(j−1)
ix−1,iy

+ λix+ 1
2
,iy

Ψ
(j−1)
ix+1,iy

) +
1

h2
y

(λix,iy− 1
2
Ψ

(j−1)
ix,iy−1 + λix,iy+ 1

2
Ψ

(j−1)
ix,iy+1)

)
/(

λix− 1
2
,iy

+ λix+ 1
2
,iy

h2
x

+
λix,iy− 1

2
+ λix,iy+ 1

2

h2
y

)
for all xix,iy ∈ ∂∂Ω̃l, l = 1, ..., N

(3.6)

This modification of the iMSFV method, however, gives the same results as the
usual iMSFV method. The calculated correction functions Ψ(j) and the coarse
pressure values p̄(j) are different, but they sum up to the same approximation p′(j)

as in the iMSFV method. This phenomena have occurred for all the test cases
considered, but the theoretical explanation is in the scope of the further research.
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Chapter 4

Alternating Schwarz method

To get rid of the stagnation of the iMSFV method a combination of MSFV method
and alternating Schwarz method was introduced. Alternating Schwarz method
([17], [18]) is designed to find the solution of an equation on a domain which is
the union of a number of overlapping subdomains, by solving the equation on each
of the subdomains, taking the values of the approximate solution obtained in the
previous iteration as the boundary conditions.

Alternating Schwarz method is perfectly suitable to the problem of interest. First
of all, the domain Ω can be represented as the two different unions of subdomains
- primal coarse cells Ω̄i and dual coarse cells Ω̃i. Secondly, these cells have a large
area of intersection, that is why the method should converge faster.

4.1 Additive Schwarz in the dual and multiplica-

tive Schwarz in the primal coarse cells

Because of the construction of the dual grid, additive Schwarz method is a natural
choice for solving the problem on the dual grid. On the very first iteration it takes
the solution of the MSFV method as the boundary conditions for each of the dual
coarse cell. Afterwards, it takes the solutions, obtained on the primal coarse cells
by the multiplicative Schwarz method. The computations on the dual coarse cells
can be easily parallelized, since the solutions on the dual cells do not depend on
each other, but only on the solution obtained in the previous iteration. For some
problems of high dimensions this approach could be crucial in speeding up the
computations.

To avoid confusion introduce a new notation for the solution p′ of the MSFV
method from section 2.3: pMSFV = p′. Then the solution algorithm looks as fol-
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lows:

• Given the initial problem (2.1), find an approximation pMSFV of the exact
solution pf by the MSFV method, where correction functions are not calcu-
lated and are taken to be zero.

• Discretize the equation (2.1) on the fine scale, i.e construct a linear system

Afp = bf , (4.1)

where p = pf - the solution of the system.

• Calculate the residual rf = bf − Afp
MSFV, where Af is the fine matrix,

obtained by discretization of the initial equation (2.1), bf - vector of right
hand side.

• Note that pf = pMSFV + δf , then

Afpf = Af (p
MSFV + δf ) = bf , (4.2)

hence
Afδf = bf − AfpMSFV = rf (4.3)

To obtain the exact solution of (4.1) one needs to solve (4.3) for some cor-
rection δf and then sum up pMSFV and δf to obtain pf .

Solving (4.3) by classical techniques is, however, still difficult and time con-
suming, since there is still a huge fine scale matrix A. That is why alternating
Schwarz method is necessary.

• In every dual coarse cell Ω̃i solve the equation (4.3) in the internal part of

Ω̃i for the correction δ
( 1
2

)

f with zero boundary conditions on ∂Ω̃i.

• In every primal coarse cell Ω̄i solve the equation (4.3) in the internal part of

Ω̄i for the correction δ
(1)
f with the values of δ

( 1
2

)

f as the boundary conditions.

• Continue solving (4.3) in dual and primal cells turn by turn using the values
from the previous iterations as the boundary conditions until the required
precision is achieved.

Note that since we have a cell centered grid, one needs to extend the primal cell
when solving a local problem. In order to use values of δf from the previous
iteration as the boundary conditions, one needs to take the values in the fine cells,
neighboring to the primal coarse cell, see Fig. 4.1. The boundary of the primal
coarse cell is the bold blue line, the points, where the boundary conditions are
taken a shown by black dots.
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Figure 4.1: Primal coarse cell Ω̄i. The boundary is the bold blue line; black dots
- the points, where the boundary conditions are taken.

