
 Eindhoven University of Technology

MASTER

Multi-layer system modelling and verification of fine wafer alignment

Leemans, M.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. Mar. 2025

https://research.tue.nl/en/studentTheses/af1aa346-af55-455f-86f9-4428a192e381

Where innovation starts

Department of Mathematics and
Computer Science
Formal System Analysis
Den Dolech 2, 5612 AZ Eindhoven
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

Author

Maikel Leemans
m.leemans@student.tue.nl

University Supervisor

Jan Friso Groote
j.f.groote@tue.nl

Company Supervisors

Kees Kotterink
kees.kotterink@asml.com
Sven Weber
sven.weber@asml.com
Wouter Tabingh Suermondt
wouter.tabingh.
suermondt@asml.com

Order issuer

ASML

Date

August 22, 2014

Version

1.0
Public version

Multi-layer system modelling and
verification of fine wafer alignment

ASML Graduation Project (Public version)

Copy holder

Eindhoven University of Technology

mailto:m.leemans@student.tue.nl
mailto:j.f.groote@tue.nl
mailto:kees.kotterink@asml.com
mailto:sven.weber@asml.com
mailto:wouter.tabingh.suermondt@asml.com
mailto:wouter.tabingh.suermondt@asml.com

Public version – Technische Universiteit Eindhoven University of Technology

2 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

Contents

I Case study introduction 5

1 Introduction 7
1.1 Assignment goal . 7
1.2 Preliminaries . 7
1.3 The ASML NXT3 TWINSCAN wafer scanner 8
1.4 Case Study – Wafer Alignment . 9
1.5 Objectives . 10
1.6 How to read this document . 10

2 Key domain concepts 15

3 Approach and Methodology 17
3.1 Related work . 17
3.2 System analysis methodology . 19
3.3 Modelling approach – The partial models approach 19
3.4 Bridging application and modelling domains: Applied modelling patterns 20

4 Requirements on the system and interface boundaries 25

II Behavioural model – Software 27

5 Partial model description – Measure Control and Metrology 29

6 Software – Analysis and verification 31

III Behavioural model – Software/Hardware interaction 33

7 Partial model description – Logical Action Layer and Synchronization
Control 35

8 Partial model description – Synchronization Control and Subsystems 37

9 Software/hardware interaction – Analysis and verification 39

IV Wrap up and conclusion 41

10 System-level analysis and verification 43

11 Results and conclusions 45

3 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

11.1 Reflection on the system . 45
11.2 Reflection on the architecting process . 45

12 Future work 49
12.1 Standardizing mCRL2 patterns . 49
12.2 Analyses for future studies of the system 49
12.3 Proposed redesign . 50

V Appendices 51

A Measurement Sequence Steps 53

B Software components involved in the case study 55

C Nomenclature 57

D Bibliography 59

E Requirements in modal mu-calculus 61

F Setup and mCRL2 models used 63
F.1 Chapter overview . 63
F.2 Setup used . 63
F.3 Existing system models . 63
F.4 Redesign system model . 64

4 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Part I

Case study introduction

5

Public version – Technische Universiteit Eindhoven University of Technology

1 Introduction

In this chapter, we state the goal of the assignment, describe the assignment case study
and domain, state the assignment objectives and provide an outline of the rest of this
document.

1.1 Assignment goal

The goal of this assignment is to investigate academic techniques to get insight into
the (discrete event) system behaviour of the ASML TWINSCAN system. This is done
by applying these techniques to the (fine) wafer alignment functionality case study.
We will gain insight by establishing an unambiguous, correct description of this system
behaviour. Additionally, we will provide feedback and advice on the system architecture.

In this assignment, parts of a complex industrial system were quickly mastered and
reduced to its core concepts, using academic methodologies.

1.2 Preliminaries

The basic notions given below are used throughout this report.

(System) behaviour
Behaviour is anything that an organism or system does, involving action and response
to stimulation.

Interface
An interface is a common boundary or interconnection between systems, where interac-
tion or communication is achieved.

Requirement
A requirement specifies what behaviour a system/process should (needed functionality)
and should not have (safety constraints).

Process
A process is a control mechanism, which defines a series of actions that lead to a partic-
ular result.

7 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

mCRL2
mCRL2 (micro Common Representation Language, version 2 [2, 6]) is a behaviour spec-
ification language and toolset for modelling and analysing communicating systems.

1.3 The ASML NXT3 TWINSCAN wafer scanner

1.3.1 The ASML lithographic machine

The ASML TWINSCAN lithographic machine (hereafter “the system”) is used to man-
ufacture integrated circuits on a silicon wafer. The function of an ASML lithographic
machine is to expose specific parts of a wafer with the right amount of light. Typically,
a wafer enters the ASML machine multiple times. Each time a new layer is added to
the integrated circuit structure being built on the wafer. This structure is created via
the projection of a pattern or image onto the wafer. We create this pattern by using a
light source and a reticle mask. See Figure 1.1 for a context sketch of the ASML wafer
exposure in the lifetime of wafer development.

If the wafer is not exactly at the focus point of the projected light, we have a focus error.
If the wafer is not exactly in the same space as the previous expose, the layers will not
exactly stack, and we have an overlay error. Wafers are typically processed in batches.
A batch of wafers is also called a LOT.

1.3.2 On performance factors, dual stages and scanning

The two key performance factors for ASML lithographic machines are accuracy and
throughput. Accuracy is measured in terms of focus and overlay errors. Throughput is
measured in terms of wafers per hour processed.

In order to improve accuracy, series of measurements are needed to know exactly where
the wafer is. These measurements take time. In order to improve throughput, there
are two physical stations in the TWINSCAN machine (see also Figure 1.2): one for
measuring the wafer (the Measurement Station), one for exposing the wafer (the Ex-
posure Station). This way, measuring the wafer can be done in parallel with exposing
another wafer. Consequently, this increases the number of wafers processed per hour
(i.e., throughput).

