
 Eindhoven University of Technology

MASTER

Power models of system-on-chip and external memory for multimedia applications

Chinta, A.

Award date:
2006

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jun. 2025

https://research.tue.nl/en/studentTheses/fff7f74d-6e40-485d-8ee1-920504283320

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

POWER MODELS OF
SYSTEM-ON-CHIP

AND
EXTERNAL MEMORY

FOR MULTIMEDIA APPLICATIONS

By
Anuradha Chinta

Supervisors:
Dr. Ir. Marc Geilen

Ms. DRS. EFM Steffens

Eindhoven, November 2006

 ii

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the enthusiastic supervision of

Dr. Ir. Marc Geilen, Assistant Professor at the Electrical Engineering department of

Technical University Eindhoven and Ms. DRS.EFM Steffens, Senior Research

Scientist at Philips Research Labs, Eindhoven for their invaluable technical guidance

and support provided during this thesis work. I would like to thank them for providing

me with an opportunity to carry out my M.Sc project at Philips Research Labs,

Eindhoven.

I would like to thank Ms. LIC.CM Otero Perez at Philips Research Labs, Eindhoven

for helping me with the tools and clarifying my doubts patiently. I would like to thank

Mr. Ir. AT Burchard at Philips Research Labs, Eindhoven for his invaluable time and

help with measurements, analysis and numerous stimulating discussions.

I am also thankful to Alina, PhD student for clearing my doubts. I wish to thank my

classmates in TU/e for their help and support during my study program.

I thank my husband Subrahmanya Kumar and our families for their constant

encouragement and moral support throughout my study period.

 iii

A. ABSTRACT

The multimedia functionality in modern handheld devices is computationally intensive

and requires a lot of energy. The source of energy in these devices is usually a

battery. Battery technology has not improved at the pace of increase in energy

requirements. An important requirement in these devices is to reduce power

consumption while meeting the timing constraints of multimedia applications.

Multimedia applications have the advantage of allowing run time trade-offs between

(picture) quality and power consumption. The (picture) quality and hence the power

consumption can be controlled by application parameters. In order to allow for run

time trade-offs, one needs to have an estimate of power consumption for various

application parameter settings.

This thesis focuses on developing power models for a System-on-Chip and Double

Data Rate (DDR) memory from application parameters. The power models were

developed through physical measurements on a Philips PNX1500 platform by running

MPEG-4 decoder application. We present two methods to develop power models. The

first method develops power models at a higher abstraction level by excluding

architecture level details, whereas the second method considers architecture level

details. Power models developed with the first method are abstract and easy to model,

but the validity of the models is limited to this specific platform. The architecture level

details of the second method can be projected to other platforms. In this thesis, we

also show that the architecture level details can be used to derive the scalable

frequencies for dynamic frequency scaling method. The experiments with two input

streams of different content suggest that the content of the input stream has no

influence on power models.

 iv

B. TABLE OF CONTENTS
ACKNOWLEDGEMENTS ..II

A. ABSTRACT .. III

B. TABLE OF CONTENTS ... IV

C. ABBREVIATIONS... VI

D. LIST OF FIGURES...VII

E. LIST OF TABLES ... VIII

F. LIST OF GRAPHS ... X

1 INTRODUCTION...1

1.1 PROBLEM DESCRIPTION ..1
1.2 ENERGY VS. POWER CONSUMPTION ..2
1.3 APPROACH ...2

1.3.1 Black box approach ..2
1.3.2 White box approach..3

1.4 THESIS OVERVIEW ...3

2 PHILIPS PNX1500 AND TOOLS ...5

2.1 PNX1500...5
2.2 TOOLS ..6

2.2.1 dvpMon ...6
2.2.2 URD (Universal Register Debugger) ...7
2.2.3 TimeDoctor...8

3 EXPERIMENTAL SETUP AND MEASUREMENTS.. 10

3.1 INTRODUCTION... 10
3.2 EXPERIMENTAL SETUP ... 10
3.3 POWER MEASUREMENTS .. 10
3.4 ERRORS .. 11

4 ENERGY AND POWER MODELS FOR THE CPU AND MEMORY 13

4.1 INTRODUCTION... 13
4.2 POWER CONSUMPTION OF A CMOS CIRCUIT .. 13
4.3 ENERGY CONSUMPTION OF AN EMBEDDED PROCESSOR AND MEMORY 14
4.4 ENERGY AND POWER CONSUMPTION MODELS FOR CPU AND MEMORY 15

4.4.1 Energy and Power consumption models for CPU .. 15
4.4.2 Energy and Power consumption models for Memory ... 16
4.4.3 Parameters of the CPU and memory power models... 19

5 POWER MODELS FOR SYSTEM-ON-CHIP (SOC) .. 20

5.1 INTRODUCTION... 20
5.2 WHITE BOX APPROACH EXPERIMENTS AND RESULTS.. 20

5.2.1 Power consumption in idle state... 22
5.2.2 Power consumption in stall state .. 23
5.2.3 Linear equation solutions ... 23
5.2.4 Linear regression.. 26

5.3 EXPERIMENTS WHEN CPU IS IN POWER DOWN MODE ... 26
5.3.1 Power consumption in idle and stall states... 27
5.3.2 Linear equation solutions ... 27
5.3.3 Linear regression.. 29

5.4 REFINED POWER CONSUMPTION MODEL ... 30
5.4.1 Experiments .. 31
5.4.2 Further simplification of the SoC power consumption model .. 33

5.5 MODELS RELATING APPLICATION DEPENDENT PLATFORM PARAMETERS TO THE APPLICATION

PARAMETERS .. 35
5.5.1 Models relating tcpu,active to the FR & FS... 35

 v

5.5.2 Model relating tcpu,stall to the FR and FS.. 38
5.5.3 Model relating tMBS,active to the FS ... 39

5.6 COMPOSITIONAL MODEL FOR THE WHITE BOX APPROACH .. 40
5.7 BLACK BOX APPROACH TO RELATE THE AVERAGE POWER CONSUMPTION OF SOC TO FR AND

FS 41
5.8 COMPARISON OF THE WHITE BOX AND BLACK BOX MODELS... 42

6 POWER MODELS FOR MEMORY.. 44

6.1 INTRODUCTION... 44
6.2 BLACK BOX APPROACH EXPERIMENTS AND RESULTS ... 44

6.2.1 Without CPU power down .. 44
6.2.2 With CPU power down ... 46

6.3 WHITE BOX APPROACH EXPERIMENTS AND RESULTS.. 48
6.3.1 Measurement of application dependent platform parameters through experiments....... 48
6.3.2 Calculation of application independent platform parameters through linear regression

 50
6.3.3 Simplified model ... 51

6.4 MODELS RELATING APPLICATION DEPENDENT PLATFORM PARAMETERS TO APPLICATION

PARAMETERS .. 52
6.4.1 Models relating tmem,active to the FR and FS ... 52
6.4.2 Models relating tmem,read to the FR and FS... 54
6.4.3 Models relating tmem,write to the FR and FS .. 54

6.5 COMPOSITIONAL MODEL FOR THE WHITE BOX APPROACH .. 55
6.6 COMPARISON OF THE WHITE BOX AND BLACK BOX MODELS (WITHOUT CPU POWER DOWN)56

7 INTEGRATED POWER MODEL FROM THE POWER MODELS OF SOC AND

MEMORY... 58

7.1 INTRODUCTION... 58
7.2 INTEGRATED POWER MODEL .. 58

7.2.1 Analysis... 58

8 SOC AND MEMORY EXPERIMENTS WITH A DIFFERENT INPUT STREAM 61

8.1 INTRODUCTION... 61
8.2 EXPERIMENTS AND RESULTS .. 61

8.2.1 SoC experiments ... 61
8.2.2 Memory experiments... 64

8.3 CONCLUSION.. 65

9 EFFECT OF FREQUENCY SCALING... 67

9.1 INTRODUCTION... 67
9.2 FREQUENCY SCALING OF CPU ... 67
9.3 CONCLUSION.. 69

10 CONCLUSIONS ... 70

REFERENCES ... 72

APPENDIX ... 73

� BUILDING PROGRAMS TO PNX1500 PLATFORM .. 73
� MULTIMETER .. 74
� STEPS FOR AN EXPERIMENT... 75

 vi

C. ABBREVIATIONS
4CIF 4 times Common Intermediate Format

A/D Analogue to Digital

API Application Programmers Interface

ASCII American Standard Code for Information Interchange

BETSY Being on Time Saves energY

BIS Boot Info Structure

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CIF Common Intermediate Format

DCS Device Control and Status network

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

DMA Direct Memory Access

DVP Digital Video Platform

EJTAG Enhanced JTAG

HD High Definition

IEEE Institute of Electrical and Electronics Engineers

ISR Interrupt Service Routine

JTAG Joint Test Action Group

LCD Liquid Crystal Display

MBS Memory Based Scalar

MMI Main Memory Interface

MMIO Memory Mapped Input Output

MPEG Moving Picture Experts Group

MPTK Media Processing Tool Kit

NDK Nxperia Developers Kit

OSAL Operating System Abstraction Layer

PC Personal Computer

PCI Peripheral Component Interconnect

PMAN Pipelined Memory Access Network

PNX Philips NXperia

PSOS Portable Scalable Operating System

QVCP Quality Video Composition Processor

QCIF Quarter Common Intermediate Format

RMSE Root Mean Square Error

RS232 Recommended Standard232

SoC System-on-Chip

TM TriMedia

URD Universal Register Debugger

VGA Video Graphics Array

 vii

D. LIST OF FIGURES
Figure 1: End to End streaming ... 2

Figure 2: Functional block diagram of PNX1500 SoC ... 6

Figure 3: Screenshot of dvpMon.. 7

Figure 4: Screen shot of URD.. 8

Figure 5: Screenshot of Time Doctor Viewer.. 9

Figure 6: Experimental set-up.. 10

Figure 7: Power dissipation in CMOS designs ... 13

Figure 8: Representation of memory power model given in Equation (10)............... 18

Figure 9: Representation of modified memory power model given in Equation (11) 19

Figure 10: Statistics given by Time Doctor.. 21

Figure 11: Statistics given by TimeDoctor for idle_test program 23

Figure 12: Screen shot of TimeDoctor viewer.. 31

Figure 13: Energy consumption without and with frequency scaling........................ 67

Figure 14: Screen shot of ndk4_env.bat ... 73

Figure 15: Screen shot of dload.exe ... 74

Figure 16: Front panel of the multimeter.. 74

 viii

E. LIST OF TABLES
Table 1: PSoC,T, tCPU,active , tCPU,stall and tCPU,idle values obtained through various

experiments... 22

Table 2: The calculated values for PCPU,active , PCPU,stall and PCPU,idle........................... 24

Table 3: PSoC,T, tCPU,active , tCPU,stall and tCPU,idle values obtained through various

experiments in CPU power down mode... 27

Table 4: The values calculated for PCPU,active , PCPU,stall in CPU power down mode ... 28

