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A. ABSTRACT 
 

The multimedia functionality in modern handheld devices is computationally intensive 

and requires a lot of energy. The source of energy in these devices is usually a 

battery. Battery technology has not improved at the pace of increase in energy 

requirements. An important requirement in these devices is to reduce power 

consumption while meeting the timing constraints of multimedia applications. 

Multimedia applications have the advantage of allowing run time trade-offs between 

(picture) quality and power consumption. The (picture) quality and hence the power 

consumption can be controlled by application parameters. In order to allow for run 

time trade-offs, one needs to have an estimate of power consumption for various 

application parameter settings.  

 

This thesis focuses on developing power models for a System-on-Chip and Double 

Data Rate (DDR) memory from application parameters. The power models were 

developed through physical measurements on a Philips PNX1500 platform by running 

MPEG-4 decoder application. We present two methods to develop power models. The 

first method develops power models at a higher abstraction level by excluding 

architecture level details, whereas the second method considers architecture level 

details. Power models developed with the first method are abstract and easy to model, 

but the validity of the models is limited to this specific platform. The architecture level 

details of the second method can be projected to other platforms. In this thesis, we 

also show that the architecture level details can be used to derive the scalable 

frequencies for dynamic frequency scaling method. The experiments with two input 

streams of different content suggest that the content of the input stream has no 

influence on power models.  
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1 Introduction 

1.1 Problem description 

Modern handheld devices incorporate a lot of multimedia functionality. Multimedia 

functions like video encoding and decoding are computationally intensive and cause a 

lot of energy consumption [1]. The source of energy in the handheld devices is 

usually a battery. Battery technology has not improved at the pace of increase in 

energy requirements [2]. Moreover, in handheld devices the capacity of the battery is 

limited. The battery is small and cannot be enlarged because of the restricted size and 

weight of the handheld. Therefore, in handheld devices reducing energy consumption 

while meeting the timing constraints of multimedia applications is an important 

requirement.  

 

The energy consumption of a system can be reduced through various parameters of 

the application and architecture, and through different power management techniques 

like clock gating and dynamic voltage and frequency scaling. In multimedia 

applications, it is possible to make trade-offs between picture quality and energy 

consumption. For example, with a given battery, some times it is necessary to make 

sure that the battery operates long enough for a particular activity like playing video. 

In this case, we can extend the battery life by reducing the energy consumption with a 

compromise in picture quality but still meeting the timing constraints. The picture 

quality can be controlled by various parameters of the application. In order to allow 

run time trade-offs, we need to have an estimate of the energy consumption for 

various application parameter settings. 

 

The goal of this thesis is twofold: (1) To develop models that can predict the power 

consumption of a system from application parameters without considering the 

architecture level details. In order to make fast, run time decisions, these models 

should be simple and abstract enough. The modeling effort required for these models 

is limited because they exclude all the architecture level details. But the validity of 

these abstract models is restricted to a specific context, for example to a specific 

platform. (2) To develop models that can predict the power consumption of a system 

from application parameters by considering the architecture level details. These 

models include all the platform parameters that influence the power consumption. 

These platform parameters can be used to estimate platform parameters in similar 

multimedia platforms. The parameters can also be used to investigate the 

compositionality in applications. Accurate estimates of the power consumption 

require capturing all the platform parameters that influence the power consumption. 

On the other hand, sometimes it is not possible to measure all the parameters due to 

platform limitations. Therefore, the models should include the necessary parameters 

to allow relevant and adequate predictions. 

 

This thesis work is performed in the context of a European project called BETSY. 

The BETSY project investigates theory, models and design methodology to make 

well-founded trade-offs between time-constraints, terminal and network resources and 

energy consumption. Figure (1) shows a basic BETSY set-up of a video streamed 

from a camera through a wireless connection to a handheld computer, where it is 

displayed.   
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Figure 1: End to End streaming 

 

On the left hand side, the video is captured, encoded (MPEG-4 simple profile) and 

sent over a wireless link (IEEE 802.11g). On the right hand side, the encoded video is 

received, decoded and rendered. Each of these functions has a number of parameters 

that can be set. Some of the parameters are temporal resolution (frames per second), 

spatial resolution (number of pixels per frame) and bit rate of the incoming stream.  

 

This thesis focuses on developing and experimentally validating power consumption 

models for the combined decoder (MPEG-4 simple profile) and rendering 

applications. The application parameters are chosen as the temporal resolution 

(frames per second) and spatial resolution (number of pixels per frame). In the rest of 

the thesis, these parameters are referred as frame rate and frame size respectively. 

 

The platform chosen for the experiments is Philips PNX 1500, which mainly consists 

of a PNX1500 chip (also called SoC in this thesis) and a DDR memory chip.  

The platform is chosen such that the power measurements can be performed over 

different components of the platform separately. It is assumed that for obtaining 

greater measurement accuracy, we need to separate the component impact parameters 

properly. With this assumption, we performed the power measurements over SoC and 

DDR memory separately.                                                                                                                                 

1.2 Energy vs. power consumption 

Although, the words energy consumption and power consumption are often used 

interchangeably, there is an important difference between these two words. The power 

used by a device is the energy consumed per time unit. Conversely, energy 

consumption is the time integral of power. In handheld devices a battery stores a 

given quantity of energy. Therefore, in handheld devices the goal is to reduce the 

energy consumption to perform all the necessary tasks satisfactorily. Even though 

minimizing power consumption cannot minimize the energy consumption in all cases, 

there are some cases where it works. For example, for fixed duration tasks such as 

playing video or audio, energy consumption is directly proportional to the average 

power consumption (since the duration of the task is constant). Hence, in this thesis 

the average power consumed for a fixed duration of task execution is considered. 

1.3 Approach  

In this thesis, power models for the SoC and memory are developed separately and 

then these models are combined to get an integrated power model. With reference to 

the goal mentioned in the previous section, we opted for two methods which are 

described in the following paragraphs. Both the methods are based on physical 

measurements in order to guarantee real values with good accuracy. 

1.3.1 Black box approach 

In this approach, the models are developed at a higher abstraction level by excluding 

the architecture level details. Therefore, the SoC and memory are considered as a 

black box.  The average power consumption across SoC/memory is measured for 

Capture Encode Send
enc.raw

Receive Decode Render
rawenc.

Capture Encode Send
enc.raw

Capture EncodeEncode SendSend
enc.raw

Receive Decode Render
rawenc.

Receive DecodeDecode RenderRender
rawenc.
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different settings of the application parameters: frame rate and frame size. The models 

are developed by regression on the measurement data. The regression models are 

improved by making trade-offs between accuracy and simplicity of the models.   

1.3.2 White box approach  

In white box approach, architectural details of the platform are captured as platform 

parameters. The white box approach consists of two steps. In the first step, power 

consumption is expressed as a function of platform parameters. In the second step, the 

platform parameters are expressed as a function of application parameters to get a 

high level abstract model that predicts the power consumption from the application 

parameters. These two steps are explained in detail in the following paragraphs. 

 

In the first step, the power models for the SoC/memory are developed by analysing 

different states and activities of SoC/memory that cause power consumption. These 

power models are expressed as a function of different platform parameters. The 

platform parameters are identified as two types: application independent platform 

parameters and application dependent platform parameters. The application 

independent platform parameters are assumed to be independent of the application 

parameters, frame rate and frame size. The examples of the application independent 

platform parameters are: average power consumption in different states and activities 

of the SoC/memory. The application dependent platform parameters are assumed to 

be dependent on the application parameters and the examples of these parameters are: 

time spent by SoC/memory in a particular state or activity. The average power 

consumption and the time spent in different states and activities (application 

dependent platform parameters) of the SoC/memory are measured for different 

settings of the application parameters, frame rate and frame size. The average power 

consumption in different states and activities (application independent platform 

parameters) is obtained by regression on the measurement data.  

 

In the second step, the time spent in different states and activities (application 

dependent platform parameters) are related to the application parameters. The models 

in the second step are also developed by regression on the measurement data. Finally, 

a compositional model, which replaces the application dependent platform parameters 

of the SoC/memory models with the second step models, is presented.  

1.4 Thesis Overview 

This thesis is organized as follows. Chapter 2 introduces the Philips PNX 1500 

platform and the tools that are used for performance measurements. Chapter 3 

describes the experimental set up and the power measurements. In chapter 4, the basic 

white box approach power models for the CPU and memory are developed and 

discussed. Chapter 5 deals with developing power models for the whole SoC by 

taking the CPU power models presented in Chapter 4 as a reference as well as 

developing black box approach models for the SoC. Chapter 6 deals with validating 

the memory models presented in Chapter 4 through experiments as well as developing 

black box approach models for the memory. In Chapter 7, the SoC and memory black 

box approach models are combined to get an integrated power model. Chapter 8 

presents the experiments performed with a different input stream and discusses the 

dependency of the average power consumption on the input stream content. Chapter 9 

discusses the effect of frequency and voltage scaling on the average power 
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consumption. Chapter 10 summarizes the thesis together with the ideas for future 

work.   
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2 Philips PNX1500 and Tools 

2.1 PNX1500  

The PNX1500 [3] is a complete Audio/Video/Graphics System on Chip. It has a high 

performance 32-bit VLIW processor, TriMedia TM3260 that can perform high quality 

audio and video signal processing and can also serve as general-purpose control 

processor. It runs PSOS operating system. Several image and video processing 

accelerators in the SoC assist CPU by providing image scaling and composition.   

 

Figure (2) depicts the functional block diagram of PNX1500.The functionality 

provided by SoC can be divided into three categories: decoding, processing and 

displaying. MPEG-4 decoding function is implemented in software. Processing and 

displaying functions are implemented in hardware accelerators. Quality Video 

Composition Processor (QVCP) provides a high-resolution graphics controller with 

graphics and video processing. QVCP allows composition of 2 layers, and can output 

in 656/HD/VGA or LCD format, up to 10-bit per component and up to 81Mpixel/s. 

Memory Based Scalar (MBS) provides functions like image scaling, video format 

conversions including colour space conversion, luminance histogram measurements 

and non-motion/motion compensated de-interlacing. MMI (Main Memory Interface) 

provides interface between 32-bit, 200MHz, 256MB DDR SDRAM and TM3260 

CPU, DMA devices and other internal resources that require memory access. The 32-

bit VLIW processor has 5-issue slots, 128 32-bit registers and 16KB data and 64KB 

instruction cache. Both instruction and data cache are eight-way-set associative and 

with 64B block size. The TM3260 CPU contains four programmable timer/counters, 

all with the same function. Three of them are intended for general use where as fourth 

timer/counter is reserved for use by the system software and should not be used by 

applications. 

 

The PNX1500 is designed to work in two modes: standalone mode and host mode 

[3]. In standalone mode, the PNX1500 acts as a master. In this mode, the software 

application that runs on TM3260 CPU is retrieved from EEPROM or flash memory 

device. In host mode, the PNX1500 acts as a slave. In this mode, the software 

application is downloaded into PNX1500 main memory (DDR memory) before 

TM3260 CPU is released from reset. Throughout this project, PNX1500 is used in 

host mode, where it is installed in the PCI slot of the PC. Advantage of PCI interface 

is fast access to shared memory for download and debug. 
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Figure 2: Functional block diagram of PNX1500 SoC 

2.2 Tools 

Philips provides a few tools [4] [5] along with the NDK distribution to provide a 

means to interface with the target. These tools provide basic operations like 

download, execute, basic tracing along with some run time analysis and performance 

measurements. The following subsections explain the tools that are used to download 

the application on target architecture and profiling tools that are used for analysis. 

2.2.1 dvpMon 

dvpMon is a stand-alone Win32 executable that provides a graphical user interface to 

handle downloads to TriMedia over various channels such as PCI, JTAG, EJTAG, 

and ETHERNET. Figure (3) is a screenshot of the dvpMon. dvpMon has the 

following features: 

• Download files in .elf, .bin, .mi and .out format  

• Start and Reset TriMedia 

• Dump traces from TimeDoctor, Memory 

• View memory 

• View and update BIS (Boot Info Structure) 

• Look up DVP error codes 

• Launch other tools like TimeDoctor viewer and URD 
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Figure 3: Screenshot of dvpMon 

2.2.2 URD (Universal Register Debugger) 

URD is used to debug registers on target, the PNX1500. URD environment consists 

of an application core and a set of supporting files. The application core provides the 

basic URD functionality and the support files customize the URD to access and 

manipulate the target device. The PC, which runs the URD application and the target, 

the PNX1500 are communicated through PCI.  

 

Device Description files (*.URD) describe the registers of the target hardware. Using 

these register settings, it is possible to change the frequency of CPU and other 

hardware blocks on SoC. Current register values can be stored in Current Register 

Settings (*.URG) files. Sequences of register accesses can be described with URD 

basic macros and stored in a URD Basic Macro description file (*.URM). These files 

are used together with the corresponding Device Description file. 

 

Figure (4) shows the screen shot of URD, in which a .urd file gives information about 

the registers of  the PNX1500 target namely System Reset Module, Clock System, 

Power Down MMIO registers, DDR memory controller and Router. It is possible to 

read and write the register values on target.  It is also possible to reset the target using 

URD. 
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Figure 4: Screen shot of URD                                                                                                                                               

2.2.3 TimeDoctor 

TimeDoctor is a profiling tool that allows users to visualize and analyse TriMedia 

programs.  In order to do profiling using TimeDoctor tool, it is necessary to compile 

the entire platform and application with the TimeDoctor build options and to call 

some initialization functions in the application.  

 

TimeDoctor provides profiling information about Task CPU usage, ISR CPU usage, 

User Block CPU usage, Cache events, Queues, Semaphores and System events. This 

profiling data is obtained by instrumenting OSAL functions using the callout facility 

of the OSAL, and by instrumenting the PSOS task switch. Users can also call the 

TimeDoctor API directly to define the user events. Time Doctor adds a small amount 

of overhead on the system because it calls the callout functions for all the OS events 

[4]. This data can then be collected, filtered and formatted. Graphical output traces 

will be written to an ASCII .tdi file for importing into the TimeDoctor Viewer. 

 

TimeDoctor provides profile information in three phases namely data collection, data 

processing and data presentation. TimeDoctor viewer is used to display data generated 

by TimeDoctor in graphical format. Figure (5) is a screenshot of TimeDoctor viewer. 
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 Figure 5:  Screenshot of Time Doctor Viewer 
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3 Experimental setup and Measurements 

3.1 Introduction 

The previous chapter discussed about the Philips PNX 1500 platform and the tools 

that are used for performance measurements. This chapter describes the experimental 

setup and the power measurements. In this chapter, we also discuss the possible 

sources of errors in measurements and modelling.   

3.2 Experimental Setup 
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Figure 6: Experimental set-up 

 

Figure (6) shows the experimental set-up block diagram. This block diagram consists 

of three blocks namely PC, PNX1500 platform and TV. PCI express cable connects 

the PC with the PNX platform board. This connection is used to download the built-in 

application from the PC onto the PNX1500 board. Output from displaying functions 

of the PNX1500 board is connected to TV through a cable.  

 

Only the relevant components to this thesis are shown in the PNX platform board. 

The supply voltage for the PNX1500 chip (also called SoC in this thesis) and DDR 

memory chip are derived from the power supply network. The resistors R1 and R2 are 

also part of this power supply network. These resistors are shown external to the 

power supply network to understand the current flow into the PNX1500 chip and 

memory chip. The supply voltage to SoC is called VddPNX1500 and its value is 1.3 V. 

Similarly, the supply voltage to DDR memory is called VddDDR and its value is 2.5 V.  

3.3 Power measurements 

The average power consumption of SoC/Memory is the product of voltage across 

SoC/Memory and current drawn by SoC/Memory.  Since R1 is in series with the SoC 
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and R2 is in series with memory, the current drawn by SoC is I1 and the current 

drawn by memory is I2. Therefore, the power consumption equations can be written 

as follows: 

 

PSOC = VddPNX1500  ×  Ι1   

Pmem = VddDDR  × Ι2     

 

The currents I1 and I2 are calculated as follows: 

 

I1 = (Voltage across R1) / R1 = V1 / R1 

I2 = (Voltage across R2) / R2 = V2 / R2 

 

Then, the power consumption equations become 

 

PSOC = (VddPNX1500  ×  V1 ) / R1       

Pmem = (VddDDR  ×  V2 ) / R2        

 

V1 and V2 are the average voltages measured across the resistors R1 and R2 

respectively. Voltage across the resistors is measured using Keithly Model 2700  

Multimeter / Data acquisition system [6]. The voltage measured using the instrument 

is the average voltage, which is averaged over multiple samples. Therefore, random 

error (refer Section 3.4) is averaged over multiple samples. The instrument is set to 

display up to two decimal digits and has a precision of 0.01mV. All the measurements 

in this thesis were taken at the same offset power which is obtained by resetting the 

board before starting the measurements. This avoids errors in the measurements.  

3.4 Errors 

An error is defined as the difference between the measured value and the true value. 