In order to reduce the cost and the size of the lenses involved, the scanning principle is
used in the Twinscan machine. Scanning means that instead of exposing the complete
image at once, the image is drawn on the wafer, see also Figure 1.4. This requires the
reticle and wafer to move in sync. The same is true for the measurement station. In
order to “read” reference points, which tells us where the wafer is, we need to coordinate
the wafer movement and the sensor hardware utilization. In order to be able to move
the wafer, the wafer is placed on a waferstage or chuck.

1.3.3 Physical overview

In the ASML TWINSCAN machine, wafers to be processed are loaded onto a waferstage.
The waferstage or chuck is the component that carries the wafer, and moves the wafer

8 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

around in the machine. There are two chucks, one at the measurement station and one
at the expose station, allowing two wafers to be processed at the same time.

The two chucks move wafers between the measurement and expose station (as is indicated
in Figure 1.2). Spanning these two stations is the Metroframe. The Metroframe is a
physical frame that houses the lenses for exposure, and sensors for measurement (see
also Figure 1.3).

1.4 Case Study – Wafer Alignment

1.4.1 Life of a Wafer and the Measurement Sequence

Recall, in order to expose a wafer (projecting a reticle pattern onto the wafer) while
minimizing focus and overlay errors, we need to know with great accuracy where the
wafer is and how the wafer is deformed. That is, we need to determine a set of wafer
parameters that tell us the position and deformation of the wafer. To obtain the required
information, we need to perform a series of measurement steps. The order in which these
steps are performed are captured in the Measurement Sequence, which is executed at the
measurement station. See Figure 1.5 for a context sketch of the measurement sequence
in the Life of a Wafer inside the system. The Life of a Wafer is the complete sequence
of actions a wafer goes through, from the moment it enters the system till the moment
it leaves the system.

Due to the nature of the system, the scale operated at and the sensors used, we measure
the wafer indirectly. In the measurement sequence, we determine the position of the
wafer with relation to a fixed point, which is the waferstage. In short, this means we
have two main activities in a measurement sequence: measuring where the waferstage
is, and measuring where the wafer is on the waferstage.

1.4.2 Measurement sensors

The two main types of sensors at the measurement side are the Level and Alignment
sensors. With the Level sensor, we measure the height and tilt of the wafer surface
using interferometers. Complementary, the Alignment sensor measures the position of
alignment marks on the wafer. Technical note: In this case study, we will assume that
the SMASH alignment sensor is used.

There are two subsystems for aligning the waferstage: SPM and the TIS plates. Firstly,
Stage Position Measurement (SPM) assists with positioning the waferstage by providing
sensor feedback during movements. The SPM sensors are attached to the Metroframe
(see also Figure 1.3). Secondly, the TIS plates are a subsystem on top of the waferstage.
A TIS plate consists of both marks and sensors. These marks are read using the align-
ment sensor at the measurement station. The sensors are used at the expose station to
determine where the image will be projected on the wafer by determining the position
of the reticle.

9 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

1.4.3 Case Study identification

To recap, the case study is to get insight into the behaviour of (fine1) wafer alignment
measurement step, performed at the measurement station using the alignment sensors.

1.5 Objectives

The objectives of this assignment are:

• Identify and describe the wafer alignment functionality behaviour, its requirements
and the domain concepts associated with the system behaviour, as identified in the
case study.

• Model, analyse and verify the wafer alignment functionality behaviour in the be-
havioural specification language mCRL2.

• Reflect on the system behaviour, highlighting potential problems, and relating the
work to alternative design approaches.

1.6 How to read this document

1.6.1 Document Identification

This document describes, analyses and reflects on the (fine) wafer alignment function-
ality in the ASML NXT3 TWINSCAN. Furthermore, this document elaborates on the
approach, methodology and technologies used. In addition, a reflection on the architect-
ing process at ASML and a possible redesign is provided.

1.6.2 Stakeholders, and where do I find which information?

This document was written with two major stakeholders in mind: ASML system ar-
chitects, and TU/e research staff. Therefore, not all parts of the document are equally
relevant for each stakeholder. In the Outline section presented below, a brief summary
of all the chapters is given as a guideline. To aid the reader, given below is a list of
questions, and the chapters in which those questions are answered.

• Which system was modelled? See Chapters 1 and 2.
• How was the system modelled? / Which techniques were used? See Chapter 3.
• What are the overal results and conclusions? See Chapter 11.
• Where can I find a detailed reference of what was modelled? See Chapters 4, 5, 7

and 8, and Appendix F.
• Where can I find a detailed discussion of the analysis results? See Chapters 6, 9

and 10.
• Where can I find and index/reference of all the terminology used? See Appendix C.

1Fine Wafer Alignment is a specific step in the Measurement Sequence, and is discussed in more
detail in Chapter 5 and Appendix A

10 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

1.6.3 Outline

In Part I, we start in Chapter 2 with an explanation of the key domain concepts related
to the system behaviour of the (fine) wafer alignment functionality. In Chapter 3 we will
discuss the approach and methodology employed in obtaining, modelling and analysis
the system behaviour. In addition, in Chapter 4 we will address the requirements which
we will verify on the behavioural model.

As will be motivated in Chapter 3, we divided the system behaviour in three parts.
In Part II, we will address the software-only aspects of the system behaviour. In this
part, we will describe the associated model in Chapter 5 and provide the accompanied
behavioural analysis in Chapter 6. In Part III, we will address the software-hardware
interaction aspects of the system behaviour. In this part, we will describe the associ-
ated models in Chapters 7 and 8, and provide the accompanied behavioural analysis in
Chapter 9.

In Part IV, we wrap things up with a system-level analysis in Chapter 10. In Chapter 11
we will reflect on the system design and architecting process. Finally, in Chapter 12 we
will briefly propose a redesign, and provide suggestions for future work.

Throughout this document a lot of domain and ASML specific abbreviations and con-
cepts are used. In Appendix C there is a reference list of these abbreviations and
concepts.