Table 5: Actual and model predicted values for the PSoC,T.. 30

Table 6: PSoC,T, tCPU, active, tCPU, stall, tCPU, idle, tQVCP, active, tMBS, active values obtained

through various experiments.. 32

Table 7: Actual and model predicted values for PSoC,T ... 33

Table 8: Actual and model predicted values for PSoC,T .. 34

Table 9: Actual and Model 1 predicted values for tCPU,active 36

Table 10: Actual and Model 2 predicted values for tCPU,active 38

Table 11: Summary of the models and their RMSEs.. 38

Table 12: Summary of the models and their RMSEs.. 39

Table 13: Actual and compositional model predicted values for PSoC,T..................... 41

Table 14: PSoC,T measured from different experiments ... 41

Table 15: Summary of the models and their RMSEs.. 42

Table 16: Pmem,T values measured for different combinations of FR and FS.............. 45

Table 17: Summary of the models and their RMSEs.. 46

Table 18: Pmem,T values measured for different combinations of FR and FS.............. 46

Table 19: Summary of the models and their RMSEs.. 47

Table 20: Read and write cycles from CPU and DMA devices measured through

TimeDoctor tool in different experiments without CPU power down mode 48

Table 21: Read and write cycles from CPU and DMA devices measured through

TimeDoctor tool in different experiments with CPU power down mode 49

Table 22: CPU read/write cycles from/to the memory during idle and decoding tasks

.. 49

Table 23: Cache read/write misses and CPU read/write cycles from/to the memory

during idle task.. 50

Table 24: tmem,idle, tmem,active, tmem,read and tmem,write values calculated for different

combinations of FR and FS ... 51

Table 25: Measured and model predicted values for Pmem,T and the corresponding

RMSE ... 51

Table 26: Summary of models and their RMSEs ... 53

Table 27: Summary of models and their RMSEs .. 54

Table 28: Summary of models and their RMSEs ... 55

Table 29: Measured and compositional model predicted values for Pmem,T and the

corresponding RMSE .. 56

Table 30: Poffset and Papplication values calculated for different experiments 59

Table 31: The PSoC,T, tCPU,active, tCPU,stall, tCPU,idle, tQVCP,active and tMBS,active values

measured for Stream 2.. 61

Table 32: The maximum variation of the Stream 2 parameters with respect to the

Stream 1 parameters .. 63

Table 33: The Pmem,T, tmem,idle, tmem,active, tmem,read and tmem,write values measured for

Stream2... 64

Table 34: The maximum variation of the Stream 2 parameters with respect to the

Stream 1 parameters .. 65

Table 35: Scalable frequencies .. 68

 ix

Table 36: SoC power consumption measured with frequency scaling for CPU power

down mode.. 68

Table 37: SoC power consumption measured with frequency scaling for without CPU

power down mode ... 69

 x

F. LIST OF GRAPHS
Graph 1: Graph representing PCPU,active vs. tCPU,active.. 25

Graph 2: Graph representing PCPU,stall vs. tCPU,stall ... 25

Graph 3: Graph representing PCPU,idle vs. tCPU,idle .. 25

Graph 4: Graph representing PCPU,active vs. tCPU,active.. 29

Graph 5: Graph representing PCPU,stall vs. tCPU,stall ... 29

Graph 6: Graph representing tcpu,active vs. FR .. 35

Graph 7: Graph representing tcpu,active vs. FS .. 35

Graph 8: Graph representing tCPU,stall vs. FR.. 38

Graph 9: Graph representing tCPU,stall vs. FS ... 39

Graph 10: Graph representing tMBS, active vs. FS .. 39

Graph 11: Graph representing PSoC,T vs. FR .. 42

Graph 12: Graph representing PSoC,T vs. FS.. 42

Graph 13: Graph representing Pmem,T vs. FR .. 45

Graph 14: Graph representing Pmem,T vs. FS... 45

Graph 15: Graph representing Pmem,T vs. FR .. 47

Graph 16: Graph representing Pmem,T vs. FS.. 47

Graph 17: Graph representing tmem,active vs. FR ... 52

Graph 18: Graph representing tmem,active vs. FS ... 52

Graph 19: Graph representing tmem,read vs. FR... 54

Graph 20: Graph representing tmem,read vs. FS ... 54

Graph 21: Graph representing tmem,write vs. FR.. 55

Graph 22: Graph representing tmem,write vs. FS .. 55

Graph 23: Graph showing the contribution of Poffset and Papplication to the net average

power consumption (Pnet) .. 59

Graph 24: Graph comparing the PSoC,T values measured with stream 1 and stream2 . 62

Graph 25: Graph comparing the tCPU,active values measured with stream 1 and stream2

.. 62

Graph 26: Graph comparing the tCPU,stall values measured with stream 1 and stream 2

.. 62

Graph 27: Graph comparing the tQVCP,active values measured with stream 1 and stream

2.. 63

Graph 28: Graph comparing the tMBS,active values measured with stream 1 and stream 2

.. 63

Graph 29: Graph comparing the Pmem,T values measured with stream 1 and stream 2 64

Graph 30: Graph comparing the tmem,active values measured with stream 1 and stream 2

.. 64

Graph 31: Graph comparing the tmem,read values measured with stream 1 and stream 2

.. 65

Graph 32: Graph comparing the tmem,write values measured with stream 1 and stream 2

.. 65

 1

1 Introduction

1.1 Problem description

Modern handheld devices incorporate a lot of multimedia functionality. Multimedia

functions like video encoding and decoding are computationally intensive and cause a

lot of energy consumption [1]. The source of energy in the handheld devices is

usually a battery. Battery technology has not improved at the pace of increase in

energy requirements [2]. Moreover, in handheld devices the capacity of the battery is

limited. The battery is small and cannot be enlarged because of the restricted size and

weight of the handheld. Therefore, in handheld devices reducing energy consumption

while meeting the timing constraints of multimedia applications is an important

requirement.

The energy consumption of a system can be reduced through various parameters of

the application and architecture, and through different power management techniques

like clock gating and dynamic voltage and frequency scaling. In multimedia

applications, it is possible to make trade-offs between picture quality and energy

consumption. For example, with a given battery, some times it is necessary to make

sure that the battery operates long enough for a particular activity like playing video.

In this case, we can extend the battery life by reducing the energy consumption with a

compromise in picture quality but still meeting the timing constraints. The picture

quality can be controlled by various parameters of the application. In order to allow

run time trade-offs, we need to have an estimate of the energy consumption for

various application parameter settings.

The goal of this thesis is twofold: (1) To develop models that can predict the power

consumption of a system from application parameters without considering the

architecture level details. In order to make fast, run time decisions, these models

should be simple and abstract enough. The modeling effort required for these models

is limited because they exclude all the architecture level details. But the validity of

these abstract models is restricted to a specific context, for example to a specific

platform. (2) To develop models that can predict the power consumption of a system

from application parameters by considering the architecture level details. These

models include all the platform parameters that influence the power consumption.

These platform parameters can be used to estimate platform parameters in similar

multimedia platforms. The parameters can also be used to investigate the

compositionality in applications. Accurate estimates of the power consumption

require capturing all the platform parameters that influence the power consumption.

On the other hand, sometimes it is not possible to measure all the parameters due to

platform limitations. Therefore, the models should include the necessary parameters

to allow relevant and adequate predictions.

This thesis work is performed in the context of a European project called BETSY.

The BETSY project investigates theory, models and design methodology to make

well-founded trade-offs between time-constraints, terminal and network resources and

energy consumption. Figure (1) shows a basic BETSY set-up of a video streamed

from a camera through a wireless connection to a handheld computer, where it is

displayed.

 2

Figure 1: End to End streaming

On the left hand side, the video is captured, encoded (MPEG-4 simple profile) and

sent over a wireless link (IEEE 802.11g). On the right hand side, the encoded video is

received, decoded and rendered. Each of these functions has a number of parameters

that can be set. Some of the parameters are temporal resolution (frames per second),

spatial resolution (number of pixels per frame) and bit rate of the incoming stream.

This thesis focuses on developing and experimentally validating power consumption

models for the combined decoder (MPEG-4 simple profile) and rendering

applications. The application parameters are chosen as the temporal resolution

(frames per second) and spatial resolution (number of pixels per frame). In the rest of

the thesis, these parameters are referred as frame rate and frame size respectively.

The platform chosen for the experiments is Philips PNX 1500, which mainly consists

of a PNX1500 chip (also called SoC in this thesis) and a DDR memory chip.

The platform is chosen such that the power measurements can be performed over

different components of the platform separately. It is assumed that for obtaining

greater measurement accuracy, we need to separate the component impact parameters

properly. With this assumption, we performed the power measurements over SoC and

DDR memory separately.

1.2 Energy vs. power consumption

Although, the words energy consumption and power consumption are often used

interchangeably, there is an important difference between these two words. The power

used by a device is the energy consumed per time unit. Conversely, energy

consumption is the time integral of power. In handheld devices a battery stores a

given quantity of energy. Therefore, in handheld devices the goal is to reduce the

energy consumption to perform all the necessary tasks satisfactorily. Even though

minimizing power consumption cannot minimize the energy consumption in all cases,

there are some cases where it works. For example, for fixed duration tasks such as

playing video or audio, energy consumption is directly proportional to the average

power consumption (since the duration of the task is constant). Hence, in this thesis

the average power consumed for a fixed duration of task execution is considered.

1.3 Approach

In this thesis, power models for the SoC and memory are developed separately and

then these models are combined to get an integrated power model. With reference to

the goal mentioned in the previous section, we opted for two methods which are

described in the following paragraphs. Both the methods are based on physical

measurements in order to guarantee real values with good accuracy.

1.3.1 Black box approach

In this approach, the models are developed at a higher abstraction level by excluding

the architecture level details. Therefore, the SoC and memory are considered as a

black box. The average power consumption across SoC/memory is measured for

Capture Encode Send
enc.raw

Receive Decode Render
rawenc.

Capture Encode Send
enc.raw

Capture EncodeEncode SendSend
enc.raw

Receive Decode Render
rawenc.

Receive DecodeDecode RenderRender
rawenc.

 3

different settings of the application parameters: frame rate and frame size. The models

are developed by regression on the measurement data. The regression models are

improved by making trade-offs between accuracy and simplicity of the models.

1.3.2 White box approach

In white box approach, architectural details of the platform are captured as platform

parameters. The white box approach consists of two steps. In the first step, power

consumption is expressed as a function of platform parameters. In the second step, the

platform parameters are expressed as a function of application parameters to get a

high level abstract model that predicts the power consumption from the application

parameters. These two steps are explained in detail in the following paragraphs.

