
 Eindhoven University of Technology

MASTER

Domain transform acceleration for the GPU-based real-time planar near-field acoustic
holography

Oznaya Angeles, M.E.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentthesis/domain-transform-acceleration-for-the-gpubased-realtime-planar-nearfield-acoustic-holography(3fb12af9-ae7e-4826-8c69-315005ebdcbf).html

Domain Transform Acceleration for the GPU-Based

Real-Time Planar Near-Field Acoustic Holography

Master thesis by:

Miguel Emilio Oznaya Angeles

Supervisors:

dr. ir. Rick Scholte
prof. dr. Henk Corporaal
prof. dr. Johan Lukkien

Mentors:

ir. Wouter Ouwens
ir. Gert-Jan van den Braak

Eindhoven University of Technology
Department of Mathematics and Computer Science

Master of Science in Embedded Systems

Presentation date: October 10, 2014
Publishing date: October 27, 2015

Abstract

Planar Near-Field Acoustic Holography (PNAH) is a method to approximate the pressure distribution
on a desired plane in space employing pressure data measured on a parallel plane, separated by a known
distance. When the targeted plane is the surface of an object of interest, the output of the PNAH
provides insight on the dynamical behaviour of said object. These characteristics enable the PNAH to
be employed as a vibration detection technique. Its advantages over other typically employed methods,
such as accelerometer- or laser-based measurements, are low cost and increased spatial resolution and
accuracy.

In the semiconductor industry, an important development driver is the constant need for enhanced
circuit features at a lower cost. One of these developments, within the lithography machines, is based on
the need to increase the wafer size from 300 mm. to 450 mm. in order to decrease the circuit production
costs. One of the e�ects that this would have on the mentioned machines is that additional vibrations
would appear on the wafers’ mounting table. To counteract these vibrations, a proper controller needs
to be implemented. The PNAH technique has been proposed as a vibration detector to provide the
required input for such a controller.

A real-time implementation of the PNAH, running in a GPU platform, has already been presented,
reaching a maximum throughput of 1 kHz. The objective of this project is to build up on such
implementation in order to increase this value and improve it by at least 15%. To achieve this, three
di�erent variations within the PNAH algorithm are proposed and tested. These alternatives concern the
time-frequency domain transform (Fourier Transform), as well as the time domain preprocessing stages;
more speci�cally, they explore the advantages and limitations of employing a naive matrix multiplication
paradigm to compute the domain transform. Additionally, the use of the raw binary measured data is
proposed as an input to the PNAH algorithm to further increase the current throughput by bypassing
the signal preprocessing stages. This raw input is also coupled with the use of the binary Walsh kernel
functions; therefore proposing a di�erent domain transform route (Walsh-Fourier Transform).

The obtained results show that using a matrix multiplication approach does have advantages over the fast
version of this algorithm (FFT); however, they are limited to the amount of output information required
by this procedure. Besides showing that the raw binary input is adequate for the PNAH algorithm,
the expected execution time decreases were reached. Finally, the Walsh-Fourier Transform is shown to
output correct results, but its implementation requires further optimizations for this potentially faster
technique to ful�ll the required real-time constraints.

iii

iv

Acknowledgements

This project represented an important challenge from which I learnt not only about the existence and
inner workings of acoustic holography, but also about how an innovative technology can impact a well
established product design process, provide didactic insight on physical phenomena or even in
uence
artistic applications.

I would like to express my gratitude towards all the Sorama team. Specially, I want to thank Rick
for granting me with this opportunity and for sharing his expertise on the subject, and also Wouter for
being so patient with my beginner questions and for providing me with essential technical guidance along
the way.

I want to thank dr. Corporaal because his constant supervision, advices and support made the project
direction clearer for me. I would also like to thank dr. Lukkien for accepting the invitation to join the
committee and for contributing with insightful mid-term feedback. Additionally, I want to recognize
Gert-Jan’s valuable technical support which helped me gain a better understanding in fundamental
aspects related to the project.

A big ‘thank you’ goes to all my Mexican, Dutch and international friends who were always, personally
or remotely, providing me with a strong support, words of wisdom and happy moments. Without these,
this project would not have been the good experience it was.

Additionally, I want to thank CONACyT for giving me the opportunity of earning a degree in the
Netherlands by providing the means to do so.

Finally, my biggest gratitude is towards my main drive for this project: all of my family. I want to
thank Paty and Carlos for helping me conclude this vital stage. And above all, I want to thank a mi
Madre, al Miguelito, a C�esar y a la Nena (mentioned by order of appearance) for their undescribably
indispensable support throughout this period of time. The entirety of this work is dedicated to you.
Love you, guys.

Miguel Emilio Oznaya Angeles.

Eindhoven, October 2014.

v

vi

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Project Goals . 2

2 Planar Near-Field Acoustic Holography 5
2.1 Acoustic Holography . 5
2.2 PNAH Algorithm description . 9

3 System Description 13
3.1 PNAH Implementation . 13
3.2 Performance Metrics . 16
3.3 Proposed Modi�cations . 18

4 Fourier Transform 23
4.1 Background concepts and de�nition . 24
4.2 Fourier Transform . 25
4.3 Proposed Application . 26

5 Walsh-Fourier Transform 27
5.1 Background concepts and de�nition . 28
5.2 Sequency-to-Frequency Domain Transform . 31
5.3 Proposed application . 33

6 Implementation 37
6.1 OpenCL Kernel - Dot Product Template . 37
6.2 Approach-speci�c Kernel Adaptations . 42

7 Results and Analyses 45
7.1 Metrics Measurement . 46
7.2 Kernel Template . 49
7.3 1D Time-Frequency Domain Transform . 51
7.4 2D Frequency-Kspace Domain Transform . 58
7.5 Entire PNAH Algorithm . 62

8 Closure 65
8.1 Conclusion . 65
8.2 Future Work . 66

9 Appendix A - HW and SW Specs 69

10 Appendix B - Sorama Cam Mapping 71

vii

viii Contents

Chapter one

Introduction

Sound is the pressure variation over time at a point in space. This variation requires a physical
environment (liquid, solid or gas) to be transmitted through space; usually the transmission of this
variation is regarded as a sound wave. This de�nition of sound might require slightly more time to
understand when compared to the initial perception and idea we have of sound. Commonly, sound is
used to transmit a message or information, however, sound can also be an undesired e�ect of certain
process.

In the �rst case, sound is employed to carry out several interactions, the most important of these
being human interaction. Examples of human communication are the use of an established language to
transmit messages. Besides language, which can be thought as a structured protocol employing a �nite
number of sounds, music is also employed to communicate messages and emotions in a more free way
when compared to language. Apart from human communication, sound also allows us to obtain feedback
from the environment in which we are located: receiving information from a device or tool or providing
warnings about a potential hazard, for example. In all these cases, sound is employed as an information
transmission method.

As mentioned above, there are also cases in which sound is a collateral product causing negative e�ects
on the environment. Think of a train braking when arriving to a platform, an airplane turbine or a co�ee
machine in duty. The negative e�ect of the undesired sound produced by these devices is so strong that
they can easily be mentally replayed and associated with a somewhat unpleasant perception. However,
comfort is not the only advantageous e�ect of a silent process. When a device or process emits a sound,
some of its parts or elements move (vibrate) following a certain pattern. This movement causes the
pressure in the medium surrounding the considered system to vary over time, thus emitting sound. In
many cases, this movement is not intended nor taken into account. Therefore, it might interfere with
the proper operation of the system, causing unexpected faults. In this way, either a silent system or a
one emitting a predetermined or known sound is desired, since this could mean that the internal system
vibrations have been taken into account.

Examples of systems where the undesired vibrations need to be controlled and counteracted are the
ones relying on accurate positioning of a tool or another object. In these cases, such vibrations introduce
errors which reduce the overall precision of the system. To minimize these errors, the vibrations have to
be compensated for, typically with the implementation of a control loop. For the scope of this project,
a particular case of such a system is used.

1.1 Problem Description

Within the semiconductor industry, a constant need for cheaper circuits exists. One of the critical steps
in the creation of such a circuit is the lithography stage. Due to the frequent requirement of lowering
costs, the lithography systems need to output more wafers in less time (the term wafer denotes the
circle-shaped stack of layered materials onto which several copies of the circuit pattern are printed). One

1

2 Introduction

of the proposed alternatives to achieve this is to increase the size of the employed wafers, from 300 mm.
to 450 mm. in order to be able to obtain more chips per wafer.

In this way, the rate of output wafers per unit of time is increased, but the e�ects of doing so cannot
remain unnoticed. One of the major consequences of this is that the chuck, which is the moving table on
which the wafer is placed and printed, has to also increase its size and dynamical properties, therefore
causing undesired vibrations. Being lithography the delicate process it is, such vibrations can prove
disastrous for the output; a way of controlling these vibrations is required. Moreover, the controller has
to be fast enough to accurately counteract these movements. This means that the vibration measurement
system has to output results at a similar rate.

Typical methods of measuring the vibrations are placing accelerometers on the surface of interest or
employing laser-based methods. Some of the disadvantages of these methods are the following:

- Accelerometers interfere with the vibration pattern.

- Laser-based methods are very expensive.

- Usually, vibrations are only measured at a small number of points in space, thus, resulting in
aliasing.

- Analog preprocessing is required.

As an alternative to tackle these issues, an acoustic-based vibration method is proposed. Such a method
is already implemented and in use by Sorama. Based in Eindhoven, this company developed the Sorama
Cam, which consists of an array of 1024 small microphones which are able to measure the vibrations,
posing the following advantages over the previously mentioned alternatives:

- Microphones perform a contactless measurement; the vibration pattern su�ers no interference.

- The employed microphones are considerably cheaper.

- Con�gured in an array fashion, the microphones cover an extensive area sampling at 1024 points
in space.

- The output of the microphones is a digital stream; no analog circuitry is required.

The basic idea is to point such camera towards the object of interest and measure the vibrations. Because
of the existing distance between the surface of interest and the location of the sensors, the measured
magnitudes do not represent the behaviour on the object. To obtain this information, Sorama uses
Planar Near-Field Acoustic Holography (PNAH) algorithm to trace the measured vibrations from the
measurement plane (Sound Cam location) to the source (object location). An illustration of such a
process is depicted in Figure 1.1.

Back to the lithography system, a controller needs to have a throughput of at least 1kHz to successfully
correct for the undesired vibrations. This means that Sorama’s proposed method of vibration detection
needs to output information at the same throughput.

1.2 Project Goals

A real-time execution of the PNAH algorithm, achieving a throughput of at least 1kHz was already
implemented by Sorama. However, considering a case when this requirement is raised to at least 2kHz in
the next �ve years, a yearly improvement of at least 15% is needed. Considering that this implementation
is already accelerated via the use of a GPU, some changes in the algorithm need to be proposed to keep
up with the required pace.

In this sense, the main goal of the project to, based on analysis of the current implementation’s execution

1.2. Project Goals 3

Figure 1.1: Vibration measurement employing the Sorama Cam and the PNAH technique.

times, propose and apply modi�cations to the PNAH algorithm that result in iterations being computed
in less time, such that the yearly throughput improvement is met.

The remainder of this document is structured as follows. First, an introduction to the PNAH algorithm
is provided. Then, its implementation in the current system, along with its metrics, issues and proposed
approach to address the main goal are given. After this has been stated, the theory on the proposed
alternatives are provided, followed by the way they are implemented in the system. Subsequently, the
achieved results are presented together with an analysis on the observations. Finally, a conclusion is
given, followed by some suggestions to serve as a future work proposal.

4 Introduction

Chapter two

Planar Near-Field Acoustic Holography

The scope of this chapter is completely dedicated to the theoretical aspects of the Planar Near-Field
Acoustic Holography (PNAH), as well as the steps required to get this technique working along with its
most important considerations and issues to take into account.

In the �rst section, a basic review on Acoustic Holography and its variations is provided. Then the
background concepts related to the Fourier-based Near-Field Acoustic Holography (NAH), the method
employed by Sorama, are de�ned, making an emphasis on the PNAH. In the second section, the PNAH
algorithm is described in a generalized way, abstracting out several implementation details. The objective
of this approach is to explain in a broader way the di�erent domains in which each processing stage takes
place. More details on the actual implementation of the algorithm are provided in the upcoming chapter.

2.1 Acoustic Holography

Acoustic Holography (AH) is a technique to propagate the pressure distribution from one set of initial
points in space to a desired set of �nal points. The locations of all the points within these two sets are
known. Since the pressure in a region changes when an acoustic wave passes through it, the propagation
of sound is used as a mean to achieve these reconstructions; thus, the acoustic quali�er is employed.
Acoustic Holography is employed to either further- or inverse- propagate the sound waves. Through the
forward AH it is possible to obtain the pressure distribution in a required region of space given that the
conditions of an emitting source are known; in other words, the sound which is being propagated out
of the source is reconstructed for a desired location. On the other hand, the inverse AH considers the
case when the conditions in the source are unknown but the pressure �eld can be measured a certain
distance away from it. Therefore, the pressure distribution at the source is computed based on the sound
recorded at a known location. Despite the di�erence between the propagation directions, inverse and
forward AH are ruled by the same equations.

For the interest of this project, which matches that of Sorama, only the inverse propagation is considered.
The reason for this is that typically the objects under analysis exhibit a complex mechanical behaviour;
thus, having a complete description of the pressure distribution within them is not achievable. A way
to approximate such distribution is to measure the sound they emit and propagate it backwards to the
source. Taking this into consideration, all the following references to AH only regard the Inverse Acoustic
Holography.

2.1.1 Classi�cation

Inverse Acoustic Holography (AH) backpropagates the pressure distribution employing di�erent ways of
representing this �eld. Following this criterion, there are two ways by which AH is computed: Space-based
AH and Fourier-based AH. The space-based methods employ a spatial frequency representation of the
pressure �eld, and by means of spatial convolutions the inverse propagation is achieved. On the other

5

6 Planar Near-Field Acoustic Holography

hand, Fourier-based methods transform this spatial representation of the pressure �eld to the K-space
domain, where a simple amplitude and phase shift is applied to achieve the same result (more information
on the K-space domain is found in the next subsection). Due to the complexity and computationally
intensity of the spatial convolutions, the Fourier-based methods are considered.

The Near-�eld classi�cation criterion makes use of the concepts of propagating waves and evanescent
waves, thus, a brief description of these is given �rst. The propagating waves are the ones propagating to
the far-�eld, which means that their amplitude shows a no decay over distance. The evanescent waves,
on the other hand and as their name suggest, are the ones whose amplitude decays exponentially as the
wave propagates. After certain distance has been traveled, they are no longer distinguishable from noise.
This is caused by adjacent regions in the object’s surface having positive and negative velocity: they tend
to cancel each other as they push against the
uid (air, in this case), failing to irradiate energy to the
far-�eld. This condition, which gives rise to the creation of these waves, is also known as hydrodynamic
short circuit [1]. Evanescent waves are therefore only found in the near-�eld.

Near-�eld AH (NAH) and Far-�eld AH (FAH) are AH techniques which base their calculations in the
information measured in the mentioned �elds. Both of them use data corresponding to the propagating
waves, as these waves are found in both the near- and far-�elds. However, the evanescent waves are only
measurable in the near-�eld. In this sense, NAH achieves a much more detailed pressure distribution
reconstruction that the one that could be obtained by beamforming (a FAH method), for example.
Because a reconstruction as detailed as possible is required, the NAH method is considered from this
point on.

2.1.2 Near-Field Acoustic Holography

Plane Wave Properties

Since the NAH algorithm is based on the analysis of plane waves, some of their basic properties are
introduced �rst. Assume a planar wave, on an xy plane, propagating in a direction with an angle �. Its
wavelength, denoted as �, projects a trace wavelength in both the x axis (�x) and the y axis (�y). The
relationships between � and its traces are:

� = �x � sin�; (2.1)

and:

� = �y � cos�: (2.2)

Figure 2.1a illustrates an example of such situation, where the � projections (�x and �y) are depicted in
thick lines on the y = 0 and x = 0 planes respectively. By looking at these projections and at Equations
2.1 and 2.2, it becomes evident that in general, the projections �x and �y can be larger than � itself.

A planar wave’s spatial frequency components, or wavenumber components, is expressed in terms of its
wavelength’s traces through the following expressions:

kx =
2�
�x
; (2.3)

and:

ky =
2�
�y
: (2.4)

These magnitudes, which are expressed in [radm], are interpreted as the distance over which the phase
of the wave increases by 2� when time is stopped [1]. Additionally, for a planar wave, the kx and ky
components are used to compute the acoustic wavenumber:

k =
q
k2
x + k2

y: (2.5)

2.1. Acoustic Holography 7

0

5

10

0246810
� 1

0

1

x [m]
y [m]

[Pa]

(a) Spatial frequency domain

(kx ; ky)

K x [rad
m]

K y [rad
m]

(b) K-space domain and the radiation circle.

Figure 2.1: The same plane wave is represented in both the Spatial-Frequency and K-Space domains.

An example on the K-space magnitudes described in the last three equations is depicted in Figure 2.1b.
The radiation circle’s radius equals k, and the point, with coordinates (kx; ky) represents the exempli�ed
planar wave. The waves lying within or on the radiation circle are propagating waves, whereas the ones
outside of it are evanescent waves.

Theory

The theoretical foundations for the Fourier-based NAH were laid down in [1]. One of the most important
assumptions made by NAH, which also adds the planar constraint for it (PNAH), is that a half source-free
space is required. This means that the sources should be located in any xy plane which ful�lls zs � 0,
and that all planes z > 0 are source free (z; zs j z 2 R+V zs 2 R�0).

The acoustic wave equation is employed to model any in�nitesimal pressure change relative to its
equilibrium value:

r2p(x; y; z; t) =
1
c2 �

�2p(x; y; z; t)
�t2

; (2.6)

where:

- p(x; y; z; t) is the pressure value at a point in space (with cartesian coordinates x; y; z) at a given
time t

- r2 is the Laplacian operator de�ned as: r2 � �2

�x2 + �2

�y2 + �2

�z2

- c is phase velocity of the wave. For sound this constant is c0 � 343ms in air at 20�C.

A physical interpretation of this equation, as provided in [2], is found in Figure 2.2. Considering pressure
variations in a single spatial dimension, it is seen in this graphic that the sound pressure distribution
can be analyzed either on time, provided a �xed position, or along the considered spatial dimension,
provided a �xed time instant.

Sound linearity can be exploited to study its behaviour in the frequency domain. This imposes another
important assumption on PNAH; namely, the sound sources should be stationary (i.e. producing a
constant sound over time). To analyze the sound in this domain, Equation 2.6 needs to be expressed in
terms of frequency. By applying the Fourier transform to it, the Helmholtz equation is derived:

r2p(x; y; z; !) + k2 � p(x; y; z; !) = 0; (2.7)

where:

- p(x; y; z; !) is the pressure value at a point in space for a certain angular frequency ! = 2�f , where
f is the sound wave frequency in Hz. In other words, this is the Fourier transform of p(x; y; z; t).

8 Planar Near-Field Acoustic Holography

Space (m)
Time (s)

Pressure
�

N
m 2

�

Figure 2.2: Spatial-temporal interpretation of the Wave Equation.

- k = !
c0

is the acoustic wavenumber expressed in terms of the frequency.

A plane wave, described in terms of its spatial frequency p, which could solve Equation 2.7 is:

p(x; y; z; !) = A(!) � ej(kxx+kyy+kzz); (2.8)

where:

- A(!) is a frequency-dependent constant

- kx; ky and kz are the wavenumber’s components in each direction.