The system description is translated to a formal behavioural model, which is added in
Appendix F. The analysis is based on the verifiable requirements described in Chapter 4,
which are translated into the modal mu-calculus (see Appendix E). These requirements
are verified for all conceivable scenarios.

Figure 1.1: The wafer development cycle.

11 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

Figure 1.2: The measurement and expose stations within the ASML TWINSCAN ma-
chine.

Alignment
sensor

SPM sensor

SPM sensor

TIS plate

Waferstage

Wafer

Levelling
sensor

Levelling
sensor

TIS plate

Metroframe

Figure 1.3: Overview of the physical world at the measurement station.

12 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

Stepper Scanner

Wafer

Lens

Reticle

Move
direction

Move
direction

Figure 1.4: The difference between a one-time exposure (stepper behaviour), and a scan
exposure (scanner behaviour).

Stage
Swap
Stage
Swap

Expose station Measurement station
Coarse
wafer
align

Expose
Wafer

Load
wafer

Unload
Wafer

Stage
align

Lot
correction
(1st wafer

of Lot)

Reticle
align
(TIS)

Global
level
circle

Reticle
stage
align

Stage
Swap

further
processing

Wafer
mapping Fine

wafer
align

Figure 1.5: The life of a wafer in an ASML TWINSCAN machine.

13 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

14 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

2 Key domain concepts

In this chapter, we introduce and explain key domain concepts related to the system
behaviour of the (fine) wafer alignment functionality. These concepts are needed to
understand the modelled behaviour. In addition, we discuss the software architecture
employed in the ASML TWINSCAN, and briefly address major protocols.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

15 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

16 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

3 Approach and Methodology

In this chapter, we will discuss the approach and methodology employed in obtaining,
modelling and analysis the system behaviour. In addition, we will give a brief survey of
related work and methodologies.

3.1 Related work

3.1.1 The mCRL2 language and toolset

The modelling is done in the behavioural specification language mCRL2 (micro Common
Representation Language, version 2 [2, 6]). Recall, mCRL2 is a behaviour specification
language and toolset for modelling and analysing communicating systems. For this
analysis, we used mCRL2 release version 201310.0 [4].

The mCRL2 language and tookit, first released in 2003, is the successor to µCRL (de-
veloped in 1991). mCRL2 improved on µCRL by adding the basic datatypes as part
of the language, where µCRL only contains a mechanism to define datatypes. mCRL2
builds upon the development work on process algebra’s between 1970 and 1990 [6].

3.1.2 Related system analyses done in mCRL2

The mCRL2 toolset has previously been used for both high-level and low-level system
analyses. It was shown that mCRL2 can be used for detailed modelling and analysing
of existing low-level protocols. In [3], the FlexRay booting protocol was analysed using
mCRL2, and in [10], the CAN state update protocol was investigated with the toolset.
This type of analysis is generally used to verify key protocols and contracts on which
larger systems are depending.

In [9] it was demonstrated that mCRL2 is able to validate large systems, by transforming
large parts of the control software architecture deployed at the Compact Muon Solenoid
(CMS) experiment at CERN. The formal models used in both analyses are of consid-
erable size and complexity. In both cases, a thought-out decision was made regarding
the detail-level of the modelled behaviour in order to avoid the state-space explosion
problem.

A combination of high-level and low-level analysis was commissioned by the Dutch Min-
istry of Infrastructure and the Environment and documented in [11]. In this analysis,
the software control stack of a movable bridge was verified in the mCRL2 toolset. In this
case, a careful assessment was made regarding the detail-level of the behaviour at both

17 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

the low-level and high-level boundaries of the model. This was done in order to obtain
a model of a manageable size that still covers both low-level and high-level concepts.

3.1.3 The need for formal specification

The need for formal and unambiguous descriptions was demonstrated in the experiment
described in [7]. During this experiment, three senior architects were asked to design a
lift control system based on an initial vague and ambiguous set of requirements. The
varying approaches and resulting design demonstrated the effects of an informal design
specification, which led the authors to the conclusion that “formal design representation
languages” (like mCRL2) are needed.

3.1.4 Related formal analysis technologies

A toolset related to mCRL2 is Uppaal [1]. The toolset describe timed behaviour via net-
works of timed automata. Uppaal provides real-time and probabilistic model checking.
In [15], both Uppaal and mCRL2 were used to verify models of a pacemaker. In this
study, it turned out that Uppaal “was not suitable to deal with the full complexity of
the software of the pacemaker” [13].

In [5], the SHE methodology and the POOSL formal specification language are discussed.
The SHE methodology, or Software/Hardware Engineering methodology, is a framework
for object-oriented specification and design of hardware/software systems. The SHE
toolset uses the POOSL specification language. The POOSL language borrows tradi-
tional C-style programming language concepts in the form of asynchronous concurrent
process objects for its formal specification. Like Uppaal, SHE focusses on real-time and
probabilistic model checking.

The commercial tool ASD:Suite [14], developed by Verum, uses a formal software engi-
neering approach called Analytical Software Design (ASD). Two types of formal models
are employed in the ASD approach: design models and interface models, which are both
described using state machines. Using the ASD:Suite, basic verifications like deadlock
and illegal behaviour detection can be applied to the specified model. This model, which
describes parallel communicating components or processes, can be translated into pro-
duction code. In [8], this toolset is evaluated based on an industrial application within
Philips Healthcare.

3.1.5 Related system analysis at ASML

The SHE methodology was previously used at ASML to analyse the synchronization
protocols [12]. In this analysis, multiple subsystems and their associated state machines
were added to the POOSL model. The model specification of these state machines was
generated from an ASD specification.

18 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

3.2 System analysis methodology

A major challenge in obtaining the key concepts (Chapter 2) and formal descriptions
(Chapters 5, 7 and 8) is the way in which information and knowledge is shared within
ASML. Much of the design is documented in code and presentations, or shared verbally
at the coffee machine.

