
 Eindhoven University of Technology

MASTER

Object recognition framework using information retrieval and machine learning techniques

Moonen, R.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2e1b455f-0b53-4585-a7a0-5d41add42524

Eindhoven University of Technology
Department of Mathematics and Computer Science

Master’s thesis

Object Recognition Framework using information
retrieval and machine learning techniques

August 11, 2014

Author: ing. R. Moonen
r.moonen@student.tue.nl

Supervisor: dr. J. Vanschoren
j.vanschoren@tue.nl

Tutors: ir. J. Duives
j.duives@alten.nl

ir. M. Moonen
m.moonen@alten.nl

Assessment committee: dr. J. Vanschoren
dr. G.H.L. Fletcher
dr. M.A. Westenberg

mailto:r.moonen@student.tue.nl
mailto:j.vanschoren@tue.nl
mailto:j.duives@alten.nl
mailto:j.moonen@alten.nl

Abstract

This thesis describes the creation of a framework for object recognition based on information retrieval
and machine learning techniques. The framework can process an annotated dataset of images to
produce a classifier that can predict the presence or absence of an object in a new image. This classifier
can be used as an extension in other applications. The framework is not fixed to any domain logic,
making it a reusable tool to learn different objects in different domains for different applications. The
framework can handle class hierarchies making it possible to create classifiers for different levels of
abstract or detailed classes of objects.

Local features where used for the processing of images into collections of individually comparable
points of reference. Several algorithms are discussed that can produce these local features. The SIFT
algorithm proved to be the most reliable in terms of local feature matching, and was chosen as a
starting point for object modeling.

A shape and an appearance based approach to object modeling is discussed in this thesis. Clustering
algorithms are used to cluster local feature locations in images to generate part-based object models.
This technique proved ineffective and was abandoned during this research. The bag of features
technique was studied and tested for appearance based object modeling and showed significantly better
results. Clustering is used to group local feature descriptors together, and create a visual vocabulary
to describe an image in visual words. Support vector machines are trained to process and predict the
class of new images.

As a proof of concepts, a dataset of traffic signs is used to test the framework. Experiments were run
to test the classification performance of the appearance based object model on different levels of detail.
High level classification, which detected only the presence or absence of a traffic sign in an image
showed useful results, with a precision and recall of about 90%. A more detailed level of classification,
that classified an image into one of four subclasses of traffic signs, also showed usable results with an
precision and recall of about 80%. The most detailed level classifier, which was trained on specific
instances of traffic signs that have very low variation, showed less useful results.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor Joaquin Vanschoren for his guidance, feedback
and advice during this master project. His involvement and ideas where very helpful during the
completion of this project. I would also like to thank George Fletcher and Michel Westenberg for
taking place in my graduation committee.

I would also wish to express my gratitude to my tutors Jelle Duives and Michiel Moonen, for their
advice and feedback during our regular meetings. Thanks for keeping me on track.

Most importantly, none of this could have happened without my family. Special thanks go out to
my mother for her unconditional love and support over the years, and to my loving girlfriend for
her support during this project and for cheering me up when i was feeling down. Without them the
completion of this project would not have been possible.

ing. R. Moonen

v

Contents

1 Introduction 1
1.1 Object Recognition Framework . 2
1.2 Research questions . 3
1.3 Document setup . 4

2 Image features 5
2.1 Local Features . 5
2.2 Local feature detectors . 6

2.2.1 Properties of the ideal local feature detector . 6
2.2.2 Invariant local features . 7

2.3 SIFT: Scale Invariant Feature Transform . 8
2.3.1 Keypoint detector . 9
2.3.2 Keypoint descriptor . 11

2.4 SURF: Speeded Up Robust Features . 12
2.5 ORB: Oriented FAST and rotated BRIEF . 13
2.6 Local features in the object recognition framework . 15

3 Shape based object modeling 17
3.1 Part-based object model . 17
3.2 Clustering . 18

3.2.1 K-means . 18
3.2.2 DBSCAN . 20

3.3 Comparison . 21
3.4 Early experiments . 22

3.4.1 Conclusion . 24

4 Appearance based object modeling 27
4.1 Bag of features image representation . 27

4.1.1 Vocabulary building . 29
4.2 Support vector machines . 30

4.2.1 Kernel trick . 30
4.2.2 Multi-class classification . 31
4.2.3 Early experiments and conclusion . 31

vii

5 Object recognition framework 33
5.1 Platform . 33
5.2 Adding data . 33
5.3 Creating a visual vocabulary . 35
5.4 Building a BoF SVM . 35
5.5 Running experiments . 37

6 Experiments 39
6.1 Dataset . 39

6.1.1 GTSRB dataset . 39
6.1.2 GTSDB dataset . 40
6.1.3 Merging of the recognition and detection dataset 41

6.2 Experiments . 41
6.2.1 Evaluation . 41
6.2.2 Vocabularies . 42
6.2.3 Experiment 1: high level classification . 43
6.2.4 Experiment 2: mid level classification . 44
6.2.5 Experiment 3: low level classification . 47

7 Conclusions 49
7.1 Future work . 50

7.1.1 Detection . 50
7.1.2 Other approaches to object modeling . 51
7.1.3 Threats to validity . 52

A Appendix 55
A.1 Merged dataset . 55
A.2 Results . 57

A.2.1 High-level classification results . 57
A.2.2 Mid-level classification results . 57
A.2.3 Mid-level classification without background results 58
A.2.4 Low-level classification results . 59

Bibliography 61

viii

1
Introduction

Writing an application that can detect an object in a picture can be quite challenging. Even if the
object has a fixed structure, it is still hard to find these structures in a scene. For example, when
creating an application to detect a Dutch licence plate, it is known that it is always rectangular and
has a yellow background with black letters. The letters have a known pattern too. One course of
action would be to filter out regions containing yellow colors from the image, and then check to see if
there is text in this region using an optical character recogniser.

It gets more complicated when the object does not have a specific set of properties or structures to
look for. For instance, a car can have many different shapes as some are bigger than others. It can
also appear in many different colors. But they do have common elements. They all have four wheels,
a licence plate, headlights and taillights. So these kind of objects can be detected by searching for
their common parts in a picture.

But it gets even more complicated to recognise more abstract classes of objects. For example, a car is
a vehicle, but a bicycle and a truck are also considered vehicles. A car has four wheels but a truck can
have six or eight. A bicycle has two wheel, just like a motorcycle as well. The collection of these objects
as a class has a great variation among them, so it gets harder to think about what to look for in an image.

Of course, humans can recognise a vehicle instantly. We can do this because we have learned patterns
using observation and interaction with objects since we were born. These observations are stored in
our memory and allow us to apply semantic classification to unknown objects [HPR99]. To teach a
computer how to recognise an object, we have to teach it what to look for in an image.

But what if we could teach a machine how an object looks like, by just showing examples of that
object and have it learn the important patterns and information itself? Such an approach will allow
for an easier creation of object recognition applications, as taking a bunch of pictures of objects is
easy. This thesis discusses these possibilities and provides a reusable framework for the creation of
object recognition applications.

1

CHAPTER 1. INTRODUCTION

1.1 Object Recognition Framework

In this thesis the idea of a framework will be explore, that will make an object recognition application
easier to implement. Using machine learning techniques,the framework will construct an object model
based on a set of examples. The framework will perform information retrieval on these examples,
and process them in such a way that this information can be used to detect this object in a new
unprocessed image. The output will be a classifier module, that can detect the presence or absence of
learned object in a new picture.

The framework will be generic, which means that there should be no logic programmed that is tailor
made for the objects we want to recognise. Explicit information about the object cannot be provided
to the framework. The challenge for the framework is to figure this out by itself. Any dataset of images
should be able to serve as input for the framework, as long as the images are correctly annotated (i.e.
a correct labeling of which image contains which object). This allows for the reuse of the framework
with different image samples of different objects for different domains.

As a proof of concept, we will focus our initial usage of the framework to build a classifier that can
detect and classify traffic signs along the road. Traffic signs come in various shapes and sizes, but
can be categorized into more specific subclasses that share common properties. For example, all
prohibitory speed signs are round, and have a red edge with a speed limit.

Figure 1.1: Traffic sign class tree

A traffic sign class tree will be build that captures three levels of detail in the domain of traffic signs.
Figure 1.1 shows an example of such a tree (note that this example covers only a subset of traffic
signs). The first and lowest level are the most concrete classes, and describe a specific instance in
the set of traffic signs. This means a 50 km/h speed limit sign will be a different class than a 100
km/h speed sign, and there is no further specification possible. At this lowest level, the data is stored.
The second level groups traffic signs based on their type. For example, in this level all examples of
prohibition signs are grouped together and all danger signs are grouped together. Every traffic sign
belongs to exactly one type, so there will be no overlap. The third and highest level will group all
types of traffic signs together into one abstract traffic sign class.

2

1.2. RESEARCH QUESTIONS

In order to measure the predictive power of the classifier, it will have to be tested on samples im-
ages. A training set of images will be used to train the classifier, and a separate test set with the
same hierarchy will be used for testing the produced classifier. Prediction results will be tested on
multiple levels. For example, if a ’speed sign’ is classified as a ’no overtaking’ sign, it may be an
incorrect match on the most concrete level but it is still correctly matched as a ’prohibitory sign’. Using
this information it is possible to determine for what level of detail the classifier produces accurate results.

1.2 Research questions

The main goal of this research is the creation of a framework that will process a hierarchical class tree
of images, and produce a classifier that can evaluate an unknown image and predict if there is one of
those classes present in the picture. There are two research questions that need to be answered, before
the framework can be implemented:

� How do we extract relevant information from images, and transform the collection of images
into a feature set?

� How do we build classifier that can model this data and use that model to predict the presence
or absence of an object in new images?

The first research question concerns the transformation of the initial data (raw images) to a useable
format for machine learning algorithms. In order to use machine learning techniques we will need
to build a feature space. But how do we retrieve these features from the data? Which features are
relevant and which are less useful for the framework? To answer this question, existing techniques for
image retrieval will be studied and their applicability in this framework will be determined.

The second research question concerns the creation of the actual classifier. What kind of machine
learning techniques can be used to build a model from the created feature space? To answer this
question, existing approaches to object recognition will be studied. These findings will give a good
prospect of their usability in the object recognition framework.

After the framework is created, experiments will be conducted to answer the main research question
of this thesis:

� To what degree of detail can we use this generic framework to classify specific and abstract
classes of objects?

The main research question concerns the performance of the object recognition framework. To what
degree will this framework, using only generic methods, classify objects correctly? It is able to detect
small differences in classes, or will it only accurately classify the high-level abstract classes? To answer
this questions, experiments will be performed with the framework, using the traffic sign class hierarchy
as a proof of concept.

3

CHAPTER 1. INTRODUCTION

1.3 Document setup

This thesis starts with describing the process of extracting features from an image in Chapter 2. The
techniques explained here will create the feature space from which the object recognition process will
be constructed. Chapter 3 and 4 discuss two different approaches to object modeling using these image
features in detail. In Chapter 5, the functionality of the object recognition framework is explained and
in Chapter 6, experiments are conducted to evaluate the classification performance of the framework.
In Chapter 7, the results are concluded and suggestions for future work are made.

4

2
Image features

The first challenge in realizing an object recognition framework is processing the available data into a
usable feature space. As mentioned in the previous Chapter the input for this framework is a collection
of annotated images. Each image contains an object associated with a given class. Images, as stored
on a computer, are two dimensional arrays of RGB values. Because objects can vary in size, shape,
orientation and other properties like color, its is not feasible to use this information directly for object
recognition.

This Chapter discusses the transformation of images to a more useable format called local features,
that can be used as a basis for the object recognition framework. Algorithms are discussed to extract
these local features and their use for the object recognition framework is explained. The next Chapter
will give an explanation of local features.

2.1 Local Features

Figure 2.1: Object detection using local features

In the last decade, the use of local features has become popular in the field of image processing and
object recognition [TM08]. Local feature extraction can be described as gathering interesting points
in an image, usually points that show high activity in gradient changes such as corners. The original
image is transformed into a collection of independent local features, that describe and image as a

5

CHAPTER 2. IMAGE FEATURES

summation of its most notable or interesting regions.

Local features have been proven to be very effective in the area of image matching and object detection
in a scene [Low04]. The similarity of two images can be computed by comparing the local features
extracted from each image. Pictures of the same scene or object will produce a high number of similar
features. If there is a high coherence of local features, the pictures have a high probability of describing
the same scene or object.

If one of the pictures describes a specific object and the other describes a scene in which that specific
object is placed (and other objects as well), that object can be found by searching for matching local
features of the reference image in the scene. Figure 2.1 shows a example of detecting a soccer ball in a
scene, using a reference picture of a soccer ball.