The sources of errors in measurement and modelling of this work are divided into two 

types. One is the measurement error and the other one is the modelling error. The 

following paragraphs describe these errors. 

 

• Measurement errors: The measurement errors are of two types: Random error 

and Systematic error. The random error is caused by any factors that randomly 

affect the measurement of the variable across the sample. The important thing 

about random error is that it does not have any consistent effects across the 

entire sample, instead it pushes the observed scores up or down randomly. 

This means that if we could see all of the random errors in a distribution they 

might add up to zero. Systematic error is caused by any factors that 

systematically affect measurement of the variable across the sample. 

Systematic errors are caused by the flaw in the measurement instrument or 

flaw in the method of selecting a sample or flaw in the technique of estimating 

a parameter or can be due to inappropriate assumptions about formulae. To 

minimise the systematic errors, it is necessary to check the instrument and 

assumptions continuously. The sources of measurement errors in this thesis 

are the power measuring instrument, Time Doctor tool and the assumptions in 

the models.  
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• Modelling errors: Modelling error depends on how well the assumed model 

suits the data. Root Mean Square Error is a measure for the accuracy of the 

models because it is measured in the same units of data and is a representative 

of the size of a typical error. Two models whose RMSEs are in the same units 

can be compared to see which one is more accurate. Another important 

parameter to be considered in comparing the models is the complexity of the 

model. When we trade off model complexity against error measures, it is 

possibly not worth adding another independent parameter to a regression 

model to decrease the RMSE by only a few more percent. Therefore, when the 

RMSE of two models is not deviating much then it is better to choose the 

model with less number of parameters.  
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4 Energy and Power models for the CPU and Memory 

4.1 Introduction 

In order to develop power models for the SoC/memory using white box approach, we 

need to analyse the sources of power consumption in these hardware components. The 

sources of power consumption in SoC are the CPU and hardware accelerators of the 

SoC. This chapter discusses the basic concepts of the power consumption in a CMOS 

circuit and the power consumption in an embedded processor and memory 

considering fixed and variable frequency and voltage methods. After detailed analysis 

of various power consuming states and activities of the CPU/memory, we present 

power models for the CPU/memory in terms of the platform parameters. Next chapter 

develops the power models for the whole SoC by adding the influence of hardware 

accelerators to the CPU power model presented in this chapter.  

4.2 Power consumption of a CMOS circuit 

The power consumption of any CMOS circuit is expressed as the sum of switching 

power, leakage power and short-circuit power [7]. Switching power is caused by the 

switching activity (charging and discharging) of the capacitor. A portion of the power 

is consumed during the switching activity due to the short circuit at the driving gate’s 

output, which is referred as short-circuit power. Switching and short-circuit powers 

form the dynamic power consumption. There is also a portion of power consumed 

irrespective of the switching activity, which is referred as leakage power or static 

power consumption. Typically, the short-circuit power is a small percentage, less than 

10% of the total power consumption; ignoring short-circuit power results in the 

following average power consumption equation [7]. 

 

P = Pswitch + Pleakage ≈  C × V
2

DD f + VDD × Ιleakage    (1) 

 

In the above equation, C is a constant representing the average capacitance resulting 

from all the active switching cells, VDD is the supply voltage, f is the clock frequency, 

and  Ιleakage is the average leakage current. 

 

 
Figure 7: Power dissipation in CMOS designs 



 14 

4.3 Energy consumption of an embedded processor and 
memory  

In an embedded system, performing a given task with a given time constraint can be 

achieved in different ways [7]. One of them is the fixed frequency and voltage 

scheme. The other one is variable frequency and voltage scheme.   

 

In case of fixed frequency and voltage scheme, the processor and memory are 

designed to operate at a supply voltage and frequency that satisfies the timing 

constraints for the worst-case scenario. When a low timing constraint task has to be 

executed, then even after finishing the task the processor and memory consume 

power. For example, for a decoder application depending on the frame rate of the 

input stream, processor and memory are in idle between the frames. During these idle 

periods, the processor and memory consume considerable amount of power. 

 

In case of variable frequency and voltage scheme, the operating frequency is scaled 

according to the timing constraints of the application. Processor could lower the 

frequency for a low timing constraint task and can increase the frequency for a high 

timing constraint task. 

 

Consider a fixed duration task of period T.  For fixed frequency and voltage scheme 

average energy consumption for a given task completed in time T1 < T is given by: 

 

EFIXED = ∫ +
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Where C1 is the average switching capacity during task processing and C2 is the 

average switching capacity after the task is completed. Operating the processor and 

memory in standby (clock shutdown) state after the task is completed at T1, saves the 

switching power. Then the Equation (2) becomes: 

 

Efixed = ∫ +
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For a variable frequency and voltage scheme, the clock frequency f1 is reduced such 

that the same task can be completed in time T. Accordingly, the supply voltage is 

changed to VDD1 for the reduced frequency f1. In this case the average energy 

consumption is given by: 

 

Evariable = ∫ +
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4.4 Energy and Power consumption models for CPU and 
Memory 

Three forms of energy consumption are identified for any hardware block: static 

frequency dependent and activity dependent energy consumption [8] [9]. The last two 

contribute to the dynamic energy consumption of the hardware block. The static 

power consumption depends on the state and voltage of the hardware block. 

Frequency dependent power consumption depends on state, voltage and the clock 

frequency at which the hardware block is operating. Activity dependent power 

consumption depends on the state, voltage and the frequency of occurrence of an 

activity in the given time interval. In some cases, activity dependent power 

consumption can become the frequency dependent power consumption. For example 

when each clock cycle is viewed as an activity then the activity dependent power 

consumption is the same as frequency dependent power consumption.  

 

Total power consumption in an interval T is obtained by summing up the three forms 

of power consumptions over all the states, voltages, frequencies and activities. In case 

of fixed frequency and voltage scheme, the summation is only over states and 

activities. Since only fixed frequency and voltage scheme is considered in this thesis, 

the power consumption models for CPU and memory will be described for this 

scheme only.  

4.4.1 Energy and Power consumption models for CPU 

This section presents energy and power consumption models for a CPU with cache.  

These models are developed by identifying different states and activities of CPU that 

cause power consumption. The power consumption of the CPU in one state is 

different from the power consumption in another state. Similarly, power consumption 

of CPU for one activity is different from the power consumption of another activity. 

 

For a CPU with cache, three different states are identified: active, stall and idle states 

[8]. CPU is in active state when it actually computes. In active state all the CPU’s 

logic is connected to the clock.  

 

In modern CPUs, most of the memory accesses are to the cache. Memory accesses are 

described as a read or write to the cache. An access to the cache is called cache hit 

when a read or a write is succeeded, i.e. the block requested is available in cache in 

case of read and a block can be written in to a particular location in case of a write.  A 

cache read miss occurs when the block is not available in the cache and has to be 

fetched from the external memory. Cache write miss occurs when a write to a 

particular location is not possible because it is not empty. In case of write back, write 

allocate caches, the block in the required location is written back to the main memory 

if that block is dirty and then the requested block is loaded into that location. In case 

of write through and write no allocate caches; the requested block is updated in main 

memory only. Upon a cache miss CPU enters into the stall state. In stall state some 

part of the CPU’s logic is disconnected from the clock.  

 

CPU is in idle state when there is no task to be performed. In idle state, large part of 

the CPU’s logic is disconnected from the clock.  
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It is assumed that there is no other activity dependent power consumption needs to be 

identified since the total power consumption of the CPU is captured by these three 

states. With this assumption, the average power consumption of the CPU is expressed 

as the sum of the power consumptions in individual states.    

 

PCPU,T =  PCPU,active × tCPU,active + PCPU,stall × tCPU,stall + PCPU,idle× tCPU,idle  (5) 

 

Energy consumption of CPU during period T, is expressed as the sum of energy 

consumption in individual states. 

 

ECPU,T =  PCPU,active × TCPU,active + PCPU,stall × TCPU,stall + PCPU,idle× TCPU,idle   (6) 

 

PCPU,T : Average power consumption of CPU during interval T 

ECPU,T: Energy consumption of CPU during interval T 

PCPU,active : Average power consumption of CPU in active state 

PCPU,stall : Average power consumption of CPU in stall state 

PCPU,idle : Average power consumption of CPU in idle state 

tCPU,active: Fraction of time CPU is in active state 

tCPU,stall: Fraction of time CPU is in stall state 

tCPU,idle: Fraction of time CPU is in idle state 

TCPU,active : Time spent by CPU in active state 

TCPU,stall : Time spent by CPU in stall state 

TCPU,idle : Time spent by CPU in idle state 

 

The power consumption in each state is the sum of static and frequency dependent 

power consumption, since there is no activity dependent power consumption.  

 

PCPU,active  ≈  VDD × Ιleakage + C1 × V
2

DD f  
PCPU,stall  ≈  VDD × Ιleakage + C2 × V

2
DD f  

PCPU,idle ≈  VDD × Ιleakage + C3 × V
2

DD f 

 

Since we are considering only fixed frequency and voltage scheme, the power 

consumption in each state is a fixed constant value at a particular frequency and 

voltage. Therefore the model for predicting the average power consumption of the 

CPU (refer Equation (5)) is expressed as the linear sum of average power 

consumption in individual states.  

4.4.2 Energy and Power consumption models for Memory   

This section presents the energy and power consumption models for a DDR memory. 

Similar to CPU models, the memory models are developed by identifying various 

power consuming states and activities of memory [8] [9].  

 

DDR memory stands for Double Data Rate memory, which means two data transfers 

take place per clock cycle. Dynamic memory must be refreshed regularly, with a 

given maximum refresh interval for each page in each bank.  

 

In dynamic memory the data transfers are not with the memory itself, but with sense 

amplifiers. Before reading or writing, the contents of one page in one bank are loaded 

to sense amplifiers. The act of loading to sense amplifiers is called as activation. 
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Activation destroys the data in the memory bank. Therefore, it is necessary to restore 

the page in the bank. The act of restoring is called as precharge. 

 

Two different states of the DDR memory are identified: active and idle states. DDR 

memory is in active state when at least one page is activated. DDR memory enters 

into idle state when all the pages are precharged. 

 

A read or write burst is a sequence of bytes read from or written to the same page of 

same bank without interruption. Therefore, the burst is viewed as a sequence of words 

belonging to the same page in the same bank. Every burst is preceded by an activation 

of the page and followed by a precharge.   

 

We assumed that reads and writes can take place in active state only. The cost of 

reading or writing a word is captured by the activities read and write. The energy cost 

due to activation and precharge is captured by the activity burst.  

 

Time spent in the active state, but not used for data transfer is known as stall time. 

Stall time includes refresh time, and also includes transition costs of different types. 

To capture these transitions, we use the notion of efficiency, which captures transfer 

time as a fraction of the total active time. Efficiency is used to calculate the total 

active time of the DDR memory using the following formula: 

 

tmem,active,T = (nmem,read,T + nmem,write,T) / (fmem × effmem)    (7) 

 

With these assumptions and definitions the following models for the energy and 

power consumption of the memory is developed. 

 

T  : Length of the total time interval 

Emem,T  : Enrgy consumption of memory during interval T 

Pmem,T  : Average power consumption of memory during interval T 

Pmem,active : Power consumption of the memory during active state 

Pmem,idle : Power conmsumption of the memory during idle state 

emem,read : Energy cost of one read        

emem,write : Energy cost of one write               
emem,burst : Energy cost of one burst         
tmem,active : Fraction of time memory is in active state 

tmem,idle   : Fraction of time memory is in idle state 

Tmem,active : Time spent by memory in active state 

Tmem,idle : Time spent by memory in idle state 

nmem,read,T : Number of occurances of activity read during interval T 

nmem,write,T : Number of occurances of activity write during interval T 

nmem,burst,T : Number of occurances of activity burst during interval T 

fmem,read  : Frequency of the read activity 

fmem,write : Frequency of the write activity 

fmem,burst : Frequency of the burst activity 

Emem,T = Pmem,active × Tmem,active+ Pmem,idle × Tmem,idle + nmem,read,T × emem,read + 

nmem,write,T × emem,write + nmem,burst,T × emem,burst     (8) 
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Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + fmem,read × emem,read + 

fmem,write × emem,write + fmem,burst × emem,burst     (9) 

 

Above equation is represented as follows for the convenience of notation: 

 

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write 

× tmem,write  + Pmem,burst × tmem,burst        (10) 

 

In the above equation fmem,read × emem,read term of Equation (9) is replaced with  

Pmem,read × tmem,read , both the terms give the average power consumption of the read 

activity. Similarly, the terms fmem,write × emem,write and fmem,burst × emem,burst  are replaced 

with the terms  Pmem,write × tmem,write and Pmem,burst × tmem,burst  respectively. 

 

Figure (8) represents the memory power model given in Equation (10). The burst 

activity overlaps in time with read and write activities because of the multiple banks 

in DDR memory. Usually, the transition costs between read and write activities are 

included into write activity. Therefore, in Figure (8), the energy cost of write activity 

is more than that of read activity.    
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Figure 8: Representation of memory power model given in Equation (10) 

 

In later chapters, for validating the memory power model (Equation (10)) we measure 

the parameters of the model. Parameters tmem,idle, tmem,read and tmem,write of the model can 

be measured through performance counters of DDR controller. But, we found that, 

DDR controller of this platform has no counters to measure the tmem,burst of the 

memory model. Therefore, with the measurable parameters Equation (10) is modified 

as follows: 

 

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write 

× tmem,write                                                            (11) 

 

Here,we can measure tmem,idle directly through performance counters. Therefore 

tmem,active is calculated as follows instead of calculating using efficiency (Equation (7)):     

 

tmem,active = 1 -  tmem,idle        

 

The following figure represents the modified memory power model in Equation (11). 
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Figure 9: Representation of modified memory power model given in Equation (11) 

 

In the modified model, we are not considering the average power consumption due to 

burst activity separately. Therefore, the average power consumption due to burst 

activity is included into the average power consumption of activities read and write.  

4.4.3 Parameters of the CPU and memory power models 

The parameters of the CPU and memory power models (refer Equation (5) and (10)) 

are divided into two sets:     

 

1. Application independent platform parameters : PCPU,active, PCPU,stall , PCPU,idle, 

Pmem,active, Pmem,idle, Pmem,read , Pmem,write  

 

2. Application dependent platform parameters: tCPU,active , tCPU,stall , tCPU,idle , tmem,active, 

tmem,read, tmem,write  

 

Application independent platform parameters are assumed to be specific for the 

CPU/memory and its settings, but are independent of the specific context in which the 

CPU/memory is being used. For example, power consumed by CPU/memory in a 

particular state or for a particular activity depends on the amount of logic that is active 

during these states and activities and is expected to be specific for a CPU/memory 

irrespective of the application. With this hypothesis, it is assumed that the application 

independent platform parameters are independent of the application parameters.  

   

Application dependent platform parameters are assumed to be dependent on the 

application parameter settings. For example, if there are more number of frames 

(frame rate) or more number of pixels per frame (frame size) to be processed by CPU, 

then we can expect that the CPU spends more time in active state and less time in idle 

state. Similarly, we can expect more number of accesses to memory in this scenario. 

With this hypothesis, it is assumed that the application dependent platform parameters 

are dependent on the application parameters.  
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5 Power Models for System-on-Chip (SoC) 

5.1 Introduction 

In the previous chapter, we have developed the white box model for the CPU and 

memory considering different power consuming states and activities of the CPU and 

memory. This chapter develops power model for the whole SoC by taking the CPU 

power model (refer Equation (5)) as a reference. This is achieved by adding the 

influence of other hardware components of the SoC to the CPU power model step by 

step through experiments.  

 

The white box approach consists of two steps:  

 

(1) Application dependent platform parameters (tCPU,active , tCPU,stall and tCPU,idle) and the 

average power consumption across SoC (PSoC,T) are measured experimentally for the 

given frame rate and frame size of the input stream. Three different frame rates 

(30fps, 25fps and 12.5fps) and frame sizes (4cif, cif and qcif) are considered in the 

experiments. Application independent platform parameters (PCPU,active, PCPU,stall and 

PCPU,idle) are calculated by performing linear regression [10] on the equations 

substituted with the experimentally measured values for application dependent 

platform parameters and PSoC,T.    

 

(2) The application dependent platform parameters of the SoC power model are 

expressed as a function of application parameters (frame rate and frame size) through 

regression models.  

 

Finally, from the models of each step described above, a compositional model for the 

power consumption of the SoC in terms of applcation parameters is developed. Using 

the compositional model, we can predict the average power consumption of the SoC 

for any values of frame rate and frame size.  

 

This chapter also develops the black box models without considering the architecture 

level details.  

5.2 White box approach experiments and results 

The Average power consumption measured across the SoC (PSoC,T) during the 

execution of the decoder application, not only consists of power consumption due to 

CPU, but also power consumption due to other hardware blocks. A fundamental 

aspect of the PNX15xx Series system is to provide hardware modules (or hardware 

accelerators) that relieve the TM3260 CPU for other video/audio processing [3]. That 

means CPU and hardware blocks work simultaneously.  