As a result, the following (iterative) methodology was used during this project to recon-
struct the key concepts and formal descriptions:

1. We started with identifying areas of interest. This was achieved by talking to
domain experts, and looking up information in existing ASML documentation.

2. Based on the gathered information, key components and major parts of the overall
behaviour were identified.

3. The obtained information was formalized as communicating processes, interfaces
and in rare cases as requirements.

4. The processes and the associated communication were modelled in detail in the
mCRL2 language. The act of creating formal models provided the first major
feedback. Writing down the discovered ideas in a formal way allowed us to discover
which parts we did not understand.

5. Using the mCRL2 toolset, the created mCRL2 models were analysed and verified.

6. Based on the performed analysis and verification, key concepts, ideas and problems
were identified. These were discussed with domain experts, and, where needed,
looked up in actual implementation code. Using the obtained insights and feed-
back, the model was adapted and corrected and alternative designs were investi-
gated.

3.3 Modelling approach – The partial models approach

We are interested in both the low-level software/hardware interface protocols and high-
level system behaviour, thereby covering all the layers of the software stack. As was also
commented on in Section 3.1, we need to consider the detail-level of the model in order
to prevent effects like state-space explosions.

The whole system behaviour is modelled by three partial models. A partial model
describes a subset of the system, such that the boundaries of this subset are at the
external interfaces. We “cut” the software architecture into partial models for two
reasons. Firstly, the partial models reduce the overall complexity, avoiding state-space
explosion problems. Secondly, the partial models allow us to analyse interfaces between
conceptually different layers, which are found to be poorly understood.

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

19 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

3.4 Bridging application and modelling domains: Applied
modelling patterns

In this section, we will elaborate on the way different behavioural aspects are captured
in the formal models. Throughout the modelling process, several recurring patterns were
identified and standardized in the mCRL2 models. We will highlight the major modelling
patterns used in the mCRL2 models, which are included in Appendix F. Assumed is that
the reader has basic knowledge of process algebra and the mCRL2 specification language.

The modelling patterns in this section bridge the gap between the application domain
(the ASML system) and the modelling language mCRL2. The mCRL2 language is a
generic behaviour specification language, and the capturing of the discussed domain
concepts is a non-trivial task. The modelling patterns provide a “mental mapping”
between the mCRL2 concepts and the application domain concepts. See Figure 3.1 for
a depiction of how these domains relate to each other.

Process
Algebra

mCRL2

Modelling
patterns

Real world
(application domain)

Figure 3.1: Illustration of the place of modelling patterns in the context of mCRL2 and
the application domain (the ASML system).

3.4.1 Modelled processes and their relation to components

Two types of processes are modelled: component processes and network queue processes.

Component processes Each of the components described in Appendix B is modelled
by its own process. This reflects the actual implementation used at ASML. For the
subsystem components, the different sublayers involved each have their own processes.
In Figure ?? an overview of the processes and their context is given.

Typically, we used process data to represent the state of the component, and in some
cases, we introduced specialized state sorts. A component process definition begins with
a choice of actions, each representing the receiving of a communicated message (e.g., an

20 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

interface call). When such a message is received, we perform the steps symbolizing the
behaviour associated with the received message. After that, we recurse on the component
process, with the modified state data.

Each component process has its own id. In the model we used the following sorts for
enumerating the possible component ids:

1 % Component identifiers

2 sort CC_ID = struct

3 CC_LO

4 | ...

5 ;

Network queue processes By defining separate network queue processes, we repre-
sented the indirect, delayed communication between components in the model. For more
information on this type of communication and the Message sort, see the next section.
The queue process is parameterized on the callee component id. Hence, we can reuse the
process definition listed below. It can be instantiated for new components by passing
along the new callee component id for the parameter ccId.

1 % Generic queue process used on XA interfaces for the receiving end

2 % Init: Queue_XA(ccId , RPC_Queue_Size , [])

3 proc Queue_XA(ccId: CC_ID , queueCapacity : Nat , queue: List(Message)) =

4 % sending messages

5 ((# queue < queueCapacity) -> (

6 sum msg : Message .

7 (targetId(msg) == ccId) ->

8 q_enque(msg)

9 . Queue_XA(queue = queue <| msg)

10))

11

12 % receiving messages

13 + ((# queue > 0) -> (

14 q_deque(head(queue))

15 . Queue_XA(queue = tail(queue))

16))

17 ;

3.4.2 Communication between components

A generic approach is used to implement the interface concepts (see also Section ?? and
Section ??).

We distinguish two types of interface calls:

• External Interfaces. Communication between two parallel processes, the commu-
nication messages passed along are queueable. This modelling pattern covers both
the function and event interfaces.

• Internal Interfaces. Direct messages-less communication that cannot be delayed.
The Hardware/Software I/O communication was modelled with this type of inter-
faces.

External Interfaces For the External interfaces a simply queue process is placed
between the two processes to facilitate the indirect, delayed communication. Recall that
each component has two network queues:

21 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

• Default queue. Stores received function invoke and event messages.

• Reply queue. Stores received function reply messages.

External interfaces are identified by an interface id. In the model, we used the following
sort for enumerating the possible interface ids:

1 % [XA] external interface sort.

2 % This structured sort represent the actual function calls and event triggers

3 sort XA_ID = struct

4 | KMXA_lot_start(data: LOT_data) | KMXA_R_lot_start

5 | ...

6 ;

Components communicate with each other via messages. The message type consists of
an external interface identifier, and a source and destination component identifier:

1 sort Message = struct msg(sourceId: CC_ID , targetId: CC_ID , interfaceId: XA_ID);

There are three types of messages: function invoke, function reply and event messages
(see also Section ??). Invoking a function blocks the calling process until the return
message (reply) is received. Event interfaces are modelled via a single external interface
identifier.