4.2 Multiplicative Schwarz in both primal and

dual coarse cells

Another approach that can be used for solution of the initial problem (2.1) is the
use of multiplicative Schwarz method ([18], [19]) for both types of coarse cells.
For this reason the dual coarse cells are extended by one fine cell in each direc-
tion, and, hence, the solution obtained in these dual cells depend on each other.
Moreover, the rate of convergence to the desired solution depends on the order of
the computations (e.g. the method could converge faster if one starts from the
upper-left dual cell, than from the lower-right). On the other hand, computations
on the “new” dual coarse cells can not be parallelized as easy as it was done in
the additive Schwarz method.

Figure 4.2 represents the ”new” dual coarse cell, together with the old one. Solid
black lines are the boundaries of the fine cells, stars are the centers of the fine cells.
The dashed red line is the boundary of the original dual coarse cell, whereas solid
blue line is the boundary of the new dual coarse cell.

In the next chapter another modification of the iMSFV method, which uses the
idea of alternating Schwarz methods, will be presented.
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Figure 4.2: New coarse dual cell. The dashed red line is the boundary of the
original dual coarse cell; solid blue line is the boundary of the new dual coarse cell.
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Chapter 5

The MSFV method in both dual
and primal coarse cells

All the methods given above provide a good approximation of the fine scale solu-
tion of the problem (2.1), however, as it will be shown in the numerical results,
the rate of convergence is rather slow - sometimes it takes hundreds of iterations
to converge to the desired tolerance. On the other hand, one knows, that the main
error of the approximations is located on the boundaries of the dual coarse cells,
that is why alternating Schwarz method was introduced for this kind of problems.
However, the number of iterations needed by alternating Schwarz method heavily
depends on the number of fine- and coarse cells constituting the domain.

The idea now is to take the concept of alternating Schwarz method and to com-
bine it with the iMSFV framework. In all the methods above the MSFV method
was only done in the dual coarse cells - in the iMSFV method in every iteration,
and in alternating Schwarz only in the first iteration. Performing MSFV method
both in the primal and the dual coarse cells should lead to the result similar to
alternating Schwarz method (i.e. convergence to the fine scale solution of the
problem), but without the drawbacks of this method (e.g. the convergence rate of
the MSFV method should not depend on the number of coarse cells in the domain).

The solution algorithm looks as follows:

• As in the alternating Schwarz method the MSFV method is done in the first
iteration to find an approximation of the fine scale solution, the correction
functions are not calculated and are taken to be zero.

• The residual rf = bf − AfS1(pMSFV, q) is calculated, where Af is the fine
matrix, obtained by discretization of the initial equation (2.1), bf - vector
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of right hand side, S1 is the smoothing operator, that must be applied after
every iteration.

• Having the residual rf and introducing the fine scale solution pf as

pf = pMSFV + δf , (5.1)

one obtains the system of equations (4.3) for the values on the fine scale.

• Since the main error is concentrated on the boundaries of the dual coarse
cells, the MSFV iteration is done on the primal coarse cells for the δf with
rf as the right hand side, again with correction functions taken to be zero.
Hence, the following approximation for δf is used:

δf ≈ δ′(x) =
M∑
i=1

(
N∑
k=1

Φk
i (x)δ̄kf

)
(5.2)

However, performing the MSFV iterations on the primal cells has some dif-
ficulties. In order to be able to construct the basis functions Φk

i one needs
to introduce extra points on the boundaries of the primal cells. Initially,
since the grid is cell-centered, there are no fine grid points on the boundaries
of the primal coarse cells, since they consist of the boundaries of the fine cells.

The primal coarse cell together with the new points on the boundaries are
introduced in Figure 5.1. The black lines are the boundaries of the fine cells,
the bold blue lines are the boundaries of the primal coarse cells. Small black
stars are the centers of the fine cells. The new points on the the boundaries
are the bold black stars.