In the first step, the power models for the SoC/memory are developed by analysing

different states and activities of SoC/memory that cause power consumption. These

power models are expressed as a function of different platform parameters. The

platform parameters are identified as two types: application independent platform

parameters and application dependent platform parameters. The application

independent platform parameters are assumed to be independent of the application

parameters, frame rate and frame size. The examples of the application independent

platform parameters are: average power consumption in different states and activities

of the SoC/memory. The application dependent platform parameters are assumed to

be dependent on the application parameters and the examples of these parameters are:

time spent by SoC/memory in a particular state or activity. The average power

consumption and the time spent in different states and activities (application

dependent platform parameters) of the SoC/memory are measured for different

settings of the application parameters, frame rate and frame size. The average power

consumption in different states and activities (application independent platform

parameters) is obtained by regression on the measurement data.

In the second step, the time spent in different states and activities (application

dependent platform parameters) are related to the application parameters. The models

in the second step are also developed by regression on the measurement data. Finally,

a compositional model, which replaces the application dependent platform parameters

of the SoC/memory models with the second step models, is presented.

1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 introduces the Philips PNX 1500

platform and the tools that are used for performance measurements. Chapter 3

describes the experimental set up and the power measurements. In chapter 4, the basic

white box approach power models for the CPU and memory are developed and

discussed. Chapter 5 deals with developing power models for the whole SoC by

taking the CPU power models presented in Chapter 4 as a reference as well as

developing black box approach models for the SoC. Chapter 6 deals with validating

the memory models presented in Chapter 4 through experiments as well as developing

black box approach models for the memory. In Chapter 7, the SoC and memory black

box approach models are combined to get an integrated power model. Chapter 8

presents the experiments performed with a different input stream and discusses the

dependency of the average power consumption on the input stream content. Chapter 9

discusses the effect of frequency and voltage scaling on the average power

 4

consumption. Chapter 10 summarizes the thesis together with the ideas for future

work.

 5

2 Philips PNX1500 and Tools

2.1 PNX1500

The PNX1500 [3] is a complete Audio/Video/Graphics System on Chip. It has a high

performance 32-bit VLIW processor, TriMedia TM3260 that can perform high quality

audio and video signal processing and can also serve as general-purpose control

processor. It runs PSOS operating system. Several image and video processing

accelerators in the SoC assist CPU by providing image scaling and composition.

Figure (2) depicts the functional block diagram of PNX1500.The functionality

provided by SoC can be divided into three categories: decoding, processing and

displaying. MPEG-4 decoding function is implemented in software. Processing and

displaying functions are implemented in hardware accelerators. Quality Video

Composition Processor (QVCP) provides a high-resolution graphics controller with

graphics and video processing. QVCP allows composition of 2 layers, and can output

in 656/HD/VGA or LCD format, up to 10-bit per component and up to 81Mpixel/s.

Memory Based Scalar (MBS) provides functions like image scaling, video format

conversions including colour space conversion, luminance histogram measurements

and non-motion/motion compensated de-interlacing. MMI (Main Memory Interface)

provides interface between 32-bit, 200MHz, 256MB DDR SDRAM and TM3260

CPU, DMA devices and other internal resources that require memory access. The 32-

bit VLIW processor has 5-issue slots, 128 32-bit registers and 16KB data and 64KB

instruction cache. Both instruction and data cache are eight-way-set associative and

with 64B block size. The TM3260 CPU contains four programmable timer/counters,

all with the same function. Three of them are intended for general use where as fourth

timer/counter is reserved for use by the system software and should not be used by

applications.

The PNX1500 is designed to work in two modes: standalone mode and host mode

[3]. In standalone mode, the PNX1500 acts as a master. In this mode, the software

application that runs on TM3260 CPU is retrieved from EEPROM or flash memory

device. In host mode, the PNX1500 acts as a slave. In this mode, the software

application is downloaded into PNX1500 main memory (DDR memory) before

TM3260 CPU is released from reset. Throughout this project, PNX1500 is used in

host mode, where it is installed in the PCI slot of the PC. Advantage of PCI interface

is fast access to shared memory for download and debug.

 6

Figure 2: Functional block diagram of PNX1500 SoC

2.2 Tools

Philips provides a few tools [4] [5] along with the NDK distribution to provide a

means to interface with the target. These tools provide basic operations like

download, execute, basic tracing along with some run time analysis and performance

measurements. The following subsections explain the tools that are used to download

the application on target architecture and profiling tools that are used for analysis.

2.2.1 dvpMon

dvpMon is a stand-alone Win32 executable that provides a graphical user interface to

handle downloads to TriMedia over various channels such as PCI, JTAG, EJTAG,

and ETHERNET. Figure (3) is a screenshot of the dvpMon. dvpMon has the

following features:

• Download files in .elf, .bin, .mi and .out format

• Start and Reset TriMedia

• Dump traces from TimeDoctor, Memory

• View memory

• View and update BIS (Boot Info Structure)

• Look up DVP error codes

• Launch other tools like TimeDoctor viewer and URD

 7

Figure 3: Screenshot of dvpMon

2.2.2 URD (Universal Register Debugger)

URD is used to debug registers on target, the PNX1500. URD environment consists

of an application core and a set of supporting files. The application core provides the

basic URD functionality and the support files customize the URD to access and

manipulate the target device. The PC, which runs the URD application and the target,

the PNX1500 are communicated through PCI.

Device Description files (*.URD) describe the registers of the target hardware. Using

these register settings, it is possible to change the frequency of CPU and other

hardware blocks on SoC. Current register values can be stored in Current Register

Settings (*.URG) files. Sequences of register accesses can be described with URD

basic macros and stored in a URD Basic Macro description file (*.URM). These files

are used together with the corresponding Device Description file.

Figure (4) shows the screen shot of URD, in which a .urd file gives information about

the registers of the PNX1500 target namely System Reset Module, Clock System,

Power Down MMIO registers, DDR memory controller and Router. It is possible to

read and write the register values on target. It is also possible to reset the target using

URD.

 8

Figure 4: Screen shot of URD

2.2.3 TimeDoctor

TimeDoctor is a profiling tool that allows users to visualize and analyse TriMedia

programs. In order to do profiling using TimeDoctor tool, it is necessary to compile

the entire platform and application with the TimeDoctor build options and to call

some initialization functions in the application.

TimeDoctor provides profiling information about Task CPU usage, ISR CPU usage,

User Block CPU usage, Cache events, Queues, Semaphores and System events. This

profiling data is obtained by instrumenting OSAL functions using the callout facility

of the OSAL, and by instrumenting the PSOS task switch. Users can also call the

TimeDoctor API directly to define the user events. Time Doctor adds a small amount

of overhead on the system because it calls the callout functions for all the OS events

[4]. This data can then be collected, filtered and formatted. Graphical output traces

will be written to an ASCII .tdi file for importing into the TimeDoctor Viewer.

TimeDoctor provides profile information in three phases namely data collection, data

processing and data presentation. TimeDoctor viewer is used to display data generated

by TimeDoctor in graphical format. Figure (5) is a screenshot of TimeDoctor viewer.

 9

 Figure 5: Screenshot of Time Doctor Viewer

 10

3 Experimental setup and Measurements

3.1 Introduction

The previous chapter discussed about the Philips PNX 1500 platform and the tools

that are used for performance measurements. This chapter describes the experimental

setup and the power measurements. In this chapter, we also discuss the possible

sources of errors in measurements and modelling.

3.2 Experimental Setup

P
C
I
E
x
p
re
s
s

V
d
d
P
N
X
1
5
0
0
 =
 1
.3
V

V
d
d
D
D
R
=
 2
.5
V

Figure 6: Experimental set-up

Figure (6) shows the experimental set-up block diagram. This block diagram consists

of three blocks namely PC, PNX1500 platform and TV. PCI express cable connects

the PC with the PNX platform board. This connection is used to download the built-in

application from the PC onto the PNX1500 board. Output from displaying functions

of the PNX1500 board is connected to TV through a cable.

Only the relevant components to this thesis are shown in the PNX platform board.

The supply voltage for the PNX1500 chip (also called SoC in this thesis) and DDR

memory chip are derived from the power supply network. The resistors R1 and R2 are

also part of this power supply network. These resistors are shown external to the

power supply network to understand the current flow into the PNX1500 chip and

memory chip. The supply voltage to SoC is called VddPNX1500 and its value is 1.3 V.

Similarly, the supply voltage to DDR memory is called VddDDR and its value is 2.5 V.

3.3 Power measurements

The average power consumption of SoC/Memory is the product of voltage across

SoC/Memory and current drawn by SoC/Memory. Since R1 is in series with the SoC

 11

and R2 is in series with memory, the current drawn by SoC is I1 and the current

drawn by memory is I2. Therefore, the power consumption equations can be written

as follows:

PSOC = VddPNX1500 × Ι1

Pmem = VddDDR × Ι2

The currents I1 and I2 are calculated as follows:

I1 = (Voltage across R1) / R1 = V1 / R1

I2 = (Voltage across R2) / R2 = V2 / R2

Then, the power consumption equations become

PSOC = (VddPNX1500 × V1) / R1

Pmem = (VddDDR × V2) / R2

V1 and V2 are the average voltages measured across the resistors R1 and R2

respectively. Voltage across the resistors is measured using Keithly Model 2700

Multimeter / Data acquisition system [6]. The voltage measured using the instrument

is the average voltage, which is averaged over multiple samples. Therefore, random

error (refer Section 3.4) is averaged over multiple samples. The instrument is set to

display up to two decimal digits and has a precision of 0.01mV. All the measurements

in this thesis were taken at the same offset power which is obtained by resetting the

board before starting the measurements. This avoids errors in the measurements.

3.4 Errors

An error is defined as the difference between the measured value and the true value.

The sources of errors in measurement and modelling of this work are divided into two

types. One is the measurement error and the other one is the modelling error. The

following paragraphs describe these errors.

• Measurement errors: The measurement errors are of two types: Random error

and Systematic error. The random error is caused by any factors that randomly

affect the measurement of the variable across the sample. The important thing

about random error is that it does not have any consistent effects across the

entire sample, instead it pushes the observed scores up or down randomly.

This means that if we could see all of the random errors in a distribution they

might add up to zero. Systematic error is caused by any factors that

systematically affect measurement of the variable across the sample.

Systematic errors are caused by the flaw in the measurement instrument or

flaw in the method of selecting a sample or flaw in the technique of estimating

a parameter or can be due to inappropriate assumptions about formulae. To

minimise the systematic errors, it is necessary to check the instrument and

assumptions continuously. The sources of measurement errors in this thesis

are the power measuring instrument, Time Doctor tool and the assumptions in

the models.

 12

• Modelling errors: Modelling error depends on how well the assumed model

suits the data. Root Mean Square Error is a measure for the accuracy of the

models because it is measured in the same units of data and is a representative

of the size of a typical error. Two models whose RMSEs are in the same units

can be compared to see which one is more accurate. Another important

parameter to be considered in comparing the models is the complexity of the

model. When we trade off model complexity against error measures, it is

possibly not worth adding another independent parameter to a regression

model to decrease the RMSE by only a few more percent. Therefore, when the

RMSE of two models is not deviating much then it is better to choose the

model with less number of parameters.