External interface communication is modelled via the following actions:

1 % Send/Receive for usage of external interfaces

2 act snd , q_enque , XA_call , % snd | q_enque -> XA_call % Issue function call

3 rec , q_deque , XA_accept % rec | q_deque -> XA_accept % Process function

call

4 : Message;

Internal Interfaces For the Internal interfaces the two processes are directly involved
in the interface interaction.

Internal interfaces are also identified by an interface id. In the model we used the
following sort for enumerating the possible interface ids:

1 % [XI] internal interface sort.

2 sort XI_ID = struct

3 InterfaceA

4 | InterfaceB

5 | ...

6 ;

Internal interface communication is modelled via the following actions:

1 % Call/Return for usage of internal (library) interfaces

2 act call , invoke , XI_call , % call | invoke -> XI_call % Invoke method

3 ret , return , XI_return % ret | return -> XI_return % Return method

4 : XI_ID;

3.4.3 Illegal states

Another useful technique employed is the identification of states that should not be
reachable. A typical example application is dequeuing from an empty queue. These
states are referred to as illegal states.

22 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

In the mCRL2 model, we can identify the transitions that lead to an illegal state by
carefully considering the data used in processes and covering all cases in the usage of
this data. We marked these transitions with the special error action, followed by the
delta action1. By providing additional data with this error action, we can quickly identify
what goes wrong in the cases where we perform an error transition. In mCRL2 we used
the following code to realise this idea:

1 act error : Act_Error_Codes;

2 % Specific information codes for error action , aiding in debugging model

3 sort Act_Error_Codes = struct

4 ERROR_NotImplemented

5

6 | WP_Dequeue__EmptyQueue

7 | ...

8 ;

3.4.4 Focussing on interface groups, using action renaming

We wish to analyse different aspects of the modelled system behaviour. To this end we
employed the pattern described below, which allows us to indicate the focus or view of
a state space without removing behaviour from the model. Using action renaming on
the LPS2, we can hide specific interface messages by renaming them to tau-steps. After
applying branching bisimulation on the resulting linear transition system, we get a state
space ‘with the indicated focus’. This way, behaviour can be inspected and discussed
with domain experts using uncluttered state space visualizations.

For this pattern we identified specific groups of interfaces, and specified two mappings
for each group. The first mapping indicates (toggles) if we want to ‘see’ the group. If
we do not want to see a group, the actions corresponding to that group are renamed to
tau-steps. The second mapping identifies all the actions that correspond to the group.

As an example, suppose we only want to see the external interface interactions (i.e.,
only those involving the component KD) in the partial model Logical Action Layer and
Synchronization Control. The mapping for toggling this focus group looks like:

1 map HideInternalComm : Bool;

2 eqn HideInternalComm = false; % true or false for turning the group on or off

Next, we specify the mapping that identifies all the action that correspond to this group:

1 map isInternalXA : Message -> Bool;

2 var msg : Message;

3 eqn isInternalXA(msg) = !(sourceId(msg) == CC_KD || targetId(msg) == CC_KD);

Finally, we specify the action rename rules as follows:

1 var msg : Message;

2 rename

3 (HideInternalComm && isInternalXA(msg)) -> XA_call(msg) => tau;

4 (HideInternalComm && isInternalXA(msg)) -> XA_accept(msg) => tau;

1In mCRL2, the delta action symbolises a deadlock
2Linear Process Specification, the intermediate format used by mCRL2 in transforming a model

specification into a linear transition system.

23 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

24 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

4 Requirements on the system and interface

boundaries

This chapter defines requirements on the behaviour of the system. The goal of require-
ments formulation and verification is to better understand the system under analysis.
Therefore, in Chapters 5, 7 and 8 models of the system are provided on which these
requirements are checked.

Unfortunately, as far as known at the moment of writing, there is no verifiable set of
requirements available within ASML. The list of requirements presented here is con-
structed based on the interviews with domain experts. The listed requirements are
focused both at system level and at the boundaries between the software architectural
layers. At the moment of writing, these areas are found to be the least understood. It
should be remarked that these requirements are by no means complete, but are presented
as an example in the right direction.

Every requirement in this chapter is translated into a modal µ-calculus formula. Ap-
pendix E lists the translated requirements, which are traceable via the provided identi-
fiers. The modal µ-calculus formula is checked against the models described in Chap-
ters 5, 7 and 8 and verified using mCRL2 (see Appendix F).

In this chapter, we distinguish three types of requirements:

Liveness requirements Liveness requirements enforce that certain interface calls will
be enabled.

Functional requirements Functional requirements enforce that interface calls have
certain effects.

Safety requirements Safety requirements enforce an order on activities in order to
guarantee safe machine operations.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

25 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

26 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Part II

Behavioural model – Software

27

Public version – Technische Universiteit Eindhoven University of Technology

5 Partial model description – Measure Control

and Metrology

This chapter describes the processes and their interfaces included in the formal model
corresponding to the partial model Measure Control and Metrology. Recall, this partial
model is a software-only model, which focuses on the Measurement Sequence.

Where relevant for behavioural modelling, this chapter elaborates on the concepts from
Chapter 2. The described model is modelled in mCRL2 (see [4]) and can be found in
Appendix F. In Chapter 6, an analysis and verification based on this model is presented.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

29 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

30 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

6 Software – Analysis and verification

In this chapter, we will take a closer look at the system behaviour described by the partial
model Measure Control and Metrology. Using the model as described in Chapter 5
and implemented in Appendix F, this Chapter provides the performed analysis and
observations, and where applicable support the analysis with requirement verifications.
In Chapter 11 we will reflect on the observations from this Chapter and present the
lessons learned.

For the verification, the requirements in Chapter 4 are translated into µ-calculus formulae
(see Appendix E), which were verified on the mCRL2 model (see Appendix F).