After introduction of the new fine grid points and solving the problem for the
basis functions in the dual coarse cells, the coarse system similar to (2.24)
is solved. The difference between the system (2.24) and the coarse system
obtained on the primal cells is that now the coarse grid where the coarse sys-
tem is solved, consists of the centers of the dual coarse cells, not the primal
ones as before. Precisely,

Ãlkδ̄
k
f = b̃l (5.3)

for unknown δ̄kf where

Ãlk =
M∑
i=1

∫
∂Ω̃l

(−λ · ∇Φk
i (x)) · ñldΓ (5.4)

b̃l =

∫
Ω̃l

rfdΩ (5.5)
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Figure 5.1: Primal cell together with newly introduced points on the boundary

• In the same way, as in the original MSFV method, the approximation δ′ for
the δf is calculated and, thus, the new approximation for the fine pressure
pf is obtained:

piMSFV,( 1
2

) = pMSFV + δ′

• Since the approximation δ′ differs from the exact correction δf mainly on
the boundaries of the primal coarse cells, the MSFV iteration should now be

done in the dual coarse cells. Hence, the new residual r
( 1
2

)

f is calculated:

r
( 1
2

)

f = bf − AfS2(piMSFV,( 1
2

), q), (5.6)

the exact solution can be written as

pf = piMSFV,( 1
2

) + δ
( 1
2

)

f (5.7)

and, thus, the following system of equations for δ
( 1
2

)

f can be constructed:

Afδ
( 1
2

)

f = r
( 1
2

)

f (5.8)
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• As before δ
( 1
2

)

f can be approximated with the following expression:

δ
( 1
2

)

f ≈ δ′(
1
2

)(x) =
N∑
i=1

(
M∑
k=1

Φk
i (x)δ̄

k,( 1
2

)

f

)
(5.9)

Note that, because the MSFV iteration is done in the dual coarse cells (not in
the primal ones as in the previous iteration), the summation in the expression
above is changed comparing to the expression (5.2)

• In the same way as it was explained earlier, the MSFV iteration is performed
in the dual coarse cells, with correction functions Ψi taken to be zero. Coarse
system similar to (2.24), but for the corrections δ′(

1
2

), is solved and the ap-

proximation of the δ
( 1
2

)

f is obtained on the fine scale.

• Then one obtains the following improved approximation for the fine pressure
pf :

piMSFV,(1) = piMSFV,( 1
2

) + δ′(
1
2

)

• New residual r
(1)
f is calculated and the process is repeated on the primal cells.

S1 and S2 are smoothing operations that should be applied between iterations.
Numerical studies show that Jacobi or Gauss-Seidel line relaxation must be ap-
plied for the convergence of the method. However, the dependence of the method
on the smoothing operations is much less comparing with the classical iMSFV
method. For all the considered test cases, one step of Gauss-Seidel line relaxation
between the iterations was enough to achieve good convergence results.

Thus, performing the MSFV iterations turn by turn on the primal and the dual
coarse cells leads to quite sophisticated results, as it will be presented in the section
6.6 with the numerical study of this method.
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Chapter 6

Numerical study of the methods
for the flow in porous media

In this chapter numerical results for all the methods above will be presented. In
all the problems the domain is Ω = (0, 1)2, if not mentioned the opposite. For the
MSFV methods the grid is introduced as, for instance, [5 · 15× 5 · 15] - it means,
that the grid consists of 5 primal coarse cells in each direction and 15 fine cells in
each primal coarse cell in each direction.

6.1 FV method on the fine scale

In the beginning of the chapter, the finite volume method on the fine scale is con-
sidered.

Consider the following system:

−∇ · ((2 + sin(25x)) · ∇p) = −25 cos(25x) in Ω

p = x on ∂Ω

(6.1)

(6.2)

Ω = (0, 1)2, the exact solution is p = x. The grid consists of [150× 150] fine cells.
For solving the arising linear system the conjugate gradient method is used, with
the default Matlab tolerance 1 · 10−6.

Without the preconditioner the method converges to the solution with the relative
residual 9.8 · 10−7 in 431 iterations. With the Jacobi preconditioner it converges
in 354 iterations with the relative residual 9 · 10−7. Relative residual with respect
to the iteration number for both methods is presented in Figure 6.1. The solution,
obtained by the method is presented in the Figure 6.2.
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Figure 6.1: Relative residual with respect to the iteration number for the conjugate
gradient method with and without preconditioner for system (6.1)-(6.2) with [150×
150] grid

Now consider the grid [300 × 300]. The conjugate gradient method without the
preconditioner converges to the solution in 845 iterations, while the same method
with Jacobi preconditioner converges to the solution in 686 iterations, see Figure
6.3.