 13

4 Energy and Power models for the CPU and Memory

4.1 Introduction

In order to develop power models for the SoC/memory using white box approach, we

need to analyse the sources of power consumption in these hardware components. The

sources of power consumption in SoC are the CPU and hardware accelerators of the

SoC. This chapter discusses the basic concepts of the power consumption in a CMOS

circuit and the power consumption in an embedded processor and memory

considering fixed and variable frequency and voltage methods. After detailed analysis

of various power consuming states and activities of the CPU/memory, we present

power models for the CPU/memory in terms of the platform parameters. Next chapter

develops the power models for the whole SoC by adding the influence of hardware

accelerators to the CPU power model presented in this chapter.

4.2 Power consumption of a CMOS circuit

The power consumption of any CMOS circuit is expressed as the sum of switching

power, leakage power and short-circuit power [7]. Switching power is caused by the

switching activity (charging and discharging) of the capacitor. A portion of the power

is consumed during the switching activity due to the short circuit at the driving gate’s

output, which is referred as short-circuit power. Switching and short-circuit powers

form the dynamic power consumption. There is also a portion of power consumed

irrespective of the switching activity, which is referred as leakage power or static

power consumption. Typically, the short-circuit power is a small percentage, less than

10% of the total power consumption; ignoring short-circuit power results in the

following average power consumption equation [7].

P = Pswitch + Pleakage ≈ C × V
2

DD f + VDD × Ιleakage (1)

In the above equation, C is a constant representing the average capacitance resulting

from all the active switching cells, VDD is the supply voltage, f is the clock frequency,

and Ιleakage is the average leakage current.

Figure 7: Power dissipation in CMOS designs

 14

4.3 Energy consumption of an embedded processor and
memory

In an embedded system, performing a given task with a given time constraint can be

achieved in different ways [7]. One of them is the fixed frequency and voltage

scheme. The other one is variable frequency and voltage scheme.

In case of fixed frequency and voltage scheme, the processor and memory are

designed to operate at a supply voltage and frequency that satisfies the timing

constraints for the worst-case scenario. When a low timing constraint task has to be

executed, then even after finishing the task the processor and memory consume

power. For example, for a decoder application depending on the frame rate of the

input stream, processor and memory are in idle between the frames. During these idle

periods, the processor and memory consume considerable amount of power.

In case of variable frequency and voltage scheme, the operating frequency is scaled

according to the timing constraints of the application. Processor could lower the

frequency for a low timing constraint task and can increase the frequency for a high

timing constraint task.

Consider a fixed duration task of period T. For fixed frequency and voltage scheme

average energy consumption for a given task completed in time T1 < T is given by:

EFIXED = ∫ +

T

leakageswitch dtPP
0

)(

 ≈ dtIVdtfVCdtfVC leakage

T

DDDD

T

T

T

DD)()()(
0

2

1

2

1

0

1
2

×+×+× ∫∫∫ (2)

Where C1 is the average switching capacity during task processing and C2 is the

average switching capacity after the task is completed. Operating the processor and

memory in standby (clock shutdown) state after the task is completed at T1, saves the

switching power. Then the Equation (2) becomes:

Efixed = ∫ +

T

leakageswitch dtPP
0

)(≈ dtIVdtfVC leakage

T

DD

T

DD)()(
0

1

0

1
2

×+× ∫∫ (3)

For a variable frequency and voltage scheme, the clock frequency f1 is reduced such

that the same task can be completed in time T. Accordingly, the supply voltage is

changed to VDD1 for the reduced frequency f1. In this case the average energy

consumption is given by:

Evariable = ∫ +

T

leakageswitch dtPP
0

)(≈ dtIVdtfVC leakage

T

DD

T

DD)()(
0

11

0

2

11 ×+× ∫∫ (4)

 15

4.4 Energy and Power consumption models for CPU and
Memory

Three forms of energy consumption are identified for any hardware block: static

frequency dependent and activity dependent energy consumption [8] [9]. The last two

contribute to the dynamic energy consumption of the hardware block. The static

power consumption depends on the state and voltage of the hardware block.

Frequency dependent power consumption depends on state, voltage and the clock

frequency at which the hardware block is operating. Activity dependent power

consumption depends on the state, voltage and the frequency of occurrence of an

activity in the given time interval. In some cases, activity dependent power

consumption can become the frequency dependent power consumption. For example

when each clock cycle is viewed as an activity then the activity dependent power

consumption is the same as frequency dependent power consumption.

Total power consumption in an interval T is obtained by summing up the three forms

of power consumptions over all the states, voltages, frequencies and activities. In case

of fixed frequency and voltage scheme, the summation is only over states and

activities. Since only fixed frequency and voltage scheme is considered in this thesis,

the power consumption models for CPU and memory will be described for this

scheme only.

4.4.1 Energy and Power consumption models for CPU

This section presents energy and power consumption models for a CPU with cache.

These models are developed by identifying different states and activities of CPU that

cause power consumption. The power consumption of the CPU in one state is

different from the power consumption in another state. Similarly, power consumption

of CPU for one activity is different from the power consumption of another activity.

For a CPU with cache, three different states are identified: active, stall and idle states

[8]. CPU is in active state when it actually computes. In active state all the CPU’s

logic is connected to the clock.

In modern CPUs, most of the memory accesses are to the cache. Memory accesses are

described as a read or write to the cache. An access to the cache is called cache hit

when a read or a write is succeeded, i.e. the block requested is available in cache in

case of read and a block can be written in to a particular location in case of a write. A

cache read miss occurs when the block is not available in the cache and has to be

fetched from the external memory. Cache write miss occurs when a write to a

particular location is not possible because it is not empty. In case of write back, write

allocate caches, the block in the required location is written back to the main memory

if that block is dirty and then the requested block is loaded into that location. In case

of write through and write no allocate caches; the requested block is updated in main

memory only. Upon a cache miss CPU enters into the stall state. In stall state some

part of the CPU’s logic is disconnected from the clock.

CPU is in idle state when there is no task to be performed. In idle state, large part of

the CPU’s logic is disconnected from the clock.

 16

It is assumed that there is no other activity dependent power consumption needs to be

identified since the total power consumption of the CPU is captured by these three

states. With this assumption, the average power consumption of the CPU is expressed

as the sum of the power consumptions in individual states.

PCPU,T = PCPU,active × tCPU,active + PCPU,stall × tCPU,stall + PCPU,idle× tCPU,idle (5)

Energy consumption of CPU during period T, is expressed as the sum of energy

consumption in individual states.

ECPU,T = PCPU,active × TCPU,active + PCPU,stall × TCPU,stall + PCPU,idle× TCPU,idle (6)

PCPU,T : Average power consumption of CPU during interval T

ECPU,T: Energy consumption of CPU during interval T

PCPU,active : Average power consumption of CPU in active state

PCPU,stall : Average power consumption of CPU in stall state

PCPU,idle : Average power consumption of CPU in idle state

tCPU,active: Fraction of time CPU is in active state

tCPU,stall: Fraction of time CPU is in stall state

tCPU,idle: Fraction of time CPU is in idle state

TCPU,active : Time spent by CPU in active state

TCPU,stall : Time spent by CPU in stall state

TCPU,idle : Time spent by CPU in idle state

The power consumption in each state is the sum of static and frequency dependent

power consumption, since there is no activity dependent power consumption.

PCPU,active ≈ VDD × Ιleakage + C1 × V
2

DD f
PCPU,stall ≈ VDD × Ιleakage + C2 × V

2
DD f

PCPU,idle ≈ VDD × Ιleakage + C3 × V
2

DD f

Since we are considering only fixed frequency and voltage scheme, the power

consumption in each state is a fixed constant value at a particular frequency and

voltage. Therefore the model for predicting the average power consumption of the

CPU (refer Equation (5)) is expressed as the linear sum of average power

consumption in individual states.

4.4.2 Energy and Power consumption models for Memory

This section presents the energy and power consumption models for a DDR memory.

Similar to CPU models, the memory models are developed by identifying various

power consuming states and activities of memory [8] [9].

DDR memory stands for Double Data Rate memory, which means two data transfers

take place per clock cycle. Dynamic memory must be refreshed regularly, with a

given maximum refresh interval for each page in each bank.

In dynamic memory the data transfers are not with the memory itself, but with sense

amplifiers. Before reading or writing, the contents of one page in one bank are loaded

to sense amplifiers. The act of loading to sense amplifiers is called as activation.

 17

Activation destroys the data in the memory bank. Therefore, it is necessary to restore

the page in the bank. The act of restoring is called as precharge.

Two different states of the DDR memory are identified: active and idle states. DDR

memory is in active state when at least one page is activated. DDR memory enters

into idle state when all the pages are precharged.

A read or write burst is a sequence of bytes read from or written to the same page of

same bank without interruption. Therefore, the burst is viewed as a sequence of words

belonging to the same page in the same bank. Every burst is preceded by an activation

of the page and followed by a precharge.

We assumed that reads and writes can take place in active state only. The cost of

reading or writing a word is captured by the activities read and write. The energy cost

due to activation and precharge is captured by the activity burst.

Time spent in the active state, but not used for data transfer is known as stall time.

Stall time includes refresh time, and also includes transition costs of different types.

To capture these transitions, we use the notion of efficiency, which captures transfer

time as a fraction of the total active time. Efficiency is used to calculate the total

active time of the DDR memory using the following formula:

tmem,active,T = (nmem,read,T + nmem,write,T) / (fmem × effmem) (7)

With these assumptions and definitions the following models for the energy and

power consumption of the memory is developed.

T : Length of the total time interval

Emem,T : Enrgy consumption of memory during interval T

Pmem,T : Average power consumption of memory during interval T

Pmem,active : Power consumption of the memory during active state

Pmem,idle : Power conmsumption of the memory during idle state

emem,read : Energy cost of one read

emem,write : Energy cost of one write
emem,burst : Energy cost of one burst
tmem,active : Fraction of time memory is in active state

tmem,idle : Fraction of time memory is in idle state

Tmem,active : Time spent by memory in active state

Tmem,idle : Time spent by memory in idle state

nmem,read,T : Number of occurances of activity read during interval T

nmem,write,T : Number of occurances of activity write during interval T

nmem,burst,T : Number of occurances of activity burst during interval T

fmem,read : Frequency of the read activity

fmem,write : Frequency of the write activity

fmem,burst : Frequency of the burst activity

Emem,T = Pmem,active × Tmem,active+ Pmem,idle × Tmem,idle + nmem,read,T × emem,read +

nmem,write,T × emem,write + nmem,burst,T × emem,burst (8)

 18

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + fmem,read × emem,read +

fmem,write × emem,write + fmem,burst × emem,burst (9)

Above equation is represented as follows for the convenience of notation:

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write

× tmem,write + Pmem,burst × tmem,burst (10)

In the above equation fmem,read × emem,read term of Equation (9) is replaced with

Pmem,read × tmem,read , both the terms give the average power consumption of the read

activity. Similarly, the terms fmem,write × emem,write and fmem,burst × emem,burst are replaced

with the terms Pmem,write × tmem,write and Pmem,burst × tmem,burst respectively.