Equation 2.8 requires the following expression to be true:

k2 = k2
x + k2

y + k2
z : (2.9)

The sensor spatial distribution provides the values of the kx and ky components, and k is obtained
from the wavelength, which is derived from the frequency. In this sense kz is chosen as the independent
variable in Equation 2.9. Moreover, because of the source-free half-space assumption stated earlier, only
the positive solutions for this variable are to be considered. Thus, the following expression is used, which
in turn yields three di�erent cases:

kz =
q
k2 � k2

x � k2
y; (2.10)

where:

a) k2 > k2
x + k2

y () Propagating wave

b) k2 = k2
x + k2

y () Wave travelling perpendicular to the plane (z direction)

c) k2 < k2
x + k2

y () Evanescent wave

In K-domain (reached after performing a second, 2D Fourier transform), the magnitude of k equals the
radius of the radiation circle, which represents the region that marks the following di�erentiation criteria
for the wavenumbers corresponding to the previous three cases:

a) Propagating waves lay within the radiation circle.

b) Perpendicular waves are exactly on the circle itself.

c) Evanescent waves lay outside the radiation circle.

2.2. PNAH Algorithm description 9

Once the K-domain representation of the measured plane wave is obtained (via the spatial Fourier
transform), it is backpropagated from the measurement plane (zh > 0) to the source (z = 0) in this
domain. The relation between these two planes is:

~p(kx; ky; 0; !) = ~p(kx; ky; zh; !) � e�jkzzh ; (2.11)

where ~p(kx; ky; 0; !) is the K-domain representation of p(x; y; 0; !). An inverse spatial Fourier transform
applied on ~p yields the spatial frequency representation of the pressure distribution at the source plane
z = 0.

2.2 PNAH Algorithm description

The algorithm to backpropagate the pressure distribution from the measured plane to the actual source
begins with the data acquisition of the pressure variation at Nch linearly spaced known points located in a
single plane (where Nch jNch 2 N+ is the number of sensors collecting information). Such a linear spacing
is required to properly compute the kx and ky components previously described. Since the measured
pressure varies over time, and because the sensor location is known, these samples are considered to be
in the spatial-time domain. As previously mentioned, a stationarity condition on the source is imposed
with Equation 2.6, which might not be the case in several scenarios. For the algorithm to be able to cope
with non-stationary sources, as proposed in [3], a stationarity assumption is made during all of the small
time intervals serving as an input for the algorithm. Along this line, each of the Nch sensors provides a
number N jN 2 N+ of input samples. These N samples are transformed from time- to frequency-domain.

Directly processing the N considered samples would be equivalent to employing a rectangular window
in time domain, which has undesired e�ects in the frequency domain, such as spectral leakage. For this
reason, weighting this input vector by a window function is required to shape the time domain signal [4].
Despite of altering the input time signals by applying a window on them, the corresponding frequency
domain representation is not negatively a�ected because under the steady-state assumption on the input,
the least-a�ected windowed samples still have enough information to yield an accurate representation of
their relevant frequency components. Figure 2.3 illustrates the �rst stages of the PNAH algorithm.

Figure 2.3: Spatial-time domain processing. The sensors collect pressure data at the measurement
plane. This data is �ltered.

Consider a single dataset consisting of N samples. Usually, after a domain transform is applied to these
values, an equal number of frequency bins is obtained. However, not all of them are of interest for the
user. In the case of the PNAH algorithm, typically only the pressure distribution related to a certain
subset of frequencies is required to gain more insight on the behaviour of the analyzed system. Under this
assumption, a subset of n frequencies is selected, where n j n 2 N+, and usually n� N . The frequency
components corresponding to each of these n bins are further processed, whereas the rest of them are
discarded. Back to the time-to-frequency domain transform, this operation is applied to all of the Nch

10 Planar Near-Field Acoustic Holography

sets, each consisting of N samples. Because the spatial location of each sensor is known, the results of this
transform are said to be in the spatial frequency domain. At this point, the spatial information of each
sensor is assembled together. Every value out of the selected n frequency bins within the selected subset
gets grouped together with the same bins corresponding to the rest of the spatially distributed sensors.
As a result, a hologram consisting of Nch points is created. Such hologram is a pressure distribution
representation at a given frequency, and covers a determined region of space depending on the exact
positions of the sensors on a plane. A total of n holograms, corresponding to the n frequency bins, are
formed.

Once these holograms are created, they need to be taken to the K-domain, thus requiring another domain
transform. To achieve this, an important preprocessing is required prior to each of the transformation
of the n holograms. In the spatial-frequency domain, the �nite physical region covered by the sensors
is interpreted as a spatial truncation window [5]. Analogous to the previous domain transform, directly
processing this spatially truncated window (hologram) would have negative e�ects on the K-domain
representation (e.g. spectral leakage). Applying a non-rectangular window to the hologram aims at
reducing the resulting discontinuities at the edges of the sampled region. Such discontinuities appear as
an e�ect of the periodicity assumptions made by the Fourier transform algorithm and are erroneously
interpreted as high wavenumbers in the K-space domain. An important di�erence between the time
domain windowing and spatial domain windowing is the steady-state assumption. As mentioned in
previous paragraphs, this assumption makes the spatial frequency domain representation resilient to the
information loss incurred by the time domain windowing process. On the other hand, this assumption is
not valid for the K-domain transform because the pressure distribution in the spatial-frequency domain
is expected to vary depending on each sampled location. In other words, this distribution can follow any
pattern along the �nite measured region, and since no assumptions are made on the periodicity of this
distribution, no information loss can be tolerated; every location contains valuable information. Since
spatial frequency domain windowing slowly attenuates the measured values down to zero (at the edges),
an extra step has to take place in order to avoid information loss due to windowing.

To keep an intact measured region after spatial windowing, the hologram needs to be extrapolated;
the resulting hologram is interpreted as a measurement carried out in a larger region of space. In this
way, the extrapolated information is weighted by the corresponding window coe�cients, achieving two
goals. First, the new holograms’ values at the edges are zero and smoothly increase up to the original
values corresponding to the measured region. This removes discontinuities and reduce spectral leakage in
K-domain. Secondly, the information contained in the originally measured region remains intact, thus,
an accurate K-domain representation of the wavenumbers contained in such a region is obtained. Once
the hologram is extrapolated and windowed, the K-domain transform takes place. Figure 2.4 illustrates
a general idea of the preprocessing done in the spatial frequency domain.

Figure 2.4: Spatial-frequency domain processing. From the resulting frequency spectra, n frequency
bins are selected, from which n holograms are created. These holograms are then extrapolated and

windowed.

2.2. PNAH Algorithm description 11

Figure 2.5: K-domain processing. After the domain transform, the high wavenumbers are �ltered to
avoid noise blow-up. Then, the information is backpropagated to the source plane.

The K-domain representation enables the measured pressure distribution to be easily backpropagated to
the source plane by means of a phase shift and an amplitude factor correction. In the case of propagating
waves (whose wavenumbers are located within the radiation circle in the K-domain representation), this
factor is equal to one, thus, the amplitude is kept the same and only a phase shift is applied. In the
case of evanescent waves, this factor is an exponential function depending on how further away from
the radiation circle the evanescent waves are. Due to this exponential factor, measured noise whose
K-domain representation also lies outside this circle is exponentially ampli�ed. This potential noise
blow-up represents an important problem, also extensively covered in [5]. To tackle this issue, a �ltering
stage is required prior to backpropagation; this �lter should leave the propagating waves intact, while
being able to discern between the evanescent waves and the measured noise. Achieving this, however,
is very complicated; typically, such a �lter represents a tradeo� between reconstruction detail and noise
blowup. The right settings in this stage are very important for a correct interpretation of the results,
and they usually depend on the system being analyzed and the measurement conditions. After the �lter
is applied, the phase shift and corresponding amplitude correction is performed. The result of this, is the
K-domain representation of the pressure distribution at the source plane. These last stages are depicted
in Figure 2.5.

Finally, to display the results in an understandable way, this K-domain representation needs to be
transformed back to the spatial frequency domain. Therefore, a �nal, inverse domain transform is
executed. The result is a hologram depicting the pressure distribution at the source. Because of the
extrapolation done earlier in the algorithm, this hologram can also be thought of as covering a larger
area than that of the actually measured. Thus, only the relevant area needs to be taken into account.
Figure 2.6 contains a depiction of the last stage of the PNAH algorithm.

This chapter concludes after providing a brief description of both the PNAH theory and algorithm. The
following chapter provides the implementation details that were abstracted out in this introduction, as
well as the current performance metrics and proposed approaches to achieve the established goals.

12 Planar Near-Field Acoustic Holography

Figure 2.6: An inverse domain transform results in the n backpropagated holograms being represented
in the spatial-frequency domain. In this domain, the holograms, which describe the pressure

distribution at the source plane, are easier to interpret.

Chapter three

System Description

The objective of this chapter is to describe the current real-time implementation of the PNAH algorithm
in terms of its inner functionality and achieved performance. Based on the measured performance, the
taken approaches to address these issues are presented.

The remaining of this chapter is organized as follows: �rst, the implementation of each of the steps
mentioned in the previous chapter, with additional details, is described. Then, the execution times of
this algorithm is analyzed. Finally, based on these, the proposed approaches to reduce the execution
times are given.

3.1 PNAH Implementation

The current implementation of the real-time PNAH algorithm is presented in this section. The set of
steps comprising this algorithm is referred to as the nominal implementation [6] in the remainder of this
document.

The execution of this algorithm begins with the data acquisition. The pressure variation is measured
through its propagation by acoustic waves; thus, the sound in the zh plane is measured employing a total
of Nch microphones. The hardware employed to do this task is the Sorama Cam, which is a microphone
array consisting of Nch = 1024 MEMS microphones arranged in a 32 � 32 grid. Each of these 1024
microphones is separated from its neighbours, in both X and Y directions, by two centimeters. The
surface covered by the array is enough to span the target scanning area of the considered litography
system; in this sense, this number of sensors is required. A picture of the Sorama Cam can be seen
in Figure 3.1. Each of the microphones includes a �� analog-to-digital converter, meaning the the
microphones’ output is in the digital domain (more details on the �� converters follow in the subsequent
section). Every sensor outputs a binary stream, where each bit corresponds to a measured sample. The
microphones’ sampling frequency, and, in consequence, the bitstream frequency, equals to Fs = 1:5 MHz.

The samples from all Nch = 1024 channels are fed to an FPGA (whose characteristics are found in
Appendix A), which applies a decimation �lter on the samples for each channel. The objective of
this �ltering stage is to reduce the input sampling rate, to increase the accuracy of a single sample
and to low-pass �lter the input. This low-pass �ltering is required because the �� AD converter has
a noise-shaping property which pushes the quantization noise (error between the quantized and real
magnitudes) to the high-frequency regions of the spectrogram [7]. The decimation �lter consists of
two di�erent stages: a cascaded integrator-comb (CIC) �lter followed by a compensation �lter. The
CIC �lters, initially introduced in [8], belongs to the family of moving-average �lters and quickly
became popular because of its economic multiplier-less structure which enabled processing at a very
high input rate. The advantages of this structure do not come without tradeo�s. CIC �lters have two
considerable issues: a non-
at frequency response and frequency aliasing. The non-
at frequency response
is caused because CIC �lters essentially apply a rectangular window in time domain, which causes a sinc
function-like frequency response. On the other hand, aliasing is an e�ect of downsampling. To tackle

13

14 System Description

Figure 3.1: Sorama Cam - 32� 32 microphone array.

these two problems, the compensation �lter, which is actually an FIR �lter,
attens (compensates)
the frequency response and �lters out any introduced aliased spectra. Since the decimation factor is
D = 32, the output of the FPGA is a total of Nch streams of 32-bit samples with a frequency of
fs = 1:5

32 MHz = 46:875 kHz.

From this point on, the rest of the algorithm is executed in a GPU platform (whose characteristics can
be found in Appendix A). Each of the following stages is implemented via an OpenCL kernel. OpenCL
is a framework, developed by the Khronos Group, which is compatible with di�erent hardware platforms
and allows the execution of routines where parallelism is explicitly included by the programmer [9]. On
the other hand, a kernel is a piece of code following the OpenCL speci�cation that executes in parallel
within the speci�ed hardware platform. An OpenCL kernel can be thought of as the set of computations
that are applied to a single element within a set.

Resuming the algorithm description: for each of the Nch = 1024 microphones, a total of N = 1024
samples are selected to be processed by the next stages. Considering the sampling frequency fs, N = 1024
samples cover a time interval of approximately 0:022 s. The reason why N has this value is justi�ed by
three di�erent reasons:

- As shown in [3], N = 1024 represents a time interval small enough in which the assumption of
a stationary source can be considered valid. With this number, PNAH provides accurate results
when analyzing transient phenomena.

- The achieved frequency resolution (the whole spectrum divided in a total of N frequency bins) is
small enough to contain the spectral leakage e�ects under accepted levels.

- The FFT (upcoming step) executes faster and more e�ciently when datasets whose size equals a
power of two are considered.

Spectral leakage is a problem which arises after a domain transform mainly due to two di�erent situations:

- The periodicity assumption by the domain transform algorithm causes that, for example, if the
�rst sample of the set has a di�erent value than that of the last one, an inexistant high frequency
component is introduced, which steals energy from the remaining frequency bins.

- If the number of available frequency bins is too small, the energy corresponding to frequency
components which are not properly represented might leak to neighboring frequency bins.

To address this issue, an FIR �lter applied through a Hann window is employed to slowly attenuate
the edges down to zero. Since both the window and its derivative are continuous, it shows a desirable
behaviour on frequency: a faster mainlobe fallo� and decreased sidelobe level [10]. Once this window is
applied, the �ltered time-domain data gets processed by the FFT algorithm to be transformed to the
spatial frequency domain.

3.1. PNAH Implementation 15

(a) Measured input hologram at z = zh . (b) Backpropagated output hologram at z = zs = 0.

Figure 3.2: Normalized pressure distribution holograms of a tuning fork (A4; 440 Hz).

The domain transform is implemented through the clFFT, which is a software library written with
the OpenCL speci�cation that executes the FFT algorithm. This library, which was recently made
open-source, exploits OpenCL’s explicit parallelism capabilities to e�ciently execute the FFT in hardware
platforms containing several processing elements such as GPUs [11].

As only a certain subset of n frequencies is selected, for each of the Nch channels, the desired n frequency
bins are put together with the same bins from the remaining channels to form the hologram representing
the pressure distribution for a given frequency. Figure 3.2a illustrates an example of a hologram taken
at the measurement plane zh. A total of n of these holograms are selected; the rest of the information
outputted by the Fourier transform is discarded.
As described in the previous chapter, these holograms require to be extrapolated and windowed prior
to being transformed to the K-domain. To address the extrapolation stage, a method presented in [5]
and denoted as Linear Predictive Border Padding (LPBP) was initially used to compute signal values
outside of the known area based on the measured data. This method �rst extrapolates the data in one
direction (processing either rows or columns), and then the other direction is calculated. To increase
the achievable parallelization in a GPU device, a Planar LPBP (PLPBP) was proposed in [6]. PLPBP
computes the extrapolated values in both directions (X and Y) in a single calculation; thus, the columns
do not depend on the values of the rows, or viceversa. Even though PLPBP has increased complexity, it
achieves a better e�ciency, for a limited subset of holograms, in parallel platforms such as the considered
GPU. Once the n holograms have been extrapolated, a 2D Tukey window is applied on them such that
the originally measured data remains intact, whereas the added samples slowly attenuate to zero. As a
consequence, spectral leakage induced by edge discontinuities is avoided.

After these two preprocessing stages, the 2D FFT algorithm, also implemented with the clFFT library,
is applied to the n resulting holograms. The result of this process is a wavenumber representation of
all the propagating and evanescent waves and noise measured. The reason that the backpropagation
cannot be directly performed is that noise whose wavenumbers lie outside the radiation circle would be
exponentially ampli�ed. For this reason, a low-pass �lter must be applied; such �lter must keep data
within the radiation circle una�ected, and set a selection criteria for wavenumbers outside this region.
This �lter is determined via a Cut-O� and Slope iteration �lter (COS), as proposed in [5], previous to
the beginning of the PNAH algorithm execution in the GPU. Once it is derived, it is used to essentially
window the K-domain representation for each iteration. The correct selection of this �lter’s parameters
is crucial, since this represents a trade-o� between reconstruction accuracy and ampli�ed noise.

Once this �lter is applied on all n holograms, the backpropagation is done via Equation 2.11. In this
expression it is observed that a real kz (propagating wave) causes a phase shift, whereas a complex kz
(evanescent wave) results in an exponential increase in their amplitude.

16 System Description

Figure 3.3: PNAH Stages executed per iteration.

After backpropagating the n holograms, a 2D inverse FFT (clFFT) is executed to obtain the spatial
frequency representation of the pressure distribution in the plane of interest (usually z = 0). Because
the holograms’ dimensions were previously increased by the extrapolation process, the original measured
region has to be cropped out of the n inverse FFT outputs. These holograms represent the output of
the real-time PNAH algorithm. An example of such a backpropagated result is observed in Figure 3.2b.
If the output resolution requires to be improved for interpretability, an additional zero-padding stage
takes place previous to the 2D inverse FFT. This process simply consists of adding zeroes around the
K-domain hologram, thus increasing the coarse resolution imposed by the relatively large space between
the linearly spaced sensors.

To conclude this section, a summary of the stages comprising the real-time PNAH algorithm is found in
Figure 3.3, where as the mapping of these to the hardware is depicted in Figure 3.4.

3.2 Performance Metrics

As previously mentioned, a GPU-based implementation of the real-time PNAH is presented in [6], where
the goal is to implement a system that achieves a throughput of at least 1kHz. The cited source states
that this goal is achieved when a total of n � 10 desired holograms are computed. In this sense, the
execution times for the whole PNAH algorithm are shown in Figure 3.5a for a di�erent number of n
required holograms. Additionally, to get a better understanding of the execution times of each stage of
the algorithm in terms of the total time, a relative plot containing this information is seen in Figure 3.5b.

By observing Figure 3.5b, it becomes clear that the hologram extrapolation (through PLPBP) is the
routine which takes most of the time per iteration (around 63% of it); an important part of the work
in [6] was dedicated to reduce this percentage. Besides PLPBP, the three domain transforms, specially
the �rst 1D FFT, as well as the time domain �ltering are the ones standing next in line as the stages
which consume the most time. In the depicted cases, the 1D time-frequency FFT consumes between

3.2. Performance Metrics 17

Figure 3.4: PNAH execution in hardware (Nominal Implementation).

(a) Absolute execution time. (b) Per-stage relative execution time.

Figure 3.5: Execution time of a single iteration of the current PNAH implementation for a di�erent
number of holograms.

18 System Description

17% and 10% of the execution time, whereas the addition of both forward and inverse 2D FFTs consume
between 11% and 16% of the time. Both the latter transforms, appearing at approximately the same
points in the referred �gure, exhibit a tendency to increase proportional to the number n of output
holograms; the 2D transforms might pose a larger bottleneck than the 1D transforms in the future, that
is, when more than 10 holograms are considered. For the time being, the time-to-frequency transform
is, time-wise, more relevant since it takes more time than either the forward or backward 2D FFT.

3.3 Proposed Modi�cations

As mentioned above, important optimizations on the complex 2D extrapolation process were reported
in [6]; thus, the proposed approach in this work is to address the other stages which, besides PLPBP,
consume most of the time. Since the �rst domain transform, along with the processing required previous
to it, consume a considerable amount of time, they are addressed together. In this sense, there are three
proposed modi�cations to some stages of the PNAH algorithm in order to achieve the project goals.
These approaches are discussed in the following paragraphs, but before describing them, it is worth
mentioning that they are classi�ed in two categories, depending on the format of the input data required
by each. Therefore, they are regarded as Decimated-and-Filtered Input or Raw-Bitstream Input data
approaches. Each of the three approaches is implemented employing the OpenCL framework in the GPU
platform.