6.2 The MSFV method

Consider the following simple system:

−∆p = 0 in Ω

p = x on ∂Ω

(6.3)

(6.4)

where Ω = (0, 1)2, the exact solution is p = x. The grid consists of [5 × 5] coarse
cells and [5 · 15× 5 · 15] fine cells.

The MSFV method calculates the solution with the relative residual 1.2 · 10−15.
Having in mind that precision of the version of Matlab, where the calculations took
place, is 2.2 · 10−16, one can say, that the MSFV method gives the exact solution
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Figure 6.2: Solution of the system (6.1)-(6.2) obtained by the pcg method on the
[150× 150] grid

of this equation.

Consider another auxillary system, this time with high frequency of the coeffi-
cients, but still with smooth solution:

−∇ · ((2 + sin(25y)) · ∇p) = 0 in Ω

p = x on ∂Ω

(6.5)

(6.6)

The exact solution is again p = x and Ω = (0, 1)2. The grid consists of [5·15×5·15]
fine cells.
The relative residual of the MSFV solution is 3.1 · 10−15, which is still very close
to the precision of Matlab.

Things change, however, with non-zero right-hand side. Consider the system (6.1)-
(6.2) from the previous section.
The exact solution is p = x. The grid consists of [5 · 15 × 5 · 15] fine cells. In
this case, the MSFV method only gives an approximation of the solution with the
relative residual 4.8 · 10−2. Approximation is shown in Figure 6.4.
Now increase the number of coarse cells - consider a grid with [10×10] coarse cells
and [15× 15] fine cell per coarse cell.
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Figure 6.3: Relative residual with respect to the iteration number for the conjugate
gradient method with and without preconditioner for system (6.1)-(6.2) with [300×
300] grid

The relative residual decreases to 1.3 · 10−2. The MSFV solution is presented in
Figure 6.5.

Now instead if increasing the number of coarse cells, we will increase the num-
ber of fine cells, so that the grid consists of [5 · 25× 5 · 25] fine cells.
The relative residual is 4.7 · 10−2, which is only slightly less than for the case of
[15× 15] fine cells per coarse cell. The MSFV solution for this case is presented in
Figure 6.6.

6.3 Classical iMSFV method

For iMSFV method consider the system of equations (6.1)-(6.2) from one of the
previous examples.
The grid consists of [5 · 15 × 5 · 15] fine cells. After every iMSFV iteration 10
smoothing steps (Gauss-Seidel line relaxation) are performed. The method con-
verges to the solution until iteration no. 11, where the convergence stops with the
relative residual 1.8 · 10−5. The difference between the exact solution p = x and
the approximation on the 11-th iteration is presented in Figure 6.7.
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Figure 6.4: Approximation obtained by MSFV method with non-zero right-hand
side and [5 · 15× 5 · 15] grid

As one can see, the main error is located in the centers of primal coarse cells,
i.e the points in ∂∂Ω̃i i = 1, ..., N . The explanation to this fact is that in these
points the initial equation (2.1) is never written down explicitly.

Classical iMSFV method heavily depends on the number and the type of smooth-
ing steps between the iterations. In the considered example several Gauss-Seidel
line relaxation steps were performed. In the Figure 6.8 the behavior of the iMSFV
method for different number of smoothing steps is presented. As it can be seen
there, for a small number of smoothing steps (n = 2 and n = 5) the method even
diverge. For n = 10 and n = 15 the method converge until the the relative residual
1.8 · 10−5 is reached and then it stagnates.

6.4 Modification of iMSFV method

In order to overcome the stagnation of the iMSFV method we have introduced the
modified version of the iMSFV method. However, the results did not improve.

Consider the same system (6.1)-(6.2) of equations from the previous examples.
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Figure 6.5: MSFV solution with non-zero right-hand side and [10 ·15×10 ·15] fine
cells

The grid is the same as in the previous example, i.e. consists of [5 · 15 × 5 · 15]
fine cells. As before, the method converges until the iteration no. 11, where the
residual is 1.8 · 10−5. The solution obtained by this method coincides with the
solution obtained by classical iMSFV method. The only difference is in the values
of p̄(k) and Ψ(k), but their sum (fine scale pressure) stays the same.