 

The application dependent platform parameters (tCPU,active, tCPU,stall and tCPU,idle) are 

measured using TimeDoctor tool. Figure (10) is a screen shot of the TimeDoctor 

statistics. All tasks except IDLE and ROOT are dynamically created at runtime by 

providing system calls to the PSOS kernel [11]. The purpose of IDLE task is to 

consume CPU cycles when no other task is running. Statistics in Figure (10) give the 

number of execution cycles of each task and how much percentage of execution 

cycles are stall cycles. The active and stall cycles of the CPU are calculated as the 

sum of the individual task cycles.  
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Figure 10: Statistics given by Time Doctor 

 

The application independent platform parameters (PCPU,active, PCPU,stall  and PCPU,idle) can 

not be measured directly. Two approaches were taken to obtain  PCPU,active, PCPU,stall  

and PCPU,idle. These approaches are explained in the paragraphs below. 

 

In the first approach, it is assumed that the hardware blocks would be in active state 

only during CPU active periods. Therefore, PCPU,active includes the power consumption 

due to the active CPU and hardware blocks. Several experiments were performed with 

the decoder program using a sample stream from the BETSY project with three 

different resolutions 4cif,cif and qcif and three different frame rates 12.5fps, 25fps 

and 30fps. To characterize the power consumption during decoder program when 

CPU is in stall and idle states, some test programs were executed. In Section 5.2.1 and 

5.2.2 we explain these test programs. The values obtained for PSoC,T, tCPU,active , tCPU,stall 

and tCPU,idle during the execution of decoder and test programs are substituted in the 

following Equation (12). This equation is considered by taking the CPU power model 

(Equation (5)) of previous chapter as a reference.   

 

PSoC,T =  PCPU,active × tCPU,active + PCPU,stall × tCPU,stall + PCPU,idle× tCPU,idle (12) 

 

Linear equations obtained by the decoder program and test programs are solved to get 

PCPU,active, PCPU,stall  and PCPU,idle.  

 

The second approach for obtaining PCPU,active, PCPU,stall and PCPU,idle is to perform linear 

regression on the available data. Linear regression is performed on the nine linear 

equaions obtained from the nine different experiments with the decoder program. 

 

For each of the nine different experiments performed on decoder program, the values 

obtained for PSoC,T, tCPU,active , tCPU,stall and tCPU,idle are shown in the Table (1). 

In PNX 1500, the maximum frequency at which CPU can operate is 300.375MHz. 

When the decoder program is run at this frequency with an input stream of 30fps 
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frame rate and 4cif resolution, the CPU spends 78% of the time in idle state. That 

means most of the time CPU is in idle state. Running CPU at higher frequency with 

78% of idle time is not an optimal condition for the power consumption. Therefore in 

order to get the best optimal condition for the power consumption we chose 

100.5MHz frequency such that the time spent by CPU in idle state is around 10%. 

The 10% of the margin is left to make sure that the CPU meets the timing constraints.    

 

 FR(fps) FS tCPU,active  tCPU,stall  tCPU,idle PSoC,T  

(mW) 

1 30 4cif 0.49 0.39 0.12 717.1 

2 30 cif 0.16 0.26 0.59 689.3 

3 30 qcif 0.07 0.22 0.71 679.2 

4 25 4cif 0.26 0.35 0.38 708.8 

5 25 cif 0.12 0.24 0.63 683.8 

6 25 qcif 0.05 0.22 0.73 676.7 

7 12.5 4cif 0.23 0.28 0.49 701.9 

8 12.5 cif 0.08 0.22 0.69 684.3 

9 12.5 qcif 0.04 0.20 0.76 674.2 
Table 1: PSoC,T, tCPU,active , tCPU,stall and tCPU,idle values obtained through various experiments 

 

To obtain the power consumption across the SoC when the CPU is in idle and stall 

states, two test programs idle_test and stall_test were executed.  

5.2.1 Power consumption in idle state  

During the CPU idle state, PSOS runs an idle task. The purpose of PSOS idle task is 

to simply consume the CPU cycles when there is no other task to be performed by 

CPU. PSOS idle task is nothing but an infinite loop [11].  

 

With the assumption that the hardware blocks are active only during CPU active state, 

the power consumption when CPU is in idle (PCPU,idle) would be the clock power of 

CPU and hardware blocks and the power consumption due to idle task execution.  

 

To get the power consumption across SoC during idle state of CPU (PCPU,idle), an 

idle_test program is executed. During the execution of this program, the hardware 

blocks that are active during decoder program are clocked. The hardware blocks that 

are active during decoder program are obtained by using Universal Register Debugger 

(URD) tool described in Section 2.2.2. 

 

The test program is in C and the main() function consists of only getch() function. 

Because of getch() function, until a character is entered from the keyboard, the CPU 

would be in idle state and hence PSOS idle task would be executed. The values 

measured for tCPU,active, tCPU,stall and tCPU,idle and PSoC,T during this test program are 

substituted in Equation (12). 

 

666.6 =  PCPU,active × 0.00004 + PCPU,stall × 0.166 + PCPU,idle× 0.83        (13) 

From the Equation (13),  it can be seen that CPU spends only 83% of the time in idle 

state during the execution of  idle task. The remaining percentage of time is spent in 

stall state. The statistics(Figure (11)) show that the 16.6% of stalls during idle task 

execution are instruction cache stalls. We assume that the instructions of the idle task 
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are flushed out of the cache for some reason and there is a need to get the instructions 

back from external memory each time the idle task is executed.  

 

Figure 11: Statistics given by TimeDoctor for idle_test program 

5.2.2 Power consumption in stall state 

Similarly, with the assumption that the hardware blocks are active only during CPU 

active state, the power consumption across SoC, when CPU is in stall state would be 

the stall power of CPU and the clock power of hardware blocks. 

 

To obtain the power consumption across SoC during stall state of CPU, a stall_test 

program was executed. This test program creates an array in the data cache of the 

CPU. Each 64
th

 location (each location equals 1B) of the array is read in the 

program.As the cache line size of the TM3260 is 64B, every cache read of  this 

program creates a miss and brings 64B of data from external memory. Therefore, on 

every read of this program the CPU stalls for the data from external memory. The 

values obtained for tCPU,active , tCPU,stall and tCPU,idle and PSoC,T during this test program 

are substituted in Equation (12). 

 

654   =  PCPU,active × 0.06 + PCPU,stall × 0.93 + PCPU,idle × 0.004                     (14) 

5.2.3 Linear equation solutions 

Below, we give an example of how the equations are solved to obtain PCPU,active , 

PCPU,stall and PCPU,idle values. Equation(15), is obtained from the decoder program with 

an input stream of 4cif resolution and 30fps (from Table(1)).  

 

717.1   =  PCPU,active × 0.49 + PCPU,stall × 0.39 + 666.6× 0.12                             (15) 

 

Equation (15) along with the equations from idle_test and stall_test (Equation (13) 

and (14) respectively) is written in the following matrix form. 
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To obtain PCPU,active , PCPU,stall and PCPU,idle , the above matrix is solved using 

LinearSolve function of Mathematica tool [12]. LinearSolve function solves the 

matrix for  PCPU,active , PCPU,stall and PCPU,idle  (in this case 781.3 , 649.9 and 673.1 

respectively). Similarly, each of the remaining equations obtained from the decoder 

program (From Table (1)) are solved with the equations from idle_test and stall_test 
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programs (Equation (13) and (14) respectively). The resulting PCPU,active , PCPU,stall and 

PCPU,idle values are shown in Table(2). 

 

 FR 

(fps) 

FS tCPU,active  tCPU,stall  tCPU,idle PSoC,T 

(mW)  

PCPU,active 

(mW) 

PCPU,stall 

(mW) 

PCPU,idle 

(mW) 

1 30 4cif 0.49 0.39 0.12 717.1 781.3 649.9 673.1 

2 30 cif 0.16 0.26 0.59 689.3 817.3 647.6 673.6 

3 30 qcif 0.07 0.22 0.71 679.2 837.0 646.3 673.8 

4 25 4cif 0.26 0.35 0.38 708.8 852.7 645.3 674.0 

5 25 cif 0.12 0.22 0.66 683.8 870.1 644.2 674.2 

6 25 qcif 0.05 0.22 0.73 676.7 853.9 645.2 674.0 

7 12.5 4cif 0.23 0.28 0.49 701.9 828.9 646.8 673.7 

8 12.5 cif 0.09 0.20 0.71 684.3 855.3 645.1 674.1 

9 12.5 qcif 0.03 0.20 0.77 674.2 873.2 644.0 674.3 
Table 2: The calculated values for  PCPU,active , PCPU,stall and PCPU,idle   

5.2.3.1 Analysis of results 

Table (2) shows that the tCPU,active and tCPU,stall decrease with decrease in frame rate and 

frame size. This experimental result validates the assumption that the application 

dependent platform parameters depend on the application parameter settings. But the 

decrease in tCPU,stall  with frame rate and frame size is not at the rate of decrease in 

tCPU,active  with frame rate and frame size.  

 

When the time spent by CPU in active state decreases, then the data cache misses as 

well as data cache stalls decrease. For example, in case of qcif resolution and 30fps in 

Table (2), CPU spends only 7% of the total time in active state (tCPU,active). In this case 

it is expected that time spent in stall state (tCPU,stall) is also relative to the tCPU,active. But 

tCPU,stall is 22%. tCPU,stall is calculated as the sum of total instruction and data cache 

stalls. It was described in Section 5.2.1 that during idle task execution 16.6% are 

instruction cache stalls. Since in this example CPU spends 71% of the time in idle 

state, the instruction cache stalls during idle state are dominating in the tCPU,stall. This 

explains why tCPU,stall is not scaling at the rate of tCPU,active with frame rate and frame 

size. 

 

According to the assumption that the application independent platform parameters are 

independent of application parameters, the parameters PCPU,active, PCPU,stall  and PCPU,idle  

in Table (2) should be the same for any combination of frame rate and frame size. 

But, PCPU,active in Table (2) does not support this assumption. Even though PCPU,stall  

and PCPU,idle  in Table (2) are not the same for each combination, the difference is very 

small.  

 

Graph (1) shows the increase of PCPU,active with the decrease of time spent by CPU in 

active state (tCPU,active). Graph (2) and (3) show that PCPU,stall  and PCPU,idle are constant 

and does not vary with tCPU,stall and tCPU,idle respectively.   
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Graph 1: Graph representing PCPU,active  vs. tCPU,active 

 

In the above graph, active power increases about 10%. We treat this increase of active 

power as an overhead in the active state. The reason for this overhead could be the 

assumption in Section 5.2 that the hardware blocks would be in active state only 

during CPU active periods. This overhead is more visible at less active periods of 

CPU. Section 5.4 and 5.4.1 explain about the overhead in detail.  

 

0
200
400
600

800
1000
1200

0 0.1 0.2 0.3 0.4 0.5

tCPU,stall

P
C

P
U

,s
ta

ll

 
Graph 2: Graph representing PCPU,stall  vs. tCPU,stall 
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Graph 3: Graph representing PCPU,idle  vs. tCPU,idle 

 

Another observation from the results is that the power consumption during CPU idle 

state is more than the power consumption when CPU is in stall state (refer Table(2)). 

This is because of the fact that during idle state, CPU is not really idle but doing small 

amount of work during PSOS idle task (refer Section 5.2.1). PCPU,idle can be reduced if 

CPU goes in to power down mode during CPU idle state. Section 5.3 explains the 

CPU power down mode. 
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5.2.4 Linear regression 

The second approach for obtaining PCPU,active, PCPU,stall and PCPU,idle is to perform linear 

regression on the available data using the least square error method[13] in MATLAB. 

Linear regression method allows to find PCPU,active, PCPU,stall and PCPU,idle  values that fit 

all the linear equations considered. Linear regression is performed on the nine linear 

equaions obtained from the data in Table(1) for decoder program. Linear regression 

results in the follwing values. 

 

PCPU,active = 609.9mW 

PCPU,stall  =889.2mW 

PCPU,idle =  625.6mW 

 

To measure the accuracy of the model, Root Mean Square Error is calculated [14]. 

The error obtained is 4.46mW. PCPU,active(609.9mW) obtained is less than the stall 

power PCPU,stall  (889.2mW). The reason is that the time spent by CPU in stall state is 

proportional to the time spent by CPU in active state. Therefore they both are 

correlated and are not independent enough to calculate the PCPU,active and PCPU,stall  

values separately. Therefore, the tCPU,active and tCPU,stall values in the equations are 

combined and are solved using linear regression method. The values thus obtained are 

as follows: 

 

PCPU,active+stall = 732.9mW 

PCPU,idle =  662.4 mW 

 

The RMSE of the model with above coefficients is 5.7mW 

 

If we perform linear regression on the nine linear equaions obtained from the data in 

Table(1) along with the idle_test and stall_test equations (Equation (13) and (14) 

respectively), it helps to calculate the PCPU,active, PCPU,stall and PCPU,idle  values more 

accurately, because these two tests characterize the power consumption of CPU in 

idle and stall states separately. Performing linear regression on the nine decoder 

equations along with idle_test and stall_test equations gives the following values: 

 

PCPU,active = 792.7mW 

PCPU,stall  =664.4mW 

PCPU,idle =  673.5mW 

 

The RMSE of the model with above coefficients is 8mW 

5.3 Experiments when CPU is in power down mode 

In the latest version of NDK software (NDK 5.3), CPU power down mode feature is 

supported. The TM3260 CPU enters partial power down mode by performing a 'store' 

to a specific MMIO address (the POWERDOWN register). The TM3260 then finishes 

any pending transactions and goes into a partial power down. In partial power down 

mode, cycle counters, timers and interrupt logic in the TM3260 are still active. The 

TM3260CPU wakes up from partial power down when an interrupt occurs or there is 

an access to its MMIO space. Partial power down mode feature is used by the idle 

task in PSOS operating system [15]. It means that during the idle state of CPU, PSOS 

idle task makes CPU to enter into partial power down mode. In the previous sections 

NDK4.3 software was used, which does not have the CPU power down mode feature. 
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In the NDK4.3 version during the idle state of CPU, PSOS idle task is executed which 

is an infinite loop (refer Section 5.2.1).  

 

The NDK5.3 software was installed and the experiments were done with decoder 

program with three different resolutions and frame rates. All the experiments were 

done at a CPU frequency of 100.5MHz. Table (3) shows the values obtained for 

PSoC,T, tCPU,active, tCPU,stall and tCPU,idle for nine different experiments performed with 

decoder program.  

 

 FR 

(fps) 

FS tCPU,active  tCPU,stall  tCPU,idle  PSoC,T 

(mW) 

1 30 4cif 0.37 0.34 0.29 666.6 

2 30 cif 0.13 0.15 0.72 575.7 

3 30 qcif 0.07 0.09 0.83 550.4 

4 25 4cif 0.30 0.30 0.40 643.9 

5 25 cif 0.12 0.13 0.75 570.6 

6 25 qcif 0.06 0.09 0.85 547.9 

7 12.5 4cif 0.17 0.18 0.65 598.4 

8 12.5 cif 0.07 0.09 0.84 558.1 

9 12.5 qcif 0.04 0.06 0.90 540.4 
Table 3: PSoC,T, tCPU,active , tCPU,stall and tCPU,idle values obtained through various experiments in 

CPU power down mode 

5.3.1 Power consumption in idle and stall states 

Experiments done with idle_test program and stall_test program resulted in the 

following equations. 

 

512.6 =  PCPU,active× 0.00004 + PCPU,stall × 0.00034 + PCPU,idle × 0.999  (16)  

651.4   =  PCPU,active × 0.06 + PCPU,stall × 0.93 + PCPU,idle × 0.004   (17) 

From Equation (16), it can be observed that the power consumption across SoC 

during idle_test (PSoC,T = 512.6) is reduced by 23.1% when compared to the power 

consumption (PSoC,T = 666.6) in without CPU power down mode. From Equation (16), 

it can be seen that CPU spends 99.9% of time in idle state. But, when CPU is not in 

power down mode, CPU spends only 83% (refer Equation (13)) of time in idle state 

and the remaining percentage of time (16.6%) in stall state. The 16.6% of stalls 

caused by the instruction cache misses during the idle task execution. Now, with CPU 

power down mode, idle task of PSOS makes CPU to enter into partial power down 

mode and there are no instruction cache misses. Therefore there are no stalls in this 

case.  

 

Since CPU spends 99.9% of time in idle state during idle_test program, PSoC,T 

(512.6mW) from this test is taken as the power consumption when CPU is in idle state 

(PCPU,idle).  