3.3.1 Decimated-and-Filtered Input

The approach falling within this category su�ers does not alter the current data
ow. The microphone
data input follows the same path as the current implementation (decimation �lter in the FPGA + time
domain windowing within the GPU). However, the stage which is modi�ed is the 1D domain transform:
instead of employing the FFT algorithm, the DFT approach is employed.

n Dot Products

The Discrete Fourier Transform (DFT) is a method to compute the Fourier coe�cients of an input
signal; because of this, its output is exactly the same as that of the FFT. Their main di�erence is that
the complexity of the DFT is O(N2), where as the FFT’s is O(N � logN), where N is the number of input
samples. This is caused by the way each method computes the results. DFT is essentially a matrix-vector
multiplication. In this context, the Fourier transform matrix, denoted as WF and with a size of N �N ,
consists of N rows containing N twiddle factors. The twiddle factors are complex numbers representing
single samples of the complex sinusoids. Vector X has a size of N � 1 and contains the input samples.
The product of the Fourier matrix and the input vector takes N2 multiplications and N �(N�1) additions.

On the other hand, the FFT is a divide-and-conquer based approach in which the data gets reordered and
grouped in butter
y patterns such that the staged-multiplication in every regrouping phase saves several
operations (both multiplications and additions) [12]. This causes its complexity to be considerably low
when compared to the DFT, which in turn also popularized it. More information on the FFT algorithm
follows.

Up to a su�ciently small number of desired frequencies (nx), computing these through a modi�ed
DFT method, named as n dot products, should need less time than executing the FFT algorithm. This
number is approximated by looking at the estimated number of operations incurred by each algorithm.
The n dot products approach requires around n �N operations, whereas the FFT algorithm executes a
quantity of operations proportional to N � log2N . Therefore, this approach should be bene�cial when the
following constraint holds:

n �N < N � log2N; (3.1)

and nx is found when the following holds:

nx = log2N: (3.2)

3.3. Proposed Modi�cations 19

Figure 3.6: Modi�cations for the n Dot Products approach. Note that the output of the DFT block is a
set of only n frequency bins per channel, instead of all the N frequency bins from the nominal approach.

Only the needed n (where n � nx) results are computed. There are two important aspects to consider
when employing this approach. First, the e�ciency of computing the n dot products is considerably
low taking into account that only n frequency bins are calculated (n � N). However, for the scope
of this project, the execution time is more relevant than the computational e�ciency, and since high
computational e�ciency does not necessarily mean low execution time, this approach is valid. Additionally,
the n dot products approach requires less memory at the output when compared with the FFT. Second,
this approach is only applicable when the expression n � nx is true. It is important to �nd the value of
nx because, if n > nx, then it is faster to execute the FFT algorithm instead and discard the unneeded
results.

As a conclusion, the n dot products approach is expected to have a positive impact on the PNAH
execution times as long as the condition n � nx is true, and the smaller the value of n, the better.
Figure 3.6 depicts the modi�cations for this approach.

3.3.2 Raw-Bitstream Input

Since the last two approaches rely on digital signal processing (DSP) being performed on binary streams,
initially, some aspects related with this topic are given.

Historically, one of the main factors which popularized DSP techniques applied on bitstreams was the
use of the Direct Stream Digital (DSD) method employed by Sony and Philips to reconstruct audio
signals from digital streams of data. The objective of this approach was to move away from the standard
CD-format (16-bit resolution and sampling frequency fs = 44:1kHz). The reason to do this was that
the analog circuitry to do the proper �ltering was to slow and expensive [13]. In general, since digital
circuitry has become cheaper and faster than its analog counterpart, there has been a tendency to push
the digital domain closer to the system front-end, which was typically an analog circuitry domain.

As mentioned earlier in this document, the output of the MEMS microhpones comprising the Sorama
Cam is a digitally-encoded stream representing the measured sound. These devices oversample their
input to economically avoid signal distortion caused by aliasing and to enable resolution increasing on a
later decimation stage. Avoiding aliasing is achieved because sampling at frequencies higher than that
of Nyquist’s widens the transition band of the subsequent �lter. On the other hand, increased resolution

20 System Description

is obtained by decimation, which can be thought of as a basic form of averaging: the number of binary
1’s in a signal is proportional to its value in a certain period of time [14]. Table 3.1 contains an example
where this concept is illustrated.

16 1-bit values Decimation Average

1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 16:1 7
16

Table 3.1: Signal averaging based on the decimation process.

A similar bitstream is the output of the �� analog-to-digital conversion process, although it is worth
mentioning that binary 0’s represent a sampled amplitude of �1, and binary 1’s represent measured
amplitudes of +1. The �� converter is based on �-modulation. This modulation quantizes the signal
change instead of encoding the absolute value at each sample: the system tries to predict whether
the next sample’s value will be larger of smaller. The output of this modulation is a binary stream,
where a +1 means that the sample increased its value with respect to the previous one, whereas a
�1 concerns the contrary case. The problem with this modulation is that in case of rapidly-rising or
-falling (high frequent) signals, the output shows a slow response since it cannot catch up with the signal
value: �-modulation shows slope overloading. To correct for this issue, an integrator (represented by
�) is placed before the modulator to smoothen the modulator; therefore, the �� convention. The main
di�erence between these, is that ��-modulation encodes the integral of the signal, making its behaviour
frequency-independent [14]. Additionally, its internal structure shapes the quantization noise, sending
most of it to the high-frequency bands, which are anyway �ltered out.

Figure 3.7: ��-modulator input (blue) and output (red).

Figure 3.7 depicts an example of the output of a ��-modulator when a sinusoidal wave serves as its
input. The noise shaping e�ect is observed mainly in the areas where the input approximates a value of
zero. Here, the output switches quickly between the �1 and +1 full scales, therefore introducing high
frequency components. This behaviour is attenuated as the input approaches its either crest or valley.
Despite these introduced high frequencies, the underlying low-frequencies are easily appreciated.

From the previous paragraphs, an important aspect needs to be summarized in order to justify the
remaining two proposed approaches for this project. Namely, as exempli�ed in Table 3.1 and illustrated
in Figure 3.7, the average of the output for a certain period of time is proportional to the input value
within the same interval.

3.3. Proposed Modi�cations 21

Figure 3.8: Modi�cations for the Basic Averaging approach.

Basic Averaging

The raw bitstream input can be decimated in a very basic way just by de�ning groups consisting of a
number D of bit samples and averaging over these periods. The average can be carried out by counting
the number of binary 1’s and dividing the result by D, as exempli�ed in Table 3.1. The bene�ts of this
approach are expected to have less impact than the other two proposed because only the decimation
�lter would be bypassed. However, along with the next approach, it is bene�cial in terms of system
integration since the whole data
ow would take place only in the GPU platform. Figure 3.8 depicts the
modi�cations for this approach.

Walsh-Fourier Transform

Because the average, over a given time interval, of the ��-modulator’s output is proportional to the
input signal’s value, and taking into account that averaging is a basic form of low-pass �ltering, applying a
domain transform on the modulator’s output itself would be similar to transforming an un�ltered dataset.
Despite of high frequency noise being added, the frequency range of interest (typically [0; 10k] Hz) remains
well below the beginning of the region where quantization noise is pushed to as a consequence of the
��-modulator’s noise shaping property. Having in mind that the currently implemented decimation ratio
is D = 32 and the number of 32-bit samples is N = 1024, a domain transform on Nb = D�N = 32768 1-bit
samples should be performed in order to cover the same time interval. The objective of this approach is
to reduce the PNAH execution time as a consequence of:

- Bypassing the decimation �lter and time-domain windowing

- Computations applied directly on binary values

- Computing only the n desired frequency bins

Initially, the increased number of binary samples to process would have a negative impact on the Fourier
transform regarding execution time. This e�ect is caused because both the number of multiplications

22 System Description

Figure 3.9: Modi�cations for the Walsh-Fourier Transform approach.

and memory requirements are increased by a factor of D. As for the operations, each of the Nb samples
need to be multiplied by its corresponding twiddle factor. On the other hand, the required memory is
increased since the product of multiplying each of the binary �1 or +1 values by the twiddle factors
needs to be represented with a precision higher than 1 bit (usually 32 bits). The execution time of the
1D FFT stage was measured in a small experiment, where this algorithm was applied on Nch = 1024
sets of Nb = 32768 samples and took approximately 9:6ms, roughly 108 times as much time as compared
to the nominal implementation.

An alternative to solve the increased time issue is to compute some of the Fourier coe�cients (the
n required coe�cients) via the Walsh transform. More details on this transform follow in subsequent
chapters; for now it should su�ce to mention that, due to the nature of the Walsh functions, this
transform is well suited to operate on binary streams. Figure 3.9 depicts the modi�cations for this
approach.

Having described the current system implementation and the proposed solutions to achieve the project
goals, this chapter concludes. Since the �rst two proposed approaches employ the Fourier transform, the
next chapter is dedicated to this transform. After it, the upcoming chapter provides more information
on the Fourier coe�cients via the Walsh transform (namely, the Walsh-Fourier transform).

Chapter four

Fourier Transform

The PNAH algorithm is referred to as a Fourier-based method because the pressure �eld backpropagation
is carried out in the K-space domain, which is reached via a Fourier transform. One of the most important
reasons to do it this way is because backpropagation in K-space is done with a multiplication, whereas
in the spatial frequency domain, a convolution is required. The latter operation requires a considerable
number of operations, making it an unviable solution. Since the inverse propagated information is not
directly interpretable in the K-domain, it still has to be transformed back to the spatial frequency domain.
Therefore, both forward and backward Fourier transforms are required. Additionally, a third Fourier
transform, which actually comes �rst in the data
ow, is required to bring the measured time-dependent
pressure distribution to the frequency domain.

It is reasonable to state that the PNAH algorithm heavily relies on the Fourier transform. An important
reason for this is that the Fourier domain provides a direct physical interpretation: after the transform,
the input data is expressed in terms of basic sinusoidal waves, which provide both amplitude and phase
information of the input’s projection onto the kernel functions.

This direct interpretation has also boosted the development of optimizations to e�ciently compute the
result of a discretized Fourier transform. For example, take the FFT algorithm, the most popular method
to compute these results. This algorithm has been subject to a lot of research and optimizations regarding
its inner data orderings and permutations. Furthermore, several platform-speci�c enhancements have
taken place such that, when mapped to said hardware architectures, the FFT yields its results in less time
and/or requiring less memory space when compared to other base implementation. As expected, most
of these speci�c optimizations are based on assumptions regarding the computer’s memory management
and native instruction sets.

Since the amount of time and e�ort along the years spent on the enhancement of the FFT has been
too high, it is di�cult to expect considerable gains on execution time by modifying or implementing an
own version of this algorithm; this might even be counterproductive. Additionally, computing only a
subset n of desired frequencies through the FFT algorithm is in principle not an option due to the FFT’s
internal function. As a workaround for this issue, FFT pruning can be proposed, but its e�ects become
considerable only when a large number N of samples is considered [15]. This number is larger than the
currently employed one.

An alternative to this issue is proposed in this chapter, but �rst an introduction to the related theory,
Fourier kernel functions and transform is provided.

23

24 Fourier Transform

4.1 Background concepts and de�nition

4.1.1 Complex Sinusoids

The Fourier vector space is based on a set of orthogonal functions onto which a given input function is
projected, therefore obtaining a frequency domain representation. This set of functions is in�nite, and
each of its elements is described via the Euler’s equation:

ej�2�ft = cos(2�ft) +
�
j � sin(2�ft)

�
; (4.1)

where:

- f is the sinusoid frequency in Hz., and f 2 R

- t is a certain time instant in seconds, and t 2 R�0

- j is the imaginary unit j =
p
�1.

4.1.2 Fourier Series

When an input function x(t) is projected onto this vector space, it is represented in terms of a possibly
in�nite set of basic complex sinusoids described by the Euler formula, which is [16]:

x(t) = a0 +
1X

n=1

�
an � cos(2�ftn)

�
+
1X

n=1

�
bn � sin(2�ftn)

�
; (4.2)

where the coe�cients fa0; an; bng, known as the Fourier coe�cients, are computed with the following
expressions:

a0 =
1
T

Z

T
x(t)dt; (4.3)

an =
2
T

Z

T
x(t) � cos(2�ftn)dt; (4.4)

bn =
2
T

Z

T
x(t) � sin(2�ftn)dt; (4.5)

where T is the period T = 1
f .

The complex Fourier coe�cient cn is related to the previously introduced ones by the following expression:

cn =
an + j � bn

2
; (4.6)

and is calculated with the following expression, which is derived employing Equations 4.1, 4.4, 4.5 and 4.7:

cn =
1
T

Z

T
x(t) � ej�2�ftdt; (4.7)

In this sense, the complex Fourier series is expressed as:

x(t) =
1X

n=�1

�
cn � ej�2�ft

�
(4.8)

4.2. Fourier Transform 25

4.2 Fourier Transform

In practical applications, an in�nite representation is not possible. Initially, the input function is
discretized in a total of N sampled points. Assuming a sampling frequency of fs Hz, the samples
equal the signal values x(ti) at time ti = i

fs
, where i 2 N�0

V
i < N . The interval between each sample

is Ts = 1
fs

. An assumption about signal periodicity is made here: it is assumed that outside the time
interval covered by the N points, the signal is periodic.

An approximation of the projected sampled signal is achieved by computing only a �nite subset of
the in�nite set of complex Fourier coe�cients denoted in Equation 4.8. These coe�cients correspond
to the sinusoid with the fundamental frequency and to those with a harmonic frequency. A harmonic
of a certain frequency is an integer multiple of it. On the other hand, the fundamental frequency is
determined by the number of input samples taken and the sampling frequency at which these were taken.

The frequency band [0; fs] is divided into N slices, or frequency bins. Frequency f0 = 0 corresponds to
the DC component, or the signal o�set with respect to the x axis. Frequency f1 = fs

N Hz. corresponds
to the fundamental frequency, and the rest of the bins, with frequencies f 2�fs

N ; 3�fs
N ; : : : ; (N�1)�fs

N g, are its
harmonics.

All of these N frequencies are used together with Equation 4.1 to create N complex sinusoids with
di�erent frequencies. Moreover, each of these N sinusoids is sampled at a total of N time instants
t = ti. Therefore, a complex N � N matrix, denoted as FTN , is created containing the sampled
harmonically-related complex sinusoids. This matrix is the Fourier transform matrix, and these samples
are often referred to as the twiddle factors.

4.2.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT), denoted as FN , of a sampled input XN of size N � 1 is then
computed by multiplying the twiddle factor FTN matrix above described by the input column vector:

FN = FTN �XN (4.9)

where each element i of the resulting column vector F (i)N represents the complex Fourier coe�cient ci
from Equation 4.7.

4.2.2 Fast Fourier Transform

As observed from Equation 4.9, the DFT has complexity O(N2) since each of the N output elements
requires N processing stages. The complete operation requires N2 multiplications and N � (N � 1)
additions. As this approach is very expensive, most of the times the Fast Fourier Transform (FFT)
algorithm is employed. The fast quali�er refers to this algorithm having a complexity proportional to
O(N � log2N).

The way the twiddle factor FTN matrix is organized allows the use of a divide-and-conquer paradigm,
which in general is exploited by all FFT algorithms. Considering inputs whose size is a power of two
(N = 2m), the main steps to be followed by the FFT algorithm are the following [17]:

1) Divide the problem in two subgroups, each with half the size as the original.

2) Recursively employ the same algorithm to solve for each subgroup. Perform this step until the size
of the subgroups is equal to one.

3) The solution to the original problem is obtained by combining the solutions of all subgroups.

The FFT algorithm is actually a family of algorithms; all of its members follow the divide-and-conquer
paradigm. However, there are some variations regarding the ways the input or output results are stored,

26 Fourier Transform

and how the intermediate results are managed, to mention some of them. These speci�c tunings might
be bene�cial for speci�c kinds of hardware architectures, for example.

The idea of dividing the initial problem into subgroups leads to a scenario where, at its lowest level,
two samples are weighted by a given coe�cient (twiddle factor) and then added to produce two outputs.
Because of the pattern shape described by this computation data
ow, this operation is usually referred
to as a butter
y.

When the lowest level of the tree has been reached, the computations consist on grouping larger numbers
of samples together and perform the butter
ies on them, until the point where the original problem size
is reached. It is because of this divide paradigm that a tree structure is followed, therefore accounting
for the log2N factor in the algorithm’s complexity.

Once the �nal stage of the computation is achieved, the results are usually scrambled when compared
to the ordering the input had at the beginning. To account for this, there is usually a bit-reversal stage
prior to the input or after the output has been computed. Since bit-reversing either one of them is
computationally intense, some modi�cations to the FFT algorithms have been proposed, such as the
Stockham Autosort framework (employed by the clFFT library [11]), to avoid this step [12].

When an FFT algorithm is executed in a parallel platform, such as the considered GPU, all elements
within a certain divide-level (tree depth) are computed in parallel. Since all the tree levels are required
to compute the output, pruning the results of the FFT (in order to extract a few n desired coe�cients)
does not result in considerable gains, because computing the rest of the undesired outputs comes for
free.

4.3 Proposed Application

There is a number nx 2 N+ for which employing the matrix multiplication paradigm of the DFT requires
less computation time than executing the FFT algorithm. More speci�cally, computing only a subset n
of desired frequencies via dot products, although less computationally e�cient, takes less time.

The proposed approach to this is to create an e�cient method to compute the n dot products between
the n sampled complex sinusoids and the input vector. The dot product operation consists of two steps:

1) Perform an element-wise multiplication between both vectors.

2) Perform a reduction operation (add all the multiplication results together).

The idea is to e�ciently implement these operations in the GPU and measure its e�ect on a di�erent
number of n computed frequencies. More details on the implementation of the proposed GPU kernel
follows in the next chapters, along with the obtained results.

Chapter �ve

Walsh-Fourier Transform

As mentioned in previous chapters, after the one-dimensional time-to-frequency domain transform, the
PNAH algorithm selects only a few n Fourier frequency bins of interest, discarding the rest of them.
Typically, n � N , where N represents the transform size. Because only n frequency bins are required,
and to take advantage of the binary nature of the microphone raw data, the Walsh-Fourier method
is proposed. This method, introduced in [18] and later retaken in [19] expresses a certain subset of
Fourier coe�cients in terms of Walsh coe�cients. Essentially, it applies the Walsh transform to the
input, and then, through a linear combination of some of the resulting Walsh coe�cients, the required
Fourier coe�cients are computed. One constraint for this method is that the input data can only be real
numbers; thus, it is only suitable for the �rst domain transform. Details on the causes of this constraint
are provided in the subsequent sections.

One of the most relevant motivations that the cited sources had to propose this approach was that,
in those years (end of the 60’s, mid-70’s), multiplications were hardware- and timewise very expensive.
This approach would reduce the amount of required multiplications to compute the Fourier coe�cients
because the Walsh transform is based on additions and substractions. Additionally, this would be
a reasonable way of pruning the Fourier transform results for applications requiring a small number
n of Fourier coe�cients. Such pruning is not e�cient when the FFT algorithm is being employed.
Nowadays, multiplication is no longer an expensive operation. However, because of the nature of the
Walsh functions, multiplication of the raw binary data with said functions is reduced to a bitwise XOR
operation; more details on this follow. Using this method requires the decimation and �ltering stages to
be bypassed. As a consequence, the overall execution time can be reduced. The inherent tradeo�s of the
Walsh-Fourier transform are discussed in the upcoming chapters. Since this method clearly relies on the
Walsh transform, an introduction to it is initially provided.

The Walsh transform is a nonsinusoidal orthogonal transform. As it name suggests, it is based on
the Walsh functions, which take up only two di�erent values, namely: f+1;�1g. This transform keeps
certain analogy with the Fourier transform in the sense that both of them represent a given function
in terms of a set of orthogonal functions. However, as opposed to the latter where a frequency domain
representation is obtained, the Walsh transform expresses the result in a sequency domain; the proper
introduction to this concept is found in the upcoming section.