Figure (8) represents the memory power model given in Equation (10). The burst

activity overlaps in time with read and write activities because of the multiple banks

in DDR memory. Usually, the transition costs between read and write activities are

included into write activity. Therefore, in Figure (8), the energy cost of write activity

is more than that of read activity.

IDLE period ACTIVE period

Time

Power

Read

Burst

Burst

Burst

Write

Figure 8: Representation of memory power model given in Equation (10)

In later chapters, for validating the memory power model (Equation (10)) we measure

the parameters of the model. Parameters tmem,idle, tmem,read and tmem,write of the model can

be measured through performance counters of DDR controller. But, we found that,

DDR controller of this platform has no counters to measure the tmem,burst of the

memory model. Therefore, with the measurable parameters Equation (10) is modified

as follows:

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write

× tmem,write (11)

Here,we can measure tmem,idle directly through performance counters. Therefore

tmem,active is calculated as follows instead of calculating using efficiency (Equation (7)):

tmem,active = 1 - tmem,idle

The following figure represents the modified memory power model in Equation (11).

 19

Figure 9: Representation of modified memory power model given in Equation (11)

In the modified model, we are not considering the average power consumption due to

burst activity separately. Therefore, the average power consumption due to burst

activity is included into the average power consumption of activities read and write.

4.4.3 Parameters of the CPU and memory power models

The parameters of the CPU and memory power models (refer Equation (5) and (10))

are divided into two sets:

1. Application independent platform parameters : PCPU,active, PCPU,stall , PCPU,idle,

Pmem,active, Pmem,idle, Pmem,read , Pmem,write

2. Application dependent platform parameters: tCPU,active , tCPU,stall , tCPU,idle , tmem,active,

tmem,read, tmem,write

Application independent platform parameters are assumed to be specific for the

CPU/memory and its settings, but are independent of the specific context in which the

CPU/memory is being used. For example, power consumed by CPU/memory in a

particular state or for a particular activity depends on the amount of logic that is active

during these states and activities and is expected to be specific for a CPU/memory

irrespective of the application. With this hypothesis, it is assumed that the application

independent platform parameters are independent of the application parameters.

Application dependent platform parameters are assumed to be dependent on the

application parameter settings. For example, if there are more number of frames

(frame rate) or more number of pixels per frame (frame size) to be processed by CPU,

then we can expect that the CPU spends more time in active state and less time in idle

state. Similarly, we can expect more number of accesses to memory in this scenario.

With this hypothesis, it is assumed that the application dependent platform parameters

are dependent on the application parameters.

 20

5 Power Models for System-on-Chip (SoC)

5.1 Introduction

In the previous chapter, we have developed the white box model for the CPU and

memory considering different power consuming states and activities of the CPU and

memory. This chapter develops power model for the whole SoC by taking the CPU

power model (refer Equation (5)) as a reference. This is achieved by adding the

influence of other hardware components of the SoC to the CPU power model step by

step through experiments.

The white box approach consists of two steps:

(1) Application dependent platform parameters (tCPU,active , tCPU,stall and tCPU,idle) and the

average power consumption across SoC (PSoC,T) are measured experimentally for the

given frame rate and frame size of the input stream. Three different frame rates

(30fps, 25fps and 12.5fps) and frame sizes (4cif, cif and qcif) are considered in the

experiments. Application independent platform parameters (PCPU,active, PCPU,stall and

PCPU,idle) are calculated by performing linear regression [10] on the equations

substituted with the experimentally measured values for application dependent

platform parameters and PSoC,T.

(2) The application dependent platform parameters of the SoC power model are

expressed as a function of application parameters (frame rate and frame size) through

regression models.

Finally, from the models of each step described above, a compositional model for the

power consumption of the SoC in terms of applcation parameters is developed. Using

the compositional model, we can predict the average power consumption of the SoC

for any values of frame rate and frame size.

This chapter also develops the black box models without considering the architecture

level details.

5.2 White box approach experiments and results

The Average power consumption measured across the SoC (PSoC,T) during the

execution of the decoder application, not only consists of power consumption due to

CPU, but also power consumption due to other hardware blocks. A fundamental

aspect of the PNX15xx Series system is to provide hardware modules (or hardware

accelerators) that relieve the TM3260 CPU for other video/audio processing [3]. That

means CPU and hardware blocks work simultaneously.

The application dependent platform parameters (tCPU,active, tCPU,stall and tCPU,idle) are

measured using TimeDoctor tool. Figure (10) is a screen shot of the TimeDoctor

statistics. All tasks except IDLE and ROOT are dynamically created at runtime by

providing system calls to the PSOS kernel [11]. The purpose of IDLE task is to

consume CPU cycles when no other task is running. Statistics in Figure (10) give the

number of execution cycles of each task and how much percentage of execution

cycles are stall cycles. The active and stall cycles of the CPU are calculated as the

sum of the individual task cycles.

 21

Figure 10: Statistics given by Time Doctor

The application independent platform parameters (PCPU,active, PCPU,stall and PCPU,idle) can

not be measured directly. Two approaches were taken to obtain PCPU,active, PCPU,stall

and PCPU,idle. These approaches are explained in the paragraphs below.

In the first approach, it is assumed that the hardware blocks would be in active state

only during CPU active periods. Therefore, PCPU,active includes the power consumption

due to the active CPU and hardware blocks. Several experiments were performed with

the decoder program using a sample stream from the BETSY project with three

different resolutions 4cif,cif and qcif and three different frame rates 12.5fps, 25fps

and 30fps. To characterize the power consumption during decoder program when

CPU is in stall and idle states, some test programs were executed. In Section 5.2.1 and

5.2.2 we explain these test programs. The values obtained for PSoC,T, tCPU,active , tCPU,stall

and tCPU,idle during the execution of decoder and test programs are substituted in the

following Equation (12). This equation is considered by taking the CPU power model

(Equation (5)) of previous chapter as a reference.

PSoC,T = PCPU,active × tCPU,active + PCPU,stall × tCPU,stall + PCPU,idle× tCPU,idle (12)

Linear equations obtained by the decoder program and test programs are solved to get

PCPU,active, PCPU,stall and PCPU,idle.

The second approach for obtaining PCPU,active, PCPU,stall and PCPU,idle is to perform linear

regression on the available data. Linear regression is performed on the nine linear

equaions obtained from the nine different experiments with the decoder program.

For each of the nine different experiments performed on decoder program, the values

obtained for PSoC,T, tCPU,active , tCPU,stall and tCPU,idle are shown in the Table (1).

In PNX 1500, the maximum frequency at which CPU can operate is 300.375MHz.

When the decoder program is run at this frequency with an input stream of 30fps

 22

frame rate and 4cif resolution, the CPU spends 78% of the time in idle state. That

means most of the time CPU is in idle state. Running CPU at higher frequency with

78% of idle time is not an optimal condition for the power consumption. Therefore in

order to get the best optimal condition for the power consumption we chose

100.5MHz frequency such that the time spent by CPU in idle state is around 10%.

The 10% of the margin is left to make sure that the CPU meets the timing constraints.

 FR(fps) FS tCPU,active tCPU,stall tCPU,idle PSoC,T

(mW)

1 30 4cif 0.49 0.39 0.12 717.1

2 30 cif 0.16 0.26 0.59 689.3

3 30 qcif 0.07 0.22 0.71 679.2

4 25 4cif 0.26 0.35 0.38 708.8

5 25 cif 0.12 0.24 0.63 683.8

6 25 qcif 0.05 0.22 0.73 676.7

7 12.5 4cif 0.23 0.28 0.49 701.9

8 12.5 cif 0.08 0.22 0.69 684.3

9 12.5 qcif 0.04 0.20 0.76 674.2
Table 1: PSoC,T, tCPU,active , tCPU,stall and tCPU,idle values obtained through various experiments

To obtain the power consumption across the SoC when the CPU is in idle and stall

states, two test programs idle_test and stall_test were executed.

5.2.1 Power consumption in idle state

During the CPU idle state, PSOS runs an idle task. The purpose of PSOS idle task is

to simply consume the CPU cycles when there is no other task to be performed by

CPU. PSOS idle task is nothing but an infinite loop [11].

With the assumption that the hardware blocks are active only during CPU active state,

the power consumption when CPU is in idle (PCPU,idle) would be the clock power of

CPU and hardware blocks and the power consumption due to idle task execution.

To get the power consumption across SoC during idle state of CPU (PCPU,idle), an

idle_test program is executed. During the execution of this program, the hardware

blocks that are active during decoder program are clocked. The hardware blocks that

are active during decoder program are obtained by using Universal Register Debugger

(URD) tool described in Section 2.2.2.

The test program is in C and the main() function consists of only getch() function.

Because of getch() function, until a character is entered from the keyboard, the CPU

would be in idle state and hence PSOS idle task would be executed. The values

measured for tCPU,active, tCPU,stall and tCPU,idle and PSoC,T during this test program are

substituted in Equation (12).

666.6 = PCPU,active × 0.00004 + PCPU,stall × 0.166 + PCPU,idle× 0.83 (13)

From the Equation (13), it can be seen that CPU spends only 83% of the time in idle

state during the execution of idle task. The remaining percentage of time is spent in

stall state. The statistics(Figure (11)) show that the 16.6% of stalls during idle task

execution are instruction cache stalls. We assume that the instructions of the idle task

 23

are flushed out of the cache for some reason and there is a need to get the instructions

back from external memory each time the idle task is executed.

Figure 11: Statistics given by TimeDoctor for idle_test program

5.2.2 Power consumption in stall state

Similarly, with the assumption that the hardware blocks are active only during CPU

active state, the power consumption across SoC, when CPU is in stall state would be

the stall power of CPU and the clock power of hardware blocks.

To obtain the power consumption across SoC during stall state of CPU, a stall_test

program was executed. This test program creates an array in the data cache of the

CPU. Each 64
th

 location (each location equals 1B) of the array is read in the

program.As the cache line size of the TM3260 is 64B, every cache read of this

program creates a miss and brings 64B of data from external memory. Therefore, on

every read of this program the CPU stalls for the data from external memory. The

values obtained for tCPU,active , tCPU,stall and tCPU,idle and PSoC,T during this test program

are substituted in Equation (12).

654 = PCPU,active × 0.06 + PCPU,stall × 0.93 + PCPU,idle × 0.004 (14)

5.2.3 Linear equation solutions

Below, we give an example of how the equations are solved to obtain PCPU,active ,

PCPU,stall and PCPU,idle values. Equation(15), is obtained from the decoder program with

an input stream of 4cif resolution and 30fps (from Table(1)).