The traditional approach for image matching made use of so called global features. Global feature
vectors are image representations that take the entire picture into consideration, such as a color
histogram. The main advantage that local features have over using a global feature vector, is that
image matching becomes more robust to occlusion. If an object located in one image is partially visible
in another image, this part can still be matched regardless of the occlusion. Another limitation of
global features is that they cannot be used to detect small objects in a cluttered scene. The background
information will distort the global feature vector, making it harder to find a match. Local features
are independent of each other, and can be matched individually. Section 2.2 discusses the general
algorithm for obtaining local features.

2.2 Local feature detectors

Local feature detectors transform an image into a collection of local features using a two-step process.
First, the image is scanned to locate keypoints in the image. These keypoints represent the interesting
locations in the image, such as strong gradient changes or corners. As a second step, the algorithm
describes the appearance of these keypoints by calculating a keypoint descriptor. This keypoint
descriptor is usually based on the neighbouring pixels around the keypoint. The result is a collection
of keypoints with corresponding descriptors.

2.2.1 Properties of the ideal local feature detector

In a survey paper by Tuytelaars et al. [TM08], the ideal properties of the features generated by a
local feature detector are as follows:

� Repeatability: Images of the same object or scene, taken under different viewing conditions
should result in a high number of similar features.

� Distinctiveness: The description of the keypoint should allow for a lot of variation, so that
features can be distinguished and matched to other features.

� Locality: The features should be local, meaning that they describe a local region of the image
independent of other features

6

2.2. LOCAL FEATURE DETECTORS

� Quantity: The number of detected features should be large enough, that even small objects in
a scene will have a reasonable number of features.

� Accuracy: The detected features should be accurately localized with regard to image location,
scale and shape.

� Efficiency: Computation time should be as fast as possible to allow for real-time applications.

Some of these properties can be conflicting. For example, it is easy to assume that quantity has a direct
effect on the efficiency of the local feature detector. A faster algorithm may also have compromised
accuracy. When considering a local feature detection algorithm, the importance of specific properties
is always dependent on the application and settings.

Repeatability, arguably the most important property, can be achieved by making the local feature
detector invariant to specific changes and deformations. Local features are by definition invariant to
translation. This means that even if an object is shifted along the x or y axis of the image, the same
set of features are detected. Invariance to other transformations such as rotation and scale are not
easily solved. When a local feature detector provides invariance to scale and rotation transformations,
the produced local features are called invariant local features. In Section 2.2.2 the properties and
benefits of such features are discussed.

2.2.2 Invariant local features

Keypoints describe points of interest in a picture. A keypoint produced by a local feature detector
obviously contains the location of the keypoint as an x and y coordinate. Though this information
is enough to create the descriptor, it is useful to calculating additional information to enhance the
robustness of the descriptor calculation process. In particular, a good local feature detector should
also calculate the orientation and the scale of a keypoint.

(a) Descriptor without orientation (b) Descriptor with orientation

Figure 2.2: Keypoint orientation

Determining the orientation of a keypoint will help make the local feature detector become invariant
to rotation. Figure 2.2 shows an example. Consider a simple local feature detector that uses a corner
detector as a keypoint finder, and takes a 20x20 pixel image patch as a descriptor of that keypoint.
Figure 2.2(b) shows the result of the local feature detector on two images. In the first image it will
detect the corner in the middle of the image and calculate a descriptor with black pixels in the lower

7

CHAPTER 2. IMAGE FEATURES

right of the image patch. The second image is the same image as the first image but rotated 180
degrees. The same corner is detected but the calculated descriptor is different. These keypoints will
not match, at least not on pixel comparison level. In Figure 2.2(b), the simple local feature detector is
augmented to assign the darkest region around the keypoint as the orientation of the keypoint. The
orientation is shown as a red arrow. The produced image patches then become similar, and can be
matched on pixel level.

(a) Descriptor without scale (b) Descriptor with scale

Figure 2.3: Keypoint scale

The scaling of keypoints will help the descriptor become invariant to scale. This means that if a
keypoint is found on an object in an image, this keypoint can also be found on in an image where the
object has appeared smaller or larger by finding keypoints at different scales. Image descriptors are
usually based at the region around the keypoint, and the scale of the keypoint determines the size of
this region to consider.

Figure 2.3 shows an example of the influence of the scale of a keypoint on the descriptor. A local
feature detector is programmed to find the center of enclosed shapes and again takes a 20 x 20 pixel
image patch as the descriptor of this shape. The descriptor extracted from the two images will produce
different image patches, as the first shape is much larger than the second. By defining a scale, similar
image patches can be produced. Taking the average distance from the center to any edge of the shape
as the scale, allows for the adjustment of the dimensions of the image patch accordingly. The larger
shape will process a larger image patch as a descriptor. When these image patches are normalized to
the same size they become similar.

2.3 SIFT: Scale Invariant Feature Transform

One of the most popular local feature detector used in the field of image matching is the Scale Invariant
Feature Transform algorithm, as proposed in the papers by Lowe [Low99] [Low04]. It is also one of
the first techniques that uses local features instead of global features to represent an image. As the
name suggests, the SIFT feature detector is invariant to scale, but it is also invariant to rotation. The
algorithm is also capable of producing a keypoint descriptor that is robust to changes in illumination,
and is able to correctly match keypoint under different viewing angles.

8

2.3. SIFT: SCALE INVARIANT FEATURE TRANSFORM

2.3.1 Keypoint detector

Figure 2.4: Example of gaussian filter

The SIFT algorithm searches for keypoints in an image by looking for corners. More specifically, it
creates a second order derivative at a specific scale using the Laplacian of Gaussian (LoG). A Gaussian
filter causes an image to blur. Figure 2.4 shows an example of the Gaussian filter effect. The Laplace
operator is then applied, which is a second order differential operator. Keypoints are minima or
maxima in this Laplacian of Gaussian.

The LoG is expensive to compute, therefore an approximation is used called the Difference of Gaussians
(DoG). This techniques takes an input image and creates several images with increasing amount of
blurring, again using the Gaussian filter. Then the Difference of Gaussian is created by subtracting
these images from each other. By choosing the amount of blurring carefully, the resulting DoG images
are approximations of the LoG at a specific scale. Figure 2.5 shows an example of the Difference of
Gaussian filer applied to an image.

(a) Original image (b) Difference of Gaussian

Figure 2.5: Example of DoG at a certain scale

The DoG techniques creates two scale-space pyramids, this process is depicted in Figure 2.6. The
bottom left grid represents the original input image. The grids above this image represent images on
with the gaussian filter is applied, meaning that the become more blurred as the scale increases. As
heavily blurred images represent less information, the images can be downsized to a smaller resolution

9

CHAPTER 2. IMAGE FEATURES

to enhance performance. This downsizing is what create the pyramid shape, as images become smaller
as the scale increases. On the right of Figure 2.6 the resulting Difference of Gaussian levels are shown,
which is the subtraction of two Gaussian images at different scales. On these DoG images the keypoint
localization will be executed.

Figure 2.6: Scale space pyramids. Figure 2.7: Local extrema.

Each DoG image represents an approximation of a LoG at a specific scale. To find maxima and
minima in this scale, that could serve as keypoints, every point is compared to its neighbors in a
three-dimensional scale space. Figure 2.7 shows the neighborhood of a specific point in DoG scale
space. The yellow point is compared to eight of its neighboring regions in the same scale space, as
well as nine points in the scale space above and below it. When the point in question is higher or
lower then all the surrounding neighbor points, it is considered a maxima or minima in that specific
scale space. This is how the SIFT algorithm is capable of finding keypoints at different scales.

After finding all candidate keypoints in different scale spaces, some filtering is applied. Low contrast
keypoints are discarded and the keypoints are checked if they are located at corners or edges using a
Hessian matrix [HS88]. Keypoints on edges are are discarded as these are harder to localize than corners.

Finally, the orientations of the found keypoints are determined. The algorithm looks at the gradient
directions and magnitudes in the area around the keypoint to determine this. A gaussian function is
applied to the area, to decrease the magnitude of points that are further away from the keypoint. It
then creates a histogram with 36 bins (one bin for every 10 degrees) and adds every magnitude value
to the corresponding directional bin. The directional bin which has the most accumulated magnitude
is assigned as the direction of the keypoint. However, if another bin had an accumulated magnitude
of at least 80%, the keypoint is duplicated with the orientation set to this direction. Therefore, it is
possible for a keypoint to have have multiple orientations.

Figure 2.8 shows an example of the orientation assignment proces. The leftmost image shows the
area around the keypoint, with a gaussian function applied. In the middle the normalized gradient
magnitudes are shown, where black values represents no gradient change and white represents strong
gradient change. The other image shows the orientation of the gradient changes using arrows. The right

10

2.3. SIFT: SCALE INVARIANT FEATURE TRANSFORM

Figure 2.8: SIFT keypoint orientation assignment

image shows an example of a 36 bin directional histogram that shows that the dominant orientation is
in the third bin (20 to 29 degrees). As there is also a peak at bin 31 (300 to 309 degrees) that is above
the 80% threshold of the dominant orientation, the keypoint is duplicated with different orientations.

2.3.2 Keypoint descriptor

The next step in the SIFT algorithm is to define a descriptor of these keypoints. This is done by
creating a 16 x 16 grid of magnitude values around the keypoint. The scale and orientation of this
grid is determined by the scale and orientation of the keypoint. For each cell, the image gradients and
magnitudes are calculated. A gaussian filter is then applied on the grid to again reduce influence of
points further away from the center. The grid is then divided into 16 parts of 4 x 4 cells, and for each
part, an eight-directional histogram of magnitude values is created.

Figure 2.9: SIFT descriptor

Much like the keypoint orientation process, every magnitude value is put in its corresponding direc-
tional bin. This creates 16 individual histograms with 8 vectors each, resulting in a feature vector of
128 dimensions to describe the keypoint. These feature vectors are then normalized to increase robust-
ness to changes in illumination. Figure 2.9 shows the overall process of the descriptor creation by SIFT.

Keypoints can now be matched by simply applying a distance function such as Euclidean distance to
the 128-dimensional feature vector. The main advantage of creating 16 individual histograms instead

11

CHAPTER 2. IMAGE FEATURES

Figure 2.10: Grid size and orientation test. Image from [Low04]

of one global histogram is that keypoints can be more accurately described, making them distinctive.
The advantage over comparing the 256 individual magnitude values directly is that it doesn’t matter
where the pixel is exactly. As long as it is in de same neighborhood, it will contribute to the right
histogram. This makes the SIFT descriptor perform well even when objects are viewed at different
angles. The advantage of using histograms is that it reduces the impact of noise.

Figure 2.10 shows the finding of Lowe on the grid size and orientation test [Low04]. A variety of
grid sizes and orientation histograms were tested on a dataset of 40000 keypoints. The matching
performance was measured for keypoints that had an affine viewpoint change of 50 degrees and addition
of 4% noise. The 4x4 grid setup using 8 orientations had the best matching performance, with 50% of
the matched keypoints being correct.

2.4 SURF: Speeded Up Robust Features

SURF, which stands for Speeded up Robust Features, is a local feature detector which is inspired by
the SIFT algorithm. First proposed by Bay et al. in [BTV06], and later revised in [BETV08], it is
proposed as a faster alternative to SIFT. SURF combines a Hessian-Laplace region detector with a
gradient orientation based feature detector, and is also scale invariant.

The detector used simple two-dimensional box filters, which approximate the effects of the LoG
functions. Figure 2.11 shows an example of these box filters. The responses of the box filters can be
efficiently evaluated using integral images. Because the evaluation uses a constant number of lookups
on any scale, it is not needed to build an expensive to compute scale space. This makes the SURF
detection step faster than the SIFT algorithm.

The descriptor is heavily inspired by SIFT and uses a comparable orientation gradient binning strategy.
Figure 2.12 shows an overview of the surf descriptor process. A 4x4 grid around the feature region is
created, rotated and scales towards the keypoint orientation and scale. For every cell, Haar wavelet
[Haa11] responses in the x and and y direction are used to determine the gradient values of the
points quickly. These Haar wavelets are depicted in Figure 2.12 as dx and dy. Then for every

12

2.5. ORB: ORIENTED FAST AND ROTATED BRIEF

Figure 2.11: LoG approximation by box filters in the x, y and xy direction

Figure 2.12: Overview of the SURF descriptor

grid
P
dx and

P
dy are computed which indicate the average gradient orientation in the x and y

direction, while
P

jdxj and
P

jdyj indicate the total gradient orientation in the x and y direction.
This creates 4 features per grid cell which means that the descriptor to describe the keypoint results
in a 64-dimensional feature vector.

2.5 ORB: Oriented FAST and rotated BRIEF

The ORB algorithm [RGP11], which stands for Oriented FAST and Rotated BRIEF, is a fusion of
the FAST keypoints detector and BRIEF descriptor. It adds an orientation to the FAST detector
and rotates the brief descriptor to become rotation invariant. The method is developed to be a much
faster alternative for SIFT or SURF, and is free of patents.