As mentioned above, the binary nature of the Walsh kernel functions enables this transform to be
carried out without multiplications, a formerly expensive operation. This was the reason why the
Walsh transform was very popular between the 1960’s and 1980’s. Eventually, the frequent hardware
improvements, the further optimizations to the FFT algorithm, and the direct physical interpretation
of the frequency spectrum drew the attention back to the Fourier transform. Yet, current applications
of the Walsh transform are found in biosignal compression and processing, communication protocols,
and in automatic test pattern generation (ATPG) for integrated digital circuits, for example. In the
�rst case, the acquired biosignal, typically an electrocardiogram, is processed into a �ltered version of
the signal by keeping only the Walsh coe�cients where most of the signal’s energy is stored, while still
allowing pattern recognition. Regarding communication applications, the Walsh transform is used in
the Code-division-multiple-access (CDMA) protocol to encode the di�erent messages to be transmitted.

27

28 Walsh-Fourier Transform

Finally, in automated test pattern generation (ATPG) techniques aiming to verify the functional correctness
of digital circuits, the Walsh transform is employed to generate binary input vectors which have higher
probability of causing faulty behaviour in said systems [20].

The remainder of this chapter is organized as follows. First, the necessary concepts and de�nition of the
Walsh transform is provided. Then, its relation with the Fourier transform, namely, the Walsh-Fourier
transform, is described, and �nally, its proposed application on the raw data is given.

5.1 Background concepts and de�nition

5.1.1 Sequency

Regarding the sinusoidal kernel functions within the context of the Fourier transform, the term frequency
is employed when referring to periodic functions whose zero-crossings over time follow an homogeneous
distribution [16]. This frequency parameter can be thought of as the amount of full cycles (or the number
of zero-crossings divided by two) achieved by said periodic sinusoids in a given period of time.

The generalized frequency, or sequency, is a broadened de�nition of frequency in the sense that the
function’s zero-crossings need not necessarily be uniformly spaced in time, nor necessarily periodic. As
frequency uses Hertz (Hz) to express its units, sequency has employed the term zps to express the
zero-crossings per second. Making use of this, a waveform’s sequency is the rounded-up result (ceiling)
of the zps divided by two. A rectangular waveform is characterized by its sequency just as a sinusoid
is described by its frequency. Figure 5.1 illustrates an example of this characterization with a given
waveform.

Figure 5.1: Rectangular waveform with a total of 5 zps; thus, a sequency of s = 3.

5.1.2 Rademacher Functions

The Walsh functions, which serve as the kernels for the Walsh transform, are generated from a set of
incomplete orthonormal functions, known as the Rademacher functions. These functions, while also
being rectangular waveforms taking up the values f+1;�1g, di�er from the Walsh functions in that
they are periodic pulses with a total of 2iR�1 cycles in the interval [0; 1). Here the index iR uniquely
characterizes each given Rademacher function rad (iR; t), where t represents the time. The exception to
the pulse periodicity is the �rst function rad (0; t), which is simply the unit pulse. To better illustrate
these functions, Figure 5.2 contains the �rst �ve of them. It is worth noting that the characterizing index
iR does not represent the Rademacher function’s sequency, nor its number of zero crossings.

One way of generating any iR Rademacher function is by employing the following formula:

rad (iR; t) = sgn
h
sin
��

2iR+1�t
�

+
�
N

�i
; (5.1)

where:

- The total number of samples in the function is N , and N = 2m

- The Rademacher characterizing index iR satis�es iR 2 N0V iR � m

- t is one of the N slices in which the [0; 1) interval is divided

5.1. Background concepts and de�nition 29

Figure 5.2: Rademacher functions

- The sgn(h) function is de�ned as sgn(h) =

(
1; if h � 0
�1; if h < 0

5.1.3 Walsh Functions

Before describing the process of generating the Walsh functions out of the Rademacher functions, an
introduction to the ordering and notation employed by the former ones is provided.

Function notation and matrix ordering

Just as the Rademacher functions are characterized by the iR index, the Walsh functions are characterized
by the iW index, and denoted by the wal (iW ; t) notation. It is important to mention that there are
three di�erent ways of grouping the Walsh functions within the transform matrix. For the scope of this
project, only one ordering, the Sequency ordering, is considered. Consequently, the previously introduced
notation in any case refers to the Walsh functions arranged in the sequency ordering. More details on
this follow; however, for the sake of completeness, the remaining two orderings are brie
y described �rst.

The Dyadic ordering is achieved when the iW sequency-ordered Walsh function is moved to position
iWD , creating a new matrix arrangement. The index iWD is computed by �rst writing index iW in
base two. Then, the Gray-encoding is applied to this binary representation, and �nally, this new binary
number gets converted to decimal basis.

The Hadamard ordering is obtained when the iW sequency-ordered Walsh function is placed in position
iWH , thus creating this new matrix ordering. The index iWH is calculated by expressing index iW in
binary and applying the bit-reversal algorithm to this representation. Afterwards, Gray-encoding is
performed on the result, and �nally, a conversion from binary to decimal is carried out.

A Sequency-ordered Walsh transform matrix, as it name suggests, is the one where the Walsh functions
are arranged in such a way that the sequency of a given function is greater than or equal to that of its
preceding function. Additionally, the index iW represents the number of zero-crossings in the [0; 1) time
interval. With this in mind, the following case formula is employed to calculate the sequency of the iWth

Walsh function:

siW =

8
><

>:

0; if iW = 0
iW
2 ; if iW even
iW +1

2 ; if iW odd
(5.2)

The fact that, except for iW = 0, there are always two Walsh functions mapping to the same sequency
arises the use of the sal (siW ; t) and cal (siW ; t) notation when employing the sequency ordering. This
notation was coined as an abbreviation for sine Walsh and cosine Walsh to emphasize their resemblance
with the trigonometric sinusoidal fucntions. For a given sequency siW , its corresponding odd iW index

30 Walsh-Fourier Transform

Figure 5.3: Sequency-ordered Walsh functions and their trigonometric equivalents (� = 2�t and
t 2 [0; 1)).

(the odd Walsh functions) are the sal (siW ; t) functions, whereas the cal (siW ; t) functions represent the
even ones. This interpretation of Equation 5.2 is depicted in Figure 5.3, where also the newly introduced
notations are employed.

Function generation

The Walsh functions are generated by multiplying a subset of the required m Rademacher functions
(where N = 2m and N is the total number of input samples for the Walsh transform). Given a certain
iW Walsh function index, the method to determine which Rademacher functions to multiply to obtain
wal (iW ; t) is the following. [21]

First, the index iW is converted to its binary representation and Gray-encoded using a total of m bits.
Secondly, each of the m Rademacher functions with index iR gets assigned to one of the m bits of the
Gray-coded representation. Rademacher function rad (m; t) is assigned to the MSB, whereas rad (1; t)
to the LSB. Finally, for each wal(iW ,t) function, the Rademacher functions whose corresponding bit is 0
are dismissed, and the rest of them are multiplied to obtain the required Walsh function. Table 5.1 depicts
this process for N = 8. Here, it is seen that, for example, wal (4; t) is generated by multiplying functions
rad (2; t) and rad (3; t). As expected, all resulting Walsh functions have the same range (f�1; 1g) as the
Rademacher functions.

Walsh Function iW index Gray-encoded indexes (Binary) Walsh Function
rad (3; t) rad (2; t) rad (1; t)

wal (0; t) 0 0 0 0
wal (1; t) 1 0 0 1 sal (1; t)
wal (2; t) 2 0 1 1 cal (1; t)
wal (3; t) 3 0 1 0 sal (2; t)
wal (4; t) 4 1 1 0 cal (2; t)
wal (5; t) 5 1 1 1 sal (3; t)
wal (6; t) 6 1 0 1 cal (3; t)
wal (7; t) 7 1 0 0 sal (4; t)

Table 5.1: Generating Walsh functions through the Rademacher functions

5.2. Sequency-to-Frequency Domain Transform 31

5.1.4 Walsh Transform

Once the Walsh functions have been generated, the Walsh transform matrix is created. When the N
Walsh functions (each having a length of N points) are arranged in a sequency ordering, such a matrix
(referred to as WN) is formed. Now an input vector can be transformed into the sequency domain. The
Walsh transform (WTN) is the scaled product of this matrix and the input column vector. Each of the
resulting N coe�cients represents the magnitude of a certain sequency component contained within the
input vector. The Walsh transform is therefore calculated as follows:

WTN =
1
N
WNX; (5.3)

where WTN is the column vector with the N Walsh coe�cients (output of the Walsh transform), WN
represents the matrix with all N wal (k; t) functions and X is the input vector.

5.2 Sequency-to-Frequency Domain Transform

The goal of the Walsh-Fourier (sequency-to-frequency domain) transform, presented in [18] and [19], is
to express the Fourier coe�cients (ax and bx) in terms of the Walsh coe�cients, denoted as A(i) (where
i 2 N0V i < N). By achieving this representation, it is possible to know which Walsh coe�cients are
needed to compute the required Fourier coe�cients. Recalling the previous chapter, it is important to
remember that the output of any Fourier transform algorithm (e.g. the FFT) is a set of N complex
Fourier coe�cients denoted as cx. The relationships between these coe�cients are the following:

ax = cx + cx; (5.4)

bx =
cx � cx

j
(5.5)

cx =
ax + bxj

2
(5.6)

where g is the complex conjugate of the complex number g and j is the imaginary unit j =
p
�1.

Now, the sequency-to-frequency domain transform is described, while providing an example along the
explanation. First, assume a discretized time-dependent function f(i) with a total of N sampled points,
where i 2 N0V i < N . The time span covered by the N sampled points depends on the sampling
frequency of the function f ; however, for the sake of simplicity, this time period is normalized to one,
such that these N points cover the time interval f0; 1

N ;
2
N ; : : : ;

N�1
N g. Moreover, assume all f(i) sampled

points are arranged in a column vector.

Each of these f(i) points is expressed in terms of its �rst N Fourier coe�cients (ax and bx). In other
words, the expression to compute said points can be thought of as the modi�ed partial Fourier series
expansion of this function. The reason why the adjective ’modi�ed ’ is employed has to do with the formula
terms being reordered to match the Walsh sequency ordering. More details on this rearrangement follow.
To avoid repeated appearances of the 2� factor, a variable replacement takes place: !i = 2�i

N . Now,
function f is expressed in terms of !i, and the formula to compute the sampled point f(!i) is:

f(!i) = a0 +

N
2 �1X

k=1

�
bksin(k!i) + akcos(k!i)

�
+ aN

2
cos
�
N
2
!i
�
: (5.7)

Introducing the example, where the sample size is chosen to be N = 8, Equation 5.7 looks like:

f(!i) = a0 +
3X

k=1

�
bksin(k!i) + akcos(k!i)

�
+ a4cos(4!i); (5.8)

32 Walsh-Fourier Transform

where the value for a given f(!i) is computed.

Since it is of the method’s interest to employ the Fourier coe�cients ax and bx as variables, instead
of considering the f(!i) column vector, an N �N matrix, denoted as FN is considered. Each row in this
matrix represents now an instance of Equation 5.7 for a given value of !i. Additionally, every element
within a certain row represents the value by which the appearances of the Fourier coe�cients ax and bx,
in the same equation, are multiplied. It is important to respect the order of the vector elements within
the given row: they follow the same order as the appearances of the Fourier coe�cients as written down
in Equation 5.7. Further on with the previously introduced example, consider the �rst row of matrix
F8. In this case, where i = 0, the values for this row are found by �rst computing !i (!0 = 0) and
substituting it in each separate term of Equation 5.8. Table 5.2 explains this procedure in a clearer way.

Fourier coe�s. a0 b1 a1 b2 a2 b3 a3 a4
Row terms 1 sin(!0) cos(!0) sin(2!0) cos(2!0) sin(3!0) cos(3!0) cos(4!0)
Final values 1 0 1 0 1 0 1 1

Table 5.2: Filling up a row of the F8 matrix, with N = 8 and !0 = 0.

As stated before, two remarks must be made regarding the modi�ed partial Fourier series expression in
Equation 5.7. Considering the trigonometric functions within the scope of the summation, the coe�cient
corresponding to the sine term appears before the one of the cosine term. This arrangement is adopted
to match the sequency-ordered Walsh matrix, where the sal (k; t) function appears before the cal (k; t)
function. As a consequence, the elements within each row of the FN matrix must respect this ordering.
Secondly, and contrary to the cited sources, the last term corresponds to the cosine term instead of the
sine term. The reason for this is that for all possible values of i (where the constraints i 2 N0V i < N
still hold), sin(N2 !i) = 0. This would force both the Walsh A(N �1) and Fourier a(N2) coe�cients to be
zero, which would cause some problems in the upcoming matrix inversion and would trim out relevant
information. To avoid this, the cosine function was employed.

The Walsh transform matrix (WN) is also a square matrix of size N . For the case of the current
example, the matrix W8 is the following:

W8 =

2

66666666664

+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 �1 �1 �1 �1
+1 +1 �1 �1 �1 �1 +1 +1
+1 +1 �1 �1 +1 +1 �1 �1
+1 �1 �1 +1 +1 �1 �1 +1
+1 �1 �1 +1 �1 +1 +1 �1
+1 �1 +1 �1 �1 +1 �1 +1
+1 �1 +1 �1 +1 �1 +1 �1

3

77777777775

(5.9)

The next step is to compute the Walsh transform of the sampled data. Since the assumed input function
is expressed in terms of the Fourier coe�cients, the Walsh coe�cients (output of this transform) are
also expressed in terms of the Fourier coe�cients. This means that, instead of the transform output
being a column vector, it is also an N �N matrix, denoted by AN . This notation might seem to con
ict
with the one employed in Equation 5.3. However, even though both AN and WTN represent the Walsh
coe�cients, WTN is a column vector containing the resulting values of the Walsh coe�cients. The Walsh
transformed data, in terms of the Fourier coe�cients, is given by:

AN =
1
N

(WN)(FN); (5.10)

The k-th row of the AN matrix has the A(k) Walsh coe�cient expressed as a linear combination of a
subset of the Fourier coe�cients ax and bx. Finally, to achieve the desired goal of the Walsh-Fourier
transform, the AN matrix needs to be inverted. As a result, the A�1

N matrix has the ax and bx Fourier
coe�cients expressed in terms of the Walsh coe�cients. Please note that the rows in this matrix follow
the same order as the appearances of the Fourier coe�cients in Equation 5.7. Returning to the example,

5.3. Proposed application 33

the matrix A�1
8 can be interpreted as follows:

2

66666666664

a0
b1
a1
b2
a2
b3
a3
a4

3

77777777775

=

2

66666666664

A(0)
1:2071A(1)� 0:5A(2)� 0:5A(5)� 0:2071A(6)
0:5A(1) + 1:2071A(2)� 0:2071A(5) + 0:5A(6)

A(3)�A(4)
A(3) +A(4)

0:2071A(1) + 0:5A(2) + 0:5A(5)� 1:2071A(6)
0:5A(1)� 0:2071A(2) + 1:2071A(5) + 0:5A(6)

A(7)

3

77777777775

(5.11)

When the input to the Fourier transform is real, the last N
2 �1 output complex coe�cients are discarded,

since they are only the complex conjugates of the �rst half. This property is clearly exploited in this
approach. In the example where a real input of length N = 8 is assumed, an expected output of the
Fourier transform would be the complex coe�cients fc0; c1; : : : ; c7g. However, out of these N coe�cients,
only �ve of them ([c0; c4]) contain relevant information because the following expressions are true: c1 = c5,
c2 = c6 and c3 = c7. Even though all N coe�cients of the Walsh-Fourier transform are required, the
amount of output information is the same as compared to the Fourier transform on real data, since
the middle N � 2 Walsh-Fourier outputs make up the relevant N

2 � 1 Fourier coe�cients. In summary,
matrix A�1

N has enough information to compute the �rst and relevant N
2 + 1 Fourier frequency bins,

which corresponds to one half of the sampling frequency (FS
2).

Finally, depending on which are the desired Fourier frequency bins (coe�cients), a set of Walsh coe�cients
needs to be computed. Given a couple of required ax and bx Fourier coe�cients, their corresponding rows
in the A�1

N matrix must be analyzed. More details on this row mapping are provided in the following
section. In this way, it is known which Walsh coe�cients need to be computed �rst: they are the ones
corresponding to the non-zero elements of such rows. Considering the example in Equation 5.11, if
the Fourier coe�cient c2 is required, the rows corresponding to a2 and b2 must be taken into account.
From these two rows, it is seen that the Walsh coe�cients A(3) and A(4) need to be obtained �rst by
computing the dot products between the time domain input and the functions wal (3; t) and wal (4; t)
respectively. Then, a linear combination of A(3) and A(4) must be carried out to obtain both a2 and b2
Fourier coe�cients, which �nally lead to c2.

5.3 Proposed application

Taking into account that goal is to reduce the execution times by bypassing the decimation �lter and
time-domain windowing, the straightforward approach would be to apply the Fourier transform (with
the FFT algorithm) on the raw bitstreams. However, this method is not e�cient, since the FFT
algorithm would take a considerably increased amount of time. This is caused by the increased number
of input samples that are taken as an input by the Fourier transform: more twiddle factors have to be
computed/fetched, and the number of multiplications is increased.

To address these issues, the Walsh-Fourier transform is proposed, and is referred to in the remainder of
this document as the Walsh-Fourier approach. The basic idea, as described in the previous paragraphs,
is to compute certain Walsh coe�cients such that, through a linear combination of these, the desired
Fourier complex coe�cients are obtained. This indirect Fourier frequency calculation might sound more
troublesome. Nevertheless, the advantages of this method lay on the facts that the kernel functions are
binary. This means that storing one sample of such a signal requires only one bit, and that multiplications
of binary signals are reduced to a bitwise XOR operation.

To incur in the least modi�cations to the PNAH algorithm as possible, the input time span for the
Walsh-Fourier approach should be the same as the one corresponding to the nominal approach. Considering
a single channel (microphone), the latter approach applies the Fourier transform to 1024 input samples.
These 32�bit samples have a frequency of 46:875 kHz, thus, a time interval of approximately 0:022s is
considered (to comply with the transient condition). The raw microphone bitstream has a frequency of
1:5MHz, which means that a total of 32768 1�bit input samples should be processed to cover the same

34 Walsh-Fourier Transform

time interval.

5.3.1 Binary representation conventions

Along this chapter, it has been assumed that the time domain binary signals would have the same
range as the Rademacher and Walsh functions, namely, an image consisting of the values f�1;+1g.
However, the microphones output a binary signal with values f0; 1g, where binary 0 corresponds to �1,
and binary 1 to +1. This convention is referred to as C+1!1b

�1!0b
. For the results of the XOR operation to

be correctly interpreted as a multiplication, the Walsh functions have to follow a di�erent convention.
As implemented in [22], the +1’s of the Walsh functions must be represented as a binary 0, whereas their
�1’s should become binary 1. This assignment is denoted as C+1!0b

�1!1b
.

The reason for this is that the bitwise XOR operation between binary variables x and y (f0,1g) can
be thought of as a multiplication of binary variables X and Y (f-1,+1g) with an additional �1 factor:
x
L
y = �XY . This �1 factor is the reason of the counterintuitive assignment required by the Walsh

function. Additionally, this must also be taken into account when multiplying binary-represented
Rademacher functions to obtain the desired Walsh functions. Rademacher functions are chosen to
be encoded using the C+1!1b

�1!0b
convention. Thus, when multiplying an odd number of times (equal

to multiplying an even number of functions), an additional XOR with binary 1 should be considered
to achieve the required C+1!0b

�1!1b
convention for the Walsh functions. Table 5.3 contains a simple

multiplication to better illustrate these issues, along with the conventions employed. Here, the convention
adopted by both x and X is the same as the one followed by the microphone raw data, where as the one
employed by y and Y is the one required by the Walsh functions.

Binary XOR

C+1!1b
�1!0b

C+1!0b
�1!1b

C+1!1b
�1!0b

x y x
L
y

0 0 0

0 1 1

1 0 1

1 1 0

=

Multiplication

C+1!1b
�1!0b

C+1!0b
�1!1b

C+1!1b
�1!0b

X Y X � Y

-1 +1 -1

-1 -1 +1

+1 +1 +1

+1 -1 -1

Table 5.3: Operation comparison between XOR and multiplication.