5.3.2 Linear equation solutions 

PSoC,T (512.6mW) from the idle_test is substituted in the PCPU,idle  of the equations 

obtained from decoder and stall programs. Equation(18) is obtained by substituting 

PCPU,idle  as 512.6mW, in the equation obtained by decoder program with an input 

stream of 4cif resolution and 30fps (refer Table(3)). Similarly, Equation (19) is 
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obtained by substituting PCPU,idle  as 512.6mW, in the equation of stall program 

(Equation(17)).  

 

666.6   =  PCPU,active × 0.37 + PCPU,stall × 0.34 + 512.6× 0.29    (18) 

651.4   =  PCPU,active × 0.06 + PCPU,stall × 0.93 + 512.6× 0.004    (19) 

This results in the following set of equations: 

517.9 = PCPU,active × 0.37 + PCPU,stall × 0.34      (20) 

649.3 =  PCPU,active × 0.06 + PCPU,stall × 0.93      (21) 

 

The above equations can be written in the form of a matrix as shown below. 
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To obtain PCPU,active and PCPU,stall , the two linear equations (Equation (20) and (21)) 

are solved using LinearSolve function of Mathematica tool. LinearSolve function 

solves the matrix for  PCPU,active and PCPU,stall (in this case 808 and 641.3 respectively). 

Similarly, each of the remaining decoder equations of Table (3) are solved with 

Eqaution (21). The resulting PCPU,active and PCPU,stall values are shown in the following 

table.  

 

 FR(fps) FS tCPU,active  tCPU,stall  PSoC,T-PCPU,idle*tCPU,idle 

(mW) 

PCPU,active  

(mW) 

PCPU,stall 

(mW)  

1 30 4cif 0.37 0.34 517.6 808.0 641.3 

2 30 cif 0.13 0.15 207.1 843.3 638.8 

3 30 qcif 0.07 0.09 122.9 893.8 636.3 

4 25 4cif 0.30 0.30 438.3 815.6 641.3 

5 25 cif 0.12 0.13 186.2 845.9 638.8 

6 25 qcif 0.06 0.09 112.2 873.6 636.3 

7 12.5 4cif 0.17 0.18 265.2 888.8 636.3 

8 12.5 cif 0.07 0.09 129.5 992.3 628.7 

9 12.5 qcif 0.04 0.06 80.8 1088.3 623.7 
Table 4: The values calculated for PCPU,active , PCPU,stall   in CPU power down mode 

5.3.2.1 Analysis of results 

With CPU power down mode, idle power (PCPU,idle = 512.6) obtained is smaller than 

the stall power (PCPU,stall in Table (4)). This is not the case in Section 5.2.3 (without 

CPU power down), where the idle power is larger than the stall power in Table (2). 

The difference comes from the fact that during idle task execution CPU goes into 

partial power down mode with NDK5.3 version, whereas an infinite loop is executed 

in NDK4.3 version.  

 

From the Table (4), it can be seen that the fraction of time CPU is in active and stall 

states (tCPU,active and tCPU,stall) decreases with the decrease in frame rate and frame size, 

which supports the assumption that the application dependent platform parameters 

depend on the application parameters.  It can also be observed that tCPU,active and 

tCPU,stall, both scale almost at the same rate with frame rate and size. The reason for 

this is obvious because of  the fact that there are no stalls in the idle state of CPU 
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(refer Section 5.3.1). The stalls in the active state of CPU are directly proprtional  to 

the time spent by CPU in active state.  

 

Graph (4) shows that PCPU,active increases with the decrease in tCPU,active. But PCPU,stall is 

independent of tCPU,stall(refer Graph (4)). The systematic increase of active power in 

Graph (4) supports the observation in Section 5.2.3.1 that there is an overhead  

included in the CPU active state. As described earlier, Section 5.4 and 5.4.1 explain in 

detail about this overhead. 
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Graph 4: Graph representing PCPU,active  vs. tCPU,active 
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Graph 5: Graph representing PCPU,stall  vs. tCPU,stall 

5.3.3 Linear regression 

The second approach for obtaining PCPU,active, PCPU,stall and PCPU,idle is to perform linear 

regression on the available data. Linear regression is performed on the nine linear 

equations obtained from  the data in Table (3) for decoder program. Linear regression 

results in the follwing values. 

 

PCPU,active = 799.5mW 

PCPU,stall  =648.1mW 

PCPU,idle =  523.6mW 

 

The Root Mean Squar Error obtained for the model is 2.9mW (refer Table(5)). The 

power consumption model for the SoC with above linear regression coefficients is 

given below:  

 

PSoC,T =  799.5 × tCPU,active + 648.1 × tCPU,stall + 523.6× tCPU,idle  (22) 
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 FR(fps) FS tCPU,active  tCPU,stall  tCPU,idle  PSoC,T 

 (actual) 

(mW) 

PSoC,T  

(predicted) 

(mW) 

1 30 4cif 0.37 0.34 0.29 666.6 668.0 

2 30 cif 0.13 0.15 0.72 575.7 578.1 

3 30 qcif 0.07 0.09 0.83 550.4 548.9 

4 25 4cif 0.30 0.30 0.40 643.9 643.7 

5 25 cif 0.12 0.13 0.75 570.6 572.9 

6 25 qcif 0.06 0.09 0.85 547.9 551.3 

7 12.5 4cif 0.17 0.18 0.65 598.4 592.9 

8 12.5 cif 0.07 0.09 0.84 558.1 554.1 

9 12.5 qcif 0.04 0.06 0.90 540.4 542.1 

     Root Mean Square Error 2.9mW 
Table 5: Actual and model predicted values for the PSoC,T 

 

The reason for obtaining larger values for PCPU,stall  (648.1mW) and PCPU,idle 

(523.6mW) when compared to the PCPU,stall  values in Table (4) and PCPU,idle 

(512.6mW) from idle_test program is explained as follows.  From the Graphs (1) and 

(4), it was observed that there is some overhed in active state of CPU. But in  linear 

regression approach, this overhead is distributed over the three states. Therefore, 

PCPU,active (799.5mW) is smaller and PCPU,stall and PCPU,idle are larger when compared to 

the results in the first approach.   

5.4 Refined power consumption model 

In the first approach, it was assumed that the hardware blocks are active only when 

CPU is in active state (refer Section 5.2). To validate this assumption, we need to 

monitor the behaviour of hardware blocks.  

 

TimeDoctor tool is used to get the information about ISR (Interrupt service routine) 

CPU usage (refer Section 2.2.3). ISR informs CPU, whenever a hardware block is 

started and stopped (refer Figure (12)). Using the tmtdUserBlockCreate ( ), 

tmtdUserBlockEnter ( ) and tmtdUserBlockLeave ( ) API’s of TimeDoctor tool [4], 

the execution cycles of hardware blocks are measured. From Figure (12), it can be 

seen that two hardware blocks: QVCP and MBS are active during decoder 

application. These hardware blocks are active periodically irrespective of the state of 

the CPU. Hence, the assumption that the hardware blocks are active only during 

active state of the CPU is not correct. The cost (power consumption) of active 

harware blocks is distributed over all the states of the CPU. But, in the first approach 

(refer Section 5.2), this overhead was included only in the active state of the CPU 

since the idle_test and stall_test do not include the power consumption due to active 

hardware blocks.  
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Figure 12: Screen shot of TimeDoctor viewer 

 

In the second approach (Linear regression), the overhead due to hardware blocks is 

included in all the three states of the CPU. But, the actual values for PCPU,active  PCPU,stall 

and PCPU,idle  would be smaller than the values obtained in Section 5.3.3, if the power 

consumption model for SoC (Equation (12)) is included with the cost of the hardware 

blocks (QVCP and MBS) as well. 

 

PQVCP,active : Power consumed by QVCP block in active state 

PMBS,active : Power consumed by MBS block in active state 

PQVCP,idle : Power consumed by QVCP block in idle state 

PMBS,idle : Power consumed by QVCP block in idle state 

tQVCP,active : Fraction of time QVCP block is in active state  

tMBS,active : Fraction of time MBS block is in active state  

tQVCP,idle : Fraction of time QVCP block is in idle state 

tMBS,idle : Fraction of time MBS block is in idle state 

 

PSoC,T =  PCPU,active × tCPU,active + PCPU,stall × tCPU,stall+ PCPU,idle× tCPU,idle +    PQVCP,active × 

tQVCP,active+ PMBS,active × tMBS,active + PQVCP,idle× tQVCP,idle + PMBS,idle× tMBS,idle   (23)                                                                                                            

5.4.1 Experiments 

Experiments were done with decoder program for three different resolutions and 

frame rates in CPU power down mode. Through TimeDoctor tool, the percentage of  

time spent by QVCP and MBS blocks in active state was calculated (refer Table (6)). 
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 FR 

(fps) 

FS tCPU,active  tCPU,stall  tCPU,idle  tQVCP,active tMBS,active  PSoC,T  

(mW) 

1 30 4cif 0.37 0.34 0.29 0.42 0.49 666.6 

2 30 cif 0.13 0.15 0.72 0.43 0.42 575.7 

3 30 qcif 0.07 0.09 0.83 0.43 0.42 550.4 

4 25 4cif 0.30 0.30 0.40 0.43 0.50 643.9 

5 25 cif 0.12 0.13 0.75 0.43 0.43 570.6 

6 25 qcif 0.06 0.09 0.85 0.43 0.42 547.9 

7 12.5 4cif 0.17 0.18 0.65 0.43 0.48 598.4 

8 12.5 cif 0.07 0.09 0.84 0.43 0.42 558.1 

9 12.5 qcif 0.04 0.06 0.90 0.43 0.42 540.4 
Table 6: PSoC,T, tCPU, active, tCPU, stall, tCPU, idle, tQVCP, active, tMBS, active  values obtained through various 

experiments 

 

From Table (6), it can be seen that the percentage of time spent by QVCP in active 

state (tQVCP,active) is constant and does not vary with the frame rate and frame size. For 

MBS, percentage of time spent in active state (tMBS,active) does not vary with frame rate 

also. But, tMBS,active for 4cif resolution is more when compared to cif and qcif 

resolutions. The QVCP and MBS blocks operate at the display frame rate i.e. at 50Hz. 

For example, for an input stream of frame rate 25fps, every 40ms a frame is executed, 

but QVCP and MBS blocks are executed twice in 40ms, which means at a frame rate 

of 50Hz (refer Figure (12)). Therefore, QVCP and MBS block executions are 

independent of the input frame rate. The tQVCP,active is independent of the input frame 

size, because the QVCP block processes all the pixels of the display resolution i.e. 

4cif, irrespective of the input frame size. The MBS block does the image scaling by 

reading the video data from memory and writing the scaled pictures back to the 

memory. Since, MBS does the pixel based processing [15], tMBS,active depends on the 

input frame size. 

 

The reason for obtaining larger values for PCPU,active shown in Graphs (1) and (4 ) 

when tCPU,active is small is explained as follows. The percentage of time spent by CPU 

in active state (tCPU,active) decreases with the decrease in frame rate and frame size. But 

the time spent by QVCP and MBS blocks is constant with frame rate and frame size. 

Since the same amount of overhead is included in CPU active state irrespective of 

tCPU,active, it is obvious that the overhead is more visible at small active 

percentages(tCPU,active).  

5.4.1.1 Linear regression 

The QVCP and MBS blocks have only two state active and idle. Therefore, tQVCP,idle 

and tMBS,idle values are calculated using the following equations: 

 

tQVCP,idle =1- tQVCP,active 

tMBS,idle =1- tMBS,active 

 

The values obtained for PSoC,T , tCPU,active, tCPU,stall, tCPU,idle, tQVCP,active, tMBS,active, tQVCP,idle 

and tMBS,idle for the nine different experiments are substituted in Equation(23). Solving 

the nine equations by linear regression gives the following results.  

 

PCPU,active=648.5mW 

PCPU,stall = 318.0 mW 
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PCPU,idle = 307.3 mW 

PQVCP,active =189.4 mW 

PMBS,active =   52.3 mW 

PQVCP,idle = 188.2 mW 

PMBS,idle =    53.5 mW 

 

The power consumtion model for SoC with the above regression coefficients is: 

 

PSoC,T =  648.5 × tCPU,active + 318.0 × tCPU,stall + 307.3 × tCPU,idle + 189.4  × tQVCP,active + 

52.3 × tMBS,active + 188.2 × tQVCP,idle + 53.5 × tMBS,idle         (24)  

 

The Root Mean Square Error of the above model is 2.13mW (refer Table 7). The 

above model is more accurate with 26% of reduction in RMSE when compared to the 

model in Section 5.3.3. But, at the same time the number of parameters of Equation 

(24) is doubled when compared to Equation (22) of Section 5.3.3.  

 

 FR 

(fps) 

FS tCPU,active  tCPU,stall  tCPU,idle  tQVCP,active tMBS,active  tQVCP,idle tMBS,idle PSoC,T  

(actual) 

(mW) 

PSoC,T  

(predicted) 

(mW) 

1 30 4cif 0.37 0.34 0.29 0.42 0.49 0.58 0.51 666.6 666.6 

2 30 cif 0.13 0.15 0.72 0.43 0.42 0.57 0.58 575.7 574.6 

3 30 qcif 0.07 0.09 0.83 0.43 0.42 0.57 0.58 550.4 550.4 

4 25 4cif 0.30 0.30 0.40 0.43 0.50 0.57 0.50 643.9 645.0 

5 25 cif 0.12 0.13 0.75 0.43 0.43 0.57 0.57 570.6 572.3 

6 25 qcif 0.06 0.09 0.85 0.43 0.42 0.57 0.58 547.9 550.1 

7 12.5 4cif 0.17 0.18 0.65 0.43 0.48 0.57 0.52 598.4 596.6 

8 12.5 cif 0.07 0.09 0.84 0.43 0.42 0.57 0.58 558.1 553.5 

9 12.5 qcif 0.04 0.06 0.90 0.43 0.42 0.57 0.58 540.4 542.9 

        Root Mean Square Error 2.13mW 
Table 7: Actual and model predicted values for PSoC,T 

5.4.2 Further simplification of the SoC power consumption model 

The model presented in the last section is a good approximation for predicting power 

consumption, but it is not the simple model because of the number of parameters. 

Power consumed by QVCP and MBS blocks in idle state (parameters PQVCP,idle and 

PMBS,idle) is the clock power of the blocks and can be measured in an experimental 

setup.  

 

To measure the clock power, frequency of operation of these blocks during the 

execution of decoder program has to be known. The frequency of opeartion of these 

hardware blocks is obtained by reading the corresponding register values through 

URD tool, during the execution of decoder program. The opearting frequency of 

QVCP and MBS blocks are 27MHz and 108MHz respectively. The clock power of 

these blocks is calculated as follows: 

 

At the reset position of the target, the clock frequency of the QVCP and MBS blocks 

is set as 27MHz and 108MHz respectively. The power consumption across SoC at this 

time is measured. Now the clock of the MBS block is disabled and then power 

consumption is measured. The difference between the two values gives the clock 

power of MBS block(PMBS,idle), which is 85.85mW. Now, the clock of the MBS block 
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is enabled. The same procedure is followed to get the clock power of QVCP block, 

which is 22.7mW. 

 

With the values of PQVCP,idle and PMBS,idle , in Equation (23), the unknown parameters 

are reduced to five (PCPU,active PCPU,stall  PCPU,idle  PQVCP,active and PMBS,active). PQVCP,idle and 

PMBS,idle are substituted in the Equations (23), the resulting equation is: 

 

PSoC,T – (22.7× tQVCP,idle+ 85.85× tMBS,idle)                                                                                                                                               
=  PCPU,active × tCPU,active + PCPU,stall × tCPU,stall + PCPU,idle× tCPU,idle +    PQVCP,active × 

tQVCP,active + PMBS,active × tMBS,active        (25)  

 

Linear regression is performed on the nine equations obtained from the decoder 

program to get the parameters; PCPU,active PCPU,stall  PCPU,idle, PQVCP,active and PMBS,active. 

Linear regression results in the following values for the parameters: 

 

PCPU,active= 645.9 mW 

PCPU,stall =  316.1 mW 

PCPU,idle =  305.1 mW 

PQVCP,active = 157.5 mW 

PMBS,active = 221.4 mW           

 

The power consumtion model for the SoC with the above regression coefficients is:  

 

PSoC,T – (22.7× tQVCP,idle + 85.85× tMBS,idle)                                                                                                                                               
=  645.9 × tCPU,active + 316.1 × tCPU,stall + 305.1 × tCPU,idle +  

157.5 × tQVCP,active + 221.4 × tMBS,active      (26)  

 

The RMSE of the above model is 2.13mW (refer Table (8)), which is equal to the 

RMSE of the previous model (Equation (24)).  