Keypoints are detected using the FAST keypoint detector[RD06]. FAST compares the intensities
between a central pixel with those in a circle around this center. If enough pixels are brighter or
darker than the center, the center becomes a keypoint. Usually only a few comparisons are needed
to reject a center as a keypoint, which makes the detector fast. Pictures are downscaled to detect
keypoints at different scales and edges are rejected using a Harris corner measure. Using the intensity

13

CHAPTER 2. IMAGE FEATURES

Figure 2.13: Example of BRIEF pair selection around the keypoint center

centroid corner property [Ros99], the direction � of the keypoint is computed using equation 2.1.

� = atan2(m01;m10) (2.1)

with

mpq =
X

x;y

xpyqI(x; y) (2.2)

An oriented version of the BRIEF algorithm by Calonder and Lepetit et al. [CLSF10] is used to
calculate the feature descriptor. Given a patch size of SxS, 256 pairs of points are selected using a
gaussian distribution with � = 0 and a standard deviation of � = 1

25S
2. Figure 2.13 shows an example

of this selection of pairs. The gaussian distribution increases the chance that points near the center
are chosen. These pairs are then subjected to an intensity test � which is defined as:

�(p; q) =

(
1 if I(p) < I(q);
0 if I(p) � I(q)

(2.3)

where I(x) is the intensity value of point x in the image patch. The BRIEF descriptor is then a binary
string which can be defined as follows:

256X

i =1

2i � 1�(pairi) (2.4)

Matching of keypoints can be done very fast, as a binary string allows for efficient XOR operations.
By default, BRIEF is not orientation invariant. Even when the keypoint orientation is defined and the
image patch is rotated, pairs in the dominant gradient orientation will always have the same intensity
test result in all keypoints, making the descriptor less descriptive. Therefore, the orientation found
with FAST descriptor "steers" the selections of pairs closer to the perpendicular axis. This is done by
selecting the best pairs from a larger set of random pairs, where the binary value has the largest variance.

14

2.6. LOCAL FEATURES IN THE OBJECT RECOGNITION FRAMEWORK

2.6 Local features in the object recognition framework

Local features have proven their usefulness and effectiveness in many fields of study, such as specific ob-
ject detection [Low04] or image stitching [BL07]. Local features provide good anchor points to process
images and compare them on an individual basis. Using local features as a set, they can also be used
for more statistical image representation, that allows for category-level recognition of objects or scenes,
which is what the object recognition framework tries to achieve. The transformation of a dataset of im-
ages to a set of keypoints will form a feature space, on which object modeling techniques can be applied.

As a starting point for object modeling, the SIFT algorithm is chosen to compute the local features.
The reason the SIFT algorithm is so powerful is because of its 128-dimensional descriptor, which is
very robust to changes in viewpoint and illumination. For the object recognitor framework, this is very
important. The dataset provided should be generic, which means that the viewpoint and illumination
of the input images are not controlled. In other research, the SIFT descriptor outperformed the other
local feature detectors in the field of object class detection [Bul12], [MLS05], [TL12].

Early experiments with the local feature detectors showed that ORB was indeed much faster than
SIFT. With an average computing time of about 10 ms on images with a resolution of 640x480, it was
the fastest of the three algorithms (the average computing time of the SIFT algorithm was about 150
ms). The matching performance of ORB under an angle was very poor and it also produced far less
keypoint than SIFT, about only 20 to 30% of the amount that SIFT produces. The SURF algorithm
was only a fraction faster than SIFT (average about 130 ms), and produces roughly the same quantity
of features. Here the matching performance was also lower then SIFT, but not as bad as ORB. The
keypoint also tended to distribute more over the images as it also detected allot of keypoints in the
background of the image. With SIFT, the keypoints tended to be more focussed on the objects in the
pictures. These results added to the conclusion of choosing the SIFT algorithm as a starting point for
object modeling.

Local features consist of two parts, the keypoint and the descriptor. The keypoint gives location based
information while the descriptor provides information about the appearance of the image. This means
that the appearance of an object can be separated from its shape, allowing for two approaches to
object recognition.

The first approach is modeling an object based on its shape. Using the location information of a
keypoint, the overall shape of the object can be determined. By creating clusters of keypoints, the
object can be described as a collection of parts with a specific spatial relation between those parts. By
detecting patterns in this shape, these patterns can be searched for in new images to determine the
absence or presence of that object. If objects vary less in shape but more in appearance, this method
may provide good results.

The second approach ignores the location information but looks purely at the descriptor part of the
local features. Using the bag of features method, an object can be modeled as a collection of repeating
features descriptors. The presence or absence of specific types of features then becomes an indication
of the presence or absence of that object in a new observation. This method may prove useful if the
shape of an object is varied, but the appearance is not.

15

CHAPTER 2. IMAGE FEATURES

These two different approaches to object modeling can be used together to perform an assembly of
classifiers. A new image can be processed with both object models to make a prediction. If both
object models predict the same class, there is a high chance that the prediction is correct. If they
produce different results, then the prediction with the highest confidence is chosen.

To conclude, the local features found with the SIFT algorithm will form the feature space on which
machine learning techniques can be applied. The object recognition framework will extract the
local features from the supplied images. Every class in the hierarchy tree can now be represented
as a collection of local features found in sample images of this class. This is the data from which
an object model can be build, that can be used to classify new images. The possibilities of the
proposed part-based and appearance-based object models will be explored in Chapter 3 and Chapter
4 respectively.

16

3
Shape based object modeling

Object modeling is the transformation of the extracted local features into a representable set of
relations that are distinctive for an object. Using this model, a new image can be tested to validate the
presence of that object in the picture. This Chapter will discuss a part-based model called keypoint
clustering, which looks at the spatial relation among the sub-components of an object.

3.1 Part-based object model

In Chapter 1, the possibilities of modeling an object as the collection of their common parts was
explained. To recognise a car, recognizing its parts such as the wheels, licence plate, headlights etcetera
is enough to give a probability of a car being present in the picture. However, detecting these parts
without annotation by a user is quite difficult. As assumptions of the appearance of these parts cannot
be made, and manually providing annotations for these parts will be tedious. Therefore, The solution
is to go for a more generic approach.

To detect the parts of an object, clustering of keypoints will be used. The idea is that some parts of
the model produce more keypoints. Using clustering algorithms, these dense regions can be extracted.
Every image is then converted into a set of clusters, with each cluster containing an x and y coordinate
indicating the position of the center of the cluster, and a size s that is determined by the amount
of keypoints in the cluster. The set of clusters is then mapped to a grid, where the spatial relation
between these clusters in normalized. The resulting grids of all instances of a class are then positioned
over each other, to see if there is an overlap in model shape.

The idea comes from papers by Fergus et al. [FPZ03] [FPZ06] as well as by Helmer and Lowe [HL04].
These papers discuss the possibilities of a part-based model that builds a spatial relation between
those parts. However, the datasets they used show little variation in shape, size and orientations, and
the parts they use rely on visual repeatability. Figure 3.1 shows an example of a 6 part object model
of a motorcycle, and some images that were tested positive and negative for that model. The circles
indicate the expected location of the parts, and the number indicates the probability of that part
being present. Their methods show promising results.

17

CHAPTER 3. SHAPE BASED OBJECT MODELING

Figure 3.1: A 6 part object model of a motorcycle, as presented in Fergus et al. [FPZ03]

3.2 Clustering

Clustering is a data mining technique that tries to partition unlabeled data into groups, that have
a strong similarity to each other. A clustering algorithm uses a distance function to determine the
similarity of observations based on the features of the observations. This distance function can be
different depending on the feature space. Using clustering on data, hidden relations and patterns can
be extracted from the data.

For example, a collection of documents from a news site could be clustered into groups based on the
words found in those documents. News articles concerning finance contain different words than war
related articles. Documents that have a high overlap in words may be clustered together. However,
after clustering it is still not clear which cluster contains what types of article. We only know that the
articles in a cluster have a high similarity.

In regards to the object recognition framework, the observations that have to be clustered are the
extracted local features from an image. The relations between these features is not known, as they are
individual local features, but their x and y coordinates in a two-dimensional space are know. Keypoints
that are close to each other in the 2-dimensional space will have a higher chance of describing the
same part of an object in the image. Using the Euclidean distance as a distance function between two
keypoints p and q , which is defined as followed:

D(p; q) =
q

(px � qx)2 + (py � qy)2 (3.1)

There are many different clustering algorithms but they can be split into different types [XW05],
[Ber06]. In this thesis two popular types are discussed, namely partitional algorithms that try to
partition the data into n non overlapping sets, and hierarchical structures that build tree-like nested
structures of the data. In the next sections two commonly used algorithms for these types are discussed:
the k-means partitional clustering algorithm is discussed in Section 3.2.1 and the DBSCAN Hierarchical
clustering algorithm in Section 3.2.2.

3.2.1 K-means

K-means is a clustering method that aims to partition a set of observations into k clusters. The
clusters should be chosen in such a way, that the clusters are as compact as possible. The compactness

18

3.2. CLUSTERING

of a cluster is measured by the sum of the distances from every cluster element to the cluster center.
More specifically, k-means aims to minimize the within-cluster sum of squares. Assume (x1; x2; :::; xn)
are observations in a d-dimensional space. K-means aims to partition these n observations into k sets
(S1; S2; :::; Sk), with k < n, in such a way that the following formula is minimal:

nX

i =1

D(xi ; Center(Sj))2 , where xi 2 Sj (3.2)

Sj is the set for which holds that xi 2 Sj , and Center(Sj) returns the centroid of this set. D(xi ; Center(Sj))
is a d-dimensional distance function that computes the distance of observation xi to the centroid of
the cluster in which xi resides. This value is then squared to give more weight to outliers. The sum of
these values represents the within-cluster sum of squares.

(a) data (b) generate (c) assign (d) shift

(e) assign (f) shift (g) assign (h) converged

Figure 3.2: K-means algorithm example

Lloyd’s algorithm

Because computing the optimal solution is NP-hard [ADHP09], heuristic algorithms are used to give
a faster approximate solution, that is usually good enough. The most used variant and classical
implementation of k-means clustering is Lloyd’s k-means algorithm. [Llo82]

Lloyd’s algorithm works in a 4 step process. In the first step, k initial means are randomly generated in
the feature space that represent k cluster means, also called centroids. The second step is to associate
every data element with its closest centroid to create k clusters. Any distance function can be used to
determine this distance. The third step is shifting each centroid to the center of its associated data
elements. The fourth step is to repeat step 2 and 3 until no centroid shifts are detected. At this point
the algorithm has converged to a local optimum.

19

CHAPTER 3. SHAPE BASED OBJECT MODELING

Figure 3.2 shows an step by step example of Loyd’s algorithm on a two-dimensional dataset of 13
points (3.2(a)) that is partitioned into three clusters. The first step (3.2(b)) generates three random
centroids, which are depicted by colored stars. In the next step (3.2(c)), the color of the closest
centroid is assigned to each point, and then the centroids are repositioned in the next step (3.2(d)).
When the colors are reassigned in the next step (3.2(e)), we see that two of the green points have
turned into red points. The centroids are shifted again (3.2(f)), and one green point is again reassigned
to the red cluster (3.2(g)). After one more repositioning of the centroids, the algorithm has converged
(3.2(h)). The result is a red and blue cluster containing five points each, and a green cluster containing
three points.

K-means++

The quality of the cluster centers can be very dependent on the choice of the initial cluster centers.
There is no guarantee that the algorithm will converge to a global optimum. Therefore it is common
to run the algorithm several times, and choose the result that has the best within-cluster sum of squares.

A bad choice in initial centroids can also lead to a long time for the algorithm to converge. To counter
this, a variation of k-means called k-means++ is proposed in [AV07]. Instead of taking the initial
centroids at random, it chooses points in feature space in such a way that they are widely distributed.

1. Choose an initial center c1 uniformly at random from X.

2. Choose the next center ci , selecting ci = x0 2 X, with probability D (x0)2
P

x 2 X D (x)2 , where D(x)
denotes the shortest distance from point x to a point we have already chosen as a centroid. This
increases the probability of choosing a point that is far away.

3. Repeat step two until k centroids are chosen and proceed with the standard k-means algorithm.

K-means++ is essentially a preprocessing step to the standard k-means algorithm. Though this
process takes more time than choosing initial centroids uniformly at random, it still leads to faster
running times because it helps the local search converge after only a few iterations. Furthermore, the
k-means++ pre-processing is proven to produce solutions that are O(logk)-competitive to the optimal
solution.

3.2.2 DBSCAN

DBSCAN [EKSX96] stands for Density-Based Spatial Clustering of Applications with Noise, and is a hi-
erarchical clustering algorithm. As the name suggests, it is a density based algorithm, which means that
it searches for set of points that are closely related to each other. It also has a robustness to noise points.