After the time domain signal has been multiplied by a certain Walsh function, the result of every
element has to be added in an accumulator. Together with the multiplication, this reduction makes up
the dot product between these two vectors, which in this case represents the Walsh coe�cient. When
the signals are in the f�1;+1g range, the results are added without any further consideration; this is not
the case when the signals are represented with the values f0; 1g. A �nal translation between these two
representations has to take place. This last consideration, along with the previously described operations
and conventions is summarized with the following expression:

A(k) =
�

2 �OneCount
�
vN (k)

��
�N; (5.12)

where:

- A(k) represents the k-th Walsh coe�cient.

- OneCount(h) is a function that, given a vector h whose range is f0; 1g, outputs the number of
binary 1’s contained in it.

- vN (k) is a vector of sizeN , following the C+1!1b
�1!0b

convention, containing the result of the element-wise
multiplication of the time domain input X and the Walsh function wal (k; t), both of size N as well.
Vector X has the C+1!1b

�1!0b
convention, where as wal (k; t) is represented in the C+1!0b

�1!1b
convention.

5.3. Proposed application 35

5.3.2 Matrix calculations

The implementation of the Walsh-Fourier approach using 32768 samples requires the computation of
matrix A�1

32768, which in turn requires matrices F32768 and W32768. These matrices are very lengthy to
compute, let alone to multiply. However, it is only a one-time procedure since once A�1

32768 is obtained, all
the Fourier coe�cients are expressed in terms of the Walsh coe�cients, and thus can be saved for later
references. Additionally, not the entirety of this matrix is required. Because of the 32768 input samples,
this matrix has enough information to compute the �rst 16385 Fourier frequency bins. Remembering
that the sampling frequency of the raw data is FSb = 1:5MHz, a frequency range from 0 to approximately
750:045kHz could be reconstructed. Yet, considering a much lower range of frequencies of interest, say
from 0 to 10kHz, approximately the �rst 220 Fourier frequency bins would be usable. This means that
only the �rst 440 rows of the A�1

32768 would be of interest.

Given a desired Fourier frequency bin number BinF j BinF 2 N0VBinF � N
2 , the index of its

corresponding rows in the A�1
N matrix (denoted as iak and ibk for the ak and bk coe�cients, respectively)

is computed according to three di�erent cases. In the �rst two, a single index (iak) su�ces because
the values for these Fourier frequency bins are real numbers. In case one, BinF = iak = 0, whereas
in case two, where BinF = N

2 , iak = N � 1. In the third case, where BinF 2 [1; N2 � 1], the Fourier
frequency bins contain complex numbers, thus, both ak and bk are required. For these bins, the following
expressions are employed:

iak = 2 �BinF (5.13)

ibk = 2 �BinF � 1 (5.14)

Rows iak and ibk (or only iak , depending on the case) of matrix A�1
N contain the weighting values for

each of the relevant Walsh coe�cients. For N = 32768, the number of non-zero elements contained in
each of the rows corresponding to the above mentioned frequency range is too high (typically between 1k
and 20k coe�cients whose absolute value is larger than 1 � 10�6). Instead of computing all these Walsh
coe�cients to obtain a single Fourier frequency bin, a selection is needed. For the same frequency range,
the coe�cients with an absolute value larger than 0:1 is arbitrarily chosen. In this case the complex
numbers computed from the ak and bk coe�cients are an approximation to the complex coe�cients
obtained from the Fourier transform since there is some error inherent to the coe�cient selection. Figure
5.4 illustrates the variation of this amount per frequency bin. Additionally, two more aspects are deduced
from looking at this �gure. First, there are some Fourier frequencies which require considerably fewer
Walsh coe�cients to be computed, such as � 91;� 182;� 365;� 730;� 1460 and � 2930Hz, which
in this case, require only 10 Walsh coe�cients. Second, a tendency is observed where, the higher the
Fourier frequency, the larger the amount of Walsh coe�cients required to approximate it.

5.3.3 Implementation

Two variations of the Walsh-Fourier approach, along with the details described so far were implemented
in the GPU platform, and the output of this stage was fed to the PNAH algorithm. Further details on
the GPU implementation itself, as well as on the results obtained, are provided in the upcoming chapters.
In the next paragraphs, a description of these two slight variations on the approach is found.

Initially, the set of the n desired Fourier frequency bins requires a bigger set of nW Walsh coe�cients
(where nW j nW 2 N+Vn < nW � N). The indexes of these Walsh coe�cients are not known, and
they have to be selected. This process is carried out with the information contained in the A�1

N matrix
and follows the procedure described in the paragraphs above. This is necessary only once, but it must
be done before the Walsh-Fourier transform can take place.

Remember that each Walsh coe�cient has a unique Walsh function associated to it. In the case where
N = 32768, storing N Walsh functions, each with N 1-bit samples would require a large space when
considering the size of the fast global memory (128 MB for N Walsh functions, when such a memory
has a size of 64 kB. More details on this follow). Additionally, only nW out of N would be required.
Therefore it is reasonable to work with only the required Walsh functions instead. It is here where the
two variations of the approach di�er. On the one hand, it is possible to precompute the required Walsh

36 Walsh-Fourier Transform

Figure 5.4: Number of Walsh coe�cients required per Fourier frequency bin.

functions and feed this as an input to the Walsh-Fourier transform. This is referred to as the Precomputed
Walsh Functions approach. On the other hand, the required Walsh functions can be computed from the
m base Rademacher functions (where N = 2m). This is referred to as the Walsh-function Computation
approach.

The Precomputed Walsh Functions approach is faster because the dot product (XOR + reduction)
between these functions and the time domain input is executed right away. Nevertheless, it is not

exible to changes in the set of n Fourier frequency bins, since if this is the case, the provided Walsh
functions would no longer be the appropriate ones. Additionally, all the required Walsh functions should
be stored in memory. On the other side, the Walsh-function Computation approach is more
exible in
this sense because any of them are computed based on the m Rademacher functions, which in turn, are
the only ones needed to be stored in memory. Compared to the previous approach, its main disadvantage
lies on the fact that the computation of the Walsh functions can become complex mainly because of the
Gray-code conversion and the constant Rademacher function fetching.

After the introduction to the Walsh-Fourier transform and the description of the details surrounding
its implementation, this chapter concludes. The obtained results regarding this approach are discussed
in the following chapters.

Chapter six

Implementation

This chapter describes the details regarding how the proposed approaches are implemented in the GPU
platform, whose characteristics are found in Appendix A. In general, the code executing within this
device describes the calculations to be done on the information of a single dataset: a data parallelism
model is followed. In the scope of this project, such a dataset represents the measured information
acquired from each of the Nch pressure sensors (microphones) of the Sorama Cam. In this way, the
platform e�ciently exploits the parallelism inherent to the PNAH algorithm.

For this application the PNAH algorithm aims for a real-time implementation at a high-as-possible
throughput. Because of this, the computation parallelism that can be achieved with the employed
hardware needs to be exploited to meet the execution time deadlines. As previously mentioned, the three
di�erent proposed approaches for this project, namely the n Dot Products, the Basic Averaging, and the
Walsh-Fourier Transform are also implemented in the GPU platform. These three methods concern the
transform from spatial-time to spatial-frequency domains. The basic (slow or naive) method to perform
the domain transform of a single dataset X (N � 1 matrix) consists on multiplying it by an N � N
transform matrix. Because of the nature of the PNAH algorithm, only a subset n of the total results
are required. In this sense, the required transformed results are found by employing a transform matrix
with a reduced size of n�N ; this means that n dot products need to be computed. The three proposed
approaches employ the same computation approach and for this reason, all three are based on a similar
code template that performs the described computations.

With this in mind, this chapter is organized as follows. First, a description of the implementation
through the OpenCL framework of the dot product code template (OpenCL kernel) is provided. In this
section, some general aspects regarding the architecture assumed by OpenCL are included, followed by
the explained data
ow within the OpenCL kernel. Secondly, having the code template in mind, the
modi�cations done for speci�cally each of the three approaches are detailed.

6.1 OpenCL Kernel - Dot Product Template

The general data
ow implemented by the proposed kernel is provided in this section. However, prior to
this, a few basic concepts belonging to the OpenCL framework are introduced. After this, the description
of the kernel implementation is outlined employing the proper OpenCL terms and concepts.

6.1.1 OpenCL

OpenCL is a programming framework for general purpose parallel programming across hardware platforms
such as CPUs and GPUs, among others [23]. The OpenCL execution model is comprised by a host which
is connected to a set of devices; these devices are usually the hardware containing multiple processing
units: multicore CPUs or GPUs, for example. The host executes a main application, from which a
number of commands are issued to one or more of the devices connected to the host. For the sake of

37

38 Implementation

Figure 6.1: Host-Device interaction within the OpenCL framework.

simplicity, and to address the current hardware con�guration, a single device is considered from this
point on. Furthermore, such device is assumed to be the mentioned GPU. The host can be thought of
as a manager issuing instructions to the worker: the device.

A coarse summary of the interactions within such a model is described as follows. As previously
mentioned, the host runs an OpenCL application. When a section of this application, within which
data parallelism can be exploited, is reached, the host issues a command for the device to execute such
section. After this, the host can either resume its activities or wait for the issued command to be
completed. The command is queued in the command queue, which is fed to the device in order for it
to receive the issued instructions. The device is in charge of internally scheduling the code execution,
carrying it out and notifying the host about its completion. This code, referred to as OpenCL kernel,
speci�es the computations to be performed for a single piece of data. Usually, after the execution of a
kernel has been �nished, the host application can request the transmission of the results from the device
memory, or can issue a command to execute a di�erent kernel, for example. In any case, the control
is returned to the host application. Figure 6.1 depicts in general the communication between host and
device.

The OpenCL framework provides an abstract memory model; its mapping to the physical one is done
exclusively by the hardware device itself. Since both the soft- and hardware models are relevant, two
memory architectures are described: the virtual memory model assumed by the OpenCL framework and
then the physical memory model implemented by the GPU. Afterwards, the relationship between both
is provided.

Virtual memory model

When a kernel is assigned to a speci�c device, OpenCL sees the device as a hierarchically arranged space
in which the kernel code is executed. Within the device, there are two grouping hierarchies. Namely, a
device contains a certain number of work groups, and each work group consists of a given number of work
items. For both hierarchy levels, their elements can be organized in 1D, 2D or 3D grids. For example, a
device can be organized in a 3�2 two-dimensional grid of work groups, or a work group can be organized
in a 3 � 2 � 4 three-dimensional grid of work items. For each dimension, a given identi�cation index is
provided. However, for the sake of simplicity and for the scope of this project, only 1D grids at both
hierarchy levels are employed.

Starting from the lowest level, the work items are the elements in charge of executing the code in the
kernel, and can also be thought of as individual processing threads. The work items have its own private
memory space, where all the variables corresponding to each thread are stored. This private memory is
the fastest and smallest of the rest. Within their corresponding work group, the work items communicate
with each other via the local memory, which is a memory accessible only by the items within a group.
Although larger, this memory is slower than private memory. It is important to explicitly include a
synchronization mechanism when fetching data from this memory after writing to it: since threads
execute in parallel, no assumptions can be made regarding the order of memory accesses. The work
items in a given work group are identi�ed by their local id Lid j Lid 2 N�0

V
Lid < LMax, where LMax

is the maximum number of work items allowed per work group. The size of a work group is denoted as
LSize. These concepts are illustrated in Figure 6.2 (right).

6.1. OpenCL Kernel - Dot Product Template 39

Figure 6.2: Virtual OpenCL memory architecture. A device (left) consists of one or more workgroups,
and each of these (right) is comprised by one or more work items.

At the upper hierarchy level, the device is organized into one or more work groups. Each group is
identi�ed by their group id Grid j Grid 2 N�0

V
Grid < GrMax, where GrMax is the maximum

number of work groups allowed per device. The size of a work group is denoted as GrSize. These groups
communicate with each other through the global memory, which is the largest and slowest memory space.
Typically, the kernel inputs and/or outputs are placed in global memory, since it is this location to/from
which the data is copied from/to the host. Besides the global memory, there is also the constant memory,
which is globally accessible too. The di�erence between these is that the latter behaves similarly to a
read-only memory along the kernel execution, and it is also optimized for data broadcasting. Figure 6.2
(left) depicts these relationships.

It is important to mention that all work items within a device is also identi�ed by their global id where
Gid j Gid 2 N�0

V
Gid < GMax, where GMax is the maximum number of work items allowed per device.

Additionally, this global id is also be computed as: Gid =
�
Grid � Lsize

�
+ Lid.

Physical memory model

This subsection only concerns the physical memory model of the employed GPU device, whose characteristic
are found in Appendix A. This AMD GPU implements the Graphics Core Next (GCN) architecture,
which is a RISC SIMD architecture replacing the previous VLIW4 SIMD one of earlier devices. This
architecture improves the device performance for general purpose applications.

The device is comprised by a collection of compute units (CUs). These units represent the basic
computational building blocks of the GCN architecture since each of them implements the provided
instruction set. Within each CU, one scalar and four vector (SIMD) units are present. Each of the four
SIMD units has 16 processing elements (PEs) or ALUs, which can apply the same operation across 16
elements [24]. Using the notation employed by AMD, each of these processing elements is referred to as
a Stream Processor (SPs), and there are 64 SPs per compute unit.

Virtual-Physical Memory Relationships

At the upper level of the virtual memory hierarchy, an OpenCL workgroup is usually mapped to a
compute unit. In this sense, the workgroup employs all the CU’s resources, such as the local shared
memory, for example. Additionally, the GCN architecture enables each SIMD unit to work on separate
wavefronts; thus, improving latency hiding. A wavefront is a group of threads (work items) which execute
the same instruction. Work items, which are mapped to the stream processors, are instantiated in integer

40 Implementation

multiples of the wavefront size (64).

6.1.2 Kernel description

Now that the basic OpenCL-related concepts are introduced, the general structure of the code employed
to perform the dot product operation are described in terms of these concepts. First of all, it is important
to remember that the data corresponding to a total of Nch = 1024 microphones needs to be processed.
Each microphone generates its own, independent data; thus, they are processed in parallel. In this
way, and having in mind that only 1D arrays of both workgroups and work items are considered, 1024
work groups are instantiated: the device is represented by a 1 � 1024 matrix (vector) of work groups.
Each work group shares the global memory, which is where the input and output data is placed. This
arrangement is depicted in Figure 6.3.

Figure 6.3: Device arranged in a 1�Nch matrix of work groups (Nch = 1024).

The maximum possible size of a work group is of 256 work items in the X direction. Furthermore,
the use of this size is suggested in order to optimize the device e�ciency; therefore, each work group
is comprised of a 1 � 256 matrix of work items. These work items share the local memory, where the
intermediate results of each dot product are stored. Figure 6.4 illustrates this structure.

Figure 6.4: Workgroup, corresponding to microphone X, arranged in a 1� 256 matrix of work items.

The work group corresponding to any of the Nch input channels needs to read a total of N input samples.
Since a work group size of 256 is assumed, each individual work item has to read NWI = N

256 samples
from global memory. For example, in the nominal case where N = 1024, each work item fetches four
time samples. Once the work items have their corresponding input, the information regarding which
frequency bin to compute is required. This information speci�es the vector with which the dot product
with the time input is applied. In general, two di�erent approaches are used here. In the �rst one, this
frequency-dependent vector is also fetched from global memory. This case is the simplest, since the work
items needs not compute the required NWI vector elements, but just fetch them from (global) memory.
On the second case these elements need to be computed; this is done using the work item local id
(Lid) and the number of samples that each work item has to read (NWI). Figure 6.5 illustrates how each
work items fetches its corresponding time samples, and transform function (as in the �rst case described).

6.1. OpenCL Kernel - Dot Product Template 41

Figure 6.5: Work item fetching its corresponding time samples (and transform functions if needed). To
increase e�ciency, the elements are loaded as a < DataType > NWI vector (
oat4, for example).

Once all work items have their corresponding time domain input and transform function samples, an
element-wise multiplication between them is performed. After this, the sum of all of these products
(reduction) has to take place. First, since all work items have a total of NWI results, these are summed
up, so that all work items have one result. The reduction operation yields a �nal result per work group.
Therefore, the work items employ the local memory to communicate with each other: initially, all work
items submit their own result to an array of intermediate results located in the local memory (LDS). All
subsequent intermediate results are also located in this memory; the array location of these results is the
same as the work item index Lid.

The reduction stage follows a divide-and-conquer paradigm. Figure 6.6 illustrates this approach. As
just mentioned, all 256 work items upload their results to their corresponding location within the array
located in LDS memory. To describe the following reduction process, assume a variable AWI = 256,
denoting the number of active work items in the reduction stage. This variable gets halved for each
reduction iteration; therefore, in the �rst loop, it gets a value of AWI = 128. The work items whose
index is less than AWI are the active items in each recursion step; their corresponding boxes in the
referred �gure are colored in black. For each recursion step, the work items whose local index ful�lls
Lid < AWI fetch the results corresponding to work items Lid + AWI (colored in red) and add them to
their own. After this, these work items update their result within the array in LDS memory and the
following recursion step is ready to start again by halving variable AWI . The boundary condition for this
recursion is: AWI > 1. At the end of the recursion stage, work item Lid = 0 has the �nal dot product
for the given transform function, which in most cases represents the desired frequency bin.

This template can be further optimized. Two dot products can be computed at the same time adding
a mirrored version of this structure. This is helpful when an even number of frequency components
needs to be computed, or when two dot products are required to yield a result (as is the case for the
Walsh-Fourier approach, for example). This structure is illustrated in Figure 6.7, where the �rst half of
the work group is responsible for computing one dot product, and the second half of the work group is
responsible for the other one. As expected, this approach requires that, prior to the beginning of the
reduction stage, two di�erent transform functions have been computed or fetched, and that the time
domain input has been element-wise multiplied by both these functions. Furthermore, it also makes
use of two di�erent arrays in the LDS memory, each of them holding the results of the corresponding
element-wise multiplications and being accessed only by its corresponding set of work items. For this
mirrored modi�cation, the condition along the reduction recursion discerning between which work items
perform an addition and which remain idle changes depending on the work items’ local id Lid. For an
Lid < 128, work items ful�lling Lid < AWI fetch results from location Lid + AWI and add them to
their own, just as described in the previous paragraph. However, if Lid � 128, work items ful�lling the
condition Lid > (255�AWI) are the ones fetching results from Lid �AWI and operating on them. For
the second half of the work group, the work items actively performing the reduction in each stage are
colored in red (Figure 6.7), where as the ones in black remain idle. Additionally, their arrows depicting
the data
ow are shown in red. For both cases, the boundary condition AWI > 1 stays the same, since
the fact that AWI is halved for each recursion step remains unchanged. At the end of this reduction
recursion, work items with Lid = 0 and Lid = 255 have each a di�erent dot product result.

42 Implementation

Figure 6.6: Reduction within a work group. Each work item is represented by a box with its
corresponding index. In each stage, only work items colored in black execute operations, whereas the

ones in red remain temporarily idle. The blue dots represent an addition.

Writing to local memory (LDS memory) takes more time than doing so to private memory (register �le);
therefore, reducing these events as much as possible reduces execution times. For both mirrored and
unmirrored approaches, an additional optimization addressing this aspect can be carried out. Starting
from the element-wise multiplication, and along all reduction recursion stages, the work items ful�lling
the operating condition (Lid < AWI and Lid > (255� AWI) for the �rst and second half, respectively)
only store their corresponding results in private memory, whereas the ones not ful�lling these conditions,
submit their results to the LDS memory array(s). This method saves

P8
i=1

�
1
2 �

256
2i

�
and

P8
i=1

256
2i LDS

memory accesses for the unmirrored and mirrored versions respectively.