717.1 = PCPU,active × 0.49 + PCPU,stall × 0.39 + 666.6× 0.12 (15)

Equation (15) along with the equations from idle_test and stall_test (Equation (13)

and (14) respectively) is written in the following matrix form.

















6.666

3.651

1.637

 =

















83.0166.000004.0

004.093.006.0

12.039.049.0

















idleCPU

stallCPU

activeCPU

P

P

P

,

,

,

To obtain PCPU,active , PCPU,stall and PCPU,idle , the above matrix is solved using

LinearSolve function of Mathematica tool [12]. LinearSolve function solves the

matrix for PCPU,active , PCPU,stall and PCPU,idle (in this case 781.3 , 649.9 and 673.1

respectively). Similarly, each of the remaining equations obtained from the decoder

program (From Table (1)) are solved with the equations from idle_test and stall_test

 24

programs (Equation (13) and (14) respectively). The resulting PCPU,active , PCPU,stall and

PCPU,idle values are shown in Table(2).

 FR

(fps)

FS tCPU,active tCPU,stall tCPU,idle PSoC,T

(mW)

PCPU,active

(mW)

PCPU,stall

(mW)

PCPU,idle

(mW)

1 30 4cif 0.49 0.39 0.12 717.1 781.3 649.9 673.1

2 30 cif 0.16 0.26 0.59 689.3 817.3 647.6 673.6

3 30 qcif 0.07 0.22 0.71 679.2 837.0 646.3 673.8

4 25 4cif 0.26 0.35 0.38 708.8 852.7 645.3 674.0

5 25 cif 0.12 0.22 0.66 683.8 870.1 644.2 674.2

6 25 qcif 0.05 0.22 0.73 676.7 853.9 645.2 674.0

7 12.5 4cif 0.23 0.28 0.49 701.9 828.9 646.8 673.7

8 12.5 cif 0.09 0.20 0.71 684.3 855.3 645.1 674.1

9 12.5 qcif 0.03 0.20 0.77 674.2 873.2 644.0 674.3
Table 2: The calculated values for PCPU,active , PCPU,stall and PCPU,idle

5.2.3.1 Analysis of results

Table (2) shows that the tCPU,active and tCPU,stall decrease with decrease in frame rate and

frame size. This experimental result validates the assumption that the application

dependent platform parameters depend on the application parameter settings. But the

decrease in tCPU,stall with frame rate and frame size is not at the rate of decrease in

tCPU,active with frame rate and frame size.

When the time spent by CPU in active state decreases, then the data cache misses as

well as data cache stalls decrease. For example, in case of qcif resolution and 30fps in

Table (2), CPU spends only 7% of the total time in active state (tCPU,active). In this case

it is expected that time spent in stall state (tCPU,stall) is also relative to the tCPU,active. But

tCPU,stall is 22%. tCPU,stall is calculated as the sum of total instruction and data cache

stalls. It was described in Section 5.2.1 that during idle task execution 16.6% are

instruction cache stalls. Since in this example CPU spends 71% of the time in idle

state, the instruction cache stalls during idle state are dominating in the tCPU,stall. This

explains why tCPU,stall is not scaling at the rate of tCPU,active with frame rate and frame

size.

According to the assumption that the application independent platform parameters are

independent of application parameters, the parameters PCPU,active, PCPU,stall and PCPU,idle

in Table (2) should be the same for any combination of frame rate and frame size.

But, PCPU,active in Table (2) does not support this assumption. Even though PCPU,stall

and PCPU,idle in Table (2) are not the same for each combination, the difference is very

small.

Graph (1) shows the increase of PCPU,active with the decrease of time spent by CPU in

active state (tCPU,active). Graph (2) and (3) show that PCPU,stall and PCPU,idle are constant

and does not vary with tCPU,stall and tCPU,idle respectively.

 25

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6

tCPU,active

P
C

P
U

,a
c
tiv

e

Graph 1: Graph representing PCPU,active vs. tCPU,active

In the above graph, active power increases about 10%. We treat this increase of active

power as an overhead in the active state. The reason for this overhead could be the

assumption in Section 5.2 that the hardware blocks would be in active state only

during CPU active periods. This overhead is more visible at less active periods of

CPU. Section 5.4 and 5.4.1 explain about the overhead in detail.

0
200
400
600

800
1000
1200

0 0.1 0.2 0.3 0.4 0.5

tCPU,stall

P
C

P
U

,s
ta

ll

Graph 2: Graph representing PCPU,stall vs. tCPU,stall

0
200
400
600

800
1000
1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

tCPU,idle

P
C

P
U

,id
le

Graph 3: Graph representing PCPU,idle vs. tCPU,idle

Another observation from the results is that the power consumption during CPU idle

state is more than the power consumption when CPU is in stall state (refer Table(2)).

This is because of the fact that during idle state, CPU is not really idle but doing small

amount of work during PSOS idle task (refer Section 5.2.1). PCPU,idle can be reduced if

CPU goes in to power down mode during CPU idle state. Section 5.3 explains the

CPU power down mode.

 26

5.2.4 Linear regression

The second approach for obtaining PCPU,active, PCPU,stall and PCPU,idle is to perform linear

regression on the available data using the least square error method[13] in MATLAB.

Linear regression method allows to find PCPU,active, PCPU,stall and PCPU,idle values that fit

all the linear equations considered. Linear regression is performed on the nine linear

equaions obtained from the data in Table(1) for decoder program. Linear regression

results in the follwing values.

PCPU,active = 609.9mW

PCPU,stall =889.2mW

PCPU,idle = 625.6mW

To measure the accuracy of the model, Root Mean Square Error is calculated [14].

The error obtained is 4.46mW. PCPU,active(609.9mW) obtained is less than the stall

power PCPU,stall (889.2mW). The reason is that the time spent by CPU in stall state is

proportional to the time spent by CPU in active state. Therefore they both are

correlated and are not independent enough to calculate the PCPU,active and PCPU,stall

values separately. Therefore, the tCPU,active and tCPU,stall values in the equations are

combined and are solved using linear regression method. The values thus obtained are

as follows:

PCPU,active+stall = 732.9mW

PCPU,idle = 662.4 mW

The RMSE of the model with above coefficients is 5.7mW

If we perform linear regression on the nine linear equaions obtained from the data in

Table(1) along with the idle_test and stall_test equations (Equation (13) and (14)

respectively), it helps to calculate the PCPU,active, PCPU,stall and PCPU,idle values more

accurately, because these two tests characterize the power consumption of CPU in

idle and stall states separately. Performing linear regression on the nine decoder

equations along with idle_test and stall_test equations gives the following values:

PCPU,active = 792.7mW

PCPU,stall =664.4mW

PCPU,idle = 673.5mW

The RMSE of the model with above coefficients is 8mW

5.3 Experiments when CPU is in power down mode

In the latest version of NDK software (NDK 5.3), CPU power down mode feature is

supported. The TM3260 CPU enters partial power down mode by performing a 'store'

to a specific MMIO address (the POWERDOWN register). The TM3260 then finishes

any pending transactions and goes into a partial power down. In partial power down

mode, cycle counters, timers and interrupt logic in the TM3260 are still active. The

TM3260CPU wakes up from partial power down when an interrupt occurs or there is

an access to its MMIO space. Partial power down mode feature is used by the idle

task in PSOS operating system [15]. It means that during the idle state of CPU, PSOS

idle task makes CPU to enter into partial power down mode. In the previous sections

NDK4.3 software was used, which does not have the CPU power down mode feature.

 27

In the NDK4.3 version during the idle state of CPU, PSOS idle task is executed which

is an infinite loop (refer Section 5.2.1).

The NDK5.3 software was installed and the experiments were done with decoder

program with three different resolutions and frame rates. All the experiments were

done at a CPU frequency of 100.5MHz. Table (3) shows the values obtained for

PSoC,T, tCPU,active, tCPU,stall and tCPU,idle for nine different experiments performed with

decoder program.

 FR

(fps)

FS tCPU,active tCPU,stall tCPU,idle PSoC,T

(mW)

1 30 4cif 0.37 0.34 0.29 666.6

2 30 cif 0.13 0.15 0.72 575.7

3 30 qcif 0.07 0.09 0.83 550.4

4 25 4cif 0.30 0.30 0.40 643.9

5 25 cif 0.12 0.13 0.75 570.6

6 25 qcif 0.06 0.09 0.85 547.9

7 12.5 4cif 0.17 0.18 0.65 598.4

8 12.5 cif 0.07 0.09 0.84 558.1

9 12.5 qcif 0.04 0.06 0.90 540.4
Table 3: PSoC,T, tCPU,active , tCPU,stall and tCPU,idle values obtained through various experiments in

CPU power down mode

5.3.1 Power consumption in idle and stall states

Experiments done with idle_test program and stall_test program resulted in the

following equations.

512.6 = PCPU,active× 0.00004 + PCPU,stall × 0.00034 + PCPU,idle × 0.999 (16)

651.4 = PCPU,active × 0.06 + PCPU,stall × 0.93 + PCPU,idle × 0.004 (17)

From Equation (16), it can be observed that the power consumption across SoC

during idle_test (PSoC,T = 512.6) is reduced by 23.1% when compared to the power

consumption (PSoC,T = 666.6) in without CPU power down mode. From Equation (16),

it can be seen that CPU spends 99.9% of time in idle state. But, when CPU is not in

power down mode, CPU spends only 83% (refer Equation (13)) of time in idle state

and the remaining percentage of time (16.6%) in stall state. The 16.6% of stalls

caused by the instruction cache misses during the idle task execution. Now, with CPU

power down mode, idle task of PSOS makes CPU to enter into partial power down

mode and there are no instruction cache misses. Therefore there are no stalls in this

case.

Since CPU spends 99.9% of time in idle state during idle_test program, PSoC,T

(512.6mW) from this test is taken as the power consumption when CPU is in idle state

(PCPU,idle).

5.3.2 Linear equation solutions

PSoC,T (512.6mW) from the idle_test is substituted in the PCPU,idle of the equations

obtained from decoder and stall programs. Equation(18) is obtained by substituting

PCPU,idle as 512.6mW, in the equation obtained by decoder program with an input

stream of 4cif resolution and 30fps (refer Table(3)). Similarly, Equation (19) is

 28

obtained by substituting PCPU,idle as 512.6mW, in the equation of stall program

(Equation(17)).

666.6 = PCPU,active × 0.37 + PCPU,stall × 0.34 + 512.6× 0.29 (18)

651.4 = PCPU,active × 0.06 + PCPU,stall × 0.93 + 512.6× 0.004 (19)

This results in the following set of equations:

517.9 = PCPU,active × 0.37 + PCPU,stall × 0.34 (20)

649.3 = PCPU,active × 0.06 + PCPU,stall × 0.93 (21)

The above equations can be written in the form of a matrix as shown below.