Contrary to the k-means algorithm, DBSCAN does not need to have the number of clusters specified in
the beginning. The number of clusters the algorithm produces depends on two parameters: MinPts and
Epsilon. MinPts specifies the minimal number of points a cluster should have in order for it to be consid-
ered as a cluster. Epsilon determines the radius of the neighborhood of any point. We can then define
the neighborhood of a point p as 8q : D(p; q) <= Epsilon, where D(p; q) is a distance functions that
returns the distance between p and q. Note that all points are automatically in their own neighborhood.

20

3.3. COMPARISON

The algorithm works by visiting every point in the dataset and marking them as noise, border or
core points. Core points are points that have equal or as many point in their neighborhood as
specified by MinPts. If a point has less points then MinPts in their neighborhood, but at least one
of their neighbors is a core point, the point is considered a border point. all other points are noise points.

Figure 3.3: Example of a DBSCAN cluster

Clusters are formed on the notion of density reachability. Point q is directly density-reachable from p
if p is a core point and q is in the neighborhood of p. Point q is density-reachable from p if there is
a sequence of points p1; :::; pn where p1 = q and pn = p such that pi +1 is density reachable from pi .
Note that for this property to be true, p1; :::; pn� 1 have to be core points. Also note that this property
is only symmetric if and only if all points are core points. Therefore the notion of density connected is
defined as followed: points p and q are density connected if and only if there is a point o for which it
holds that p and q are both density-reachable from o.

The notion of a DBSCAN cluster can then be defined as followed:

� All points in the cluster are mutually density-connected.

� Any point in the dataset that is density reachable from any point in the cluster also belongs to
that cluster.

The first property, called the maximality property, ensures that all points in the cluster are connected
to each other. The second property ensures us that the set is maximal, meaning that subsets are not
allowed to be called clusters as well.

Figure 3.3 shows an example of a DBSCAN cluster. The red points are core points, and are density
connected points. Point B and C are border points, as they don’t have enough points in their
neighborhood to be considered core points, but they are density reachable from point A which implies
that they are density connected. These points also belong to the cluster. Point N doesn’t have enough
neighboring points, and it is also not density reachable from the cluster, so it is considered a noise point.

3.3 Comparison

K-means and DBSCAN use very different approaches to clustering. The main advantage of k-means is
that it is easy to implement. It also allows for a parallel implementation [FRC08] to speed up the
process on large data collections. The downside is that it has no robustness to noise as all point
contribute to the shifting of the cluster centroids. Defining the number of clusters beforehand can also

21

CHAPTER 3. SHAPE BASED OBJECT MODELING

be troublesome in some domains, as it will affect the correctness of the clusters.

(a) eps=0.1, MinPts = 5 (b) eps=0.3, MinPts = 5 (c) eps=0.6, MinPts = 5

(d) eps=0.2, MinPts = 1 (e) eps=0.2, MinPts = 5 (f) eps=0.2, MinPts = 9

Figure 3.4: DBSCAN eps and MinPts sensitivity.

DBSCAN has a better robustness to noise. Because it is density based, it can also detect clusters in
various shapes. However, as shown in Figure 3.4, the result of the clustering is very sensitive to the eps
and Minpts parameters. As the algorithm uses a linear processing of the data points, it is also not suit-
able for a parallel implementation, which means that scalability on large datasets will become a problem.

In the context of this thesis, both techniques can be useful. As each picture produces only a few local
features, scalability of the algorithm is not a concern. DBSCAN’s ability to detect noise will be an
advantage, as it may be able to reject the background information in a picture. K-means will give us
a constant number of clusters for every image which will make it easier to model the object. Both
techniques will be implemented.

3.4 Early experiments

A simple application was made to see the effect of keypoint clustering. The K-means and DBSCAN
algorithms where implemented to generate an object model based on images processed by the algorithm.
Images can be loaded into the application, and SIFT keypoints are calculated for each image. Clusters
are calculated using a parameter setting that the user can adjust. The clusters are then visualized in
the image to evaluate the cluster outcome.

Images from the Caltech 101 dataset [FFFP07] where used as input for the clustering algorithms.

22

3.4. EARLY EXPERIMENTS

The Caltech 101 dataset provides example images for 101 different object categories (planes, faces,
chairs, motorbikes etc.). All images contain little to no background, and contain only one object that
is centered in the frame. All objects also face the same direction. the average number of images per
category is 80.

While experimenting, it became clear that DBSCAN is a much more useful technique for object
modeling. As it is capable of finding clusters in different shapes and sizes it outperformed k-means in
this context. Figure 3.5 shows examples of the DBSCAN algorithm run on some sample images from
the motorbike, airplane and stop sign categories. The motorbike samples (3.5(a))have no background
information, and produce nice clusters that seem to have a nice coherence. The middle part tends to
be a large cluster, and the taillight is a small cluster on all three images. However, the first instance
fails to find a cluster on the front wheel, so it is not a perfect match.

The airplane examples (3.5(b)) have backgrounds included in the image, and we immediately conclude
a problem. The density of keypoints in the background are just as dense as keypoints on the object.
This means that they cannot be removed by changing the parameters of the algorithm. They would
need to be removed manually. The examples of traffic signs (3.5(c))show the same problem, but here
there is an even greater variety.

(a) Motorbikes (b) Airplanes (c) Traffic signs

Figure 3.5: DBSCAN result clusters

Figure 3.6 shows the cluster distribution results, when mapping ten examples of every object to the
same grid. Circles from the same color belong to the same sample. The center of the circle is the
center of the cluster, and the radius of the circle is the average distance from the cluster keypoints to
the center of the cluster.

Because of the great variety in cluster generated by the dbscan algorithm, the distribution of clusters,

23

CHAPTER 3. SHAPE BASED OBJECT MODELING

(a) Motorbikes cluster distribution (b) Airplanes cluster distribution (c) Traffic signs cluster distribution

Figure 3.6: DBSCAN cluster distributions

even on the motorbikes samples, is not straightforward. DBSCAN’s sensitivity to parameters causes a
great variation in cluster sizes and location. This problem only increases as the amount of samples
increases. Figure 3.7 shows the cluster distribution of the "chair" object category samples, which
consist of 62 samples.

Figure 3.7: Chair cluster distribution

3.4.1 Conclusion

The results of the early experiments raised doubts about the applicability of this modeling technique,
even though earlier work [FPZ03] suggested that it might be possible. The results showed no overlap-
ping structure based on keypoint clustering.

The creation of clusters is also troublesome. Only by manual selection of the DBSCAN parameters
will the model tend to form nicer clusters. But as we want to recognise an object in an uncontrolled
new image, the parameters used to train the model are not guaranteed to produce the same cluster
structure in the new image.

24

3.4. EARLY EXPERIMENTS

Another problem was that when background information such as bushes or trees are included, the
clusters become very distorted as these tend to generate the same dense keypoints regions. Background
would have to be manually removed, which is also labour intensive, and cannot be done for the
detection of new images. This means that even if we have a perfect model of the object, the matching
in new images becomes very difficult in cluttered scenes.

Alternative clustering algorithms were considered, such as OPTICS [ABK99], DeLiClu [AC06] and
HDBSCAN [CMS13]. These algorithms use a similar hierarchical clustering method as DBSCAN, but
have no need for the epsilon parameter. These algorithms only need the MinPTS parameter, which
basically becomes the minimal cluster size. The main advantage is that these algorithms can find
clusters that have different density regions, but their implementations are not as straightforward as
DBSCAN. Using these methods would improve the clustering results, but would not provide a solution
for the background exclusion and the model matching.

This led to the conclusion that this technique does not offer much perspective. Therefore we have
decided to stop the further development of this technique and focus on the appearance based bag of
features approach, which is explained in Chapter 4.

25

4
Appearance based object modeling

In this Chapter an appearance based approach to object modeling is discussed. The main difference
with the part-based approach is that it ignores location information but looks only at the appearance
of an object. The appearance of an object in an image can be obtained by the collection of local feature
descriptors in that image. The bag of features object model uses such image representation technique
and, when combined with a support vector machine, promises good generalized object recognition
capabilities with a simple yet effective methodology.

4.1 Bag of features image representation

The bag of feature image representation model is a popular technique originally used for image scene cat-
egorization and recognition [FFP05] [LSP06], but can also be applied in the field of object recognition
[NJT06] [SRE+ 05]. It uses clustering of local feature descriptors to model an image as an orderless col-
lection of visual words (sometimes called codewords). This means that it uses local features in order to
construct a global feature vector, containing the absence or presence of specific visual words in an image.

The name bag of features comes from its similarity to the bag of words [Har54] technique used in docu-
ment retrieval. In order to understand the bag of features image representation, it is best to understand
the bag of words document representation first. With bag of words, a document is represented as a nor-
malised histogram of word counts. For every word in the native dictionary, the number of occurrences
of that word are counted. Some words may be marked as non-informative to the text (like stop-words)
and a set of synonyms may be represented by one single word. The term vector that represents
the document then becomes a histogram of terms in the dictionary with a corresponding value that
represents the term count in that document. The histogram is normalised by dividing each term count
by the total number of terms found in the document. This histogram is the bag of words document
representation and is called a "bag" because all the ordering of the words in the document has been lost.

Bag of features, as the name suggest, counts local features in an image in much the same way as
bag of words counts terms in a document. The main difference is that for the bag of words model,
the native dictionary is (usually) known and finite. For images this is not the case. A dictionary of
visual words has to be created in order to represent an image as a collection of visual words. The
local features cannot be used directly, as it is uncommon that a feature found in one image appears

27

CHAPTER 4. APPEARANCE BASED OBJECT MODELING

Figure 4.1: Example of bag of features class representation by histograms of visual words

exactly the same in an other image. A codebook, also called a visual vocabulary, is needed that can
represents a set of visual words as a language to describe the images.

This vocabulary can be created by clustering the local feature descriptors found in a set of training
images. These local feature descriptors represent image patches in an image, and similar image patches
in the training set will be grouped together based on appearance. As discussed in Chapter 2, the
appearance of local image features is represented by a normalized descriptor. These descriptors are
already built to incorporate small variations in illumination and viewing angle, so grouping them
together becomes less troublesome. Every cluster center of local features becomes a term in the visual
vocabulary, also called a visual word. A novel image can then be represented as a normalized histogram
of visual words counts by matching the local features to the nearest term in the visual vocabulary, in
the same way a document can be represented by a histogram of words in the bag of words technique.

Figure 4.1 shows an example of a image representation by a histograms of visual words. On the
left of the image the input images for a motorcycle class are shown, from which a visual vocabulary
is build. On the right side of the image, the histograms of visual words are displayed. As every
image is different, the histogram will vary, but the idea is that some visual words will have a higher
chance of being present then others. These variations can be captures using machine learning techniques.

When a dataset of images is transformed in a collection of visual word histograms, each image can be
described with a feature vector in n-dimensional space, where n is the size of the visual vocabulary.
These feature vectors can be used to train a support vector machine to split this feature space into
regions belonging to a specific class. As the vocabulary size is usually much lager then the number of
visual words found in an image, the data is quite sparse. Support vector machine can handle high
dimensional sparse data [TWT10]. The trained support vector machine can then be used to test
the visual words histogram of a new image, and determine the closest matching class for that image.
Support vector machines are explained in in more detail in Section4.2.

To summarize, Figure 4.2 shows an overview of the bag of features process. On the left side of the
image, local features are extracted from annotated input images, and a visual vocabulary is created.
Then, all the images in each class are transformed into histograms of visual word occurrences, which
are fed into a support vector machine for learning. On the right side of the image, local features
are extracted from an unknown image. Using the same visual vocabulary, a histogram of words is
created. This histogram is fed into the trained support vector machine to find the closes matching class.

28

4.1. BAG OF FEATURES IMAGE REPRESENTATION

Figure 4.2: Overview of the bag of features training and testing process. Image partly from [FFP05].

4.1.1 Vocabulary building

One of the big challenges in the bag of features object model is the creation of a visual vocabulary. In
contrary to the bag of words method, the vocabulary is not a fixed set of finite words that can be used
directly. In a domain specific setting, the vocabulary has to be created for the data that is available.
The creation of a good visual vocabulary can be quite a challenge, as the size of the vocabulary can
have impact on the performance of the bag of features object modeling. If a vocabulary is too small,
the created feature histograms from different classes of images may not become distinct enough to
build a good classifier. If a vocabulary is too large, the histogram distribution of images within the
same class may become very diverse, which also influences the performance of the classifier.

Figure 4.3: Example of visual words, image partly from [SZ09].

K-means clustering is a popular choice for visual vocabulary creation. As discussed in Chapter 3.2.1,
k-means needs the specification of the amount of clusters beforehand with the k parameter. The
vocabulary size can therefore be controlled with this algorithm. Each cluster center represents one
visual word. Figure 4.3 shows an example of local features that where clustered based on local feature
descriptors, and represent visual words in a vocabulary.