6.5 Alternating Schwarz method

In this section we will present numerical results for 2 different implementations of
alternating Schwarz method:

• Additive Schwarz in dual coarse cells and multiplicative Schwarz in primal
coarse cells.

• Multiplicative Schwarz in dual coarse cells and also multiplicative Schwarz
in primal coarse cells.

Both versions have their advantages and disadvantages - multiplicative Schwarz
usually converges faster, but additive Schwarz is convenient for parallel computing.
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Figure 6.6: MSFV solution with non-zero right-hand side and [5 · 25× 5 · 25] fine
cells

6.5.1 Additive Schwarz in dual and multiplicative Schwarz
in primal coarse cells

Consider the following equation:

−∆p = −2 in Ω

p = x2 on ∂Ω

(6.7)

(6.8)

with the exact solution p = x2.

Consider at first a relatively small grid with [5 · 5 × 5 · 5] fine cells. The de-
sired tolerance is 1 · 10−6. Alternating Schwarz method converges in 35 iterations.
Since on every step we perform computations on both primal and dual cells, then
the total number of iterations becomes 70. Moreover, in every iteration the rela-
tive residual, obtained after solving in the dual cells, is higher than the residual
obtained after solving the problem in the primal cells. The explanation to that
fact is simple - the fine matrix A (i.e. matrix that is obtained after discretizing the
problem (2.1) on the fine scale) contains information not only about the solution,
but also about it’s second derivative. Of course, the values of second derivatives
are very inaccurate on the boundaries of the cells. The number of boundaries when
solving the problem in the primal cells is much less than the number of boundaries
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Figure 6.7: The difference between iMSFV solution and the exact solution for the
(6.1)-(6.2) system with [5 ·15×5 ·15] grid and 10 smoothing steps in every iMSFV
iteration

when solving in the dual cells. This fact leads to the increased value of the relative
residual.

On the other hand, the norm between the exact solution and the approximations
obtained on every iteration after solving in both primal and dual cells, monoton-
ically decreases. It agrees with the fact, that only the information about second
derivatives increases the norm after solving the problem in the dual cells.

If one solves the problem only on primal cells, it takes 73 iterations to reach the
desired tolerance. This leads to an interesting conclusion - additive Schwarz on
the dual cells does not dramatically increase the rate of convergence comparing to
the multiplicative Schwarz in the primal cells, as it was expected. An explanation
to this fact lies in the size of the overlap in the multiplicative Schwarz - in the
implementation of the method it is always hx in x-direction and hy in y-direction.
For the example above the overlap is relatively large since hx = hy = H

5
.

Now consider the same example on the domain consisting of [10 · 15 × 10 · 15]
fine cells. Alternating Schwarz method converges to the desired tolerance in 92
iterations, whereas if solving the problem only in the primal cells, the method
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Figure 6.8: Behavior of relative residual with respect to the iteration number for
the classical iMSFV method for the (6.1)-(6.2) system with [5 ·15×5 ·15] grid and
2, 5, 10 and 15 smoothing steps

converges to the desired tolerance in 325 iterations, see Figure 6.9. Hence, we
can conclude, that the more fine cells constitute the domain of interest, the more
crucial becomes solving the equation in the dual coarse cells together with primal
coarse cells.

Now consider the system of equations (6.1)-(6.2) and the grid with [5 · 7 × 5 · 7]
fine cells. The method converges in 184 iterations to the required tolerance. In
case of performing computations only on primal cells the method converges in 168
iterations. Hence, additive Schwarz on the dual cells even slows down the multi-
plicative Schwarz on the primal cells, see Figure 6.10. An explanation to this is
the same, as for the previous example - the overlap in multiplicative Schwarz is
large enough (hx = hy = H

7
), so that there is no need in adding additive Schwarz

on dual cells.