 

 FR 

(fps) 

FS tCPU,active  tCPU,stall  tCPU,idle  tQVCP,active tMBS,active  PSoC,T 

(actual)  

(mW) 

PSoC,T 

(predicted) 

(mW) 

1 30 4cif 0.37 0.34 0.29 0.42 0.49 609.6 609.6 

2 30 cif 0.13 0.15 0.72 0.43 0.42 512.9 511.8 

3 30 qcif 0.07 0.09 0.83 0.43 0.42 487.6 487.6 

4 25 4cif 0.30 0.30 0.40 0.43 0.50 588.0 589.1 

5 25 cif 0.12 0.13 0.75 0.43 0.43 508.7 510.4 

6 25 qcif 0.06 0.09 0.85 0.43 0.42 485.1 487.3 

7 12.5 4cif 0.17 0.18 0.65 0.43 0.48 540.8 539.0 

8 12.5 cif 0.07 0.09 0.84 0.43 0.42 495.3 490.7 

9 12.5 qcif 0.04 0.06 0.90 0.43 0.42 477.6 480.1 

      Root Mean Square Error 2.13mW 

   Table 8: Actual and model predicted values for  PSoC,T                                                 
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5.5 Models relating application dependent platform 
parameters to the application parameters 

It was observed from the results of Table(2) and (4) that the fraction of time spent by 

CPU in active and stall states (tcpu,active and tcpu,stall) during the execution of decoder 

program decreases with the decrease in frame rate and frame size of the input stream.  

Time spent by QVCP block in active state tQVCP, active is independent of the input frame 

rate and frame size.Time spent by MBS block in active state (tMBS, active) varies with 

the input frame size and is independent of the input frame rate (refer Table (6)).  In 

this section the parameters tcpu,active, tcpu,stall and tMBS, active are related to the application 

parameters. Through out this section the data from Table (8) is used to develop the 

models.  

5.5.1 Models relating tcpu,active to the FR & FS  

Graph (6) shows that tcpu,active increases linearly with frame rate for a constant frame 

size.  
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Graph 6: Graph representing tcpu,active vs. FR 

 

Similarly, Graph (7) shows that, the tcpu,active increases linearly with frame size for a 

constant frame rate. In Graph (7), the values taken for the frame size are relative 

values not the absolute values.  

 

Number of pixels for 4cif resolution is: 704 × 576 

Number of pixels for cif resolution is: 352 × 288 

Number of pixels for qcif resolution is: 176 × 144 

 

Since number of pixels per frame increases four times from qcif to cif and similarly 

from cif to 4cif, the values taken for 4cif, cif and qcif in Graph (7) are 16, 4 and 1 

respectively. 
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Graph 7: Graph representing tcpu,active vs. FS 
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5.5.1.1 Initial model (Model 1) 

The tcpu,active varies linearly with the frame rate and frame size by keeping frame size 

and frame rate constant respectively. But, in Graph (6) the rate at which tcpu,active is 

increasing with frame rate is different for different frame size (number of pixels per 

frame). This is true for the Graph (7) as well. This suggest that the tcpu,active, not only 

depends on frame rate and frame size individually but also on the combination of 

them. That means tcpu,active depends on the total number of pixels per second (FR*FS) 

as well. The following linear model is assumed to relate the tcpu,active to frame rate and 

frame size. 

 

tCPU,active =  C1*FR*FS + C2*FR + C3*FS+ C4     (27) 

 

The tcpu,active measured for nine different combinations of frame rate and frame size 

(refer Table (8)) are substituted in the above equation:  

 

0.37 = C1*480+ C2*30  +  C3*16  + C4 

0.13 = C1*120+ C2*30  +  C3*4    + C4  

0.07  = C1*30  +  C2*30 +  C3*1 + C4  

0.30 = C1*400+ C2*25  +  C3*16  + C4  

0.12 = C1*100 +  C2*25 + C3*4 + C4  

0.06  = C1*25  +  C2*25  + C3*1 +C4 

0.17 = C1*200+ C2*12.5 + C3*16 + C4  

0.07 = C1*50 + C2*12.5 + C3*4   + C4  

0.04 = C1*12.5 + C2*12.5 + C3*1 +C4  

 

Linear regression on the above nine equations result in the following regression 

coefficients:  

 

C1 = 0.0006; C2 = 0.001; C3 = 0.0004; C4 = 0.021 

 

With the above regression coefficients, the model for predicting the active percentage 

of CPU becomes: 

 

tCPU,active    =  0.0006*FR*FS + 0.001*FR + 0.0004*FS+ 0.021  (28) 

 

 FR*FS FR 

(fps) 

FS tCPU,active  

(actual) 

tCPU,active 

(predicted)  

1 480 30 16 0.37 0.36 

2 120 30 4 0.13 0.13 

3 30 30 1 0.07 0.07 

4 400 25 16 0.30 0.31 

5 100 25 4 0.12 0.11 

6 25 25 1 0.06 0.06 

7 200 12.5 16 0.17 0.17 

8 50 12.5 4 0.07 0.07 

9 12.5 12.5 1 0.04 0.04 

   Root Mean Square Error 0.46% 
Table 9: Actual and Model 1 predicted values for tCPU,active 
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RMSE for the above model is calculated to be 0.46% (refer Table(9)). By normalizing 

the model presented in this section, it is also possible to compare the regression 

coefficients. The regression coefficients can be compared to see which term of the 

model has more influence on predicting the tCPU,active.   

5.5.1.2 Normalization of the Model 1 

Following are the linear equations obtained by normalizing the model presented in the 

last section:  

 

0.37 = C1*1     +  C2*1     +  C3*1  + C4  

0.13 = C1*0.25 +  C2*1    + C3*0.25 + C4  

0.07  = C1*0.06  +  C2*1     +  C3*0.06 + C4  

0.30 = C1* 0.83 + C2*0.83  +  C3*1  + C4  

0.12 = C1*0.208 + C2*0.83 + C3*0.25 + C4 

0.06  = C1*0.05  + C2*0.83  + C3*0.06 +C4 

0.17 = C1*0.417 + C2*0.417 + C3*1+ C4  

0.07 = C1*0.1 + C2*0.417 + C3*0.25+ C4  

0.04 = C1*0.03 + C2*0.417 + C3*0.06 +C4  

 

The coefficients obtained by performing linear regression on the above equations are: 

 

C1 = 0.305 

C2 = 0.032 

C3 = 0.008 

C4 = 0.021 
 

The coefficient C1 is larger than all other coefficients and this suggests that the term 

FR*FS has large influence in the model. This is also obvious from the fact that the 

term  FR*FS (number of pixels per second) itself can capture the dependency of 

tCPU,active on FR and FS. The remaining coefficients are very small when compared to 

C1. Therefore, by eliminating all the terms except FR*FS term, we get a simplified 

model.  

5.5.1.3 Simplified model (Model 2) 

The following model includes only the term FR*FS  

 

tCPU,active    =  C1*FR*FS       (29) 

 

The tcpu,active measured for nine different combinations of frame rate and frame size is 

substituted in the above equation. Linear regression on the equations of this model 

gives the coefficient C1, which is equal to 0.001. With this coefficient, the model 

becomes: 

 

tCPU,active  =  0.001*FR*FS       (30)  

 

Root Mean Square Error for this model is calculated to be 3.15% (refer Table (10)).  
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 FR*FS tCPU,active 

 (actual) 

tCPU,active 

(predicted)  

1 1 0.37 0.38 

2 0.25 0.13 0.10 

3 0.06 0.07 0.02 

4 0.83 0.30 0.32 

5 0.208 0.12 0.08 

6 0.05 0.06 0.02 

7 0.417 0.17 0.16 

8 0.1 0.07 0.04 

9 0.03 0.04 0.01 

  Root Mean Square Error 3.15% 
Table 10: Actual and Model 2 predicted values for tCPU,active   

5.5.1.4 Summary of models 

The following table shows the summary of models considered so far and their 

corresponding Root Mean Square Errors.  

 

 Model C1 C2 C3 C4 RMSE(%) 

1 tCPU,active =C1*FR*FS+C2*FR+C3*FS+C4 0.0006 0.001 0.0004 0.021 0.46 

1.a Normalization of Model 1 0.305 0.032 0.008 0.021 0.45 

2 tCPU,active =C1*FR*FS 0.0008    3.15 

2.a Normalization of Model 2 0.384    3.18 
Table 11: Summary of the models and their RMSEs 

 

When we compare the two models in the above table, Model 2 has less number of 

parameters than Model 1 but the RMSE of Model 2 is much larger (7 times larger) 

than that of  Model 1.  

5.5.2 Model relating tcpu,stall to the FR and FS 

Graphs (8) and (9) show that the tcpu,stall increases linearly with frame rate and frame 

size by keeping frame size and frame rate constant respectively. But here also, it can 

be seen that the rate of increase is not the same in all cases. 

 

0

0.1

0.2

0.3

0.4

0 10 20 30 40

FR(fps)

t C
P

U
,s

ta
ll 4cif

cif

qcif

 
Graph 8: Graph representing tCPU,stall  vs. FR 
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Graph 9: Graph representing tCPU,stall vs. FS 

 

Different models considered in Section 5.5.1, to relate tcpu,active to the frame rate and 

frame size are considered in this section also to relate tcpu,stall to the frame rate and 

frame size.  

 

Table (12) shows the regression coefficients obtained by solving linear equations and 

the RMSE of each model.  

 

 Model C1 C2 C3 C4 RMSE(%) 

1 tCPU,stall =C1*FR*FS+C2*FR+C3*FS+C4 0.0005 0.001 0.001 0.04 0.29 

1.a Normalization of  Model 1 0.239 0.044 0.024 0.04 0.33 

2 tCPU,stall =C1*FR*FS 0.001    5.08 

2.a Normalization of  Model 2 0.379    5.11 
Table 12: Summary of the models and their RMSEs 

 

The Model 2 of the above table is the simplest but the RMSE of this model is 15 times 

larger than the other. Model 1 is the most accurate model with small RMSE.   

5.5.3 Model relating tMBS,active to the FS  

From the results of Table (8), it can be seen that tMBS, active is independent of the input 

frame rate. But tMBS,active increases from the cif resolution to 4cif resolution. tMBS, active 

remains the same for cif and qcif resolutions (refer Graph (10)).   
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Graph 10: Graph representing tMBS, active vs. FS 

 

The following model for relating the tMBS, active to the frame size is considered:    
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tMBS,active  = C1* FS + C2        (31) 

 

The values for the tMBS, active with an input stream of frame rate 30fps and resolution of 

4cif , cif and qcif are substituted in the above model. 

 

0.49 = C1*16 + C2 

0.42 = C1*4 + C2 

0.42 = C1*1 + C2 

 

Normalizing the above equations gives the following equations: 

 

0.49 = C1*1 + C2 

0.42 = C1*0.25 + C2 

0.42 = C1*0.06 + C2 

 

Solving the above equations through linear regression gives the values for C1 and C2 

as 0.08 and 0.41 respectively. 

 

Therefore, the model for predicting the tMBS, active from frame size of the input stream 

is given in the following equation and the RMSE of the model is 0.6% 

 

tMBS,active  = 0.08* FS + 0.41        (32) 

5.6 Compositional model for the white box approach  

The method of nesting two or more functions to form a single new function is known 

as composition [16]. A compositional model for the white box approach is obtained 

by representing tCPU,active, tCPU,stall and tMBS,active of the SoC power model presented in 

Section 5.4.2, as a function of application parameters. With compositional model, we 

achieve a high level model that predicts the power consumption of the SoC from 

application parameters frame rate and frame size. Sections 5.5.1.4, 5.5.2 and 5.5.3 

give the models that represent tCPU,active, tCPU,stall and tMBS,active as a function of 

application parameters. The SoC power model presented in Section 5.4.2 is given 

below: 

 

PSoC,T – (22.7× tQVCP,idle + 88.5× tMBS,idle) = 645.9 × tCPU,active + 316.1 × tCPU,stall + 305.1 

× tCPU,idle + 157.5 × tQVCP,active + 221.4 × tMBS,active 

 

Where tQVCP,active is a constant value 0.43 from Table (8). From Table (11) and (12), 

the normalized models that relate tCPU,active and tCPU,stall to the FR and FS, with small 

RMSE are taken. Equation (32) represents tMBS,active as a function of FS. These models 

are given below: 

 

tCPU,active  =  0.3047*FR*FS + 0.032*FR + 0.0078*FS + 0.0206   

tCPU,stall  =  0.239*FR*FS + 0.044*FR + 0.024*FS + 0.04             

tMBS,active  = 0.08* FS + 0.41             

tCPU,idle   = 1- tCPU,active - tCPU,stall 

tQVCP,idle = 1- 0.43 = 0.57 

tMBS,idle   =  1- tMBS,active                                                                                                                                                    

 

Substituting the above equations in the SoC power model gives:  
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PSoC,T  =  119.8 × FR*FS + 11.4 × FR + 27.7 FS + 536.3   (33) 

 

The Root Mean Square Error of the above model is calculated to be 16mW, which is 

shown in the table below: 

 

 FR*FS FR FS PSoC,T  

(actual) 

(mW) 

PSoC,T  

 (predicted) 

(mW 

1 1 1 1 666.6 695.2 

2 0.25 1 0.25 575.7 584.6 

3 0.06 1 0.06 550.4 556.6 

4 0.83 0.83 1 643.9 672.9 

5 0.21 0.83 0.25 570.6 577.6 

6 0.05 0.83 0.06 547.9 553.4 

7 0.42 0.42 1 598.4 618.7 

8 0.1 0.42 0.25 558.1 560.0 

9 0.03 0.42 0.06 540.4 546.3 

                           Root Mean Square Error 16mW 
Table 13: Actual and compositional model predicted values for PSoC,T 

5.7 Black box approach to relate the average power 
consumption of SoC to FR and FS  

The average power consumption measured across SoC for different settings of frame 

rate and frame size, with CPU power down mode are shown in the table below: 

 

 FR(fps) FS PSoC,T 

(mW) 

1 30 4cif 666.6 

2 30 cif 575.7 

3 30 qcif 550.4 

4 25 4cif 643.9 

5 25 cif 570.6 

6 25 qcif 547.9 

7 12.5 4cif 598.4 

8 12.5 cif 558.1 

9 12.5 qcif 540.4 
Table 14: PSoC,T measured from different experiments   

  

From the Graph (11), it can be seen that the average power consumption across SoC 

increases with the increase in frame rate by keeping frame size constant. But the rate 

of increase also depends on the frame size. This is also true for the Graph (12). 
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Graph 11:  Graph representing PSoC,T vs. FR 
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Graph 12: Graph representing PSoC,T vs. FS 

 

The following table shows various models considered for predicting the PSoC,T from 

FR and FS and their Root Mean Square Errors. 

 

 Model C1 C2 C3 C4 RMSE(mW) 

1 PSoC,T =C1*FR*FS+C2*FR+C3*FS+C4 0.22 0.246 0.88 536.6 2.07 

1.a Normalization of  Model 1 106.5 7.9 14.7 536.3 2.15 

2 PSoC,T =C1*FR*FS+C4 0.26   542.8 2.73 

2.a Normalization of  Model 2 124.3   542.9 2.80 
Table 15: Summary of the models and their RMSEs 

5.8 Comparison of the white box and black box models  

This section compares the models obtained from the white box and black box 

approaches. The compositional model of the white box approach from Section 5.6 and 

the black box model from the Section 5.7 are given below:  

 

PSoC,T  =  119.8*FR*FS + 11.4*FR + 27.7*FS + 536.3   (34) 

 

PSoC,T  =  106.5*FR*FS + 7.9*FR + 14.7*FS + 536.3   (35) 

 

The accuracy of the white box model is given by the RMSE of the model, which is 

equal to 16mW (refer Table (13)). The RMSE of the black box model is only 2.15mW 

(refer Table (15)). The RMSE of the white box approach is 7.4 times more than the 

RMSE of the black box approach. Therefore the black box models are more accurate 

than the white box models. The reason for large RMSE of the white box model is the 

method of composition of the models, in which the errors of individual models add 

up.  
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From both the models (white box and black box models), it can be observed that the 

term FR*FS (number of pixels per second) has large influence on the power 

consumption when compared to the terms: FR (number of frames per second) and FS 

(number of pixels per frame). This is obvious from the models of Table (11) and 

Table (12) that the term FR*FS has large influence on tCPU,active and tCPU,stall than the 

terms FR and FS. Number of pixels per frame (FS) of the input stream has more 

influence on the power consumption than the number of frames per second (FR). This 

is because of the fact that the execution periods of QVCP and MBS blocks are 

independent of FR but the execution period of MBS depends on FS (refer Section 

5.4.1 ).      