6.2 Approach-speci�c Kernel Adaptations

Now that the kernel template has been outlined, the speci�c approach-dependent variations to the kernel
are further discussed. These modi�cations mostly concern the transform function samples computation;
the reduction loop, either mirrored or unmirrored, is kept intact.

6.2.1 n Dot Products

For the n Dot Products approach, the outlined kernel su�ers the least modi�cations. As previously
stated, depending on whether the number of desired frequency bins (n) is even or odd, the mirrored or
unmirrored template are employed. Since the number of decimated (32-bit) samples that this approach
considers for the domain transform is N = 1024, each work item within a workgroup has to fetch
NWI = 1024

256 = 4 time domain samples.

Additionally, regarding the transform functions (twiddle factors), both fetching and computing them
were tried out. The best (smallest) execution times were achieved by computing said factors. More
details on this di�erence follow in the subsequent chapter.

Considering the approach where the transform functions are computed, and given a certain frequency
bin index FBs j FBs 2 N�0

V
FBs < N , a work item with local id Lid has to compute a total of

6.2. Approach-speci�c Kernel Adaptations 43

Figure 6.7: Mirrored reduction within a workgroup. For the �rst (left) half of the workgroup, work
items whose boxes are colored in black remain active, whereas the ones corresponding to the boxes in

red remain idle. This color convention is reversed for the second (right) half of the workgroup.

NWI = 4 di�erent twiddle factors. As mentioned before, a twiddle factor is a complex number in the
form of cos(�) � j � sin(�). Therefore, a cosine and a sine have to be computed using all NWI di�erent
arguments. Each argument is computed as follows:

� = TSidx � FBs �
2�
N

(6.1)

where:

- TSidx = Lid �NWI + h, where h 2 f0; 1; : : : ; (NWI � 1)g.

- FBs is one of the n desired frequency bins.

In this way, NWI arguments are computed, which in turn are used for the same number of twiddle factors
corresponding to a single frequency bin. This process is done for all n desired frequency bins. In total,
a work item computes n �NWI arguments, and 2 � n �NWI sinusoidal samples.

6.2.2 Basic Averaging

A bitstream input is considered for this method. As mentioned in chapters three and six, a total of
N = 32768 1-bit samples are required to execute the domain transform. Therefore, a work item executing
this approach needs to fetch NWI = 32768

256 binary samples for a work group to process all elements. Since
these binary samples are sequentially packed in 32-bit chunks, a work item fetches four 32-bit chunks.
In other words, the same amount of information is being employed as the previous approach. The only
di�erence is that it is arranged di�erently.

Within a work item, the basic averaging is done for every 32-bit chunk. As described in Table 3.1,
a population count method is employed. This method, implemented via the v bcnt u32 b32 bit count
instruction of the corresponding GPU device architecture [25], counts and returns the number of set
(binary 1) bits in a 32-bit unsigned integer (which only represents the sequentially packed 32 1-bit
samples). This result follows the C+1!1b

�1!0b
convention, introduced in the previous chapter and illustrated

in Table 5.3. The result of this population count method is processed in a similar way as done by
Equation 5.12, however, with a few modi�cations:

44 Implementation

Avg(TSidx) =
�

2 �OneCount
�
x(TSidx)

��
� 32; (6.2)

where:

- Avg(TSidx) is the averaged result corresponding to a 32-bit chunk whose index is TSidx

- x(TSidx) is the input 32-bit chunk with index TSidx

After this basic averaging process has been made, the corresponding twiddle factors for the computation
of the required Fourier frequency bins takes place just as described in the section above.

6.2.3 Walsh-Fourier Transform

The Walsh-Fourier Transform is also carried out with the raw binary input. For this method, two
variations were implemented: one where the precomputed Walsh functions are given as an input, and
the other one where these are computed based on the Rademacher functions. For the latter one, the
process of synthesizing the Walsh functions was already described in the previous chapter; thus, it is
not further mentioned. Additionally, the fastest execution was achieved when the Walsh functions were
precomputed. For these reasons, the following description assumes that the Walsh functions are already
computed and within the work items’ memory.

Just as the basic averaging alternative, the input data is sequentially packed in chunks of 32-bits. This
is also the case for the Walsh functions. Since the same number of N = 32768 1-bit samples is required,
a total of NWI = 128 binary samples are needed as well. Therefore, four 32-bit chunks of the raw binary
input and four 32-bit chunks of each of the required Walsh functions are processed by every work item.

In this case, the element-wise multiplication related to the previous two Fourier-based approaches is
replaced by a bitwise XOR. A total of 128 individual XOR operations have to be applied. However,
this operation is applied on all 32 elements of a chunk via the v xor 32 instruction. Furthermore,
when considering vectors of four unsigned integers (again, only representing the sequentially packed
1-bit samples), these 128 XOR operations are executed with a single instruction.

The binary 1’s in the result need to be counted employing the same method as proposed in Equation
6.2. This is done for the four chunks within a single work item. After these four results are added,
the reduction loop takes place. It is important to remember that for the Walsh-Fourier transform, both
Fourier coe�cients an and bn are required to compute a cn complex coe�cient. To speed up this process,
the mirrored reduction loop depicted in Figure 6.7 is employed. In this structure, the �rst half of the
workgroup is in charge of reducing the results for the an coe�cient, whereas the second half of it reduces
the results for the bn coe�cient.

As a �nal extra stage for this Walsh-Fourier transform, when both an and bn are computed, they are
weighted by their corresponding weights in matrix A�1

N , which is exempli�ed in Equation 5.11. Once all
the required coe�cients are weighted, the required Fourier coe�cient cn is computed. A total of n of
these coe�cients are calculated following the same process.

With these approach-speci�c descriptions, this chapter concludes. Now that the kernel structure for
all the proposals has been detailed, the results achieved with them are provided in the next chapter.

Chapter seven

Results and Analyses

Now that the main ideas and details regarding the proposed solutions have been provided, along with their
implementation details in the employed GPU, the achieved results are discussed. For all the solutions
proposed, �rst the achieved results are provided, followed by an analysis on this data. The obtained
data presented in this chapter is compared to the nominal implementation. The metrics to be compared
are the approach execution time and the resulting inverse propagated holograms obtained based on the
input holograms generated by the proposed approaches.

The reasons why the nominal approach is taken as a reference are the following. Regarding the execution
times, the nominal approach, as shown in [6], is currently the implementation where a single iteration
of the PNAH algorithm takes the least time (at most 1 ms. per iteration, generating at most 10 output
holograms). Therefore, the comparisons made on this aspect are against the state of the art. The
reasoning is not as straightforward when justifying the use of the nominal approach as a baseline when
the hologram correctness is to be analyzed. Previous related work, such as [5] and [6], have measured
hologram di�erences employing simulated pressure distributions as baselines; in other words, the baselines
are not directly a result from sampling, decimating, �ltering and transforming the measured time samples.
A similar case where the spatial frequency representation of the measurement plane is used as an input
for the PNAH algorithm cannot be assumed for this project, since the focus of the acceleration is on the
time-frequency domain transform itself. In case simulations were to be employed, a sound �eld simulation
would be required. In order for it to be an accurate simulation, the source impulse response should be
computed and extrapolated [26]. This requires some initial information on the targeted system, and a
way of obtaining such data is actually employing the PNAH algorithm itself. With this reasoning, the
proposed approaches were directly tested on real data instead.

Moreover, relying on the validation of methods such as the PNAH via comparison against simulations,
Sorama has successfully implemented said techniques on practical scenarios, con�rming the applicability
of the results through di�erent experimental cases. These real life implementations have been done
following the nominal data acquisition protocol, where the data has been decimated, windowed and
transformed to form the hologram. Therefore, the correctness of the input hologram creation method
through this time-domain method is assumed. As a consequence, this assumption has been made along
this project, and for error-measuring purposes, this is not an exception. For the scope of this project
the mentioned assumption su�ces since it is not part of the objective to prove that the nominal data
acquisition protocol produces the same hologram as the ones simulated. Finally, it is important to bear in
mind that the nominal approach does not achieve a perfect reconstruction but an accurate approximation
instead. This fact opens the possibility of the binary-based representations being a better approximation
than the ones obtained from the nominal approach; this possibility is one of the important contributions
of this project.

Previous to presenting the results, the metrics measurement methods (error and performance) are
provided. Once this has been done, the results and an analysis for each of the proposed approaches
are presented. Beginning with the developed kernel, this template is tested to get some information
on how well does it perform when compared to other implementations. More speci�cally, the general
matrix-matrix multiplication (GEMM) section of the clBLAS library is used. clBLAS is a library, based

45

46 Results and Analyses

on the OpenCL framework, which contains optimized routines to compute basic linear algebra operations
in OpenCL devices. clBLAS is a sibling library of clFFT; both of them are part of clMath, the open-source
contribution of AMD to e�cient libraries implementing mathematical computations through the OpenCL
framework. The objective of this �rst comparison is to select the best option to carry out the proposed
dot products, which is later compared with the FFT employed in the nominal approach.

After this kernel template has been tested, the n Dot Products approach is presented. This is the
one closest to the nominal implementation since it performs the 1D domain transform employing the
decimated and �ltered data. Because of this, the output holograms have no di�erence, nor in amplitude
nor in phase, with the holograms that result from applying the FFT algorithm. As a consequence, the
focus lays on the execution times alone at �rst. The objective of this is to also provide an initial idea on
the advantages and limitations in which a DFT-like dot product domain transform incurs when compared
with the full FFT.

Then, the Basic Averaging approach is measured. The execution time metrics for this approach are
given �rst. As mentioned before, the advantages of this method regarding the mentioned aspect are
due to the fact that the raw bitstream is employed (bypassing decimation �ltering and time domain
windowing). However, because of the di�erent preprocessing done on the signal, the signi�cative results
concern the di�erences between the holograms generated by this process and the ones created through
the nominal implementation.

A similar case is that of the Walsh-Fourier Transform method, which �rst presents the execution time
results, but where the more signi�cant results regard the hologram errors.

7.1 Metrics Measurement

Before providing the results, the criteria employed to evaluate the outputs are provided.

7.1.1 Execution Time and Performance

The required information to measure these metrics is obtained with the AMD CodeXL Pro�ler version
1.4.5724.0 (as speci�ed in Appendix A). The execution time is a direct output of this tool; however, the
performance, which is measured employing the Roo
ine Model, requires additional information (obtained
from the same pro�ler) to be computed.

Before introducing the roo
ine model, it is worth noting that an additional criterion, namely the Kernel
Occupancy, is employed to further explain some behaviours shown in these models. The kernel occupancy,
also provided by the mentioned pro�ler, is de�ned as the ratio (percentage) between the number of active
work items at any instant, achieved by the pro�led kernel, and the theoretical number of work items that
can be active at the same time in the device. This relationship mostly depends on the amount of both
local and private memory employed by the analyzed kernel. The device has a limited amount of physical
memory; thus, if a kernel requires too much memory, only a limited amount of work items can be active
at the same time. In this case, the remaining work items need to be queued prior to execution. On the
other hand, when a kernel requires a small amount of memory, the theoretical maximum is achieved;
therefore, a larger or the largest possible number of work items run at the same time.

Roo
ine Model

The Roo
ine Model, introduced in [27], is a visual performance model employed to provide general insight
on how to improve a routine’s e�ciency by increasing the number of
oating point operations per unit of
time. This model helps to quickly discern, for example, whether a routine is memory- or computation-
bounded (more details on these concepts are found in subsequent paragraphs). The Roo
ine model
consists of a 2D plot, where the operational intensity is plotted on the X axis, and the attainable device
performance, in

h
FLOPS

s

i
, is plotted on the Y axis. Both axes are displayed in a base-2 logarithmic

scale. The operational intensity is the ratio representing the operations executed per byte of memory

7.1. Metrics Measurement 47

Figure 7.1: Roo
ine model example displaying the characteristics of two di�erent hypothetical kernels
running on the GPU hardware described in Appendix A (Memory bandwidth of 240 GB

s and peak
performance of 3046:4 GFLOPS

s).

tra�c. A condition on this tra�c is that the data is fetched not from any cached memory, but from the
external memory. In the case of the considered GPU platform, these data transmissions are the ones
between the processing elements and the global memory.

The roo
ine model gets its name because of the roofs below which the points corresponding to the
execution of a piece of code (OpenCL kernel in this case) are located. Such a point describes the code
execution in terms of achieved performance. First, there is a constant, horizontal roof, representing the
peak performance of the physical device. This value, given in terms of

h
FLOPS

s

i
and obtained from

the hardware speci�cations, does not depend on the operational intensity, since the device has a limited
computation capacity. Secondly, there is a sloping roof corresponding to the peak memory bandwidth
achieved by the device. This roof is obtained by multiplying the device’s memory bandwidth (constant
value in terms of

h
bytes
s

i
and obtained from the hardware speci�cations as well) by the corresponding

operational intensity, thus yielding a result in terms of
h
FLOPS

s

i
. In this sense, for every value of

operational intensity, the valid roof is the minimum value of the device’s peak performance and peak
memory bandwidth. A vertical line is drawn at the point where both roofs intersect; the points laying to
the left of this line are memory-bounded, whereas the ones laying to its right are computation-bounded. A
piece of code (OpenCL kernel) whose corresponding point is in the memory-bounded region is characterized
by having a high percentage of its execution time waiting on the memory fetch unit. On the other hand,
the computation-bound region typically represents the other case, where the system’s processing elements
are in use the majority of the CPU time, causing the memory-fetch unit to be rarely used.

Figure 7.1 illustrates a roo
ine model example of the considered hardware. Two example points are
depicted, where each of them represent the performance characteristics of a given code (OpenCL kernel)
within the modeled device. The coordinates of a given kernel’s point are obtained from the output of the
pro�ler when executing this code. The operational intensity (X axis) is computed by dividing the total
amount of bytes transferred to and from the global memory by the total number of instantiated work
items. The achieved performance (Y axis) is computed by multiplying the total number of work items
by the number of
oating-point operations executed by each of them, and then dividing this product by
the execution time.

48 Results and Analyses

In this sense, this model provides visual insight on how e�ciently are the hardware resources being
used, as well as on which actions can be taken to improve this e�ciency, which could lead to execution
time reductions. For example, if a kernel is in the memory-bounded region, improving the temporal
locality of the memory accesses can help reduce this number. On the other hand, if the kernel is in the
computation-bounded region, employing a di�erent computation paradigm, such as a divide-and-conquer,
will alleviate the low e�ciency.

7.1.2 Hologram Errors

The di�erences between the output source plane holograms generated based on the input holograms
created via the nominal approach and the proposed approaches need to be measured. The reason for
this is that the relevant metric is how accurate can a reconstruction be achieved using a certain input, not
the input itself. Therefore, two quantities describing the error per reconstructed hologram are computed.
First, the Root Mean Squared Reconstruction Error (RMSRE) is used to provide a relative quantitative
error following the next expression:

RMSREAi =

vuut 1
UV
�
UX

u=1

VX

v=1

(jpNom(u; v)j � jpAi(u; v)j)2

jpnom(u; v)j2
; (7.1)

where:

- Ai where i 2 f2; 3g denotes approachA2 as the Basic Averaging and approachA3 as the Walsh-Fourier
Transform. A1, the n Dot Products approach, does not modify the holograms (w.r.t. the nominal
approach); thus, errors are not computed for it.

- U and V are the dimensions of the reconstructed hologram (U = V = 32).

- pAi(u; v) is the spatial-frequency representation of the pressure distribution at the source plane at
point (u; v) as reconstructed using one of the proposed approaches.

- pnom(u; v) represents the same as pAi(u; v), but reconstructed based on a nominal hologram.

The second error measurement is the Normalized Sum of Absolute Di�erences (NSAD) given by:

NSADAi =
1
UV
�
UX

u=1

VX

v=1

� jpnom(u; v)j
maxjpnomj

�
jpAi(u; v)j
maxjpAi j

�
; (7.2)

where:

- maxjpAi j represents the maximum absolute value of the source plane hologram for approach Ai.

- Similar situation with maxjpnomj, but employing a nominal hologram as an input.

The NSAD error provides an absolute error which provides a measurement on visual di�erences because
it is normalized to the maximum value of a hologram, which is the value employed to de�ne the colors
assigned to all the remaining elements of the hologram. This is an important metric, since much insight
on a system is gained via visual inspection.

When attempting to compare the inverse propagated holograms obtained through the proposed Basic
Averaging and Walsh-Fourier Transform approaches, a di�erence to remark is that results obtained by
these methods are scaled by a certain factor when compared with the results obtained via the nominal
holograms. This is due to the fact that the magnitudes of the 1D transform input signals being di�erent
across each approach. To properly compare these holograms, the normalized holograms are compared
instead. All elements of a hologram are divided by its maximum magnitude:

pnorm(u; v) =
p(u; v)
max(p)

; (7.3)

where pnorm is the inverse propagated normalized hologram. This is done for all the resulting holograms
to be compared (nominal implementation, Basic Averaging and Walsh-Fourier Transform).

7.2. Kernel Template 49

After this step, the errors described in Equations 7.1 and 7.2 are computed for a proper comparison
between these holograms. It is worth mentioning that since the normalized holograms are being compared,
the ’Normalized’ quali�er in the NSAD error is redundant, and only the element-wise di�erence between
both holograms is considered (a value of 1 becomes the denominator for both terms). Now that the error
metrics have been described, the results, followed by an analysis, are presented.

7.2 Kernel Template

The family of GEMM functions pertaining to the clBLAS library is used to compare the execution of the
kernel template created for this project. Existing Basic Linear Algebra Subprogram (BLAS) libraries for
GPU platforms exist, such as CUBLAS and MAGMA. Since CUBLAS is aimed for the CUDA framework
(NVIDIA devices), the clBLAS library was selected for this comparison due to the fact that it is optimized
for AMD GPU hardware [28]. This was the reason to choose it over MAGMA.

In this case, the n dot products are viewed as a matrix multiplication: the transform matrix A with size
n�N contains the N = 1024 twiddle factors for all n desired frequency bins, whereas the time domain
input matrix B with size N �Nch contains the time samples for all Nch = 1024 channels. In this sense,
matrix C = A � B is the n �Nch matrix with the transform results. Instantiating these matrices with
the corresponding data, the clBLAS function clblasCgemm() is employed, since it multiplies general
rectangular matrices with
oat complex elements [28].

Regarding the proposed dot product template, the kernel is instantiated as follows. The device contains a
total of Nch workgroups which each process the dataset for a single microphone. All workgroups have 256
work items in charge of processing N = 1024 time samples; thus, each work item fetches NWI = 1024

256 = 4
samples. The work items compute the required twiddle factors based on their local indexes. This means
that no precomputed transform function samples need to be fetched and that the only global memory
accesses involved are the ones to read the input and to write the output. The global size of this kernel
is of 256 � 1024 = 262144 work items.

It is important to notice that three di�erent variations of the proposed kernel template were made.
The �rst one follows the reduction proposed in Figure 6.6, where only one output is generated after
each reduction cycle. The second one follows the mirrored reduction proposed in Figure 6.7, where
two outputs are generated after each reduction cycle. Finally, the third one is an optimized version of
the mirrored reduction, where four outputs are generated after each reduction cycle. Because of their
characteristics, the �rst one is employed when the number of required output holograms (n) is an odd
number, the second one when n is even, and the third one when n is a multiple of four. A di�erentiation
between these three version is made in the following results.

Results

Dummy test data (random
oat numbers ranging between [�1; 1]) was employed as the time domain
input to the performed tests, where the number of desired frequencies was n 2 [1; 10] together with
n 2 f12; 14; 16; 18; 20; 22; 30; 40; 44; 50g. The results are observed in Figure 7.2. Additionally, the roo
ine
model for both these methods was computed and is seen in Figure 7.3.