Increase the number of fine cells constituting the coarse cell, i.e. consider the
grid [5 · 15× 5 · 15]. Additive Schwarz method for the system (6.1)-(6.2) converges
in 238 iterations. In case of performing the method in the primal cells only the
method converges in 323 iterations. Hence, the rate of convergence slows down
when increasing the number of fine cells per coarse. Moreover, performing addi-
tive Schwarz in the dual cells decreases the number of iterations needed for the
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Figure 6.9: Comparison of relative residuals with respect to the iteration number
for alternating Schwarz in both dual and primal cells and multiplicative Schwarz
in primal coarse cells only, for [10 · 15× 10 · 15] grid

convergence, since the overlap in multiplicative Schwarz is much smaller compared
to the previous example.

Consider the same problem with the domain consisting of [10 · 15 × 10 · 15] fine
cells, i.e increase the number of coarse cells only. In this case the method con-
verges in 544 iterations. In case of performing the computations only on primal
cells the method converges in 705 iterations, see Figure 6.11. The overlap in the
multiplicative Schwarz in primal cells is not large enough, hence, as it can be seen
from the results, additive Schwarz is necessary on dual cells in order to speed up
the convergence. Furthermore, when increasing the number of coarse cells in the
domain, leaving the number of fine cells per coarse the same, the number of iter-
ations needed by both methods increases. Hence, additive Schwarz on dual cells
and multiplicative Schwarz on primal cells depend both on the number of fine cells
and coarse cells constituting the domain.

6.5.2 Multiplicative Schwarz in both dual and primal coarse
cells

In this subsection numerical results for multiplicative Schwarz in both dual and
primal coarse cells will be presented. Theoretically it should converge much faster,
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Figure 6.10: Comparison of relative residuals with respect to the iteration number
for alternating Schwarz in both dual and primal cells and multiplicative Schwarz
in primal coarse cells only, for [5 · 7× 5 · 7] grid

than the combination of additive Schwarz on dual cells and multiplicative Schwarz
on primal cells.

The system of interest is system (6.1)-(6.2) of equations. The grid is [5 · 7× 5 · 7].
The desired tolerance is 1 · 10−6. Multiplicative Schwarz method converges to the
tolerance in 123 iterations, which is 1.5 times faster than the combination of ad-
ditive and multiplicative Schwarz methods. Increase now the number of fine cells
per coarse, i.e. consider [5 · 15 × 5 · 15] grid. The number of iterations needed to
converge is 183. Hence, the rate of convergence depends on the number of fine
cells per coarse.

If the number of coarse cells is increased, so that the grid consists of [10·15×10·15]
fine cells, then the method converges to the desired tolerance in 402 iterations, see
Figure 6.12. Hence, the rate of convergence for the multiplicative Schwarz both in
primal and dual cells depends on the number of coarse cells in the grid. However,
this method is 1.35 times faster, than the combination of additive and multiplica-
tive Schwarz methods. The relative improvement in the speed of convergence is
smaller compared to [5 · 7 × 5 · 7] grid, since the area of overlap (which is always
hx or hy) is getting smaller with the increasing number of fine cells.
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Figure 6.11: Comparison of relative residuals with respect to the iteration number
for alternating Schwarz in both dual and primal cells and multiplicative Schwarz
in primal coarse cells only, for [10 · 15× 10 · 15] grid

6.6 The MSFV method in both dual and primal

coarse cells

Consider the system of equations (6.1)-(6.2) and the grid with [5 · 7 × 5 · 7] fine
cells. The desired tolerance is 1 ·10−6. According to the algorithm described in the
corresponding section, the MSFV method is performed in dual and primal coarse
cells turn by turn with one step of Gauss-Seidel line relaxation between iterations.
For the system above the method converges in only 30 iterations (comparing to
184 for additive Schwarz and 123 for multiplicative Schwarz).

Now consider a grid with the same number of coarse cells, but with increased
number of fine cells, i.e. the grid [5 · 15× 5 · 15]. The iMSFV method for dual and
primal cells converges in 120 iterations (for multiplicative Schwarz 183 iterations,
for additive 238 iterations). Hence, the convergence rate heavily depends on the
number of the fine cells constituting one coarse cell.