 

Another observation from the models is that there is large amount of constant offset 

power (536.3mW) consumed by the platform independent of the application 

parameters. This offset power is due to the clock power of the logic when the 

hardware components QVCP, MBS and various buses on the platform are in idle 

state.  
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6 Power models for memory 

6.1 Introduction 

This chapter presents the models to predict the average power consumption of the 

memory in two approaches: black box and white box. In the black box approach, a 

model that predicts the average power consumption of the memory directly from the 

application parameters, frame rate and frame size is developed through linear 

regression on experimental data. In white box approach, the power consumption of 

the memory is related to application parameters in two steps. The first step of this 

approach deals with experimentally validating the memory power consumption model 

presented in Section 4.4.2. The power consumption model for memory presented in 

Section 4.4.2 is given below:  

 

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write ×  

tmem,write          (36)  

            

The application dependent platform parameters (tmem,idle, tmem,read  and tmem,write ) and 

Pmem,T of the Equation (36) can be measured for a given frame rate and frame size of 

the input stream. Three different frame rates (30fps, 25fps and 12.5fps) and frame 

sizes (4cif, cif and qcif) are considered in the experiments. The application 

independent platform parameters (Pmem,active, Pmem,idle, Pmem,read and Pmem,write) of the 

model are calculated by performing linear regression on the equations substituted with 

the experimentally measured values for parameters tmem,active, tmem,idle, tmem,read  and 

tmem,write and Pmem,T.  

 

In the second step of white box approach, a model relating the application dependent 

platform parameters to the application parameters is developed through linear 

regression on the experimental data. Finally, from the models of each step, a 

compositional model for the power consumption of the memory in terms of applcation 

parameters is developed. Using the compositional model, we can predict the average 

power consumption of the memory for any values of frame rate and frame size.  

6.2 Black box approach experiments and results 

6.2.1 Without CPU power down 

The average power consumption across the memory is measured during the execution 

of the decoder application for different values of frame rate (30fps, 25fps and 12.5fps) 

and frame size (4cif, cif and qcif) of the input stream. The maximum frequency of 

operation for the DDR memory is 199.8MHz. All the experiments are done at the 

maximum frequency.  

 

The following table shows the average power consumption measured for all the 

combinations of frame rates and frame sizes. 
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 FR(fps) FS Pmem,T(mW)  

1 30 4cif 802 

2 30 cif 575 

3 30 qcif 517 

4 25 4cif 775 

5 25 cif 565 

6 25 qcif 510 

7 12.5 4cif 715 

8 12.5 cif 540 

9 12.5 qcif 490 
Table 16: Pmem,T values measured for different combinations of FR and FS 

 

0

200

400

600

800

1000

0 10 20 30 40

FR(fps)

P
m

e
m

,T
(m

w
)

4cif

cif

qcif

 
Graph 13: Graph representing Pmem,T vs. FR 
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Graph 14: Graph representing Pmem,T vs. FS 

 

From the Graph (13), it can be seen that the average power consumption of the 

memory, Pmem,T increases linearly with the frame rate by keeping frame size constant. 

But, the rate of increase in Pmem,T depends on the frame size. The same is true for the 

Graph (14). Therefore the following model assumes three terms on which the average 

power consumption depends (FR*FS, FR and FS). 

 

Pmem,T  =  C1*FR*FS + C2*FR + C3*FS+ C4     (37) 

 

Pmem,T  measured for the different combinations of FR and FS from Table (16) is 

substituted in the above equation. Linear regression on the equations give the 

following coefficients: 

 

C1 = 0.23; C2 = 1.22; C3 = 11.95; C4 = 462.31 

 

With the above regression coefficients the model for predicting the average power 

consumption becomes: 

Pmem,T  =  0.23*FR*FS + 1.22*FR + 11.95*FS+ 462.31   (38) 
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The Root Mean Square Error obtained for the above model is 1.54mW. 

  

Linear regression on the normalized equations of the above model (Equation (37)) 

gives the following regression coefficients: 

 

C1 = 110.5; C2 = 37.35; C3 = 191.4; C4 = 462.3 

 

Equation(37) can be simplified by removing the term FR, since it has less influence 

on predicting the average power consumption when compared to the other terms. The 

simplified model along with the initial model and their RMSEs are presented in Table 

(17). 
 

 Model C1 C2 C3 C4 RMSE(mW) 

1 Pmem,T =C1*FR*FS+C2*FR+C3*FS+C4 0.23 1.22 11.95 462.3 1.54 

1.a Normalization of  Model 1 110.5 37.3 191.4 462.3 1.55 

2 Pmem,T =C1*FR*FS+C3*FS+C4 0.32  9.83 489.9 6.31 

2.a Normalization of  Model 2 156.2  157.2 490.2 6.43 
Table 17: Summary of the models and their RMSEs 

 

When we compare the models in the above table, Model 1 has more accuracy with 

small error. Model 2 has less number of parameters, but the error is 4 times larger 

than the error of Model 1.   

6.2.2 With CPU power down 

The following table shows the average power consumption measured across the 

memory, Pmem,T for different combinations of frame rate and frame size with CPU 

power down mode.  
 

 

Table 18: Pmem,T values measured for different combinations of FR and FS 

 

 FR(fps) FS Pmem,T 

(mW)  

1 30 4cif 805 

2 30 cif 585 

3 30 qcif 528 

4 25 4cif 777 

5 25 cif 578 

6 25 qcif 517 

7 12.5 4cif 724 

8 12.5 cif 548 

9 12.5 qcif 503 



 47 

The following graphs show that the Pmem,T increases linearly with the FR and FS 
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Graph 15: Graph representing Pmem,T vs. FR 
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Graph 16:  Graph representing Pmem,T vs. FS 

 

The following table shows various models considered for predicting the Pmem,T from 

FR and FS and their Root Mean Square Errors. 
 

 Model C1 C2 C3 C4 RMSE(mW) 

1 Pmem,T =C1*FR*FS+C2*FR+C3*FS+C4 0.21 1.24 12.06 473.4 2.53 

1.a Normalization of  Model 1 99.73 37.6 192.9 473.4 2.34 

2 Pmem,T =C1*FR*FS+C3*FS+C4 0.3  9.92 501.2 6.7 

2.a Normalization of  Model 2 145.7  158.5 501.6 6.7 
Table 19: Summary of the models and their RMSEs 

 

From the above table, it can be seen that Model 1 has small RMSE and thus has more 

accuracy. Model 2 is simpler than Model 1 with less number of parameters but the 

RMSE of Model 2 is 2.9 times larger than the RMSE of Model 1.  

6.2.2.1 Comparison of black box models of SoC and memory (with 

CPU power down) 

This section compares the power models of SoC and memory obtained with black box 

approach. Table (15) of Chapter 5 gives the power model of SoC with black box 

approach. We chose the normalized model with small RMSE (2.15mW) from Table 

(15) and the model is given below: 

 

PSoC,T  =  106.5*FR*FS + 7.9*FR + 14.7*FS + 536.3 

 

From Table (19), we chose the normalized power model of memory with small RMSE 

(2.34mW). The model is given below: 

 

Pmem,T  =  99.7*FR*FS + 37.6*FR + 192.9*FS + 473.4 
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Both the models suggest that the term FR has less influence on the power 

consumption of the SOC and memory. The term FS (number of pixels per frame) has 

large influence on the power consumption of memory, whereas the term FR*FS has 

large influence on the power consumption of SoC.  

 

On SoC side, time spent by CPU in active state (tCPU,active) is more influenced by the 

term FR*FS than the other terms (refer Section 5.5.1.4). The hardware blocks QVCP 

and MBS executions are not influenced by FR. The execution periods of MBS block 

depends only on FS (refer Section 5.4.1).  The large influence of FR*FS term on the 

power consumption of the SoC indicates that the CPU has more influence on the 

power consumption of SoC when compared to the hardware blocks. The large 

influence of FS term on the power consumption of the memory indicates that the 

hardware blocks (specially MBS block) have more influence on the power 

consumption of memory than the CPU.  

6.3 White box approach experiments and results 

6.3.1 Measurement of application dependent platform parameters 
through experiments 

The data path width of the DDR memory is 32-bit. The DDR controller provides an 

interface between CPU, DMA devices and the DDR memory. To allow for the 

performance measurements, the DDR controller includes a set of registers that 

measure the data traffic [15]. To measure the read and write traffic from CPU as well 

as from DMA devices, incrementing 32-bit counters are used. The controller also 

includes a counter to count the idle cycles. The TimeDoctor tool is used to collect the 

values of these counters.  

 

During the execution of the decoder application, the values from the abovementioned 

counters are read through the TimeDoctor tool. Table (20) shows the Pmem,T and the 

counter values measured for different combinations of frame rate and frame size 

without CPU power down mode. Similarly, Table (21) shows the Pmem,T and the 

counter values with CPU power down mode. The experiments were done at a memory 

frequency of 199.8 MHz and at a CPU frequency of 100.5 MHz (refer Section 5.2). 
 

 FR 

(fps) 

FS CPUread  

(Mcy) 

CPUwrite 

(Mcy) 

DMAread 

(Mcy) 

DMAwrite 

(Mcy) 

DDRidle 

(Mcy) 

1 30 4cif 7.38 4.46 6.30 4.98 167.8 

2 30 cif 3.50 1.46 1.56 1.20 189.8 

3 30 qcif 2.58 0.73 0.45 0.32 193.8 

4 25 4cif 6.49 3.75 6.33 4.99 171.8 

5 25 cif 3.07 1.25 1.62 1.25 189.8 

6 25 qcif 2.32 0.65 0.45 0.32 193.8 

7 12.5 4cif 3.96 2.09 6.31 4.98 177.8 

8 12.5 cif 2.09 0.76 1.63 1.25 191.8 

9 12.5 qcif 1.61 0.43 0.45 0.32 195.8 
Table 20: Read and write cycles from CPU and DMA devices measured through TimeDoctor tool 

in different experiments without CPU power down mode 
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 FR 

(fps) 

FS 

 

CPUread 

(Mcy) 

CPUwrite 

(Mcy) 

DMAread 

(Mcy) 

DMAwrite 

(Mcy) 

DDRidle 

(Mcy) 

1 30 4cif 6.26 4.94 6.26 4.94 167.8 

2 30 cif 1.61 1.23 1.61 1.23 187.8 

3 30 qcif 0.45 0.37 0.45 0.37 193.8 

4 25 4cif 6.39 5.03 6.35 5.00 171.8 

5 25 cif 1.63 1.25 1.63 1.25 189.8 

6 25 qcif 0.45 0.32 0.45 0.32 193.8 

7 12.5 4cif 6.31 4.97 6.31 4.97 177.8 

8 12.5 cif 1.62 1.24 1.62 1.24 191.8 

9 12.5 qcif 0.45 0.31 0.45 0.31 195.8 
Table 21: Read and write cycles from CPU and DMA devices measured through TimeDoctor tool 

in different experiments with CPU power down mode 

 

In Table (20), the read and write accesses from CPU to memory increase with the 

increase in frame rate and frame size. This experimental result validates the 

assumption that the application dependent platform parameters depend on the 

application parameters (refer section 6.1). But, the read and write accesses from DMA 

traffic i.e. read and write accesses from QVCP and MBS blocks increase with the 

increase in frame size but are independent of changes in frame rate (refer Section 

5.4.1).  

 

It is expected that the read and write accesses from CPU and DMA devices with CPU 

power down mode also have the same relation with the application parameters as for 

without CPU power down mode. But from the Table (21), it can be seen that read and 

write accesses from CPU do not vary with the frame rate. The statistics given by 

TimeDoctor tool for frame rates 30fps, 25fps and 12.5fps at a frame size of 4cif are 

given in Table (22). From the statistics, it can be seen that the reads and writes from 

CPU during the decoding task (TASK_VDM4_182_0051 in Figure (10)) decrease 

with the decrease in frame rate. But, there are reads and writes from the CPU during 

the execution of idle task (IDLE in Figure (10)) and the number of read and write 

cycles are increasing when the frame rate is decreasing. This increase in read and 

write cycles with the decrease in frame rate during idle task compensates the normal 

effect of decrease in read and write accesses with frame rate during decoding task. 

Because of this, in Table (21) we see no dependency of read and write accesses on 

frame rate. 

 

 idle task decoding task idle+decoding tasks 

 FR(fps) FS CPUread  

(Mcy) 

CPUwrite 

(Mcy) 

CPUread  

(Mcy) 

CPUwrite 

(Mcy) 

CPUread  

(Mcy) 

CPUwrite 

(Mcy) 

1 30 4cif 1.2 0.8 4.7 3.9 5.8 4.7 

2 25 4cif 1.8 1.2 4.1 3.5 5.9 4.7 

3 12.5 4cif 3.8 2.9 2.2 1.8 5.9 4.8 
Table 22: CPU read/write cycles from/to the memory during idle and decoding tasks 

 

We measured the number of  read and write misses (missread and misswrite in Table 

(23)) from the instruction and data cache of the CPU (using TM3260 CPU counters) 

during idle task for the frame rate and frame size given in Table (22). The measured 

values are given Table (23). There are very few read and write misses from the CPU 

during idle task.     
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 FR(fps) FS missread  

(M) 

misswrite 

(M) 

CPUread  

(Mcy) 

CPUwrite 

(Mcy) 

1 30 4cif 0.03 0.001 1.2 0.8 

2 25 4cif 0.08 0.001 1.8 1.2 

3 12.5 4cif 0.08 0.001 3.8 2.9 
Table 23: Cache read/write misses and CPU read/write cycles from/to the memory during idle 

task 

 

Analysis of the relation between the number of cache read/write misses and CPU 

read/write cycles from/to the memory are beyond the scope of this work. Hence, in 

the rest of this chapter, the white box models are developed considering the 

measurement data from without CPU power down experiments.            

6.3.2 Calculation of application independent platform parameters 
through linear regression 

For the decoder application a burst length of 8 is used. Burst length can be set through 

the registers of the DDR controller. Since the data path width of DDR memory is 32-

bit, the burst size is 32B and therefore 8 words. The counters for measuring read and 

write data are incremented by 32, which means the values in these counters are the 

number of read and write words. Since, DDR memory can output 32-bit data per 

cycle, the read and write words from the counters can also be represented as read and 

write cycles. Therefore, the TimeDoctor tool gives the values from the counters as 

read and write cycles. Number of bursts in a given stream can be calculated by 

dividing the sum of read and write words from the counters with sburst i.e. 8 words. 

But the number of cycles taken by the memory for activate-precharge (burst) activity 

is not known.  

 

As described in Section 4.4.2, from the parameters that can be measured 

experimentally, the following model is considered: 

 

Pmem,T = Pmem,active  × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write× 

tmem,write          (39) 

 

tmem,active = 1 - tmem,idle       (40) 

 

The tmem,active is calculated as the difference of total time and idle time. tmem,idle , 

tmem,read  and tmem,write of Equation (39) are calculated from the idle, read and write 

cycles of Table(20). tmem,active is calculated by using Equation (40). The values 

calculated for tmem,idle, tmem,read ,tmem,write and tmem,active for different combinations of 

frame rate and frame size are given in the Table(24). Table also shows the Pmem,T 

measured for each combination.   
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 FR 

(fps) 

FS tmem,idle tmem,active tmem,read tmem,write Pmem,T 

(mW) 

1 30 4cif 0.84 0.16 0.069 0.047 802 

2 30 cif 0.95 0.05 0.025 0.013 575 

3 30 qcif 0.97 0.03 0.015 0.005 517 

4 25 4cif 0.86 0.14 0.060 0.044 775 

5 25 cif 0.95 0.05 0.020 0.013 565 

6 25 qcif 0.97 0.03 0.014 0.005 510 

7 12.5 4cif 0.89 0.11 0.051 0.035 715 

8 12.5 cif 0.96 0.04 0.019 0.010 540 

9 12.5 qcif 0.98 0.02 0.010 0.004 490 
Table 24: tmem,idle, tmem,active, tmem,read and tmem,write values calculated for different combinations of 

FR and FS 

 

The values for Pmem,T, tmem,idle, tmem,read, tmem,write and tmem,active from the nine different 

experiments are substituted in the Equation (39). Performing linear regression on the 

nine equations gives the following values for Pmem,active, Pmem,,idle, Pmem,read and 

Pmem,write. 

 

Pmem,active = 829.9 mW 

Pmem,,idle  = 462.5mW  

Pmem,read  = 1068.9mW 

Pmem,write  = 4466.1mW 

 

The RMSE obtained for the model (Equation (39)) with the above coefficients is 

4.07mW (refer Table (25)).  
 

 FR 

(fps) 

FS tmem,idle tmem,active tmem,read tmem,write Pmem,T(measured) 

(mW) 

Pmem,T(predicted) 

(mW) 

1 30 4cif 0.84 0.16 0.069 0.047 802 806 

2 30 cif 0.95 0.05 0.025 0.013 575 571 

3 30 qcif 0.97 0.03 0.015 0.005 517 517 

4 25 4cif 0.86 0.14 0.060 0.044 775 775 

5 25 cif 0.95 0.05 0.020 0.013 565 560 

6 25 qcif 0.97 0.03 0.014 0.005 510 506 

7 12.5 4cif 0.89 0.11 0.051 0.035 715 713 

8 12.5 cif 0.96 0.04 0.019 0.010 540 543 

9 12.5 qcif 0.98 0.02 0.010 0.004 490 498 

                Root Mean Square Error 4.07mW 
Table 25: Measured and model predicted values for Pmem,T and the corresponding RMSE 

6.3.3 Simplified model 

The values for tmem,read and tmem,write  (refer Table (24))  are small and are closely 

related to each other. Since tmem,read and tmem,write are not independent enough it is 

difficult to distinguish the read and write power consumption (Pmem,read and Pmem,write) 

separately through linear regression. Therefore the Equation (39) is further simplified 

by combining the tmem,read and tmem,write as shown below.    