For the analysis, several configurations of the model are manually inspected using state-
space visualizations and simulations, which were reviewed and discussed with domain
experts.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

31 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

32 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Part III

Behavioural model –
Software/Hardware interaction

33

Public version – Technische Universiteit Eindhoven University of Technology

7 Partial model description – Logical Action

Layer and Synchronization Control

This chapter describes the processes and their interfaces included in the formal model
corresponding to the partial model Logical Action Layer and Synchronization Control.
Recall, this partial model is a software-hardware model which focuses on the trans-
lation of measurement concepts to hardware interaction (i.e., from Logical Actions to
Subsystem Actions).

Where relevant for behavioural modelling, this chapter elaborates on the concepts from
Chapter 2. The described model is modelled in mCRL2 (see [4]) and can be found in
Appendix F. In Chapter 9, an analysis and verification based on this model is presented.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

35 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

36 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

8 Partial model description – Synchronization

Control and Subsystems

This chapter describes the processes and their interfaces included in the formal model
corresponding to the partial model Synchronization Control and Subsystems. Recall,
this partial model is a software-hardware model, which focuses on the synchronization
protocol and actual hardware interactions.

Where relevant for behavioural modelling, this chapter elaborates on the concepts from
Chapter 2. The described model is modelled in mCRL2 (see [4]) and can be found in
Appendix F. In Chapter 9, an analysis and verification based on this model is presented.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

37 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

38 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

9 Software/hardware interaction – Analysis

and verification

In this chapter, we will take a closer look at the system behaviour described by the partial
models Logical Action Layer and Synchronization Control and Synchronization Control
and Subsystems. Using the model as described in Chapters 7 and 8, and implemented in
Appendix F, this Chapter provides the performed analysis and observations, and where
applicable support the analysis with requirement verifications. In Chapter 11, we will
reflect on the observations from this Chapter and present the lessons learned.

For the verification, the requirements in Chapter 4 are translated into µ-calculus formulae
(see Appendix E), which were verified on the mCRL2 model (see Appendix F).

For the analysis, several configurations of the model are manually inspected using state-
space visualizations and simulations, which were reviewed and discussed with domain
experts.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

39 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

40 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Part IV

Wrap up and conclusion

41

Public version – Technische Universiteit Eindhoven University of Technology

10 System-level analysis and verification

In Chapters 6 and 9 we took a closer look at each of the partial models and the behaviour
modelled therein. In this chapter, we will zoom out and briefly look at the overall system
behaviour.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

43 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

44 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

11 Results and conclusions

In this chapter, we will zoom out and look at what lessons we have learned from the
presented formal system analysis. We reflect on both the system design and the observed
architecting process that led to the discussed design.

We believe that with the results and conclusions (this Chapter), and the suggested re-
design and follow-up analyses (Chapter 12), ASML can relatively easily apply the lessons
learned in this report and effectively continue investigating their system architecture. In
addition, we believe that the system overview presented in this report gives a more global
overview of the ASML TWINSCAN system than is readily available within ASML.

11.1 Reflection on the system

In Chapters 6, 9 and 10 we provided the performed analysis and observations. In this
section, we will reflect on the observations made, and present the lessons learned.

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

11.2 Reflection on the architecting process

In this section we will reflect on the architecting process at ASML as a whole. By looking
at various aspects of the system and talking to different domain experts, we noted several
approaches being employed by ASML employees. These approaches have had a notable
effect on the system architecture.

11.2.1 Organizational structure around hardware influences system
design

Thinking in physics and mechanics

At all the layers and levels at which the system can be described, ASML employees
prefer to revert to the physical world, to the world they can touch and visualize. While
this is not necessarily a bad habit, it can become a pitfall when one forgets about the
higher-level ideas, original concepts and actual system behaviour.

45 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

One example result from this type of pitfalls is the observation in Section ??: “the system
is programmed upside down in terms of which concepts are used at which architectural
level”. As a result, concepts such as laser shutters end up in high-level architectural
layers. Due to thinking in physics and mechanics, one is typically inclined not to consider
the higher-level concepts that should be used instead.

Organization influences system design: Functional Clusters

Based on the physical world view on the system, low-level functionalities are identified
and grouped together into Function Clusters (FCs). These FCs are organizational units
that are tasked with addressing the challenges or problems in that specific domain.
Typically, each FC ends up owning a set of components that are totally contained in
that FC, and not shared with another FC. This includes software components. Hence,
the result is that the software components are formed around the organization structure,
which only considered the physical world to begin with. This approach tends to suffer
from the same pitfall discussed in the previous section, where the higher-level conceptual
overview is under-represented.

11.2.2 Problem solving approaches employed at ASML

Functional Clusters, knowledge sharing and the lack of system-level overview

Elaborating on the section about Functional Clusters (FCs), another effect of using these
types of clusters is that architects (Functional Architects, or FAs) tend to consider only
their cluster. The effects of this are that the persons responsible for developing and
maintaining the overview limit their scope to their own cluster. As a result, at various
clusters the same problems were discovered independently, and usually solved multiple
times in very different ways. A good example of this is the multitude of Queuing Policies,
as discussed in Section ??.

It might be worthwhile to create disciplines that solely focus on a cross-FC behavioural
aspect, such as the Measurement Sequence, without attaching it to a physical sensor.
The idea of clusters should be revisited, and based on concepts and problems within the
system as a whole, not a specific physical part.

Hot-fixes instead of going back to the original concepts, and the resulting
documentation incompleteness

Due to the lack of overview, together with the complexity of the system in question, a
lot of issues and bugs are found in late-stage integration and production, which need
to be fixed quickly. Typically, these issues are fixed by the FC that owns the involved
components, and are typically cured with hot-fixes. Considering the late stage in which
these issues are discovered and the time-to-market pressure, this hot-fixing approach
is understandable. However, a result is that the rethinking that is usually required is
skipped.

As a result, a lot of ‘lessons learned’ moments seem to be skipped, and the original
concepts slowly are disappearing and forgotten in the revised system design. Another

46 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

result from this lack of feedback and reviewing, the existing documentation is usually
outdated as soon as it is released, and one avoids learning what needs to be documented
in the first place. This is for example visible in the incomplete and incorrect interface
contracts available within ASML.