29

CHAPTER 4. APPEARANCE BASED OBJECT MODELING

4.2 Support vector machines

A support vector machine [CV95] (SVM) is a discriminative binary classifier, that separates a set of
labeled positive and negative training samples in a multi-dimensional feature space, by defining an
optimal separating hyperplane. To illustrate this, Figure 4.4 shows an example in two-dimensional
space. The red squares are positive labeled instances, and the blue circles are negative labeled instances.

In Figure 4.4(a), multiple possible hyperplanes are depicted by green lines, that are all valid separations
of the data. Some planes, likes the ones close to the positive or negative instances can be error prone
when evaluating new data. Therefore, the optimal hyperplane is defines by the plane that has the
highest minimal distance towards the training samples. By taking this minimum distance twice (in
both the positive and negative direction) we can define the margin of a hyperplane. Figure 4.4(b)
shows the optimal hyperplane with the maximum margin for this example. The training instances
that have the minimum distance to the hyperplane are called the support vectors. Removing vectors
that are not support vectors will not change the optimal hyperplane. New instances can be classified
by checking if they fall above or below this optimal hyperplane.

(a) Possible seperating hyperplanes. (b) Optimal hyperplane with maximum margin

Figure 4.4: Example of SVM hyperplanes in two-dimensional space. Images from the OpenCV documentation
[Bra00].

4.2.1 Kernel trick

The example in Figure 4.4 considered linear separable data in a two-dimensional feature space. When
the training data is not linearly separable in the input feature space, non-linear classification is still
possible by using the kernel trick [ABR64]. By using a kernel function � such as the gaussian radial
basis function (RBF) [SSB+ 97], the data is mapped to a higher dimensional feature space where the
data is linearly separable. Figure 4.5 shows an example of this process. On the left, non linear separable
training data is shown. When the kernel function is applied, the data becomes linear separable in
this higher dimensional feature space in the middle figure. When projected back to the original input

30

4.2. SUPPORT VECTOR MACHINES

feature space, the linear hyperplane becomes a non-linear hyperplane in this dimension, as shown in
the rightmost image.

Figure 4.5: Example of using a kernel function to map instances to a different feature space.

4.2.2 Multi-class classification

SVM’s are binary classifiers. This means they can only make prediction of a class as positive or
negative. However, it is possible to create a multiclass SVM by chaining several binary SVM’s together.
Training of these SMV’s can be done with two techniques, one-against-one or one-against-the-rest
[HL02]. One-against-one builds an SVM for every unique combination of classes, using only the data
of these classes. When a new instance needs to be classified, all SVM ’vote’ for the class they think is
best. The class with the most votes is considered as the perdition of the multiclass SVM.

One-against-the-rest uses a different approach. For n classes, n SVM’s are created where the instances
of that class are considered positive, and the rest of the data is considered negative. The SVM with
the most confident positive prediction is the prediction of the multiclass SVM.

Both techniques produce comparable results, but have their advantages and disadvantages. One-
against-one methods is faster to train if the dataset becomes larger. However, as the number of classes
increase, the number of unique combinations of classes grows faster. One-against-the-rest trains less
SVM’s, but for every SVM the full dataset is used. So the best choice for a training technique depends
on the size of the data, and the number of classes that need to be classified.

4.2.3 Early experiments and conclusion

An experimental setup was created to test the predictive power of the bag of features object combined
with a support vector machine. The Caltech 101 dataset [FFFP07] was used to provide training
images. Selections between 3 and 10 classes were chosen with an average of 80 images per class.
Vocabularies of 100, 250 and 500 visual words were created from the extracted SIFT features. The
images were then processed with the vocabularies to create the visual words histograms. A random
80% of the histograms were then selected to train a multiclass SVM, and 20% was used as a test samples.

The early experiments showed promising results with the bag of feature object model. Precision and
recall of some classes was to 80%. Most classification measurements averaged around the 60% mark,
which is good but not very reliable classification, but with an average of only 60 images per class used
as training the results are promising. It is expected that the performance improves when the number

31

CHAPTER 4. APPEARANCE BASED OBJECT MODELING

of training samples increases.

Because the early results were promising, the bag of feature approach will be implemented in the
object classification framework, and tested in the proof of concept setting of traffic sign classification.
In Chapter 5 the workings of the framework are explained.

32

5
Object recognition framework

The object recognition framework is a desktop application that allows a user to input their data, create
an object classifier and test the performance of this classifier. In this section these functionalities are
explained.

5.1 Platform

The framework described in this thesis is developed in Java. The decision to use Java was made
because many mobile phones support Java. Though the framework itself is meant to run on a desktop
computer, the framework produces a classifier that may run on a mobile device. Porting it will become
much easier when developed in Java. Another reason for choosing Java is that many open source
libraries are implemented in this language, or provide a Java API.

The framework uses a library called OpenCV (Open Source Computer Vision Library) [Bra00] to
perform many vision related tasks. The library provides graphic operations such as keypoint detection
and matching functions such as the SIFT algorithm that is used in this framework. The current stable
version of the library in Java is 2.4.9, which is used during the creation of the framework.

The framework also makes use of the LibSVM library [CL11] for the creation of the support vector
machines used in the bag of features model. The library provides a heavily optimized parallel imple-
mentation for the training of an SVM. It also automatically optimizes the parameters based on the
training data, and has support for multiclass classification. The current stable version that is used in
this framework is 3.18.

5.2 Adding data

Adding data is the first step of the process. Figure 5.1 shows a screenshot of the dataset panel. The
user can create a new dataset or load an existing one. Upon creation of a new dataset, the user is
asked to input a name and a location in the filesystem where the dataset should be stored. This will
create a root node in the class tree. A user can then click this node to add sublevels, to build the

33

CHAPTER 5. OBJECT RECOGNITION FRAMEWORK

Figure 5.1: Dataset panel in the object recognition framework

class hierarchy. Figure 5.2 shows an example of a class hierarchy with multiple sublevels. The user is
also able to add data to a class with the same context menu. Clicking the "Add data" menu item will
prompt the user for an image of a folder containing images of the specific class. These images are then
imported into the dataset. On the right hand side of the window we see a panel that can display the
data as the user clicks on the node. It is also possible to display keypoint information by clicking on
the "Show keypoints" checkbox.

Figure 5.2: Example of building a new dataset

The dataset is stored in the filesystem in the same directory structure as the hierarchy tree. The
dataset name will be the root folder, and sublevels of classes will be subfolders, with the name of the
class as the name of the folder. Many dataset used for object recognition challenges use this structure,
which allows for easy importing into the system. It also allows for dataset manipulation directly in
the file system.

34

5.3. CREATING A VISUAL VOCABULARY

5.3 Creating a visual vocabulary

Figure 5.3: Visual vocabulary panel in the object recognition framework

The visual vocabulary panel, as shown in Figure 5.3, allows the user to create a visual vocabulary
with the dataset that is provided in the dataset panel. As stated in Chapter 4.1, the visual vocabulary
is built using a k-means clustering algorithm, that groups all the descriptors in the dataset into k
clusters. Using the fields on the left hand side of the window, the user can control the following
parameters of the k-means clustering algorithm:

� # words: defines the number of visual words the vocabulary should have.

� Max iterations: limits the algorithm to a specific number of iterations.

� Accuracy: the algorithm stops after an iteration where the means shift less than this value.

� Attempts: runs the algorithm multiple times, picking the run with the best results.

After the algorithm has finished, the created visual vocabulary is shown on the right hand side. Figure
5.3 shows an example of a completed run. The example uses SIFT descriptors which have a 128
dimensional feature vector, therefore every word has 128 features. Every row in the grid represents
one word, and every cell represents one feature value of a word. The user can then save the vocabulary
to disk and reload it another time.

5.4 Building a BoF SVM

After the dataset and the visual vocabulary have been created, the next step in the process is creating
a classifier using the bag of features object model. Figure 5.4 shows a screenshot of the BoF SVM
builder. On the right side, the class hierarchy tree is shown again. By selecting multiple nodes, the
user can create any combination of classes to train an SVM. The example shows the creation of a

35

CHAPTER 5. OBJECT RECOGNITION FRAMEWORK

Figure 5.4: BoF SVM builder panel in the object recognition framework

four-class SVM, that can classify an image as either a danger, mandatory, prohibitory or other traffic
sign.

On the left, there is a text field in which the user can specify a maximum number of samples to use
per selected category. In the example, the value of 1000 will cause the system to select 1000 random
samples from the four selected categories. This option is added for testing purposes, as training an
SVM on large datasets can take quite a long time. Also, as datasets become larger, too much samples
can cause memory issues. This option allows for quick testing of vocabulary sizes to get a good feel of
accuracy.

The second text field allows the user to specify a minimum of keypoint a sample should have to be con-
sidered as a valid training and test sample. This prevents that nearly-empty histograms from very small
images distort the classification results. Filtering out these bad samples improves the classification rate.

The option "Create 1-fold test" will split the data into two sets, a training and a test set. After the
samples are collected from every selected category, a random selection of 10% will be reserved for
testing purposes, and 90% will be used to train the classifier. Data is stratified, meaning that the
ratio of samples per class in the training and the test set is the same as it was in the original dataset.
The user is prompted for a directory where the test set will be saved. All test samples are copied to
this directory in a corresponding subfolder, for later evaluation.

The training samples are then processed by the vocabulary to create the histograms of visual words,
and labelled with the appropriate class. These histograms will be fed into the LibSVM library to create
a multi-label classification model using an RBF kernel. A one-against-one training method is used to
create the multiclass SVM, which means that multiple binary SVM’s are created. One-against-one is
chosen over one-against-the-rest because he training time is shorter while the accuracy is comparable
[HL02]. The corresponding SVM model and properties are then saved to the test set location, and the
corresponding vocabulary is copied as well.

36

5.5. RUNNING EXPERIMENTS

Figure 5.5: Directory structure of a 1-fold experiment

Figure 5.5 shows the directory structure of the created 1-fold experiment. There are four folders with
100 test images for each class. The :model file contains the created SVM, and the :properties file
contains a specification of the class labels, as well as the visual vocabulary and the dataset that was
used to create the SVM. The :voc file, contains the visual vocabulary. This directory serves as input
for the experiment panel discussed in Section 5.5, to test the performance of the created SVM.

The option "Create 10-fold test" creates a full partition of the collected data into 10 stratified folds.
Each fold becomes a test set and for every fold, a SVM is trained using the other nine folds as training
data. Basically, the 10-fold test is a validation process, to ensure that the results from a random 1-fold
test where not a lucky coincidence. Using the average of 10 experiments, where every SVM is trained and
tested on different parts of the data, gives a good indication of the performance of the classifier [Koh95].

The final option allows the training of the support vector machine on the full dataset. This will not cre-
ate a test set to measure the results, so the evaluation of the SVM’s performance must be done manually.

5.5 Running experiments

Figure 5.6: Experiments

The experiment panel allows the user to test the predictive power of the SVM’s. The use of this panel

37

CHAPTER 5. OBJECT RECOGNITION FRAMEWORK

is pretty straightforward. When the user clicks the "Run 1-fold or 10-fold experiment" button, he is
prompted for a directory location like shown in Figure 5.5. All test samples are processed using the
vocabulary and tested with the SVM. The result is shown as a confusion matrix, and is written to the
filesystem when completed.

Figure 5.6 shows the result of the example experiment created as shown in Figure 5.4. This experiment
shows for example that 75 out of 81 "Danger" samples were correctly classified, three where wrongly
predicted as "Mandatory" and three as "Other". So the recall of the "Danger" category is 0; 925 . In
total, 98 predictions of "Danger" category were made in this experiment, of which 75 where correct,
which results in a precision of 0; 765 . The F-measure of the "Danger" category is 0; 837 . Precision,
recall and f-measure are explained in more detail in Section 6.2.5.

38

6
Experiments

Using the framework as discussed in Chapter 5, experiments where performed to test the performance
of the bag-of-features classification technique in the field of traffic sign recognition. In this Chapter we
will discuss the data that is used to build the models in Section 6.1, and in Section 6.2 the results of
different levels of classification experiments are presented.

6.1 Dataset

As stated in Section 1.1, the framework is going to learn to recognise objects based on a series of
annotated images, and the domain of traffic sings recognition will be our proof of concept. Though it
is possible to build this dataset from scratch by attaching a camera to the dashboard of a car and start
driving, it would take a while to gather all the data and annotate the images correctly. Fortunately,
in the field of object recognition there are a number of datasets available. These dataset contain
pre-annotated training en test data on which classifiers can be tested. In this section we will take a
look the datasets that is used to test the frameworks predictive performance.