Analysis

From the results concerning the proposed kernel in Figure 7.2 (bars in di�erent tones of black), it is seen
that, in general, the kernels computing an even number of outputs (mirrored reduction) perform better
than the ones computing an odd number of outputs. This means that it is results better to compute an
even number of outputs, even if an odd number is required. Additionally, it is seen that the optimized
version for multiples of four (black bars) performs better up until when n = 16. This can be noted by
looking at the results when n = 20 and n = 22; when n = 22, the execution time is smaller than when
n = 20, which is contradictory. The reason for this is that the optimized version for multiples of four
employs a considerably larger amount of local memory (LDS). When n = 4, this version has a kernel

50 Results and Analyses

Figure 7.2: Execution time of the Dot Product kernel template vs. clBLAS implementation.

Figure 7.3: Roo
ine model of the Dot Product kernel template and clBLAS implementation. The
number of desired frequency bins is n j n 2 [1; 10]

V
n 2 f12; 14; 16; 18; 20; 22; 30; 40; 44; 50g.

7.3. 1D Time-Frequency Domain Transform 51

occupancy of 100%; however, for larger integer multiples, the e�ciency slowly decreases to 20% at n = 16.
Actually, for n > 20, this optimized version cannot execute due to the large requirements in terms of
LDS memory. This constantly decreasing kernel occupancy contrasts with the one corresponding to the
other two kernel versions, which is always 100%, independent of the variable n.

From Figure 7.2 it is also seen that the kernel template executes in less time than the clBLAS implementation
up until when n = 44. Here, the dot product kernel already takes more time, and from this point on
it is bene�cial to employ the clBLAS library. Limiting the range of required frequency bins (n � 12),
the savings achieved with the proposed kernel template are considerably larger, and around a factor of
10 for when n = 1, for example. One cause of this is the low kernel occupancy achieved by this library,
which remains at 20% for all n. However, the main reason for this di�erence is that previous knowledge
on the contents of the transform matrix is used in the proposed kernel, where as this is not the case for
the clBLAS implementation.

More speci�cally, the proposed kernel computes the required twiddle factors, whereas the clblasCgemm
function fetches them from the device’s global memory. The cost incurred by these extra memory accesses
is what decreases the execution time when employing the proposed template, specially when n � 12.
However, this is the same reason why when n � 44, this same approach requires more time than the
clBLAS library. When the size of the memory fetch is larger, the accesses are coalesced and more data
can be retrieved with a single fetch. This causes the cost of fetching the twiddle factors to be less than
the cost of computing them, therefore, reducing the execution time.

It is shown in the roo
ine model in Figure 7.3 that the kernel template achieves a considerably better
GFLOPS metric; however, the operational intensity increases proportionally with the number of desired
frequency bins n, causing the increase in execution time for this approach. The fact that the points
corresponding to the kernel template start to move to the right as the number of desired frequencies
increases is expected. This region corresponds to computation-bounded kernels, where the amount of
computation done on a single item is too high. This approach employs the DFT-based method which
has a complexity of O(N2); the right-shift of these points is a consequence. This is not the case for
the clBLAS implementation, where a step pattern can be deduced from the clusters in which the points
are located. The GFLOPS attainable by this library are low compared with the kernel implementation
for this range of n. Nevertheless, the right-shift towards the computation-bounded area is slower, thus
limiting the increase in execution time.

Usually, software libraries, such as clBLAS, are already optimized for the target systems or frameworks
and further optimizations are not guaranteed to provide valuable gains. Despite of this, when certain
assumptions on the problem are made, such as a limited range of the n value, gains can be achieved
within the assumed region. These general libraries cannot assume such situations since this would limit
their generic employability.

7.3 1D Time-Frequency Domain Transform

In order to obtain experimental data to compare, four di�erent datasets were collected by measuring
acoustic sources with the Sorama Cam in a semi-anechoic environment:

- Dataset 1 (D1) - Pistophone emitting a frequency of 1 kHz.

- Dataset 2 (D2) - Pistophone emitting a frequency of 1 kHz (di�erent location on the plane).

- Dataset 3 (D3) - Vibrating plate.

- Dataset 4 (D4) - Power drill.

From the corresponding measurements performed, the raw binary streams of all microphones were
extracted. For each originally measured dataset, an additional one was derived by applying the decimation
and time-domain window �lter to it; in this sense, two di�erent versions existed for each dataset. The
decimated and �ltered version is employed with the n Dot Products approach. Since this approach does

52 Results and Analyses

not change the hologram with respect to the nominal implementation, the ones obtained by this method
are also labeled as the nominal holograms when referring to the hologram errors. On the other hand,
the raw bitstreams originally measured are used with the Basic Averaging and Walsh-Fourier Transform
approaches.

Initially, the execution times corresponding to the time domain preprocessing and 1D domain transform
of the PNAH nominal implementation are included. These numbers, contained in Table 7.1, represent
the baseline against which the rest of the approaches’ execution times are compared to. As a side
note, the Decimation Filter stage comprises the entirety of the computations executed by the FPGA
platform. In this sense, this time is only approximated due to the fact that several factors such as
memory bu�ering, protocol drivers and queuing cannot be fully predicted. Considering an upper limit
of 100 cycles to process the dataset corresponding to a single channel, the total execution time of this
stage is the approximated to 0:001 ms.

N = 1024 Exec. time (ms)
Decimation Filter � 0:001

1D Windowing 0:048
FFT 0.089
Total 0.138

Table 7.1: Baseline execution time metrics for the 1D Time-Frequency Domain Transform.

7.3.1 n Dot Products

This approach only represents a modi�cation to the domain transform algorithm itself; the decimation
and 1D window �ltering are the same as compared to the nominal approach. Taking this into account,
only the execution times corresponding to the Dot Products and the FFT is considered since the
holograms obtained from this method are the same as the ones generated by the nominal implementation.

Results

The execution times of the Dot Product approach, normalized with the FFT execution times, are provided
in Figure 7.4. The roo
ine model comparing both the FFT algorithm versus the DFT-based one is
included in Figure 7.5.

Analysis

The kernel characteristics previously pointed out become more apparent in Figure 7.4. In the cases
where optimized mirrored version was used (n = 4 and n = 8), the execution times show a sort of stepped
behaviour in the sense that, with respect to their predecessors (n = 3 and n = 7), this metric does not
increase as could be inferred. Additionally, it is seen that the di�erence in execution time between the
cases when n = 5 and n = 6 is minimal. Once again, this is due to the mirrored pattern proposed in
Figure 6.7.

The Dot Products approach yields gains in execution times when n 2 [1; 5]. Based in Equations 3.1
and 3.2, which estimate the limits of this approach’s applicability, and considering that N = 1024,
it would be expected that nx = 10, meaning that this approach would remain bene�cial in a range
n 2 [1; 10]. Nevertheless, these experiments show that this is not the case by a factor of 2 (Figure 7.4).

One of the causes for this di�erence is the fact that the clFFT library does not incur in any twiddle
factor computation, whereas the proposed approach does compute the require twiddle factors. The
clFFT-generated kernel writes the basic twiddle factors, in a permutated fashion, in the constant memory.
When these complex values are required, they are broadcasted to all the work items who requested them.
Moreover, the permuted order in which these factors are stored allows an ordered access to this memory,
since it follows the memory access pattern characteristic of the Stockham implementation of the FFT

7.3. 1D Time-Frequency Domain Transform 53

Figure 7.4: Dot Product execution times, normalized to the FFT execution time.

Figure 7.5: Roo
ine model of the Dot Product kernel and the clFFT implementation. The number of
desired frequency bins ranged in the values n 2 [1; 10] for the Dot Product kernel.

54 Results and Analyses

algorithm, which is the one used by the clFFT library. As a �nal remark, the divide-and-conquer
paradigm is such that, within a certain tree level (except in the leaves), more than one twiddle factor
is employed by di�erent butter
ies; therefore, an e�cient reuse of the fetched data takes place. This
cannot be the case for this DFT-based implementation since each of the n di�erent frequency bins require
di�erent twiddle factors that, in the general case, are not reusable by the remaining frequency bins.

In order to explore the bene�ts of twiddle factor fetching over computing, a version of this proposed
approach, where the twiddle factors were also fetched from constant memory was implemented. The
frequent fetches required by this algorithm’s paradigm increased the average execution times by a factor
of approximately 20 since the memory fetches increased proportionally with the number of holograms
(n). This caused the algorithm to be memory-bounded and decreased its operational intensity, which
in turned decreased the e�ciency achieved by the device while executing this kernel. For these reasons,
this implementation was discarded.

Regarding the roo
ine model from Figure 7.5, a clear distinction can be seen between the cases where
n = 4 and n = 8 (optimized mirrored version) and the rest. A more subtle di�erence is also noticeable
between the mirrored and unmirrored versions when n = 5; n = 6 and n = 7. Nevertheless, it is seen
that the quickly increasing operational intensity of the dot product approach in general is the cause of
it being bene�cial for only a limited number of required frequency bins. The easiest option to solve this
issue, when considering larger number of required frequencies, is changing the algorithm paradigm, or in
other words, to employ the FFT algorithm. Nevertheless, when n 2 [1; 5], the Dot Product approach is
recommended.

7.3.2 Basic Averaging

This approach uses the raw binary data to perform a basic averaging/decimation based on a population
count function to count the number of binary 1’s. Once this is done, the data is transformed via the Dot
Product approach or the FFT algorithm. In this case, to further employ the proposed kernel template,
as well as to avoid the overhead of launching a di�erent kernel for the clFFT library, the Dot Product
approach was included in the same kernel as the population count-based decimation.

Results

Within the kernel deployed for this approach, the proposed dot product takes place right after the
population count-based decimation has been executed. In this sense, the execution times obtained from
the pro�ler are the sum of the last approach plus the population-count based decimation:

tA2 = tA1 + tpc; (7.4)

where:

- tA2 denotes the execution time for Approach 2 (Basic Averaging).

- tA1 is the execution time for Approach 1 (Dot Product approach, as shown in the last section).

- tpc is the execution time of the population count-based decimation by itself.

With this expression, the execution time of the basic decimation is computed by substracting the two
outputs from the pro�ler. After performing a set of measurements where the n variable was in the range
of [1; 10], and using the data from the previous approach, the average execution time of the population
count-based decimation was found to be tpc = 0:005 ms.

Regarding the holograms, an example of the input and backpropagated holograms employing the nominal
and Basic Averaging approaches are seen in Figure 7.6a and in Figure 7.6b.

7.3. 1D Time-Frequency Domain Transform 55

(a) Dataset D 1 - 1000 Hz - RMSRE of 14:3% and NSAD of 2:05% (Output holograms).

(b) Dataset D 2 - 1000 Hz - RMSRE of 7:5% and NSAD of 1:2% (Output holograms).

(c) Dataset D 3 - 220 Hz - RMSRE of 11:7% and NSAD of 0:9% (Output holograms).

(d) Dataset D 4 - 824 Hz - RMSRE of 19:2% and NSAD of 7:1% (Output holograms).

Figure 7.6: Input and Output holograms comparison between the Nominal implementation and the
Basic Averaging. The normalized pressure is employed and four di�erent datasets (Sub�gures a, b, c

and d) are analyzed. For all datasets, the K-space �lter parameters are: cut-o� wavenumber
kco = 50 radm and slope of 0:3. The RMSRE error distribution (normalized to the corresponding RMSRE

value) between both output holograms is shown at the right.

56 Results and Analyses

Analysis

From the nominal results included in Table 7.1, it is seen that the achieved population count-based
decimation (tpc = 0:005 ms) performs 5 times slower than the decimation �ltered currently carried out
in the FPGA. However, this method eliminates the need of a time-domain window. In fact, applying such
a window considerably distorts the frequency spectra and the relevant information for a given frequency
bin is lost. By removing the time-domain windowing step, the achieved execution times are reduced.
Additionally, di�erent advantages are exposed, which might not be considered when only looking at this
�gure itself.

With this approach, a known value for the decimation stage execution time is obtained. This is not
the case for the current system, where an approximation of this time is used. Measuring the exact time
required by the FPGA-based decimation �lter, on practical cases, turns out to be a complex task since
there are many factors which play a role, such as sample bu�ering or FTDI controllers, for example.
Therefore, the approximations are estimated based on the model characteristics, such as the length of
the FIR �lter within the decimation process.

On another aspect and as mentioned before, this proposed approach causes a higher system integration,
since the need for the external FPGA disappears. This has positive e�ects on the overhead of transmitting
the data from this device to the employed GPU, and is bene�cial when considering issues as system cost,
for example.

One of the most important aspects to remark about this approach is the validity of the generated
holograms. As seen from the data in Figures 7.6a,7.6b,7.6c and 7.6d, the obtained backpropagated
holograms have a small visual di�erence; the pressure distribution at the source plane is well interpreted
and considered a reliable representation. The error distribution on the right of these �gures shows that
the errors concentrate on the zero crossings. Since this is a relative error, this behaviour is expected.

7.3.3 Walsh-Fourier Transform

This last proposed method is implemented in such a way that an approximation of the Fourier coe�cients
is achieved via the Walsh-Fourier Transform. As seen in Figure 5.4, the number of required Walsh
coe�cients varies depending on the frequency. Furthermore, for this implementation, only the 40 most
important Walsh coe�cients were employed. This represents a tradeo� between execution time and
hologram error: the larger the number of used Walsh coe�cients, the longer the execution time and the
smaller the hologram error. And viceversa.

Results

Regarding execution times, the implementation employing 40 precomputed Walsh functions took a total
of 0:32 ms. to create a single hologram. Additionally, the implementation computing the required Walsh
functions required 1:25 ms.

The results for the same datasets as in the previous section, but employing the Walsh-Fourier approach
are seen in Figures 7.7a,7.7b,7.7c and 7.7d.

Analysis

This approach’s execution times (0:32 ms. with precomputed Walsh functions and 1:25 ms. computing
these ones) are far too high to be considered as a viable option at the moment.

The fastest implementation, the one which employs the precomputed Walsh functions, fetches them from
the global memory, which is the slowest memory in the device. Moreover, the slower implementation
(Walsh function computation) is also memory-bounded. However, the reason is slightly di�erent. These
functions are computed based on the Rademacher functions. These basic functions are stored in the
constant memory because they �t here (15 Rademacher functions � 4096 bytes

function < 64 kB of the constant
memory). Even though the constant memory is optimized for broadcasting, its amount of accesses is

7.3. 1D Time-Frequency Domain Transform 57

(a) Dataset D 1 - 1000 Hz - RMSRE of 25:3% and NSAD of 4:26% (Output holograms).

(b) Dataset D 2 - 1000 Hz - RMSRE of 21:1% and NSAD of 7:6% (Output holograms).

(c) Dataset D 3 - 220 Hz - RMSRE of 17:4% and NSAD of 5:9% (Output holograms).

(d) Dataset D 4 - 824 Hz - RMSRE of 30:7% and NSAD of 9:4% (Output holograms).

Figure 7.7: Input and Output holograms comparison between the Nominal implementation and the
Walsh-Fourier Transform approximation. The normalized pressure is employed and four di�erent

datasets (Sub�gures a, b, c and d) are analyzed. For all datasets, the K-space �lter parameters are:
cut-o� wavenumber kco = 50 radm and slope of 0:3. The RMSRE error distribution (normalized to the

corresponding RMSRE value) between both output holograms is shown at the right.

58 Results and Analyses

too high. This increased access number is caused because each Walsh function requires, on average,
between three and four Rademacher functions. Additional, costly extra operations, such as the Gray
code conversion, take place. These are the main reasons why the execution time of this implementation
is too high.

The computation of the dot product itself is not the problem in these implementations; the issue is
loading the required Walsh functions. A proposed solution for this is exploiting the periodicity of the
Rademacher functions to speed up the Walsh function computation, or to exploit the properties of the
XOR truth table. For the �rst alternative, the value for a Rademacher function can be computed based
on a work item’s local index and Rademacher index, for example. In the case of the last proposed
solution, it is useful to refer to Table 5.3, containing the XOR truth table. When an binary input time
signal is XOR’ed with a binary 0, the sample is not altered. However, when it is XOR’ed with a binary 1,
the result is
ipped or toggled. Since the Walsh-Fourier transform approach is based on population count,
an alternative could be to simply calculate the number of binary 1’s that a Walsh function has, and with
this information, compute how many binary samples in the time domain input will be
ipped. In this
sense, the current result of XOR’ing both functions is obtained based on the original population counts,
avoiding the need of further XORs and, most importantly, of fetching the Walsh function. The concept
of the Walsh function’s sequency is employed in this alternative since it has a direct relationship to (it
represents the proportion between) the number of binary 1’s and 0’s in a function. Further research into
this topic is needed.

Regarding the obtained holograms, even though the visual interpretation is of good use (as pointed
out by the small NSAD errors), there is a considerable RMSRE error. The reason for this is the small
number (40) of Walsh coe�cients computed to approximate the real Fourier coe�cients. As mentioned
before, this number represents a tradeo� between execution time and hologram di�erences. Increasing
this number reduces these errors; furthermore, when this number is su�ciently large, the output of this
approach is the same as applying the Fourier transform directly on the entire raw bitstream. As an
example of what this approach could achieve, Figures 7.8a,7.8b,7.8c and 7.8d are given. Here, it is seen
(as con�rmed by the very small NSAD error) that the visual output is close to identical to that of the
nominal approach. In fact, when looking closely, one could argue that more, smaller details can be
observed in the Bitstream-based output hologram. It can be the case that these details were discarded
in one of the �ltering stages of the nominal approach, for example. This can explain the RMSRE error
obtained with these holograms.

One last advantage of this approach is that the interpretability of the resulting hologram is higher
when analyzing low frequencies. The nominal decimation �lter adds a large DC o�set to the input
time-domain signals. Moreover, said DC o�set is di�erent depending on the channel (one column has a
larger DC o�set than the other). When performing the time-to-frequency domain transform, the energy
contained in the DC component bin is very high. The amount of energy leaking to the neighboring
frequency bins also increases, therefore distorting the original information (example in Figure 7.9a). On
the other hand, the raw bitstream has a DC o�set of zero, and its corresponding DC component bin in
frequency domain has, consequently, less energy. This makes the information in the neighboring bins
still be interpretable. An example of this situation can be seen in Figure 7.9b.

7.4 2D Frequency-Kspace Domain Transform

Results

The 2D spatial frequency to K-space domain transform is carried out by a 2D FFT implemented by the
clFFT library. The execution times of the 2D forward transform, for di�erent number n of holograms, is
shown in Figure 7.10, whereas the roo
ine model for the same con�gurations of the 2D FFT is shown in
Figure 7.11. The FFTs executed for each hologram consisted on transforming a 96� 96 complex matrix,
representing the 32 � 32 complex matrix representing original aperture size, and the extrapolated data
surrounding this originally measured area.

7.4. 2D Frequency-Kspace Domain Transform 59

(a) Dataset D 1 - 1000 Hz - RMSRE of 1:2% and NSAD of 0:01% (Output holograms).

(b) Dataset D 2 - 1000 Hz - RMSRE of 2:7% and NSAD of 0:006% (Output holograms).

(c) Dataset D 3 - 220 Hz - RMSRE of 6:2% and NSAD of 0:9% (Output holograms).

(d) Dataset D 4 - 824 Hz - RMSRE of 8:4% and NSAD of 1:1% (Output holograms).

Figure 7.8: Input and Output holograms comparison between the Nominal implementation and the
exact Walsh-Fourier Transform approach, which is equivalent to applying the Fourier Transform on

the raw bitstream. The normalized pressure is employed and four di�erent datasets (Sub�gures a, b, c
and d) are analyzed. For all datasets, the K-space �lter parameters are: cut-o� wavenumber

kco = 50 radm and slope of 0:3. The RMSRE error distribution (normalized to the corresponding RMSRE
value) between both output holograms is shown at the right.

60 Results and Analyses

(a) D 3 - Nominal approach.