Next, the number of fine cells per coarse cell stays the same, but the number
of coarse cells is increased to 10 in each direction, i.e. the grid [10 · 15× 10 · 15] is
considered. The method converges in 121 iterations, hence, the dependence of the
convergence of the method on the number of coarse cells is small comparing to the
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Figure 6.12: Relative residual with respect to the iteration number for multiplica-
tive Schwarz method in both dual and primal coarse cells for different grid sizes

dependence on the number of fine cells per coarse cell. Moreover, the number of
iterations needed to converge to the desired tolerance, is significantly lower com-
paring to the additive (544 iterations) and multiplicative (402 iterations) Schwarz
methods. In the Figure 6.13 the dependence of the relative residuals on the itera-
tion number for all 3 types of grid is presented.

Now, consider a number of grids with different amount of fine cells per coarse,
but the same amount of coarse cells. This approach will allow to study the depen-
dence of the number of iterations needed for convergence on the number of fine
cells constituting the domain. The smallest grid considered is [5 · 5 × 5 · 5], i.e
5 coarse cells in each direction with 5 fine cells per coarse cell in each direction.
Then, the number of fine cells per coarse cell is always increased by 2, since the
number of fine cell should be odd. The results are presented in Figure 6.14.

As it can be seen from the figure, the number of iterations linearly depends on the
number of fine cells constituting a coarse cell.

Consider now the following system:

−∇ · (53 + 25 sin(25x) + 25 sin(25y)) · ∇p) = −1 in Ω

p = 0 on ∂Ω

(6.9)

(6.10)
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Figure 6.13: Relative residual with respect to the iteration number for iMSFV in
dual and primal cells for [5 · 7× 5 · 7], [5 · 15× 5 · 15] and [10 · 15× 10 · 15] grids

The grid is [10 · 15 × 10 · 15]. The method converges to the desired tolerance
of 1 · 10−6 in 128 iterations. In Figure 6.15 relative residual with respect to the
iteration number for different methods can be found. As it can be seen, the fastest
method is still iMSFV in dual and primal cells, then pcg method for the fine scale
discretization (423 iterations), multiplicative Schwarz in both dual and primal cells
(898 iterations) and additive Schwarz in dual and multiplicative Schwarz in primal
coarse cells (1398 iterations).
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Figure 6.14: Number of iterations with respect to the number of the fine cells per
coarse cell

Figure 6.15: Relative residual with respect to the iteration number for various
methods
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Chapter 7

Conclusions

Several multiscale methods for solving elliptic equations with highly heterogeneous
coefficients were implemented. As it can be seen from the previous chapter the
best results with the least number of iterations are obtained by the iMSFV which
is done both in dual and primal cells. This method, however, requires Jacobi or
Gauss-Seidel line relaxation after each iteration and introduction of extra points
in the domain of interest to be able to perform calculations in the primal cells. On
the other hand, it gives a dramatical decrease in the number of iterations needed
to obtain the approximation of the fine scale solution, compared to the classical
iMSFV method, alternating Scwarz methods and the FD fine scale discretizations.

As it was shown, the classical MSFV method gives a good approximation of the
fine solution, i.e. if one is not interested in the exact solution of the initial problem
(2.1), the MSFV method can be performed in order to get satisfying results.

Alternating Schwarz methods can also be used to find the solution of the problem,
however, they are slow even compared to the fine difference approximation of the
problem on the fine scale. They also depend both on number of coarse cells and
primal cells per coarse. Convergence of the iMSFV method in dual and primal
cells, however, does not depend on the number of the coarse cells in the domain,
but only on the number of fine cells, constituting a coarse cell.

Classical iMSFV heavily depends on the smoothing operations - in some cases,
when the smoothing is not sufficient, it may diverge. Normally, several Jacobi or
Gauss-Seidel line relaxation steps must be done between the iterations. Hence,
this method lacks the stability of the iMSFV method in dual and primal cells,
which only needs one line relaxation step between the iterations, and alternating
Schwarz methods, which do not require smoothing operations at all. Moreover,
as it was shown, at some point it stagnates with the largest error located in the
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centers of the primal coarse cells.

The further research can be focused in implementing the methods above, espe-
cially the iMSFV method in dual and primal cells, as preconditioners, since now,
most of them are implemented as solvers for the fine scale solution of the initial
equation (2.1). Moreover, in some cases it is not necessary to update the solution in
every point of the domain, hence, it could be useful to update the iMSFV solution
only in some areas of the domain, having the criteria for this kind of choice.
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