6.1.1 GTSRB dataset

Figure 6.1: GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) dataset [SSSI12] was part of a multiclass,
single-image classification challenge held at the International Joint Conference on Neural Networks
(IJCNN) 2011. It contains a collection of more roughly 40.000 images over 43 types of traffic sings.
The images vary in resolution between 15x15 to 250x250 pixels and contain one traffic sign in the

39

CHAPTER 6. EXPERIMENTS

center of the frame. Figure 6.1 shows some examples of images. All the traffic signs are centered in
the frame and cover the majority of that frame.

Figure 6.2: Example of a series of images taken from one traffic sign

Although the dataset contains more then 50.000 images, these are not taken from individual traffic
signs. Instead, real world traffic sign are photographed at different distances from the perspective of a
driver of a car. Figure 6.2 shows a serie of 30 pictures taken from a traffic sing. The first images are
taken very far away, so the resolution is low. As the camera approaches the traffic sign, the resolution
increases and more details are visible. We can also see that the background changes over time and the
perspective is slightly shifted as well. This results in a life like dataset.

6.1.2 GTSDB dataset

Figure 6.3: GTSRB

The German Traffic Sign Detection Benchmark (GTSDB) dataset [HSS+ 13] was part of a single-image
detection challenge held at the IEEE International Joint Conference on Neural Networks 2013. It
contains 600 training images of typical views as seen from the perspective of driver of a car. Figure
6.3 shows three examples of images used in this dataset. It provides annotation of the location of 43
different types of traffic signs (the same types as used in the GTSRB dataset) in these images. The
challenge was to detect the traffic sings in the images and classify them into one of three categories:
prohibitory, danger or mandatory.

The main focus of this challenge is detection of traffic signs in a cluttered image. For every image, a
ground truth is given as a bounding box that specifies in which region of the image a specific type of
traffic sign is located. An image can contain multiple traffic signs of various types, but it can also
contain traffic signs other then the 43 given types. Some images even contain no traffic sign at all. In
total, this dataset contains 852 examples of the 43 types of traffic signs across the 600 sample images,
which is a lot less then the 40.000 examples in the GTSRB dataset. The resolution of the images
is 1360 x 800 pixels, and some traffic signs are only 30 x 30 pixels in size. The viewing conditions
are also quite varies. Some signs are overexposed because of the sun and some scenes are very dark
because of rain.

40

6.2. EXPERIMENTS

6.1.3 Merging of the recognition and detection dataset

To test our framework, the GTSRB dataset is merged with the GTSDB dataset. Using only the
GTSRB as dataset, it is not possible to generate a model of the background, as we only have images
of positive examples of traffic signs. If we only use the GTSDB, we do not have enough data available
to build an accurate model of the traffic signs (some traffic signs only appear four times). The solution
is to merge these two dataset into one.

The background images of the detection database are much larger then the small image examples of
the recognition database. To counter this, 25 random image patches of 70 x 70 pixels from the 600
available background images were cut out, resulting in 15.000 image patches of background information.
The traffic sign locations were cut out of the images before taken the random samples, to ensure that
no image patches contain parts that belong to the traffic sign class.

The full class hierarchy of the merged dataset, as used in the experiments, is described in Appendix A.1.

6.2 Experiments

To test the performance of the classifiers that are produced by the framework, experiments are set up.
The first experiment will be a high level classification tast, that can only predict whether or not the
test samples contain a traffic sign or not. The second experiment go one level of detail deeper, and
tries to to determine the subtype of a traffic sign. The third experiment will try to classify the lowest
and most detailed classes in the class hierarchy tree. The results will then be compared to decide at
what level the bag of features approach still produces useful classifiers.

Every experiment will be performed using a 10-fold cross validation method to validate the results.
The data is partitioned up into 10 stratified folds, so that every sample occurs only in one fold. Then
the experiment is run ten times, and each time nine folds are used to train the classifier and the
other fold is used to test its performance. This ensure that the results are not subject to a lucky
pick of training and test samples. The data is stratified across the folds, which ensures that the class
proportions remain equal in every fold. For example, if 600 out of 1000 samples are of class x in the
dataset, each fold will contain 100 samples of which 60 belong to that class.

6.2.1 Evaluation

The performance of a support vector machine will be measures with the precision, recall and f-measure
of its predictions [Pow11]. In a 10-fold cross validation test, each fold will train an SVM with 90%
of the data for training, and 10% is used to test the classifier. The prediction of each test sample
is logged in a confusion matrix. Table 6.1 shows an example of a confusion matrix for a three-class
classifier. The rows represent the classifiers predictions, while the columns represent the samples of
the classes that where tested.

In this example, we see that the classifier predicted class A for eight samples (row count). Five of
those where actually samples of class A, while three samples should have been classified as class C.

41

CHAPTER 6. EXPERIMENTS

samples of A samples of B samples of C
Predicted A 5 0 3
Predicted B 3 7 0
Predicted C 2 1 1

Table 6.1: Example of a confusion matrix

The precision of the classification of a class can be defined as:

Precision =
true positives

true positives + false positives
(6.1)

where true positives are correctly classified samples and false positives are incorrectly classified samples.
In this case, the precision for class A in this classifier is 5

8 = 0; 625. this can be read as a 62,5% chance
that a prediction of class A is correct. The recall measures the ratio of correctly predicted samples of
a class in the entire test. It can be defined as:

Recall =
true positives

true positives + false negatives
(6.2)

where false negatives are samples of that class that not correctly classified. In the example, there are
ten samples of class A (column count), of which five where correctly classified as class A. The recall
of class A in the example is 5

10 = 0; 5. this can be read as a 50% chance that a sample of class A is
correctly predicted using this classifier.

Precision and recall between classes are linked. A false positive prediction for one class is also a false
negative prediction for the other class. Both measures are important, having a high recall but low
precision means that the classifier has a bias to predict this class over others. If the precision is high
but the recall is low, the prediction may be accurate, but a lot of samples will be misclassified. The
F-measure (also called F1 score) is the harmonic mean between precision and recall, and can be defined
as:

F-Measure = 2 �
precision � recall
precision + recall

(6.3)

which give a better measure to compare classification results. The measure tends to punish large
differences in precision and recall. For example, the f-measure for a classifier with a precision of 1 and
a recall of 0,5 will have an f-measure score of 0,66. A classifier with a precision and recall of 0,75 will
also have an f-measure of 0,75. A higher f-measure will give a better performance.

6.2.2 Vocabularies

The experiments all make use of the same visual vocabularies that are generated from the 600 training
images from the GTSDB dataset. In total 3:151:465 local features where detected in these images
using the SIFT algorithm, which is an average of 5:252 local features per image. As every keypoint
has a 128-dimensional feature vector, clustering using K-means takes a while. Visual vocabularies
with sizes of 500, 1:000, 2:500 and 5:000 where created using the object recognition framework.

The creation of these vocabularies varied from six hours for the 500 sized vocabulary to a full two
days for 5000 sized vocabulary, on a laptop with an Intel Core i5-4300U CPU @ 1,90 GHz (4 cores)

42

6.2. EXPERIMENTS

and 8 GB of RAM. Max iterations was set to 25 for all creations but the algorithm converged to a
local maximum before this threshold was reached. The smaller vocabularies where created multiple
times to select the best outcome.

6.2.3 Experiment 1: high level classification

(a) Precision (b) Recall

(c) F-measure

Figure 6.4: High-level classification results

The first experiment is a high level classification test. Using the SVM builder a binary SVM for the
classification of a ’Traffic Sign’ class or a ’Background’ class is created. The vocabulary sizes used
in this experiment will be 500, 1.000, 2.500 and 5.000 visual words in size, to measure the effect on
the classification performance of the SVM. Because running this test on the entire dataset was not
feasible (more then 50.000 images), the maximum number of samples per category was set to 10.000
samples, resulting in 20.000 images total. Only with the 5000 visual words test, the maximum number
of images had to be set to 5000 because of memory issues. A minimum of 5 keypoints per sample is
used as a threshold. Table A.1, A.2, A.3 and A.4 show the average precision, recall and f-measures of
the experiments with a vocabulary size of 500, 1.000, 2.500 and 5.000 words respectively. Each 10-fold
cross validation test took about a day to run.

43

CHAPTER 6. EXPERIMENTS

The high level classification are all very good except for the vocabulary size of 5.000. The best
vocabulary size seems to be 2500 visual words, with an f-measure of 0; 93 for ’Traffic Sings’ and 0; 88
for ’Background’.

Figure 6.4 shows the measurements of the classifiers in a line graph. Here we can see that the
precision of the traffic sign classification decreases as the vocabulary size grows, while the reverse
is true for the background classification. The recall of the background class also takes a dramatic
decrease when switching from 2.500 visual words to 5.000. This can be explained by the fact that a
smaller vocabulary generalizes the traffic signs example histograms more, making them more similar.
As the vocabulary size increases, features that should be mapped to the same visual word may be
mapped to different words, making for a more varied set of histograms. as the background sam-
ples are also varied, these classes tend to blend together, making it harde for the SVM to separate them.

In the graph we can also see that the precision of one class influences the recall of the other class. As
the precision increases of the ’Background’ class, less samples of the ’Traffic Sign’ class are misclas-
sified, leading to the increase in recall for that class. The reverse is also true with a decrease in precision.

So with a high level classifier, we can make an confident prediction whether an image patch contains
background information or a traffic sign. In the next experiment we are going to look at one level
deeper in the hierarchy tree, and see if we can predict the correct subclasses of traffic signs with the
same amount of performance.

6.2.4 Experiment 2: mid level classification

The second experiment is a mid-level traffic sign classification test with background. A multiclass SVM
will be created from samples of the following classes: ’Danger’, ’Mandatory’, ’Prohibitory’, ’Other’
and ’Background’. The vocabulary sizes used in this experiment will be 500, 1.000 and 2.500 and
5.000 words to measure their effect on the recognition process. For each experiment a maximum of
5.000 samples per category was used, except for the experiment with the 5.000 vocabulary size where
2.500 samples per categories were used. A minimum of 5 keypoints per sample is used as a threshold
in each experiment. The results of the 10-fold cross validation can be found in Appendix A.2.2, Table
A.5, A.6, A.7 and A.8. The results are visualized in figure 6.5.

Figure 6.5(a) shows the average precision value of each class that was measured in the experiment. A
vocabulary size of 1.00 words seem to give the best results. The background class had low precision in
at 500 visual words and at a vocabulary size of 2.500, the danger category start losing its precision. In
Figure 6.5(b) the measured recall scores are depicted. The vocabulary size of 5.000 again shows poor
results in recall. The background class drops to an impractical level, and the prohibitory and other
category also drop below 0,7. The danger category has the highest recall at this vocabulary size, but
the precision is very low.

Figure 6.5(c) shows the f-measurement scores of the experiment. overall we see that the Danger,
mandatory and prohibitory classes perform very well on a vocabulary size of 1.00 with an f-measure
just below 0,9. The other category is performing a bit less with an f-measure of just below 0,8. This
is likely because the other category has a higher variety then the other three traffic sign subclasses,

44

6.2. EXPERIMENTS

(a) Precision (b) Recall

(c) F-measure

Figure 6.5: Mid-level classification results

which makes it harder to predict. The background category performs poorly, with an f-measure of just
below 0,7. This means that allot of samples of background will be wrongly classified as one of the four
traffic signs, and samples of traffic signs will be wrongly predicted as background.

Taking these results into consideration, the best approach would be to use a multistage classifier. First,
an image patch can be processed with the high level classifier to reject background samples with a
higher precision. Then, if a traffic sign was detected, the mid level classifier is used to determine the
type of the sample.

This experiment was run again without the inclusion of background, to determine if the performance
increases. The results of the mid-level classification experiments without background can be found in
Appendix A.2.3, Table A.9, A.10, A.11 and A.12. The results are visualized in figure 6.6.

When comparing the results with the experiment with background, we see a slight increase in
performance. The best results seem to be with the vocabulary size of 1.000 visual word, as the f-
measure of the ’danger’, ’mandatory’ and ’prohibitory’ class is around the 0; 9 mark, and the f-measure
of the ’other’ category has risen to 0; 83. This category still performs less then the others as it is more
varied.

When combining the high and the mid-level classification results, we can calculate the precision and
recall by multiplying them. For example, as the traffic sign class in the high-level classifier has a recall
of 0,94 and the ’danger’ category in the mid-level classifier has a recall of 0,93, the recall of the danger
category in the combines approach is 0; 94 � 0; 93 = 0; 87. This means that 87% of all ’danger’ samples

45

CHAPTER 6. EXPERIMENTS

(a) Precision (b) Recall

(c) F-measure

Figure 6.6: Mid-level classification results without background

Traffic Sign Background
Precision 0,92 0,89
Recall 0,94 0,87
F-measure 0,93 0,88

Table 6.2: Best High-level classification results using 2.500 visual words

Danger Mandatory Prohibitory Other
Precision 0,90 0,92 0,99 0,80
Recall 0,93 0,92 0,84 0,86
F-measure 0,92 0,92 0,91 0,83

Table 6.3: Best mid-level classification results using 1.000 visual words

get correctly classified as a ’danger’ sign. The same can be done for the precision. Table 6.4 shows the
calculated precision and recall values using this combined approach. these values are based on the
best high-level classification results displayed in table 6.2, and the best mid-level classification results
without background displayed in table 6.3.