(b) D 3 - Exact Walsh-Fourier Transform

Figure 7.9: Dataset D3 is depicted in both sub�gures (a and b) for a frequency of 55 Hz., which
corresponds to the second frequency bin. Spectral leakage of the DC component (�rst frequency bin) in
(a) causes information loss for low frequencies. This undesired e�ect does not appear in (b) since the
leaked energy is less. The K-space �lter parameters are: cut-o� wavenumber kco = 50 radm and slope of

0:3.

Figure 7.10: Execution time of the forward 2D FFT.

7.4. 2D Frequency-Kspace Domain Transform 61

Figure 7.11: Roo
ine model of the 2D FFT for
n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 20; 30; 40; 50; 100; 200; 500; 1000g holograms.

Analysis

The clFFT 2D Fourier transform is an algorithm which performs considerably well in terms of execution
times. It is seen from these results, for example, that applying the forward 2D FFT on 20 96 � 96
holograms is slightly faster than executing a 1D FFT on the datasets of Nch = 1024 channels, each
consisting of N = 1024 samples. This is one of the reasons why the focus in this project was set on the
�rst FFT.

Proposing an alternative to reduce execution times on the 2D FFT is not straightforward. A n Dot
Product-similar approach to the 2D Fourier transform would not even yield the small gains obtained
in the 1D case, for example. The reason for this is that the complexity of such algorithm is no longer
proportional to O(N2), but to O(N4), and this would eliminate the possibility of even marginal gains.
A fast algorithm, such as the FFT, is the best option to perform this domain transform, since for its 2D
version has a complexity of O(N2 � log2N2).

As seen in the roo
ine model in Figure 7.5, the GFLOPS attained by the 2D FFT increase along
with the number of computed holograms. Nevertheless, this does not mean that the algorithm executes
faster, as illustrated in the data from Figure 7.10. If the number n of holograms is such that the 2D
FFT represents a bottleneck for the PNAH algorithm, an option could be to employ more than one GPU
device to execute the PNAH algorithm from the 2D FFT onwards.

This alternative is proposed for the 2D FFT and not for the 1D one because in the latter case, batch
size and the dataset size is such that the 1D FFT executes in an amount of time small enough such that,
if it were split into more devices, the gains would be marginal.

In case a technique such as zero-padding would be employed to improve the output results’ readability,
the hologram size would increase. In this sense, the 2D FFT can achieve a better performance, however,
the execution time would also increase. Considering this scenario, an alternative could be to implement
the 2D Sparse FFT algorithm, proposed by [29]. This algorithm has considerable bene�ts in terms of
time complexity when the proportion of non-zero coe�cients is very small (� 5%) when compared to
the number of zero coe�cients. Nevertheless, this number of non-zero coe�cients might be too low when
compared with the considered case of the inverse 2D FFT.

62 Results and Analyses

7.5 Entire PNAH Algorithm

In this section, the execution times of the entire PNAH algorithm are considered, where the n Dot
Products and Basic Averaging approaches have been considered. Since the Walsh-Fourier Transform is
still too slow to be considered for this real-time application, it has not been included.

Results

The n Dot Products approach is bene�cial only for the case when the number of desired frequencies is
n � 5. For larger values of n, the implementation presented in [6] should remain the same. In this sense,
the execution times for the cases where n � 5 is shown in Table 7.2. Additionally, since this approach
causes no di�erence in the input holograms, the inverse propagated pressure distributions have no error
compared to the nominal approach.

The Basic Averaging approach causes a very small increase (almost negligible) of the execution time
caused by the GPU-based equivalent of the decimation �lter. Nevertheless, this method decreases the
overall execution time due to the elimination of the time domain windowing step. Since the implemented
Basic Averaging uses the n Dot Product approach, as the domain transform, the gains presented in Table
7.2 are also limited for n � 5. If this Basic Averaging were to be coupled with the FFT algorithm instead,
the gains on the PNAH algorithm would only be the remotion of the 1D windowing. In this case, this
would represent a 7:4% of execution time reduction in the best case (where n = 1). Even though this
reduction is constant, the relative percentage decreases because when increasing n, the execution time
does as well.

Regarding the last approach, the current GPU implementation of the Walsh-Transform is not yet suited
to ful�ll the required throughput of at least 1kHz for the PNAH algorithm to be executed in real-time.
This is because creating a single hologram from the time input takes around 0:32ms, or 1

3 of the time
required for a single iteration. Further suggestions on this approach follow in the next chapter.

Number of holograms (n) 1 2 3 4 5

Exec. time (ms)
Nominal 0:643 0:666 0:691 0:721 0:742

n Dot Products 0:577 0:619 0:658 0:687 0:733

Basic Averaging 0:535 0:577 0:615 0:645 0:689

Relative gain (%)
n Dot Products 10:26 7:05 4:77 4:71 1:21

Basic Averaging 16:79 13:36 11 10:54 7:14

Table 7.2: Total execution time for a single iteration of the PNAH algorithm. The relative gains are
computed with respect to the nominal implementation.

Analysis

It is shown that reducing the PNAH algorithm execution times on the real-time implementation requires
not only addressing the domain transform, but also proposing a modi�cation on the time domain
preprocessing stages. Disregarding the number of desired holograms, this preprocessing stage always
takes place and represents a constant additional time.

From the n Dot Product approach, it was seen that keeping the same time domain preprocessing
algorithm, the gains in the execution time are only obtained considering limited cases where the number
of desired holograms is n � 5. To achieve larger gains, a modi�cation to this preprocessing stage was
proposed for the other two alternatives.

With the Basic Averaging approach, a larger gain was achieved since the need for the time domain
windowing is removed. Additionally, a higher integrated system can be conceived, since there is no need

7.5. Entire PNAH Algorithm 63

for additional external components: the entire algorithm is executed in the GPU platform. Although, it
is important to consider whether the controller system, the one receiving the backpropagated holograms,
is able to correctly operate with the holograms product of this method, where some di�erences exist
when compared to the ones generated by the nominal approach.

Finally, even though the current implementation of the Walsh-Fourier Transform method has still a
large room for improvement, it has a lot of potential due to the simplicity of the operations which this
method requires. Even though a larger number of Walsh coe�cients are required to improve the output’s
accuracy (currently using 40), as seen in Figure 5.4, for certain frequency components this method can
yield greater advantages because of the small number of coe�cients required. Similar to the Basic
Averaging method, the Walsh-Fourier Transform removes the need for time domain windowing, which
yields additional gains in execution time. Finally, the backpropagated holograms generated using this
method tend to become more accurate as the number of Walsh coe�cients increases. These tendency
leads to what would be the results of applying the FFT directly on the raw bitstream; an example
of this is provided in Figure 7.8a. These results raise a question on whether it would be preferable to
use the binary input to get a more accurate representation of the pressure distribution at the source plane.

64 Results and Analyses

Chapter eight

Closure

This �nal chapter presents the conclusions of the work described in this document, and afterwards
concludes with a couple of suggestions to continue the development along the direction proposed.

8.1 Conclusion

The real-time implementation of the PNAH algorithm presented in [6] currently achieves a throughput
of 1kHz for at most 10 holograms. This same cited source optimized the 2D extrapolation method and
proposed the use of the PLPBP algorithm. In this way, the most time consuming stage within the PNAH
algorithm was addressed. To explore additional ways of reducing the execution times, the attention was
drawn to the domain transforms employed by this algorithm, speci�cally, to the spatial time-frequency
transform, usually executed via the FFT.

First, a modi�ed DFT algorithm was proposed to reduce the execution times of the domain transform
itself. Since this approach yielded limited gains when compared to the heavily optimized clFFT library
implementing the FFT, some proposals were done in order to modify the time domain preprocessing
stage. These alternatives operate on the raw bitstreams directly from the sensors (microphones). This
implies that the decimation �lter and time windowing are removed. Together with these discarded stages,
computing only the required frequency bins, as initially proposed with the modi�ed DFT algorithm, yields
larger gains.

Even though the execution time reductions achieved in this project are modest, for a speci�c case,
the improved throughput by 15% was achieved. However, the main contributions of this work are:

- The viability of PNAH analysis based on binary-generated input holograms is shown

- The analyses made on the domain transforms which exhibit potential execution time reductions.

The Basic Averaging and the Walsh-Fourier Transform approaches showed that an accurate representation
of the source plane pressure distribution is achieved employing the raw, un�ltered input. There are some
di�erences in the holograms presented as example; however, there is still room for further improvement
of the proposed techniques. This is specially the case for the Walsh-Fourier Transform, where improving
the approximation (increasing the number of Walsh coe�cients) tends to resulting holograms which could
arguably contain more details compared to the nominal output holograms.

Two �nal points are made as conclusion of this project:

- Execution times: For a number of desired holograms n � 5, the n Dot Product approach
is suggested. Otherwise, the FFT implemented via the clFFT library is the best option. For 2D
domain transforms, a DFT-like approach would worsen the execution times; thus, the clFFT library
should be used in this case as well, independent of the n.

65

66 Closure

- Binary input: A domain transform applied directly on the raw bitstream yields accurate results
on the source plane representation of a pressure distribution. Since employing the Fourier transform
would be too costly because of the use of a larger number of time samples (even with the FFT),
two alternatives to do so are presented and shown to generate signi�cative results.

8.2 Future Work

The clFFT library remains the best option to compute the 2D forward and backward FFTs. As
mentioned before, if a bottleneck appears at this stage, the possibility exists to split the workload
in di�erent GPU devices since the holograms are independent of each other. In this way, the execution
times are reduced.

Additional improvements in the Walsh-Fourier Transform are suggested. The current GPU implementation
can be improved by reducing the memory accesses to fetch the Walsh (or Rademacher) functions; as a
proposed solution to this, consider the mentioned possibility of exploiting the XOR truth table. Moreover,
instead of completely bypassing the FPGA device for this approach, this platform can be used to compute
the Walsh-Fourier Transform. This was not currently possible since the memory capabilities of the
device would limit the number of Walsh coe�cients used to approximate an output, and the number of
outputs. The reason for this is that each Walsh function requires 4096 bytes of memory, and accurate
approximations can require tenths of these functions for one single hologram, which could mean hundreds
for several holograms. A device with greater capabilities could be a candidate for such an implementation.
Furthermore, if an optimization to the Walsh-Fourier transform as proposed is achieved such that the
whole process is carried out based on the original population counts, this process can be executed in the
current platform and the addition of Walsh coe�cients to the approximation would be easier and faster.
The main objective of this alternative is to reduce the PNAH execution times by enabling the FPGA to
output the spatial-frequency domain holograms, instead of a time-domain output which still needs to be
preprocessed.

Finally, it is worth mentioning that, following Amdahl’s law, a lower bound for the execution time
of the PNAH algorithm computing n output holograms is the execution time when n = 1. The PNAH
algorithm is comprised by a sequential and a parallel section. The sequential section (time domain
preprocessing and 1D domain transform) is independent from the number of required holograms. The
parallel section is formed by the following computation stages (spatial-frequency and K-space domains).
This parallel section can in theory be executed by a separate device for each hologram; this is the reason
why, when n = 1, the lower limit on execution time is achieved. The best execution time when n = 1
achieved in this work is approximately 0:53 ms, which represents a current throughput close to 2 kHz.

A Walsh-Fourier Transform implemented in the FPGA device could improve the execution times, and
in consequence the throughput, in approximately 15% as seen in the relative execution times in Figure
3.5b. However, the largest bottleneck of the PNAH algorithm is still the spatial-frequency domain
extrapolation stage: this process incurs in several memory accesses to estimate the new values. Future
GPU devices where memory access latency is reduced, or bandwith improved, will bring considerable
improvements to the real-time implementation of PNAH.

Bibliography

[1] E. G. Williams, Fourier Acoustics: Sound Radiation and Near�eld Acoustical Holography. Academic
Press, 1999.

[2] R. Scholte, \Improved Source Localization Techniques in Planar Near-Field Acoustic Holography,"
Master’s thesis, University of Twente, 2004.

[3] P. van Dalen, \Transient Planar Near-�eld Acoustic Holography," Master’s thesis, Eindhoven
University of Technology, 2012.

[4] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1993.

[5] R. Scholte, \Fourier Based High-resolution Near-Field Sound Imaging," Ph.D. dissertation,
Eindhoven University of Technology, 2008.

[6] W.J.N. Ouwens, GPU-accelerated Real-Time Transient Planar Near-�eld Acoustic Holography,
Master’s paper, Eindhoven University of Technology, 2013.

[7] B. Baker, \How delta-sigma ADCs work," Texas Instrument Inc., Tech. Rep., 2011.

[8] E. Hogenauer, \An Economical Class of Digital Filters for Decimation and Interpolation," Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 29, no. 2, pp. 155{162, Apr 1981.

[9] Khronos Group - OpenCL, https://www.khronos.org/opencl/.

[10] F. Harris, \On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,"
Proceedings of the IEEE, vol. 66, no. 1, pp. 51{83, Jan 1978.

[11] clFFT Libraries Website, https://github.com/clMathLibraries/clFFT.

[12] C. V. Loan, Computational Frameworks for the Fast Fourier Transform. Cornell University, 1992.

[13] P. N. Derk Reefman, \Why Direct Stream Digital is the best choice as a Digital Audio Format,"
Audio Engineering Society, 2001.

[14] S. Park, Principles of Sigma-Delta Modulation for Analog-to-Digital Converters. Motorola, 1993.

[15] FFTW Website - Pruned FFTs, https://www.�tw.org/pruned.html.

[16] N. Ahmed, Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, 1975.

[17] E. Chu and A. George, Inside the FFT Black Box. CRC Press, 2000.

[18] K.-h. Siemens and R. Kitai, \Digital Walsh-Fourier Analysis of Periodic Waveforms,"
Instrumentation and Measurement, IEEE Transactions on, vol. 18, no. 4, pp. 316{321, Dec 1969.

[19] Y. Tadokoro and T. Higuchi, \Discrete Fourier Transform Computation via the Walsh Transform,"
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 26, no. 3, pp. 236{240, Jun
1978.

67

https://www.khronos.org/opencl/
https://github.com/clMathLibraries/clFFT
https://www.fftw.org/pruned.html

68 Appendices

[20] N. Yogi and V. Agrawal, \Application of Signal and Noise Theory to Digital VLSI Testing," in VLSI
Test Symposium (VTS), 2010 28th, April 2010, pp. 215{220.

[21] B. Jacoby, \Walsh Functions: A Digital Fourier Series," The BYTE Book of Computer Music, 1977.

[22] A. R. M. Zul�kar; Abbasi, Shuja A.; Alamoud, \FPGA Based Walsh and Inverse Walsh Transforms
for Signal Processing," Electronics & Electrical Engineering, vol. 18, 2012.

[23] Khronos Group, \OpenCL Speci�cation v1.2," https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

[24] Advanced Micro Devices, AMD Graphics Cores Next (GCN) Architecture,
https://github.com/AMD-FirePro/SDK/tree/master/documentation, 2012.

[25] ||, Southern Islands Series Instruction Set Architecture
, https://github.com/AMD-FirePro/SDK/tree/master/documentation, 2012.

[26] N. Hahn, \Sound Field Simulation Using Extrapolated Loudspeaker Impulse Responses," in Audio
Engineering Society Conference: 52nd International Conference: Sound Field Control - Engineering
and Perception, Sep 2013.

[27] P. Williams, Waterman, \Roo
ine: An Insightful Visual Performance Model for Floating-Point
Programs and Multicore Architectures," 2008.

[28] Advanced Micro Devices, OpenCL BLAS Manual, http://clmathlibraries.github.io/clBLAS/, 2013.

[29] Andre Rauh, Gonzalo Arce, \Sparse 2D Fast Fourier Transform," Proceedings of the 10th
International Conference on Sampling Theory and Applications, 2013.

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://github.com/AMD-FirePro/SDK/tree/master/documentation
https://github.com/AMD-FirePro/SDK/tree/master/documentation
http://clmathlibraries.github.io/clBLAS/

Appendix A - HW and SW Specs

GPU Device

Description Value

Device name AMD Radeon HD 7900 Series (Tahiti 7950)

Architecture name Graphics Core Next (GCN)

Clock freq. 850 MHz

Memory bandwidth 240 GB
s

Number of Compute Units 28

Stream Processors per C.U. 64

Wavefront size 64

Total Stream Processors 1792

Global memory size 3 GB

Constant memory size 64 kB

Local memory size 32 kB

FPGA Device

Description Value

Device name XC3SD3400A Spartan-3A DSP FPGA

DSP48As units 126

Distributed RAM bytes 47744

Block RAM bytes 290304

CPU

Description Value

Processor Intel Core i7-3770 @3.4 GHz

OS Windows Server 2012 R2 64-bits

RAM 16 GB

Pro�ler AMD CodeXL Pro�ler (version 1.4.5724.0)

69

70 Appendix A - HW and SW Specs

Appendix B - Sorama Cam Mapping

Figure 10.1: Sorama Cam formed by 16 di�erent 8� 8 microphone arrays. Some microphones are
shown (white points) along with their corresponding camera channel number. The depicted point of

view is from the back (the microphones are pointing towards inside the depicted plane).

71

72 Appendix B - Sorama Cam Mapping

This section describes the Sorama Cam MEMS microphone mapping, with the objective of detailing
how the raw bitstream was obtained from a modi�ed �rmware loaded into the FPGA Platform. The
data output of such a �rmware follows the ordering here described. This data sequence was taken into
account when creating the proper data acquisition software.

The Sorama Cam, illustrated in Figure 10.1, consists of 16 individual arrays, each labeled with their
corresponding column letter and row number. The order in which the data from the arrays is fetched
follows a columnwise (left to right) order, and within each column, it follows an ascending order (zero
to three). In this sense, the array sequence is: fA0; A1; : : : ; A3; B0; B1; : : : ; D3g. This, along with the
microphone numbering depicted in the same �gure, constitutes the mapping at the camera level.

For each individual array, a di�erent microphone mapping (array level) is employed and is depicted
in Figure 10.2. In this case, the data is retrieved row-wise from left to right, and from the top down.
This can be inferred from the few numbers next to their corresponding microphones depicted in the
referred �gure.

Figure 10.2: Single 8� 8 microphone array. The depicted point of view is from the back (the
microphones are pointing towards inside the depicted plane).

For the raw data acquisition, each microphone generates a 1-bit sample; therefore, two 32-bit chunks
contain one time sample for every microphone in a single array. Following the array level mapping just
described, the �rst 32-bit chunk of data contains the 1-bit samples corresponding to microphones [0; 31]
(top four rows, shaded in red in Figure 10.2), whereas the second 32-bit data chunk contains the binary
samples of microphones [32; 63] (lower four rows, shaded in blue). Taking into consideration that the
system follows the little endian convention, the least signi�cant bit (LSB) of every 32-bit chunk read
corresponds to microphone 0 or 32, where as the most signi�cant bit (MSB) belongs to microphone 31
or 63.

The raw binary data acquisition software combines the mapping at these two levels (camera and array)
to correctly assign the bits to their corresponding microphone. In this case, the �rst 32 32-bit data
chunks contain the �rst bit sample for all the microphones. Combining both mappings, it is seen that
every two 32-bit data chunks belong to the the arrays following the previously described sequence:
fA0; A1; : : : ; A3; B0; B1; : : : ; D3g. Once the mapping is done, the microphones acquire a new global
(camera-level) index, as illustrated in Figure 10.2. For example, microphone 0 of array A0 has a global
index of 768, microphone 0 of array A3 has global index 0 and microphone 63 of array D0 has global
index 1023.

	Introduction
	Problem Description
	Project Goals

	Planar Near-Field Acoustic Holography
	Acoustic Holography
	PNAH Algorithm description

	System Description
	PNAH Implementation
	Performance Metrics
	Proposed Modifications

	Fourier Transform
	Background concepts and definition

	Walsh-Fourier Transform
	Implementation
	Results and Analyses
	Metrics Measurement

	Closure
	Conclusion
	Future Work

	Appendix A - HW and SW Specs
	Appendix B - Sorama Cam Mapping