By applying formal, model-based design and engineering techniques and promoting en-
gineering by contract and early design validation & verification, many of these hot-fixes
can be avoided. When applied correctly and consistently, these design principles yield
fewer issues in late-stage integration and production, less hot-fixes, and better and more
complete documentation.

47 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

48 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

12 Future work

In this chapter, we briefly discuss possible future work following up on the analysis
presented in this report. We address three topics: a possible redesign, follow-up analyses
that could improve the insight into the discussed system behaviour, and follow-up work
to be done on the standardization of mCRL2 patterns.

12.1 Standardizing mCRL2 patterns

Throughout this case study, many recurring modelling patterns were identified during
the development of the mCRL2 models. As was also documented in Chapter 3, several
of these patterns can be standardized. Currently, the mCRL2 specification language
feels like a powerful ‘assembly-like’ modelling language. Future work could focus on
identifying and standardizing modelling methodologies, modelling patterns and best
practices, much like was done in Chapter 3.

Such work would greatly lower the learning curve of using mCRL2, and provide new and
existing users with many helpful guidelines and templates. Benefits that could result
from this kind of standardization include:

• Providing users with tips in creating manageable models, which avoid state space
explosion problems. Things to consider in this category include, amongst others,
the trade-off between explicitly modelling intermediate (tau) steps and combining
behaviour in multi-actions.

• Providing users with techniques for better understanding the modelled behaviour.
For example, through applying the illegal state pattern, counterexample traces for
requirement violations can be generated.

• Providing users with patterns that employ a conceptual mapping between be-
haviour modelling and implementation. Consider, for example, the representation
of component external interfaces and the mapping to the underlying messages.

12.2 Analyses for future studies of the system

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

49 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

12.3 Proposed redesign

Based on the observations in Chapter 11, future work could focus on redesigning the
system, incorporating the lessons learned. Ideally, such a redesign would promote the
move towards a modular, plug-in software architecture with engineering by contract and
early design validation & verification.

As an example, a simple redesign model was created. In this section, we will briefly
highlights the innovations applied as a result of the lessons learned. In Appendix F the
deadlock-free mCRL2 model corresponding to this redesign is given. In Figure ?? a
high-level overview of the redesign is given.

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

50 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Part V

Appendices

51

Public version – Technische Universiteit Eindhoven University of Technology

A Measurement Sequence Steps

To provide a bit of context, the measurement steps used in the behavioural models are
described briefly below. Some of these steps are also illustrated in the high-level overview
in Figure 1.5.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

53 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

54 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

B Software components involved in the case

study

In this chapter, the software components involved with the wafer alignment case study
are described. In addition, for each component the corresponding layer in the software
architecture and the scope are given. Scope, in this context, means the components
whose external interfaces are used by the indicated component.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

55 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

56 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

C Nomenclature

Accuracy Accuracy is a key performance factors for ASML lithographic machines, and
is measured in terms of focus and overlay errors, page 8

Alignment sensor Sensor that measures the position of alignment marks on the wafer,
page 9

Behaviour Behaviour is anything that an organism or system does, involving action
and response to stimulation, page 7

Chuck Alias for waferstage, page 9

Exposure station Physical station in a TWINSCAN machine where the wafer is ex-
posed, page 8

Focus error Error caused by the wafer being not exactly at the focus point of the
projected light, page 8

Interface An interface is a common boundary or interconnection between systems,
where interaction or communication is achieved, page 7

Level sensor Sensor that measures the height and tilt of the wafer surface using inter-
ferometers, page 9

Life of a Wafer The complete sequence of actions a wafer goes through, from the
moment it enters the system till the moment it leaves the system., page 9

LOT A batch of wafers, page 8

mCRL2 mCRL2 (micro Common Representation Language, version 2 [2, 6]) is a be-
haviour specification language and toolset for modelling and analysing commu-
nicating systems, page 8

Measurement Sequence The sequence of actions, performed at the measurement sta-
tion, to determine a set of wafer parameters that tell us where the wafer is, and
how the wafer is deformed, page 9

Measurement station Physical station in a TWINSCAN machine where the wafer is
measured prior to exposure, page 8

Metroframe A physical frame that houses the lenses for exposure and sensors for
measurement, page 9

Overlay error Error caused by the wafer being not exactly in the same space as the
previous expose, causing the layers to not stack exactly, page 8

57 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

Process A process is a control mechanism, which defines a series of actions that lead
to a particular result, page 7

Requirement A requirement specifies what behaviour a system/process should (needed
functionality) and should not have (safety constraints), page 7

Scanning Scanning means that instead of exposing the complete image at once, the
image is drawn on the wafer, page 8

SMASH Smart Alignment Sensor Hybrid, page 9

SPM Stage Position Measurement, page 9

Stage Position Measurement System that takes care positioning the waferstage by
providing sensor feedback during movements, page 9

Throughput Throughput is a key performance factors for ASML lithographic ma-
chines, and is measured in terms of wafers per hour, page 8

TIS plate Sensor and grating plate on the waferstage. The TIS sensor is mainly used
for reticle align, page 9

Wafer A thin slice of semiconductor material, such as a silicon crystal, used in the
fabrication of integrated circuits and other microdevices, page 8

Wafer exposure The act of projecting a reticle pattern onto the wafer, page 9

Waferstage The component that carries the wafer, and moves the wafer around in the
machine, page 9

58 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

D Bibliography

[1] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Uppaal a tool suite for automatic verification of real-time systems. In Rajeev
Alur, ThomasA. Henzinger, and EduardoD. Sontag, editors, Hybrid Systems III,
volume 1066 of Lecture Notes in Computer Science, pages 232–243. Springer Berlin
Heidelberg, 1996.

[2] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, J.W. Wes-
selink, and T.A.C. Willemse. An overview of the mCRL2 toolset and its recent
advances. In N. Piterman and S.A. Smolka, editors, Proceedings TACAS 2013,
number 7795, pages 199–213. Springer, 2013.