 

Pmem,T = Pmem,active  × tmem,active + Pmem,idle × tmem,idle + Pmem,read&write × tmem,read&write   (41) 
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The values for tmem,active,tmem,idle and tmem,read&write  from Table (24) are substituted in the 

above model. Performing linear regression on the obtained linear equations gives the 

following values for Pmem,active, Pmem,,idle and Pmem,read&write.  

 

Pmem,active = 1600.4mW 

Pmem,,idle  = 450.5mW 

Pmem,read&write  = 1526.8mW 

 

The RMSE of the above memory model with the regression coefficients is calculated 

to be 5.91mW which is 1.5 times larger than the RMSE (4.07mW) of the previous 

model (Equation(39)). But, the simplified model has less number of parameters when 

compared to the previous model.  

6.4 Models relating application dependent platform 
parameters to application parameters 

The second step of the white box approach is to relate the application dependent 

platform parameters (tmem,active, tmem,read and tmem,write) to the application parameters 

frame rate and frame size. In this section, models relating the application dependent 

platform parameters to the application parameters are developed. 

6.4.1  Models relating tmem,active to the FR and FS 

The following graphs show that the tmem,active increases linearly with FR and FS by 

keeping the other parameter constant. The values for tmem,active are taken from the 

Table (24).    
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Graph 17: Graph representing tmem,active vs. FR 
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Graph 18: Graph representing tmem,active vs. FS 

 

From the above graphs, it can be seen that tmem,active depends on both FR and FS. For 

example, in Graph (17), the rate of increase of tmem,active with FR is more for 4cif 
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resolution than for cif and qcif resolutions. Similarly, the rate of increase of tmem,active 

with FS (refer Graph (18)) is more for 30fps than for 25fps and 12.5fps. Therefore, to 

predict tmem,active from FR and FS, the following linear model is considered. 

 

tmem,active  =  C1*FR*FS + C2*FR + C3*FS+ C4     (42) 

 

The values for tmem,active from Table(24) for different values of FR and FS are 

substituted in the above equation. The linear equations thus obtained are solved 

through linear regression. The following coefficients are obtained from linear 

regression. 

 

C1 = 0.0002; C2 = 0.0003; C3 =0.004; C4 = 0.013 

 

In order to make a comparison between the coefficients in terms of their influence on 

predicting the tmem,active, the equations obtained from the above model are normalized. 

Performing linear regression on the normalized equations gives the following 

coefficients. 

 

C1 = 0.07; C2 = 0.008; C3 =0.063; C4 = 0.0126 

 

The RMSE obtained for the model with above regression coefficients is 0.25%. 

From the above coefficients, it can be seen that the terms FR*FS (C1) and FS (C3) 

have large impact on tmem,active than the term FR (C2) and the constant (C4). Therefore 

Equation (42) can be simplified by removing the terms that have less influence on 

tmem,active. In the following model, only the terms FR*FS and FS are considered.  

 

tmem,active  =  C1*FR*FS + C3*FS       (43) 

 

Linear regression on the equations obtained by substituting tmem,active , FR and FS from 

Table(24) in the above model gives the following coefficients. 

 

C1 = 0.0002; C3 =0.005 

 

Performing linear regression on the normalized equations of the simplified model 

gives the following coefficients. 

 

C1 = 0.08; C2 = 0.08 

 

The RMSE obtained for the simplified model with the above regression coefficients is 

1.3% which is 5.2 times larger than the RMSE (0.25%) of the previous model 

(Equation (42)). The following table shows the summary of the models considered 

and their Root Mean Square Errors. 
 

 Model C1 C2 C3 C4 RMSE(%) 

1 tmem,active = C1*FR*FS+C2*FR+C3*FS+C4 0.0002 0.0003 0.004 0.013 0.25 

1.a Normalization of Model 1  0.07 0.008 0.063 0.013 0.25 

2 tmem,active = C1*FR*FS+C3*FS 0.0002  0.005  1.3 

2.a Normalization of Model 2 0.08  0.08  1.3 
Table 26: Summary of models and their RMSEs 
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6.4.2 Models relating tmem,read to the FR and FS 

The values for tmem,read for different combinations of FR and FS are taken from the 

Table (24). The following graphs show that tmem,read increases linearly with FR and FS 

by keeping the other parameter constant.  
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Graph 19: Graph representing tmem,read vs. FR 
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Graph 20: Graph representing tmem,read vs. FS 

 

The following table shows the models considered for predicting the tmem,read from FR 

and FS and their Root Mean Square Errors. 
 

 Model C1 C2 C3 C4 RMSE(%) 

1 tmem,read = C1*FR*FS+C2*FR+C3*FS+C4 0.0001 0.0002 0.002 0.005 0.04 

1.a Normalization of Model 1  0.02 0.006 0.03 0.005 0.04 

2 tmem,read = C1*FR*FS+C3*FS 0.0001  0.0025  0.7 

2.a Normalization of Model 2 0.03  0.04  0.7 
Table 27:  Summary of models and their RMSEs 

 

When we compare the models in the above table, the RMSE of the Model 2 is 17.5 

times larger than the RMSE of the Model 1 with only reduction in two parameters.  

6.4.3 Models relating tmem,write to the FR and FS 

From the graphs below, it can be seen that the tmem,write without CPU power down 

increases linearly with FR and FS.                                                                                                 
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Graph 21: Graph representing tmem,write vs. FR 
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Graph 22: Graph representing tmem,write vs. FS 

 

The following table shows the models considered for predicting the tmem,write from FR 

and FS and their Root Mean Square Errors. 
 

 Model(Normalized) C1 C2 C3 C4 RMSE(%) 

1 tmem,write = C1*FR*FS+C2*FR+C3*FS+C4 0.02 0.0006 0.02 0.002 0.03 

2 tmem,write = C1*FR*FS+C3*FS 0.02  0.03  0.15 

Table 28: Summary of models and their RMSEs 

6.5 Compositional model for the white box approach  

A compositional model is obtained by representing tmem,active, tmem,read and tmem,write of 

the memory power model presented in Section 6.3.2, as a function of application 

parameters. With compositional model, we achieve a high level model that predicts 

the power consumption of the memory from application parameters, frame rate and 

frame size. Sections 6.4.1, 6.4.2 and 6.4.3 give the models that represent tmem,active, 

tmem,read and tmem,write as a function of application parameters. The memory power 

model presented in Section 6.3.2 is given below: 

 

Pmem,T = Pmem,active  × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write× 

tmem,write          (44)  

 

From Table (26), (27) and (28), the normalized models which relate tmem,active, tmem,read 

and tmem,write to the FR and FS, with small RMSE are taken. These models are given 

below: 

 

tmem,active  =  0.07*FR*FS + 0.008*FR + 0.063*FS + 0.013  

tmem,read  =  0.02*FR*FS + 0.006*FR + 0.03*FS + 0.005     
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tmem,write  = 0.02*FR*FS + 0.0006*FR + 0.02*FS + 0.002           

tmem,idle   = 1- tmem,active 

 

Substituting the above equations in the memory power model (Equation (44)) gives:  

 

Pmem,T  =  136.4*FR*FS + 12.0*FR + 144.5*FS + 481.4   (45) 

 

The Root Mean Square Error of the above model is calculated to be 17mW, which is 

shown in the table below: 

 

 FR*FS FR(fps) FS Pmem,T  

(actual) 

(mW) 

Pmem,T 

(predicted) 

(mW)  

1 1 1 1 802 774 

2 0.25 1 0.25 575 564 

3 0.06 1 0.06 517 510 

4 0.83 0.83 1 775 749 

5 0.21 0.83 0.25 565 556 

6 0.05 0.83 0.06 510 507 

7 0.42 0.42 1 715 688 

8 0.1 0.42 0.25 540 536 

9 0.03 0.42 0.06 490 499 

  Root Mean Square Error  17mW 
Table 29: Measured and compositional model predicted values for Pmem,T and the corresponding 

RMSE 

6.6 Comparison of the white box and black box models 
(without CPU power down)  

This section compares the models obtained from the white box and black box 

approaches. The compositional model of the white box approach from Section 6.5 and 

the black box model from the Section 6.2.1 are given below:  

 

Pmem,T  =  136.4*FR*FS + 12.0*FR + 144.5*FS + 481.4    

 

Pmem,T  =  110.5*FR*FS + 37.3*FR + 191.4*FS + 462.3     

 

The RMSE of the white box model is 17mW (refer Table (29)) which is 11 times 

larger than the RMSE of the black box model (1.55mW from Table (17)). Therefore, 

the black box model is more accurate than the white box models. The reason for large 

RMSE of the white box model is obvious from the method of composition of the 

models, in which the errors of individual models add up.  

 

From both the models (white box and black box models), it can be observed that the 

term FS (number of pixels per frame) has large influence on the power consumption 

when compared to the terms; FR (number of frames per second) and FR*FS (number 

of pixels per second). As described in Section 6.2.2.1, the large influence of FS term 

on the power consumption of the memory suggests that the hardware blocks (specially 

MBS block) have more influence on the power consumption of memory than the 

CPU. Another observation from the models is that there is a large amount of constant 

offset power (481.4mW and 462.mW) consumed by the memory, independent of the 
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application parameters. This offset power is due to the clock power of the logic when 

the memory is in idle state.  
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7 Integrated power model from the power models of 
SoC and memory 

7.1 Introduction 

Chapters 5 presented a black box model that relates the average power consumption 

of SoC to the application parameters. Chapter 6 presented a black box model that 

relates the average power consumption of memory to the application parameters. 

Since SoC and DDR memory are two independent components and the power 

measurements were done for both the components separately, we can combine the 

power models for SoC and memory to obtain an integrated model. Through the 

integrated model, we get a high-level model that predicts the power consumption of 

the MPEG-4 decoder application from the application parameters. 

 

The integrated model can also be developed for the white box models. But, we chose 

black box models because these models are more accurate than the white box models 

with small RMSE (refer Section 5.8 and 6.6). We chose CPU power down mode 

models to make the integrated model, because the average power consumption with 

CPU power down mode is smaller than that of without CPU power down mode. 

7.2 Integrated power model 

From the Table (15) and Table (19), the normalized models for predicting the average 

power consumption of the SoC (PSoC,T) and memory (Pmem,T) with small RMSE 

(2.15mW and 2.34mW respectively) are chosen to make the integrated model.  

 

PSoC,T = 106.5*FR*FS + 7.9*FR +14.7*FS+ 536.3 

Pmem,T = 99.7*FR*FS + 37.9*FR +192.9*FS+ 473.4 

 

The above two models for predicting the average power consumption of the SoC and 

memory are in the same format, therefore, combining them gives an integrated model 

that predicts the net average power consumption from the application parameters.   

 

Pnet = PSoC,T + Pmem,T       (46) 

 

Pnet = 206.2*FR*FS + 45.8*FR + 207.6*FS + 1009.7  (47) 

 

The RMSE of the above model is the sum of RMSEs of the individual SoC and 

memory power models i.e. 4.5mW  

7.2.1 Analysis 

From the coefficients of the Equation (47), it can be observed that the terms FR*FS 

(number of pixels per second) and FS (number of pixels per frame) have the same 

influence on the net average power consumption.  

 

When we observe the power models of SoC and memory individually, the term 

FR*FS has large influence on the power consumption of SoC where as the term FS 

(number of pixels per frame) has large influence on the power consumption of 

memory (refer the Section 6.2.2.1 for explanation). From the Section 6.2.2.1, we 

observed that on SoC side CPU has more influence on the power consumption of SoC 

and on memory side hardware blocks have more influence on the power consumption 



 59 

of memory. But, when we combine the models both the terms (FR*FS and FS) got 

equal significance and therefore both CPU and hardware blocks have the equal 

influence on the net average power consumption.  

 

The term FR (number of frames per second) has less influence on the net average 

power consumption when compared to the other terms, because the hardware 

components QVCP and MBS operate at the output frame rate i.e.50Hz and are 

independent of the input frame rate (refer Section 5.4.1).  

 

In Equation (47), the net average power consumption is influenced by two parts. One 

part is the constant offset power (Poffset) which is independent of the application 

parameters. The offset power is obtained by the clock power of the components 

during their idle periods. The other part is the power (Papplication) that varies with the 

application parameters and is predicted by the model. The following table shows the 

Pnet, Poffset and Papplication values for each experiment with different frame rate and 

relative frame size of the input stream. Papplication is calculated as the difference of Pnet 

and Poffset values. 

    

Experiment FR(fps) FS Pnet 

(mW) 

Poffset 

(mW) 

Pnet - Poffset 

= Papplication 

(mW)  

1 30 16 1471.6 1009.7 461.9 

2 30 4 1421.4 1009.7 411.7 

3 30 1 1322.5 1009.7 312.8 

4 25 16 1160.7 1009.7 151.0 

5 25 4 1148.7 1009.7 139.0 

6 25 1 1106.6 1009.7 96.9 

7 12.5 16 1079.0 1009.7 69.3 

8 12.5 4 1064.9 1009.7 55.2 

9 12.5 1 1043.4 1009.7 33.7 
Table 30: Poffset and Papplication values calculated for different experiments 

 

In Graph (23), the X-axis shows the experiment number and the Y-axis shows the net 

average power consumption. The graph shows the contribution of Poffset and Papplication 

to the net average power consumption (Pnet).  
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Graph 23: Graph showing the contribution of Poffset and Papplication to the net average power 

consumption (Pnet) 
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The reduction in the net average power consumption by varying the application 

parameters frame rate and frame size from 30fps, 4cif resolution (Experiment 1) to 

12.5fps, qcif resolution (Experiment 9) is 30%. From Graph (23), offset power (Poffset) 

is clearly the dominating part in the net average power consumption (Pnet). The offset 

power is 85% (averaged over the experiments) of the net average power consumption.  

The offset power is obtained by the clock power of the components during their idle 

periods. In CPU power down mode, during the idle state CPU is clock gated. 

Therefore, the contributors to the offset power are the hardware blocks of the SoC and 

the DDR memory. The main contributors are the QVCP, MBS, control bus DCS, data 

bus PMAN, MMI and the DDR memory, which can not be clock gated during their 

idle periods in this platform. To reduce the energy consumption during idle periods of 

the components other than clock gating the components, dynamic frequency and 

voltage scaling can also be used. Chapter 9 discusses about the dynamic frequency 

and voltage scaling.    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 61 

8 SoC and Memory experiments with a different input 
stream 

8.1   Introduction 

This chapter discusses the experiments performed with the same decoder application 

for a different input stream. These experiments were done to check the influence of 

content of the input stream on power models of the SoC and memory. Stream 1 (used 

for the experiments in earlier chapters) and Stream 2 (used for the experiments in this 

chapter) are completely different in their content. The streams are selected in such a 

way that we test the extreme conditions of motion in pictures. The Stream 1 is a slow 

motion picture where as the Stream 2 is a fast motion picture. If the streams with 

extreme motion conditions result in similar power consumption and internal 

parameters, then it strongly suggests that the models developed in the previous 

chapters can be used, in general, for any other input stream. 

8.2 Experiments and results 

The experiments were performed with CPU power down mode. Since, the earlier 

experiments were done at a CPU frequency of 100.5 MHz and Memory frequency of 

199.8 MHz, the experiments in this chapter were also done at the same frequencies.  

8.2.1 SoC experiments 

The average power consumption and the application dependent platform parameters 

of the SoC are measured at three different frame rates and frame sizes of the input 

stream. The following table shows the measured values. 
 

Experiment FR(fps) FS tCPU,active tCPU,stall tCPU,idle tQVCP,active tMBS,active PSoC,T(mW)  

1 30 4cif 0.38 0.34 0.28 0.43 0.49 666.6 

2 30 cif 0.14 0.15 0.72 0.43 0.42 575.7 

3 30 qcif 0.07 0.10 0.83 0.43 0.42 550.5 

4 25 4cif 0.32 0.29 0.39 0.43 0.49 648.9 

5 25 cif 0.12 0.13 0.75 0.43 0.42 570.6 

6 25 qcif 0.07 0.10 0.83 0.43 0.42 547.9 

7 12.5 4cif 0.19 0.18 0.63 0.43 0.49 603.5 

8 12.5 cif 0.07 0.10 0.84 0.43 0.42 558.1 

9 12.5 qcif 0.04 0.07 0.89 0.43 0.42 540.4 
Table 31: The PSoC,T, tCPU,active, tCPU,stall, tCPU,idle, tQVCP,active and  tMBS,active  values measured for  

Stream 2 

 

The values for PSoC,T, tCPU,active, tCPU,stall, tQVCP,active and  tMBS,active  in the above table are 

compared to the values in Table (6) of chapter 5. The following graphs show the 

comparison. In the graphs, X-axis gives the number of the experiment in the order 

given in Table (31). 
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Graph 24: Graph comparing the PSoC,T values measured with stream 1 and stream 2 
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Graph 25: Graph comparing the tCPU,active values measured with stream 1 and stream 2 
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Graph 26: Graph comparing the tCPU,stall values measured with stream 1 and stream 2 
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Graph 27: Graph comparing the tQVCP,active values measured with stream 1 and stream 2 
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Graph 28: Graph comparing the tMBS,active values measured with stream 1 and stream 2 

 

In half of the experiments, the parameters PSOC, tCPU,active, tCPU,stall, tQVCP,active and  

tMBS,active are found to be the same for both the streams. The maximum variation for 

each parameter between Stream 1 and Stream 2 is given in the table below. There is 

no significant trend of increase or decrease in the parameter values between the 

streams. 