When comparing these results to the mid-level classification results with background and a vocabulary
size of 1.000 (table A.6), the classification results of the ’danger’, ’mandatory’ and ’other’ category
have a slight decrease in performance. However, the recall and precision of the background category
has increased dramatically making is a more useful classifier. Considering that in a scene, there is a

46

6.2. EXPERIMENTS

Danger Mandatory Prohibitory Other Background
Precision 0; 83 0; 85 0; 91 0; 74 0; 89
Recall 0; 87 0; 86 0; 79 0; 81 0; 87
F-Measure 0; 85 0; 86 0; 91 0; 77 0; 88

Table 6.4: Performance of a multistage classification approach

higher chance of finding background then there are traffic signs, using only the mid-level classifier
with background would result in a lot of false positives.

6.2.5 Experiment 3: low level classification

The last experiment will be a low-level traffic sign classification test, to see if good prediction per-
formance can still be achieved on the most detailed level. A multiclass SVM will be created from
the twelve ’prohibitory’ traffic sign classes (a list of these classes can be found in Appendix A.2.4).
The experiments where conducted using vocabulary sizes of 500, 1.000, 2.500 and 5.000 visual words.
Max samples per category was set to 1.000 samples for all vocabulary sizes. Again, a minimum
of 5 keypoints per sample is used as a threshold in each experiment. The results of the low-level
classification experiments can be found in Appendix A.2.4, Table A.13, A.14, A.15 and A.16.

On this level, the best results where achieved with a visual vocabulary of size 2.500 (Table A.15). The
average precision of all classes is very high, with a score of 0; 89. However, the average recall is allot
lower at an average of 0; 61. There are some classes that perform well, such as the ’No overtaking’
class with an f-measure score of 0; 9. There are some very poor performing classes, such ’Speed limit
20’ with an f-measure score of 0; 34 and ’No traffic both ways’ with an f-measure of 0; 48. The average
f-measure is 0; 69, this means that the classifier is not very useful in practice, as it will produce many
incorrect classifications.

The only class that has high recall but a low precision is the ’Speed limit 30’ class. As discussed
in Section , this indicates that the classifier is too eager to label a test image as this class. When
examining the confusion matrixes of this experiment, it is clear that this is indeed the case. Figure 6.7
shows one of the produced confusion matrixes from the experiment.

In total, 528 samples were tested in this experiment, of which 201 where classified as the ’Speed limit 30’
class (number 6 in the example), of which 75 where correct. That means that this class covers 35% of all
predictions on this level. This will result in many false negative predictions for the other classes, which
explains the low recall. A possible reason for this may be that the differences between classes becomes
too small, and the SVM grows a preference for the class that happens to have the most varied feature set.

Experiments with other categories, such as the ’mandatory’ traffic sign category as shown in Figure 6.8,
indicated that this problem occurs not only in the ’prohibitory’ category. Here we also see a dominance
in predictions for one class, in this case the ’Go straight’ class. This leads us to the conclusion that
the bag of features image representation is not very suitable in finding small differences in classes.

47

CHAPTER 6. EXPERIMENTS

Figure 6.7: Confusion matrix of a random fold in the low level classification experiment

Figure 6.8: Confusion matrix of a 1-fold experiment in the low-level ’mandatory’ category using a vocabulary
size of 2.500

48

7
Conclusions

To conclude the findings of this thesis, the research questions defined in Section 1.2 are answered.

How do we extract relevant information from images, and transform the collection of images into a
feature set? This question was answered in Chapter 2, where local features where discussed. The
SIFT algorithm promised a robust and repeatable first step in transforming an image dataset into a
feature space. the Based on the location information of keypoints and the corresponding descriptors
found in image samples of a specific class, classification and machine learning techniques can be used
to model this data.

How do we build classifier that can model this data and use that model to predict the presence
or absence of an object in new images? This question was answered in Chapter 3 and Chapter
4. Shape and appearance based object modeling approaches where discussed. The shape based
approach, which used keypoint location clustering to model an object as a collection of parts, seems
less effective in the domain of generic object recognition and was eventually abandoned. Appearance
based object modeling became the focus of the framework as it promised better results. The bag
of features object model, which uses a histogram of visual words as an image representation and
a support vector machine to classify new images, was implemented in the object recognition framework.

In Chapter 6, experiments where conducted with the framework on a dataset of traffic signs in order
to answer the main research question of this thesis: To what degree of detail can we use this generic
framework to classify specific and abstract classes of objects? The high level classification results of
the appearance based bag of features methodology where very useful. Using a vocabulary size of 2.500
words, the classification technique was able to accurately separate background samples from traffic
sign samples with an f-measure score around the 0; 9 mark.

The mid-level classification experiments also showed useable classification results. The best results
where achieved with a vocabulary size of 1.000 visual words. The detection of background at this
level was not very good, with an f-measure score of only around the 0; 6 mark. This led to the
conclusion that it is better to use a multistage classification approach by first rejecting background
samples with the high level classifier and then determine the traffic sign subclass with the mid-level
classifier. Excluding background samples from classification on this level also improved the mid-level
classification results, with f-measure scores between the 0; 7 and 0; 9 mark.

49

CHAPTER 7. CONCLUSIONS

The experiments for the detailed low-level classification where not as good as the other levels. On this
level, the differences between classes becomes very small, making it hard for the classifier to distinguish
them. Although the average precision was good, the average recall was around the 0; 69 mark meaning
that the false negative rate is very high. Some classes tended to dominate the predictions in this level.

The overall conclusion is that the framework provides useful prediction results until the mid-level class
detail in the case of a traffic sign class hierarchy. The bag of features object model works well on levels
where the classes have a similar distinct appearance. On the most detailed level, it is advised to use
other techniques such as a direct image matching strategy to determine the exact class of the traffic sign.

7.1 Future work

In this section, future work to improve the framework is discussed. Section 7.1.1 covers multiple
approaches to add detection capabilities to the framework. Section 7.1.2 discussed other possible
approaches to object modeling.

7.1.1 Detection

The framework is not able to detect objects in a scene. The test results were achieved from test images
that contain only one traffic sign, located in the center of the picture. These images are roughly 70 x
70 pixels wide, and are cut-out’s of pictures in scenes of roadways. The framework should be expanded
to allow for the automatic localization and detection of multiple objects in a larger image.

One technique that can be used for the detection is the sliding window approach. The window
represents a specific pixel grid (for example 70 x 70 pixels) that is moved across the pixel grid of
the larger image. It starts in the upper left corner of the image, and performs a bag of features
classification on that window. If there is a detection in this window, it can be displayed on the screen.
Then, the window is moved an x amount of pixels to the right to perform the classification on a
different portion of the image. This process is repeated until the entire picture is processed. This
technique can only be useful if the proportions of the object with respect to the scene are known. If
the window size does not match, it cannot detect the object.

Another approach that can be used to detect objects at different scales is a spatial pyramid approach.
The original picture is then divided into multiple grids: 1 x 1, 2 x 2, 4 x 4 etc. Then detection is
performed on these grids darting with the 1 x 1 grid, which is basically the original image. If no object
is detected, the next grid is inspected, where all the cells are processed individually. the process is
repeated until the grid cells become to small to contain a specific threshold of keypoints. This way an
object can be detected on different scales. Figure 7.1 shows an example of this approach, where traffic
sings are detected at grid size 8 x 8 (7.1(d)).

Another approach is a candidate visual words model. Using the information obtained by the bag
of words histogram creation step, we may be able to associate a class (like a traffic sign) with some
specific visual words that are present in many samples. If this visual word is not very common in other
classes (for example background), the visual word can be associated with that class. When a picture

50

7.1. FUTURE WORK

(a) 1 x 1 grid (b) 2 x 2 grid

(c) 4 x 4 grid (d) 8 x 8 grid

Figure 7.1: Example of spatial pyramid object detection

is processed by the visual vocabulary, and all the keypoints are matched to visual words, only the
regions with candidate words present have to be checked, reducing the number of predictions needed
in a large picture.

7.1.2 Other approaches to object modeling

Although the shape based object model approach was abandoned during this research, it may be
a good idea to reconsider this idea with an added appearance based component. Using the visual
vocabulary of the bag of features approach, repeated words in the samples can serve as the parts in
this object model. Using Principal Component Analysis (PCA) [Pea01], a spatial distribution of these
common words can be built. This may produce better results then using a clustering algorithm for
creating the parts of the component.

An extension that may improve the classification results is spatial bag of features [CWL+ 10]. This
technique augments the bag of features methodology by adding a spatial dimension to the visual
vocabulary. This causes similar features that have a high tendency to appear in a specific location to
have a higher chance of being grouped together. It also enables a feature to be matched to different
visual words, depending on the location in the image. This may improve object recognition results for
objects that have a strong repeated location occurrence of specific features.

Another different approach in machine learning is neural network. This technique was presented by
McCulloch et al. [MP43] in 1943, but research had stagnated in the seventies as computers where not
sophisticated enough to handle the long training time of the neural network. Lately, the technique is

51

CHAPTER 7. CONCLUSIONS

gaining popularity again. Recent research such as the work of Szegedy et al. [STE13] suggests that
the technique can be quite effective in the field of object detection.

Figure 7.2: Example of a three-layer neural network

Neural networks are a collection of layered nodes that take the output from the layer below as input,
to produce output that is used for the layer above it. Figure 7.2 shows an example of a three-layered
neural network. The first layer reads the input and produces an output. In the field of image processing,
this could be the value of individual pixels in a picture. The output is linked to other nodes that
process this information. One node may for example test a combination of pixel values and produce a
positive output when that combination is true. The third layer produces the final output, this could
be the prediction of objects being present in the picture.

The networks are trained using example inputs and the provided desired results per sample. Using
allot of samples, the weights between input and output nodes are adjusted in such a way that the
neural network produces the desired results as often as possible. This training take a long time, which
is why this technique was not chosen to be implemented during this research.

7.1.3 Threats to validity

The conclusions in this thesis are based on the results obtained from the proof of concept experimental
setting of traffic sign recognition. The results are not guaranteed to be similar in other domains.
Traffic sign subclasses share similar appearances on the most detailed level. Objects that have a higher
variation on the most detailed level may be harder to recognise. Experiments should be conducted on
different datasets with similar class hierarchy to validate the results.

Because of memory issues, a random selection was used to obtain samples from classes to limit the
number of training and testing samples. This random selection may have influenced the results.

Vocabulary sizes of 500, 1.000, 2.500 and 5.000 were used to test the influence of vocabulary sizes on
the classification results. It is unlikely that any of these vocabularies produced the best results that

52

7.1. FUTURE WORK

could have been achieved. The exact best vocabulary size remains undetermined. Also, recreating
these vocabularies may not produce the same results, as cluster sizes can vary with each creation.

The SVM’s where trained using the external LibSVM library. This library uses grid search to optimize
the parameters of the support vector machines. The results obtained in this thesis may be influenced
by this package. Furthermore, all SVM’s are trained using a RBF kernel function and a one-against-one
multiclass classification strategy. A different kernel and strategy may give better results.