[3] Sjoerd Cranen. Model checking the flexray startup phase. In Marille Stoelinga and
Ralf Pinger, editors, Formal Methods for Industrial Critical Systems, volume 7437
of Lecture Notes in Computer Science, pages 131–145. Springer Berlin Heidelberg,
2012.

[4] Technische Universiteit Eindhoven. mCRL2 Home. http://www.mcrl2.org/.

[5] M.C.W. Geilen, J.P.M. Voeten, P.H.A. van der Putten, L.J. van Bokhoven, and
M.P.J. Stevens. Object-oriented modelling and specification using SHE. Computer
Languages, 27(13):19 – 38, 2001. Visual Formal Methods-VFM’99 Symposium.

[6] J.F. Groote and M.R. Mousavi. Modelling and Analysis of Communicating Systems.
MIT Press, 2014. To appear.

[7] Raymonde Guindon. Knowledge exploited by experts during software system design.
International Journal of Man-Machine Studies, 33(3):279 – 304, 1990.

[8] Jozef Hooman, ArjanJ. Mooij, and Hans van Wezep. Early fault detection in in-
dustry using models at various abstraction levels. In John Derrick, Stefania Gnesi,
Diego Latella, and Helen Treharne, editors, Integrated Formal Methods, volume 7321
of Lecture Notes in Computer Science, pages 268–282. Springer Berlin Heidelberg,
2012.

[9] Yi Ling Hwong, Jeroen J.A. Keiren, Vincent J.J. Kusters, Sander Leemans, and
Tim A.C. Willemse. Formalising and analysing the control software of the com-
pact muon solenoid experiment at the large hadron collider. Science of Computer
Programming, 78(12):2435 – 2452, 2013. Special Section on International Software
Product Line Conference 2010 and Fundamentals of Software Engineering (selected
papers of FSEN 2011).

59 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

http://www.mcrl2.org/

Public version – Technische Universiteit Eindhoven University of Technology

[10] M. Leemans and J.F. Groote. Formal system analysis of the Stella Solar Car.
Technical report, Solar Team Eindhoven, Eindhoven University of Technology, The
Netherlands, Juli 2013. confidential.

[11] S. Cranen S.E. Jurgens M. Leemans, R.P.J. Koolen and J.F. Groote. Analyse van
besturingssystemen voor beweegbare bruggen (analysis of the control system for
movable bridges). Technical report, Rijkswaterstaat, May 12 2014. confidential.

[12] Wouter Tabingh Suermondt. FC-056 System Synchronization Model. ASML.

[13] Technische Universiteit Eindhoven. mCRL2 website: Pacemaker. http://

www.mcrl2.org/release/user_manual/showcases/Pacemaker.html. [Online, ac-
cessed 1 August 2014].

[14] Verum Software Technologies. ASD:Suite. http://www.verum.com/. [Online, ac-
cessed 1 ugust 2014].

[15] J. E. Wiggelinkhuizen. Feasibility of formal model checking in the Vitatron envi-
ronment. Master’s thesis, Technische Universiteit Eindhoven, 2007.

60 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

http://www.mcrl2.org/release/user_manual/showcases/Pacemaker.html
http://www.mcrl2.org/release/user_manual/showcases/Pacemaker.html
http://www.verum.com/

Public version – Technische Universiteit Eindhoven University of Technology

E Requirements in modal mu-calculus

In this appendix the translation to the model µ-calculus is given for every requirement in
Chapter 4. This translation is the formalisation of the requirement, and these µ-calculus
formulae are the actually verified descriptions.

Confidential. The information contained in this chapter is confidential, and has been
removed from the public report.

61 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

62 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

F Setup and mCRL2 models used

In this chapter the actual mCRL2 models are listed, which are described in the Chap-
ters 5, 7, 8 and 12.

F.1 Chapter overview

In section F.2, we will detail the hardware and software setup used. In addition, for the
existing system, the models have been divided into three partial models:

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

F.2 Setup used

For the modelling, analysis, and verification, the following system configuration was
used:

System Acer Aspire V3 - 771G

Processor Intel Core i7-3632QM 2.2GHz

Memory 8 GB DDR3 Memory

Operating system Windows 7 / 64-bit

mCRL2 version mCRL2 version 201310.0 / 64-bit

Environment Cygwin version 2.844 / 64-bit; with bash terminal

F.3 Existing system models

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

63 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

Public version – Technische Universiteit Eindhoven University of Technology

F.4 Redesign system model

Confidential. The information contained in this section is confidential, and has been
removed from the public report.

64 Multi-layer system modelling and verification of fine wafer alignment / Version 1.0

	I Case study introduction
	Introduction
	Assignment goal
	Preliminaries
	The ASML NXT3 TWINSCAN wafer scanner
	Case Study – Wafer Alignment
	Objectives
	How to read this document

	Key domain concepts
	Approach and Methodology
	Related work
	System analysis methodology
	Modelling approach – The partial models approach
	Bridging application and modelling domains: Applied modelling patterns

	Requirements on the system and interface boundaries

	II Behavioural model – Software
	Partial model description – Measure Control and Metrology
	Software – Analysis and verification

	III Behavioural model – Software/Hardware interaction
	Partial model description – Logical Action Layer and Synchronization Control
	Partial model description – Synchronization Control and Subsystems
	Software/hardware interaction – Analysis and verification

	IV Wrap up and conclusion
	System-level analysis and verification
	Results and conclusions
	Reflection on the system
	Reflection on the architecting process

	Future work
	Standardizing mCRL2 patterns
	Analyses for future studies of the system
	Proposed redesign

	V Appendices
	Measurement Sequence Steps
	Software components involved in the case study
	Nomenclature
	Bibliography
	Requirements in modal mu-calculus
	Setup and mCRL2 models used
	Chapter overview
	Setup used
	Existing system models
	Redesign system model