 

Parameter Max variation 

PSoC,T 0.85% 

tCPU,active 14.2% 

tCPU,stall 14.3% 

tQVCP,active 2.38% 

tMBS,active 2.32% 
Table 32: The maximum variation of the Stream 2 parameters with respect to the Stream 1 

parameters 

 

The maximum variation percentage for the tCPU,active and tCPU,stall in the above table 

seems large but actually they occurred for very small values of tCPU,active and tCPU,stall. 
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8.2.2 Memory experiments 

Similarly, the average power consumption and the Set 2 parameters of the memory 

are measured for the nine different combinations of frame rate and frame size. The 

following table shows the measured values. 

 
 

Experiment FR (fps) FS tmem,idle tmem,active tmem,read tmem,write Pmem,T(measured) 

(mW) 

1 30 4cif 0.85 0.15 0.064 0.050 800 

2 30 cif 0.94 0.06 0.016 0.013 584 

3 30 qcif 0.97 0.03 0.005 0.003 528 

4 25 4cif 0.86 0.14 0.064 0.050 778.5 

5 25 cif 0.95 0.05 0.016 0.013 575 

6 25 qcif 0.97 0.03 0.005 0.003 523 

7 12.5 4cif 0.89 0.11 0.064 0.050 721.5 

8 12.5 cif 0.96 0.04 0.016 0.013 552 

9 12.5 qcif 0.98 0.02 0.005 0.003 506.5 
Table 33: The Pmem,T, tmem,idle, tmem,active, tmem,read and tmem,write values measured for Stream2 

 

The values measured for the Pmem,T, tmem,active, tmem,read, tmem,write  for stream1(refer  

Table (21)) are compared with the values measured for stream 2 (refer Table (33)). 

The following graphs show the comparison.  
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Graph 29: Graph comparing the Pmem,T values measured with stream 1 and stream 2 
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Graph 30: Graph comparing the tmem,active values measured with stream 1 and stream 2 
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Graph 31: Graph comparing the tmem,read values measured with stream 1 and stream 2 
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Graph 32: Graph comparing the tmem,write values measured with stream 1 and stream 2 

 

In case of memory also, for half of the experiments, the parameters Pmem,T, tmem,active, 

tmem,read and tmem,write are found to be the same for both the streams. The maximum 

variation for each parameter between Stream 1 and Stream 2 is given in the table 

below. There is no significant trend of increase or decrease in the parameter values 

between the streams. Therefore, the variations seem to be more of a measurement 

error rather than a trend.  

 

Parameter Max variation 

Pmem,T 1.16% 

tmem,active 6.25% 

tmem,read 25% 

tmem,write 25% 
Table 34: The maximum variation of the Stream 2 parameters with respect to the Stream 1 

parameters 

 

The maximum variation percentage for the tmem,read and tmem,write in the above table 

seems large but actually they occurred for very small values of tmem,read and tmem,write. 

8.3 Conclusion 

From the experiments of this chapter, we observed that there is no significant 

variation of the power consumption and application dependent platform parameters of 

the SoC and memory for input streams with different content. These results strongly 
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suggest that the content of the input stream has no influence on the power models of 

the SoC and memory.  
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9 Effect of frequency scaling  

9.1 Introduction 

The compositional model given in chapter 7 was developed by considering fixed 

frequency and voltage method. All the experiments in previous chapters were done at 

a fixed frequency of CPU i.e. at 100.5MHz. At this frequency, CPU spends only 4% 

of the total time (refer Table (3)) in active state for decoding an input stream with 

12.5fps and qcif resolution. In this case, if we scale down the frequency of the CPU 

such that CPU spends most of the time in active state, we can save the energy 

consumption in idle state. Figure (13) shows the two cases, without frequency scaling 

and with frequency scaling.  

 

 
Figure 13: Energy consumption without and with frequency scaling 

 

Energy consumption in active state remains same for both the cases, because when we 

scale down the frequency active time increases linearly but active power decreases 

linearly (refer Equation (1) of chapter 4). Frequency scaling gives only linear 

reduction in the energy consumption, but by reducing frequency we can also reduce 

the supply voltage which gives quadratic reduction in the energy consumption. We 

can also save the energy consumption in idle state, by using clock gating technique in 

which the clock of the CPU is disabled during idle state. This technique was used in 

the experiments of previous chapters and referred as CPU power down mode (refer 

Section 5.3 of Chapter 5).  

 

In this chapter, by using the application dependent platform parameters of the CPU, 

tCPU,active and tCPU,stall   we calculate (using linear relation between time and frequency)  

scalable frequencies for the CPU for different frame rates and frame sizes of the input 

stream. With the calculated frequencies, we performed experiments to observe the 

effect of frequency scaling on power consumption. Frequency scaling does not give 

reduction in the average power consumption with CPU power down mode, because 

CPU is already clock gated during idle state in this method.  

9.2 Frequency scaling of CPU 

Table (35) shows the frequency at which CPU would be in active and stall states for 

80% of the total time for each combination of FR and FS with CPU power down 

mode. We leave a margin of 20% to make sure that the timing constraints are not 

violated. Since frequency and time vary linearly with each other the following 

equation is taken to calculate the scalable frequencies.  

 

fscaled = (torig/0.8) * forig 
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fscaled: The scaled frequency at which CPU is in active and stall states for 80% of the 

time  

torig: Percentage of time CPU is in active and stall states at 100.5MHz frequency  

forig: Reference frequency of the CPU i.e.100.5MHz 

 

torig value is calculated as the sum of tCPU,active and tCPU, stall values in the Table(3) of 

Chapter 5.  

 

 FR(fps) FS forig torig fscaled 

1 30 4cif 100.5 71 89 

2 30 cif 100.5 28 35 

3 30 qcif 100.5 16 20 

4 25 4cif 100.5 60 75 

5 25 cif 100.5 25 31 

6 25 qcif 100.5 15 19 

7 12.5 4cif 100.5 35 44 

8 12.5 cif 100.5 16 20 

9 12.5 qcif 100.5 10 13 
Table 35: Scalable frequencies  

 

By using the estimation of fscaled values from the above table, experiments are 

performed with nine combinations of frame rate and frame size of the input stream 

and the average power consumption across SoC (PSOC,T_f_scaled) is measured for each 

combination (refer Table (36)). It is not possible to set exact values for fscaled as given 

in the Table (35), because of the PLL settings. Therefore in the experiments, fscaled is 

selected to be close to the theoretical values given in Table (35). 

 

 FR 

(fps) 

FS torig 

(%) 

forig 

(%) 

tscaled 

(%) 

fscaled 

(MHz) 

PSoC,T_orig 

(mW) 

PSoC,T_f_scaled 

(mW) 

1 30 4cif 71 100.5 77 99.9 666.6 685.4 

2 30 cif 28 100.5 73 37.5 575.7 583.0 

3 30 qcif 16 100.5 78 20.3 550.4 562.9 

4 25 4cif 60 100.5 83 75 643.9 661.9 

5 25 cif 25 100.5 79 30.4 570.6 586.4 

6 25 qcif 15 100.5 75 18.8 547.9 560.3 

7 12.5 4cif 35 100.5 84 40.5 598.4 615.0 

8 12.5 cif 16 100.5 74 20.3 558.1 568.1 

9 12.5 qcif 10 100.5 87 10.1 540.4 534.2 
Table 36: SoC power consumption measured with frequency scaling for CPU power down mode 

 

As described earlier the average power consumption of the SoC with frequency 

scaling (PSOC,T_f_scaled) is not reduced when compared to the average power 

consumption of the SoC with CPU power down mode (PSOC,T_orig). The reason for 

increase of PSOC,T_f_scaled value when compared to PSOC,T_orig is that the relation 

between frequency and power consumption is not exactly linear. This is because, the 

power consumption of SoC (PSoC,T) also includes leakage power (Equation (1) of 

Chapter 4) which remains constant with frequency changes and only varies with 

voltage.  
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But, without power down mode, we can observe significant reduction in the average 

power consumption with frequency scaling (refer Table (37)). Table (37) shows the 

average power consumption of the SoC with frequency scaling (PSOC,T_f_scaled) for an 

input stream with more number of pixels per second (30fps and 4cif resolution) and 

less number of pixels per second (12.5fps and qcif resolution). For an input stream of 

12.5fps and qcif resolution PSOC,T_f_scaled value at 10.1 MHz, is reduced by 21% when 

compared to PSOC,T_orig value at 100.5MHz. According to the linear relation between 

frequency and power, in this case we expect for a 90% of reduction in power (from 

100.5MHz to 10.1MHz: 90% reduction in frequency). But actually the power is 

reduced only 21%.  

 

As described earlier, here the relation between frequency and power consumption is 

not exactly linear because of the leakage power (Equation (1) of Chapter 4) which 

remains constant with frequency changes and only varies with voltage. The 

PSOC,T_f_scaled value for input stream with 12.5fps and qcif resolution is reduced by 

25.3% with reference to the input stream with 30fps and 4cif resolution. Without 

frequency scaling the reduction is only 6% (refer Table (37)). 

 

 FR 

(fps) 

FS torig 

(%) 

forig 

(%) 

tscaled 

(%) 

fscaled 

(MHz) 

PSoC,T_orig 

(mW) 

PSoC,T_f_scaled 

(mW) 

1 30 4cif 88 100.5 89 99.9 717.1 715.2 

2 12.5 qcif 23 100.5 75 10.1 674.2 534.2 
Table 37: SoC power consumption measured with frequency scaling for without CPU power 

down mode 

9.3 Conclusion 

This chapter shows that, by using the application dependent platform parameters of 

white box approach we can estimate the scalable frequencies for the CPU. Therefore, 

the application dependent platform parameters can be used to actively control the 

CPU frequency of operation.  
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10 Conclusions  
In this thesis, the power models for the SoC and memory are developed with two 

different approaches namely black box and white box approaches. The black box 

models relate the power consumption of the SoC and memory to the application 

parameters without considering architecture level details. The black box models are 

abstract and easy to model. The white box approach models relate the power 

consumption of the SoC and memory to the application parameters, by considering 

the architecture level details and through composition of the models.  Because of the 

method of composition, the RMSE of the white box models is larger than that of the 

black box models. Therefore, the black box models are more accurate than the white 

box models. But the validity of the black box models is limited to this specific 

platform and application. 

 

Regardless of the accuracy of the white box models, there are several advantages of 

this approach. This approach analyses the platform parameters that cause the power 

consumption in detail. The platform parameters measured in this approach can be 

used as an estimation for other platforms and applications. As discussed in Chapter 9, 

the application dependent platform parameters can be used to actively control the 

CPU frequency of operation and thereby the power consumption. Moreover, the 

application dependent platform parameters can be used to investigate the 

compositionality in applications. For example, for running two applications on a CPU 

concurrently, we need to have an estimate of the CPU utilization by these 

applications. If we know the time spent by CPU in active and idle states for two 

applications separately, this information can be used to estimate the timing 

requirements for the compositional application. As a continuation of this work, it is 

recommended to investigate the compositionality in multimedia applications by using 

the application dependent platform parameters of the applications. 

  

Besides the individual models for the power consumption of SoC and memory, this 

thesis also presents the net power consumption model by integrating the individual 

models of SoC and memory. From the SoC power model, the observation was that the 

CPU has more influence on the power consumption of SoC than the hardware 

components. From the memory power model, it was observed that the hardware 

components have more influence on the power consumption of memory than the 

CPU. When we integrated the individual models of SOC and memory we observed 

that both CPU and hardware components have equal influence on the net average 

power consumption. From the integrated model we also observed that the offset 

power (clock power of the components during their idle periods) is the dominating 

part in the net average power consumption. The offset power is 85% (averaged over 

the experiments) of the net average power consumption.   

 

In this thesis, the experiments were performed with the same decoder application but 

with two different input streams whose content represents the extreme conditions of 

motion in the pictures. The results from the experiments suggest that the content of 

the input stream has no impact on the power consumption and on the application 

dependent platform parameters. But, it is necessary to perform experiments with some 

more input streams to make conclusions about the influence of the input stream 

content on the power models. 
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Validating the white box approach models through experiments in the PNX1500 

platform involves quite a lot of effort. This platform does not allow the measurement 

of all the parameters needed by the models, for example the time required for the 

burst activity (tmem,burst) in the memory model. It is necessary to have platforms that 

support performance measurements by providing required performance counters and 

registers.  

 

In this thesis, the power models were developed by using linear regression method. 

Accuracy of results obtained from linear regression method depends on, how well the 

parameters are independent from one another. One technique to make the parameters 

independent is to run special test programs that characterize each parameter 

separately. But, if the parameters are strongly correlated and it is not possible to have 

special test programs, then combining the parameters gives more accurate results than 

separating them. 
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APPENDIX 

� Building programs to PNX1500 platform 

While building the programs to PNX1500, there are several environmental variables 

that need to be set [17]. NDK package is provided with a batch file named 

ndk4_env.bat, to set the environment variables. Target for which the programs need 

to be built was chosen as “pnx1500 tm3260” in the batch file. Some of the other 

important variables used in this project are given below.  

1. Build “flavour” can be Debug, Trace, Assert or Retail. Debug mode is needed 

to use Debugger. Because of the compiler option settings, code compiled in 

this mode runs at half the speed of code compiled at Retail mode. Trace mode 

is similar to that of Debug mode except the difference in compiler option 

settings. In Assert mode debug is not enabled but assertions are enabled. 

Assertions are used to check for programming errors. In Retail mode all 

assertions and traces are disabled at compile time. In this project Retail mode 

is chosen. 

2. Host type: For a PCI plug-in board hosted operation it has to be set as 

WinNT. 

3. Diversity: The diversity “ _sp_” is set to specify single processor mode. In 

order to enable TimeDoctor tool support diversity “_td_” has been set.  

4. Endianess: Is chosen as little endian “el”. Even though PNX1500 CPU chip 

hardware is theoretically support big endian operation, the NDK/MPTK 

software is neither tested for the big endian mode nor supports it. 

 

Figure (14) is a screen shot of ndk4_env.bat, from which all the settings of 

environmental variables described above can be seen.  

 

 
Figure 14: Screen shot of ndk4_env.bat 
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In dvpMon, PCI channel option is chosen to enable communication through PCI.  

Figure (15) is a screen shot of dload.exe, which is a dvpMon’s command line 

interface to download applications to TriMedia. For decoder application .out file 

along with encoded stream is downloaded to TriMedia. 

 

 
 
Figure 15: Screen shot of dload.exe 

� Multimeter 

This instrument has a 6½-digit display and can store up to 55,000 readings in the 

internal buffer. Figure (16) shows the front panel of the Multimeter. There are several 

keys on the front panel that help user to operate the multimeter. The function of some 

keys is described below. 

 

• Store: Using this key it is possible to select number of readings to be stored 

during the execution of the application. 

• Recall: This key is used to display stored readings and buffer statistics. It 

displays average voltage, standard deviation, minimum and maximum 

voltages measured. 

• Rate: This key is used to set the integration time (measurement speed) of the 

A/D converter, i.e. the period of time input signal is measured.  

 

It is also possible to remote program the multimeter through a Standard I/O Interface 

RS-232. National Instruments LabVIEW package is used to collect and analyze data 

stored in the buffer.  

 

 
Figure 16: Front panel of the multimeter 
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� Steps for an experiment 

In this section, overall steps for performing an experiment are described in order. 

1. Build the application using ndk4_env.bat for target PNX1500 

2. Reset the target using dvpMon or URD 

3. Frequency of the CPU can be set to required value using URD registers. 

Default is 300.375MHz. 

4. Program Keithly multimeter from PC through Keithly communicator for the 

required settings. 

5. Use dload.exe of dvpMon, to download application in .out format along with 

encoded stream to target. 

6. Start Keithly multimeter buffer to store the voltage readings. 

7. Dump TimeDoctor buffer when the execution of application is finished.  

8. Use LabView to collect and analyse the data stored in buffer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