53

A
Appendix

A.1 Merged dataset

� Background (15.000 samples)

� Traffic Sign (39.255 samples)

– Danger (8.977 samples)

* Animals (780 samples)

* Bend (330 samples)

* Bend left (210 samples)

* Bend right (360 samples)

* Construction (1.502 samples)

* Cycles crossing (270 samples)

* Danger (1.201 samples)

* Pedestrian crossing (240 samples)

* Priority at next intersection (1.323 samples)

* Road narrows (270 samples)

* School crossing (540 samples)

* Slippery road (511 samples)

* Snow (450 samples)

* Traffic signal (600 samples)

* Uneven road (390 samples)

– Mandatory (5.646 samples)

* Go left (420 samples)

* Go left or straight (210 samples)

55

APPENDIX A. APPENDIX

* Go right (691 samples)

* Go right or straight (390 samples)

* Go straight (1.201 samples)

* Keep left (300 samples)

* Keep right (2.074 samples)

* Roundabout (360 samples)

– Other (7.299 samples)

* Give way (2.163 samples)

* No entry (1.112 samples)

* Priority road (2.104 samples)

* Restriction ends (240 samples)

* Restriction ends (overtaking (trucks)) (240 samples)

* Restriction ends (overtaking) (240 samples)

* Restriction ends 80 (420 samples)

* Stop (780 samples)

– Prohibitory (17.333 samples)

* No overtaking (1.473 samples)

* No overtaking (trucks) (2.013 samples)

* No traffic both ways (630 samples)

* No trucks (421 samples)

* Speed limit 20 (210 samples)

* Speed limit 30 (overtaking) (2.222 samples)

* Speed limit 50 (2.252 samples)

* Speed limit 60 (1.413 samples)

* Speed limit 70 (1.983 samples)

* Speed limit 80 (1.862 samples)

* Speed limit 100 (1.443 samples)

* Speed limit 120 (1.411 samples)

56

A.2. RESULTS

A.2 Results

A.2.1 High-level classification results

Traffic Sign Background
Precision 0,93 0,82
Recall 0,88 0,90
F-measure 0,90 0,86

Table A.1: High-level classification results: 500 visual words

Traffic Sign Background
Precision 0,94 0,83
Recall 0,88 0,92
F-measure 0,91 0,87

Table A.2: High-level classification results: 1.000 visual words

Traffic Sign Background
Precision 0,92 0,89
Recall 0,94 0,87
F-measure 0,93 0,88

Table A.3: High-level classification results: 2.500 visual words

Traffic Sign Background
Precision 0,64 0,95
Recall 1 0,06
F-measure 0,78 0,11

Table A.4: High-level classification results: 5.000 visual words

A.2.2 Mid-level classification results

Danger Mandatory Prohibitory Other Background
Precision 0,89 0,88 0,97 0,74 0,64
Recall 0,88 0,88 0,82 0,76 0,74
F-measure 0,88 0,88 0,89 0,75 0,69

Table A.5: Mid-level classification results: 500 visual words

Danger Mandatory Prohibitory Other Background
Precision 0,87 0,88 0,97 0,74 0,73
Recall 0,91 0,88 0,82 0,82 0,66
F-measure 0,89 0,88 0,89 0,78 0,69

Table A.6: Mid-level classification results: 1.000 visual words

57

APPENDIX A. APPENDIX

Danger Mandatory Prohibitory Other Background
Precision 0,69 0,93 0,99 0,73 0,73
Recall 0,96 0,92 0,82 0,81 0,66
F-measure 0,80 0,92 0,90 0,77 0,69

Table A.7: Mid-level classification results: 2.500 visual words

Danger Mandatory Prohibitory Other Background
Precision 0,49 0,91 1 0,87 1
Recall 0,99 0,9 0,68 0,56 0,02
F-measure 0,66 0,9 0,81 0,68 0,04

Table A.8: Mid-level classification results: 5.000 visual words

A.2.3 Mid-level classification without background results

Danger Mandatory Prohibitory Other
Precision 0,87 0,88 0,97 0,77
Recall 0,91 0,91 0,83 0,79
F-measure 0,89 0,89 0,90 0,78

Table A.9: Mid-level classification results: 500 visual words

Danger Mandatory Prohibitory Other
Precision 0,90 0,92 0,99 0,80
Recall 0,93 0,92 0,84 0,86
F-measure 0,92 0,92 0,91 0,83

Table A.10: Mid-level classification results: 1.000 visual words

Danger Mandatory Prohibitory Other
Precision 0,84 0,94 0,99 0,83
Recall 0,96 0,92 0,82 0,82
F-measure 0,90 0,93 0,91 0,82

Table A.11: Mid-level classification results: 2.500 visual words

Danger Mandatory Prohibitory Other
Precision 0,62 0,92 0,99 0,94
Recall 1 0,92 0,69 0,51
F-measure 0,77 0,92 0,81 0,66

Table A.12: Mid-level classification results: 5.000 visual words

58

A.2. RESULTS

A.2.4 Low-level classification results

1. No overtaking
2. No overtaking (trucks)
3. No traffic both ways
4. No trucks

5. Speed limit 20
6. Speed limit 30
7. Speed limit 50
8. Speed limit 60

9. Speed limit 70
10. Speed limit 80
11. Speed limit 100
12. Speed limit 120

1 2 3 4 5 6 7 8 9 10 11 12
Precision 0,85 0,94 0,73 0,99 0 0,40 0,75 0,72 0,82 0,87 0,87 0,98
Recall 0,86 0,43 0,57 0,44 0 0,89 0,76 0,74 0,55 0,61 0,75 0,58
F-measure 0,85 0,58 0,64 0,61 0 0,55 0,75 0,72 0,65 0,71 0,80 0,73

Table A.13: Low-level classification results: 500 visual words

1 2 3 4 5 6 7 8 9 10 11 12
Precision 0,92 0,99 0,85 0,99 0 0,36 0,83 0,81 0,91 0,92 0,9 1
Recall 0,86 0,48 0,47 0,55 0,02 0,94 0,73 0,72 0,46 0,62 0,76 0,63
F-measure 0,89 0,64 0,60 0,70 0 0,52 0,77 0,76 0,61 0,73 0,82 0,77

Table A.14: Low-level classification results: 1.000 visual words

1 2 3 4 5 6 7 8 9 10 11 12
Precision 0,95 1 0,89 1 1 0,36 0,83 0,87 0,97 0,93 0,91 0,99
Recall 0,86 0,43 0,34 0,53 0,21 0,95 0,78 0,75 0,51 0,68 0,72 0,62
F-measure 0,90 0,59 0,48 0,69 0,34 0,53 0,80 0,80 0,66 0,78 0,81 0,76

Table A.15: Low-level classification results: 2.500 visual words

1 2 3 4 5 6 7 8 9 10 11 12
Precision 0,96 1 0,95 1 1 0,33 0,90 0,86 0,97 0,97 0,95 0,98
Recall 0,82 0,39 0,22 0,55 0,21 0,98 0,72 0,72 0,52 0,60 0,70 0,65
F-measure 0,88 0,55 0,34 0,71 0,33 0,49 0,80 0,78 0,67 0,74 0,81 0,78

Table A.16: Low-level classification results: 5.000 visual words

59

Bibliography

[ABK99] Mihael Ankerst, Markus M Breunig, and Hans-peter Kriegel. OPTICS : Ordering Points
To Identify the Clustering Structure. pages 49–60, 1999.

[ABR64] M. A. Aizerman, E. A. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. In Automation and Remote
Control,, number 25 in Automation and Remote Control„ pages 821–837, 1964.

[AC06] Elke Achtert and B Christian. DeLiClu : Boosting Robustness , Completeness , Usability ,
and Efficiency of Hierarchical Clustering by a Closest Pair Ranking. pages 119–128, 2006.

[ADHP09] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, January 2009.

[AV07] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035, 2007.

[Ber06] Pavel Berkhin. A survey of clustering data mining techniques. Grouping multidimensional
data, pages 1–56, 2006.

[BETV08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding, 110:346–359, 2008.

[BL07] Matthew Brown and David G. Lowe. Automatic panoramic image stitching using invariant
features. In International Journal of Computer Vision, volume 74, pages 59–73, 2007.

[Bra00] G Bradski. The OpenCV Library. Dr Dobbs Journal of Software Tools, 25:120–125, 2000.

[BTV06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 3951 LNCS, pages 404–417,
2006.

[Bul12] Christopher Bulla. Local features for object recognition. In Proc. of International Student
Conference on Electrical Engineering POSTER’12, Prague, Czech Republic, May 2012.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.

61

BIBLIOGRAPHY

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF: Binary
robust independent elementary features. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 6314 LNCS, pages 778–792, 2010.

[CMS13] Ricardo J G B Campello, Davoud Moulavi, and Joerg Sander. Density-Based Clustering
Based on Hierarchical Density Estimates. pages 160–172, 2013.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20:273–297, 1995.

[CWL+ 10] Yang Cao, Changhu Wang, Zhiwei Li, Liqing Zhang, and Lei Zhang. Spatial-bag-of-features.
In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 3352–3359, 2010.

[EKSX96] Martin Ester, HP Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD, 1996.

[FFFP07] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding, 106:59–70, 2007.

[FFP05] L Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural scene
categories. Computer Vision and Pattern Recognition, . . . , 2005.

[FPZ03] R. Fergus, P. Perona, and a. Zisserman. Object class recognition by unsupervised scale-
invariant learning. 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings., 2, 2003.

[FPZ06] R. Fergus, P. Perona, and a. Zisserman. Weakly Supervised Scale-Invariant Learning of
Models for Visual Recognition. International Journal of Computer Vision, 71(3):273–303,
July 2006.

[FRC08] Reza Farivar, Daniel Rebolledo, and Ellick Chan. A parallel implementation of k-means
clustering on GPUs. on Parallel and, pages 1–6, 2008.

[Haa11] Alfred Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen,
71:38–53, 1911.

[Har54] Zellig S. Harris. Distributional structure. Word, 10:146–162, 1954.

[HL02] Cw Hsu and Cj Lin. A comparison of methods for multiclass support vector machines.
Neural Networks, IEEE Transactions on, 13:415–425, 2002.

[HL04] S. Helmer and D.G. Lowe. Object Class Recognition with Many Local Features. 2004
Conference on Computer Vision and Pattern Recognition Workshop, 2004.

[HPR99] G W Humphreys, C J Price, and M J Riddoch. From objects to names: a cognitive
neuroscience approach. Psychological research, 62(2-3):118–30, January 1999.

[HS88] C. Harris and M. Stephens. A Combined Corner and Edge Detector. Procedings of the
Alvey Vision Conference 1988, pages 147–151, 1988.

62

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

[HSS+ 13] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian
Igel. Detection of traffic signs in real-world images: The German Traffic Sign Detection
Benchmark. In International Joint Conference on Neural Networks, number 1288, 2013.

[Koh95] Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection. In International Joint Conference on Artificial Intelligence, volume 14,
pages 1137–1143, 1995.

[Llo82] S. Lloyd. Least squares quantization in PCM, 1982.

[Low99] D.G. Lowe. Object recognition from local scale-invariant features. Proceedings of the
Seventh IEEE International Conference on Computer Vision, pages 1150–1157 vol.2, 1999.

[Low04] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision, 60(2):91–110, November 2004.

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories. 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), 2, 2006.

[MLS05] Krystian Mikolajczyk, Bastian Leibe, and Bernt Schiele. Local features for object class
recognition. Computer Vision, 2005. . . . , 2005.

[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[NJT06] Eric Nowak, Frédéric Jurie, and Bill Triggs. Sampling strategies for bag-of-features image
classification. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3954 LNCS, pages
490–503, 2006.

[Pea01] Karl Pearson. LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2:559–572,
1901.

[Pow11] DMW Powers. Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness & correlation. Journal of Machine Learning Technologies, pages 1–24, 2011.

[RD06] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 3951 LNCS, pages 430–443,
2006.

[RGP11] Ethan Rublee, Willow Garage, and Menlo Park. ORB : an efficient alternative to SIFT or
SURF. pages 2564–2571, 2011.

[Ros99] P Rosin. Measuring Corner Properties. Computer Vision and Image Understanding,
73:291–307, 1999.

[SRE+ 05] Josef Sivic, Bryan C Russell, Alexei A Efros, Andrew Zisserman, and William T Freeman.
Computer Science and Artificial Intelligence Laboratory Technical Report Discovering
Object Categories in Image Collections. 2005.

[SSB+ 97] Bernhard Schölkopf, Kah Kay Sung, Chris J C Burges, Federico Girosi, Partha Niyogi,
Tomaso Poggio, and Vladimir Vapnik. Comparing support vector machines with gaussian
kernels to radial basis function classifiers. IEEE Transactions on Signal Processing,
45:2758–2765, 1997.

63

BIBLIOGRAPHY

[SSSI12] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking
machine learning algorithms for traffic sign recognition. Neural Networks, (0):–, 2012.

[STE13] Christian Szegedy, a Toshev, and D Erhan. Deep Neural Networks for Object Detection.
Advances in Neural Information . . . , pages 1–9, 2013.

[SZ09] Josef Sivic and Andrew Zisserman. Efficient visual search of videos cast as text retrieval.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:591–606, 2009.

[TL12] Tomasz Trzcinski and Vincent Lepetit. Efficient discriminative projections for compact
binary descriptors. Computer VisionâĂŞECCV 2012, pages 228–242, 2012.

[TM08] Tinne Tuytelaars and Krystian Mikolajczyk. Local Invariant Feature Detectors : A Survey.
3(3):177–280, 2008.

[TWT10] Mingkui Tan, Li Wang, and Ivor W. Tsang. Learning Sparse SVM for Feature Selection
on Very High Dimensional Datasets. In ICML 2010, 2010.

[XW05] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council, 16(3):645–78, May 2005.

64

	1 Introduction
	1.1 Object Recognition Framework
	1.2 Research questions
	1.3 Document setup

	2 Image features
	2.1 Local Features
	2.2 Local feature detectors

	3 Shape based object modeling
	3.1 Part-based object model

	4 Appearance based object modeling