3.649

9.517
 = 









93.006.0

34.037.0









stallCPU,

activeCPU,

P

P

To obtain PCPU,active and PCPU,stall , the two linear equations (Equation (20) and (21))

are solved using LinearSolve function of Mathematica tool. LinearSolve function

solves the matrix for PCPU,active and PCPU,stall (in this case 808 and 641.3 respectively).

Similarly, each of the remaining decoder equations of Table (3) are solved with

Eqaution (21). The resulting PCPU,active and PCPU,stall values are shown in the following

table.

 FR(fps) FS tCPU,active tCPU,stall PSoC,T-PCPU,idle*tCPU,idle

(mW)

PCPU,active

(mW)

PCPU,stall

(mW)

1 30 4cif 0.37 0.34 517.6 808.0 641.3

2 30 cif 0.13 0.15 207.1 843.3 638.8

3 30 qcif 0.07 0.09 122.9 893.8 636.3

4 25 4cif 0.30 0.30 438.3 815.6 641.3

5 25 cif 0.12 0.13 186.2 845.9 638.8

6 25 qcif 0.06 0.09 112.2 873.6 636.3

7 12.5 4cif 0.17 0.18 265.2 888.8 636.3

8 12.5 cif 0.07 0.09 129.5 992.3 628.7

9 12.5 qcif 0.04 0.06 80.8 1088.3 623.7
Table 4: The values calculated for PCPU,active , PCPU,stall in CPU power down mode

5.3.2.1 Analysis of results

With CPU power down mode, idle power (PCPU,idle = 512.6) obtained is smaller than

the stall power (PCPU,stall in Table (4)). This is not the case in Section 5.2.3 (without

CPU power down), where the idle power is larger than the stall power in Table (2).

The difference comes from the fact that during idle task execution CPU goes into

partial power down mode with NDK5.3 version, whereas an infinite loop is executed

in NDK4.3 version.

From the Table (4), it can be seen that the fraction of time CPU is in active and stall

states (tCPU,active and tCPU,stall) decreases with the decrease in frame rate and frame size,

which supports the assumption that the application dependent platform parameters

depend on the application parameters. It can also be observed that tCPU,active and

tCPU,stall, both scale almost at the same rate with frame rate and size. The reason for

this is obvious because of the fact that there are no stalls in the idle state of CPU

 29

(refer Section 5.3.1). The stalls in the active state of CPU are directly proprtional to

the time spent by CPU in active state.

Graph (4) shows that PCPU,active increases with the decrease in tCPU,active. But PCPU,stall is

independent of tCPU,stall(refer Graph (4)). The systematic increase of active power in

Graph (4) supports the observation in Section 5.2.3.1 that there is an overhead

included in the CPU active state. As described earlier, Section 5.4 and 5.4.1 explain in

detail about this overhead.

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6

tCPU,active

P
c
p

u
,a

c
ti

v
e
(m

W
)

Graph 4: Graph representing PCPU,active vs. tCPU,active

0
200
400
600

800
1000
1200

0 0.1 0.2 0.3 0.4

tCPU,stall

P
C

P
U

,s
ta

ll (m
W

)

Graph 5: Graph representing PCPU,stall vs. tCPU,stall

5.3.3 Linear regression

The second approach for obtaining PCPU,active, PCPU,stall and PCPU,idle is to perform linear

regression on the available data. Linear regression is performed on the nine linear

equations obtained from the data in Table (3) for decoder program. Linear regression

results in the follwing values.

PCPU,active = 799.5mW

PCPU,stall =648.1mW

PCPU,idle = 523.6mW

The Root Mean Squar Error obtained for the model is 2.9mW (refer Table(5)). The

power consumption model for the SoC with above linear regression coefficients is

given below:

PSoC,T = 799.5 × tCPU,active + 648.1 × tCPU,stall + 523.6× tCPU,idle (22)

 30

 FR(fps) FS tCPU,active tCPU,stall tCPU,idle PSoC,T

 (actual)

(mW)

PSoC,T

(predicted)

(mW)

1 30 4cif 0.37 0.34 0.29 666.6 668.0

2 30 cif 0.13 0.15 0.72 575.7 578.1

3 30 qcif 0.07 0.09 0.83 550.4 548.9

4 25 4cif 0.30 0.30 0.40 643.9 643.7

5 25 cif 0.12 0.13 0.75 570.6 572.9

6 25 qcif 0.06 0.09 0.85 547.9 551.3

7 12.5 4cif 0.17 0.18 0.65 598.4 592.9

8 12.5 cif 0.07 0.09 0.84 558.1 554.1

9 12.5 qcif 0.04 0.06 0.90 540.4 542.1

 Root Mean Square Error 2.9mW
Table 5: Actual and model predicted values for the PSoC,T

The reason for obtaining larger values for PCPU,stall (648.1mW) and PCPU,idle

(523.6mW) when compared to the PCPU,stall values in Table (4) and PCPU,idle

(512.6mW) from idle_test program is explained as follows. From the Graphs (1) and

(4), it was observed that there is some overhed in active state of CPU. But in linear

regression approach, this overhead is distributed over the three states. Therefore,

PCPU,active (799.5mW) is smaller and PCPU,stall and PCPU,idle are larger when compared to

the results in the first approach.

5.4 Refined power consumption model

In the first approach, it was assumed that the hardware blocks are active only when

CPU is in active state (refer Section 5.2). To validate this assumption, we need to

monitor the behaviour of hardware blocks.

TimeDoctor tool is used to get the information about ISR (Interrupt service routine)

CPU usage (refer Section 2.2.3). ISR informs CPU, whenever a hardware block is

started and stopped (refer Figure (12)). Using the tmtdUserBlockCreate (),

tmtdUserBlockEnter () and tmtdUserBlockLeave () API’s of TimeDoctor tool [4],

the execution cycles of hardware blocks are measured. From Figure (12), it can be

seen that two hardware blocks: QVCP and MBS are active during decoder

application. These hardware blocks are active periodically irrespective of the state of

the CPU. Hence, the assumption that the hardware blocks are active only during

active state of the CPU is not correct. The cost (power consumption) of active

harware blocks is distributed over all the states of the CPU. But, in the first approach

(refer Section 5.2), this overhead was included only in the active state of the CPU

since the idle_test and stall_test do not include the power consumption due to active

hardware blocks.

 31

Figure 12: Screen shot of TimeDoctor viewer

In the second approach (Linear regression), the overhead due to hardware blocks is

included in all the three states of the CPU. But, the actual values for PCPU,active PCPU,stall

and PCPU,idle would be smaller than the values obtained in Section 5.3.3, if the power

consumption model for SoC (Equation (12)) is included with the cost of the hardware

blocks (QVCP and MBS) as well.

PQVCP,active : Power consumed by QVCP block in active state

PMBS,active : Power consumed by MBS block in active state

PQVCP,idle : Power consumed by QVCP block in idle state

PMBS,idle : Power consumed by QVCP block in idle state

tQVCP,active : Fraction of time QVCP block is in active state

tMBS,active : Fraction of time MBS block is in active state

tQVCP,idle : Fraction of time QVCP block is in idle state

tMBS,idle : Fraction of time MBS block is in idle state

PSoC,T = PCPU,active × tCPU,active + PCPU,stall × tCPU,stall+ PCPU,idle× tCPU,idle + PQVCP,active ×

tQVCP,active+ PMBS,active × tMBS,active + PQVCP,idle× tQVCP,idle + PMBS,idle× tMBS,idle (23)

5.4.1 Experiments

Experiments were done with decoder program for three different resolutions and

frame rates in CPU power down mode. Through TimeDoctor tool, the percentage of

time spent by QVCP and MBS blocks in active state was calculated (refer Table (6)).

 32

 FR

(fps)

FS tCPU,active tCPU,stall tCPU,idle tQVCP,active tMBS,active PSoC,T

(mW)

1 30 4cif 0.37 0.34 0.29 0.42 0.49 666.6

2 30 cif 0.13 0.15 0.72 0.43 0.42 575.7

3 30 qcif 0.07 0.09 0.83 0.43 0.42 550.4

4 25 4cif 0.30 0.30 0.40 0.43 0.50 643.9

5 25 cif 0.12 0.13 0.75 0.43 0.43 570.6

6 25 qcif 0.06 0.09 0.85 0.43 0.42 547.9

7 12.5 4cif 0.17 0.18 0.65 0.43 0.48 598.4

8 12.5 cif 0.07 0.09 0.84 0.43 0.42 558.1

9 12.5 qcif 0.04 0.06 0.90 0.43 0.42 540.4
Table 6: PSoC,T, tCPU, active, tCPU, stall, tCPU, idle, tQVCP, active, tMBS, active values obtained through various

experiments

From Table (6), it can be seen that the percentage of time spent by QVCP in active

state (tQVCP,active) is constant and does not vary with the frame rate and frame size. For

MBS, percentage of time spent in active state (tMBS,active) does not vary with frame rate

also. But, tMBS,active for 4cif resolution is more when compared to cif and qcif

resolutions. The QVCP and MBS blocks operate at the display frame rate i.e. at 50Hz.

For example, for an input stream of frame rate 25fps, every 40ms a frame is executed,

but QVCP and MBS blocks are executed twice in 40ms, which means at a frame rate

of 50Hz (refer Figure (12)). Therefore, QVCP and MBS block executions are

independent of the input frame rate. The tQVCP,active is independent of the input frame

size, because the QVCP block processes all the pixels of the display resolution i.e.

4cif, irrespective of the input frame size. The MBS block does the image scaling by

reading the video data from memory and writing the scaled pictures back to the

memory. Since, MBS does the pixel based processing [15], tMBS,active depends on the

input frame size.

The reason for obtaining larger values for PCPU,active shown in Graphs (1) and (4)

when tCPU,active is small is explained as follows. The percentage of time spent by CPU

in active state (tCPU,active) decreases with the decrease in frame rate and frame size. But

the time spent by QVCP and MBS blocks is constant with frame rate and frame size.

Since the same amount of overhead is included in CPU active state irrespective of

tCPU,active, it is obvious that the overhead is more visible at small active

percentages(tCPU,active).

5.4.1.1 Linear regression

The QVCP and MBS blocks have only two state active and idle. Therefore, tQVCP,idle

and tMBS,idle values are calculated using the following equations:

tQVCP,idle =1- tQVCP,active

tMBS,idle =1- tMBS,active

The values obtained for PSoC,T , tCPU,active, tCPU,stall, tCPU,idle, tQVCP,active, tMBS,active, tQVCP,idle

and tMBS,idle for the nine different experiments are substituted in Equation(23). Solving

the nine equations by linear regression gives the following results.

PCPU,active=648.5mW

PCPU,stall = 318.0 mW

 33

PCPU,idle = 307.3 mW

PQVCP,active =189.4 mW

PMBS,active = 52.3 mW

PQVCP,idle = 188.2 mW

PMBS,idle = 53.5 mW

The power consumtion model for SoC with the above regression coefficients is:

PSoC,T = 648.5 × tCPU,active + 318.0 × tCPU,stall + 307.3 × tCPU,idle + 189.4 × tQVCP,active +

52.3 × tMBS,active + 188.2 × tQVCP,idle + 53.5 × tMBS,idle (24)

The Root Mean Square Error of the above model is 2.13mW (refer Table 7). The

above model is more accurate with 26% of reduction in RMSE when compared to the

model in Section 5.3.3. But, at the same time the number of parameters of Equation

(24) is doubled when compared to Equation (22) of Section 5.3.3.

 FR

(fps)

FS tCPU,active tCPU,stall tCPU,idle tQVCP,active tMBS,active tQVCP,idle tMBS,idle PSoC,T

(actual)

(mW)

PSoC,T

(predicted)

(mW)

1 30 4cif 0.37 0.34 0.29 0.42 0.49 0.58 0.51 666.6 666.6

2 30 cif 0.13 0.15 0.72 0.43 0.42 0.57 0.58 575.7 574.6

3 30 qcif 0.07 0.09 0.83 0.43 0.42 0.57 0.58 550.4 550.4

4 25 4cif 0.30 0.30 0.40 0.43 0.50 0.57 0.50 643.9 645.0

5 25 cif 0.12 0.13 0.75 0.43 0.43 0.57 0.57 570.6 572.3

6 25 qcif 0.06 0.09 0.85 0.43 0.42 0.57 0.58 547.9 550.1

7 12.5 4cif 0.17 0.18 0.65 0.43 0.48 0.57 0.52 598.4 596.6

8 12.5 cif 0.07 0.09 0.84 0.43 0.42 0.57 0.58 558.1 553.5

9 12.5 qcif 0.04 0.06 0.90 0.43 0.42 0.57 0.58 540.4 542.9

 Root Mean Square Error 2.13mW
Table 7: Actual and model predicted values for PSoC,T

5.4.2 Further simplification of the SoC power consumption model

The model presented in the last section is a good approximation for predicting power

consumption, but it is not the simple model because of the number of parameters.

Power consumed by QVCP and MBS blocks in idle state (parameters PQVCP,idle and

PMBS,idle) is the clock power of the blocks and can be measured in an experimental

setup.

To measure the clock power, frequency of operation of these blocks during the

execution of decoder program has to be known. The frequency of opeartion of these

hardware blocks is obtained by reading the corresponding register values through

URD tool, during the execution of decoder program. The opearting frequency of

QVCP and MBS blocks are 27MHz and 108MHz respectively. The clock power of

these blocks is calculated as follows:

At the reset position of the target, the clock frequency of the QVCP and MBS blocks

is set as 27MHz and 108MHz respectively. The power consumption across SoC at this

time is measured. Now the clock of the MBS block is disabled and then power

consumption is measured. The difference between the two values gives the clock

power of MBS block(PMBS,idle), which is 85.85mW. Now, the clock of the MBS block

 34

is enabled. The same procedure is followed to get the clock power of QVCP block,

which is 22.7mW.

With the values of PQVCP,idle and PMBS,idle , in Equation (23), the unknown parameters

are reduced to five (PCPU,active PCPU,stall PCPU,idle PQVCP,active and PMBS,active). PQVCP,idle and

PMBS,idle are substituted in the Equations (23), the resulting equation is:

PSoC,T – (22.7× tQVCP,idle+ 85.85× tMBS,idle)
= PCPU,active × tCPU,active + PCPU,stall × tCPU,stall + PCPU,idle× tCPU,idle + PQVCP,active ×

tQVCP,active + PMBS,active × tMBS,active (25)

Linear regression is performed on the nine equations obtained from the decoder

program to get the parameters; PCPU,active PCPU,stall PCPU,idle, PQVCP,active and PMBS,active.

Linear regression results in the following values for the parameters:

PCPU,active= 645.9 mW

PCPU,stall = 316.1 mW

PCPU,idle = 305.1 mW

PQVCP,active = 157.5 mW

PMBS,active = 221.4 mW

The power consumtion model for the SoC with the above regression coefficients is:

PSoC,T – (22.7× tQVCP,idle + 85.85× tMBS,idle)
= 645.9 × tCPU,active + 316.1 × tCPU,stall + 305.1 × tCPU,idle +

157.5 × tQVCP,active + 221.4 × tMBS,active (26)

The RMSE of the above model is 2.13mW (refer Table (8)), which is equal to the

RMSE of the previous model (Equation (24)).

 FR

(fps)

FS tCPU,active tCPU,stall tCPU,idle tQVCP,active tMBS,active PSoC,T

(actual)

(mW)

PSoC,T

(predicted)

(mW)

1 30 4cif 0.37 0.34 0.29 0.42 0.49 609.6 609.6

2 30 cif 0.13 0.15 0.72 0.43 0.42 512.9 511.8

3 30 qcif 0.07 0.09 0.83 0.43 0.42 487.6 487.6

4 25 4cif 0.30 0.30 0.40 0.43 0.50 588.0 589.1

5 25 cif 0.12 0.13 0.75 0.43 0.43 508.7 510.4

6 25 qcif 0.06 0.09 0.85 0.43 0.42 485.1 487.3

7 12.5 4cif 0.17 0.18 0.65 0.43 0.48 540.8 539.0

8 12.5 cif 0.07 0.09 0.84 0.43 0.42 495.3 490.7

9 12.5 qcif 0.04 0.06 0.90 0.43 0.42 477.6 480.1

 Root Mean Square Error 2.13mW

 Table 8: Actual and model predicted values for PSoC,T

 35

5.5 Models relating application dependent platform
parameters to the application parameters

It was observed from the results of Table(2) and (4) that the fraction of time spent by

CPU in active and stall states (tcpu,active and tcpu,stall) during the execution of decoder

program decreases with the decrease in frame rate and frame size of the input stream.

Time spent by QVCP block in active state tQVCP, active is independent of the input frame

rate and frame size.Time spent by MBS block in active state (tMBS, active) varies with

the input frame size and is independent of the input frame rate (refer Table (6)). In

this section the parameters tcpu,active, tcpu,stall and tMBS, active are related to the application

parameters. Through out this section the data from Table (8) is used to develop the

models.

5.5.1 Models relating tcpu,active to the FR & FS

Graph (6) shows that tcpu,active increases linearly with frame rate for a constant frame

size.

0.00

0.10

0.20

0.30

0.40

0 10 20 30 40

FR(fps)

t C
P
U

,a
c
ti
v
e 4cif

cif

qcif

Graph 6: Graph representing tcpu,active vs. FR

Similarly, Graph (7) shows that, the tcpu,active increases linearly with frame size for a

constant frame rate. In Graph (7), the values taken for the frame size are relative

values not the absolute values.

Number of pixels for 4cif resolution is: 704 × 576

Number of pixels for cif resolution is: 352 × 288

Number of pixels for qcif resolution is: 176 × 144

Since number of pixels per frame increases four times from qcif to cif and similarly

from cif to 4cif, the values taken for 4cif, cif and qcif in Graph (7) are 16, 4 and 1

respectively.

0.00

0.10

0.20

0.30

0.40

0 5 10 15 20

FS

t C
P
U

,a
c
ti
v
e 30fps

25fps

12.5fps

Graph 7: Graph representing tcpu,active vs. FS

 36

5.5.1.1 Initial model (Model 1)

The tcpu,active varies linearly with the frame rate and frame size by keeping frame size

and frame rate constant respectively. But, in Graph (6) the rate at which tcpu,active is

increasing with frame rate is different for different frame size (number of pixels per

frame). This is true for the Graph (7) as well. This suggest that the tcpu,active, not only

depends on frame rate and frame size individually but also on the combination of

them. That means tcpu,active depends on the total number of pixels per second (FR*FS)

as well. The following linear model is assumed to relate the tcpu,active to frame rate and

frame size.

tCPU,active = C1*FR*FS + C2*FR + C3*FS+ C4 (27)

The tcpu,active measured for nine different combinations of frame rate and frame size

(refer Table (8)) are substituted in the above equation:

0.37 = C1*480+ C2*30 + C3*16 + C4

0.13 = C1*120+ C2*30 + C3*4 + C4

0.07 = C1*30 + C2*30 + C3*1 + C4

0.30 = C1*400+ C2*25 + C3*16 + C4

0.12 = C1*100 + C2*25 + C3*4 + C4

0.06 = C1*25 + C2*25 + C3*1 +C4

0.17 = C1*200+ C2*12.5 + C3*16 + C4

0.07 = C1*50 + C2*12.5 + C3*4 + C4

0.04 = C1*12.5 + C2*12.5 + C3*1 +C4

Linear regression on the above nine equations result in the following regression

coefficients:

C1 = 0.0006; C2 = 0.001; C3 = 0.0004; C4 = 0.021

With the above regression coefficients, the model for predicting the active percentage

of CPU becomes:

tCPU,active = 0.0006*FR*FS + 0.001*FR + 0.0004*FS+ 0.021 (28)

 FR*FS FR

(fps)

FS tCPU,active

(actual)

tCPU,active

(predicted)

1 480 30 16 0.37 0.36

2 120 30 4 0.13 0.13

3 30 30 1 0.07 0.07

4 400 25 16 0.30 0.31

5 100 25 4 0.12 0.11

6 25 25 1 0.06 0.06

7 200 12.5 16 0.17 0.17

8 50 12.5 4 0.07 0.07

9 12.5 12.5 1 0.04 0.04

 Root Mean Square Error 0.46%
Table 9: Actual and Model 1 predicted values for tCPU,active

 37

RMSE for the above model is calculated to be 0.46% (refer Table(9)). By normalizing

the model presented in this section, it is also possible to compare the regression

coefficients. The regression coefficients can be compared to see which term of the

model has more influence on predicting the tCPU,active.

5.5.1.2 Normalization of the Model 1

Following are the linear equations obtained by normalizing the model presented in the

last section:

0.37 = C1*1 + C2*1 + C3*1 + C4

0.13 = C1*0.25 + C2*1 + C3*0.25 + C4

0.07 = C1*0.06 + C2*1 + C3*0.06 + C4

0.30 = C1* 0.83 + C2*0.83 + C3*1 + C4

0.12 = C1*0.208 + C2*0.83 + C3*0.25 + C4

0.06 = C1*0.05 + C2*0.83 + C3*0.06 +C4

0.17 = C1*0.417 + C2*0.417 + C3*1+ C4

0.07 = C1*0.1 + C2*0.417 + C3*0.25+ C4

0.04 = C1*0.03 + C2*0.417 + C3*0.06 +C4

The coefficients obtained by performing linear regression on the above equations are:

C1 = 0.305

C2 = 0.032

C3 = 0.008

C4 = 0.021

The coefficient C1 is larger than all other coefficients and this suggests that the term

FR*FS has large influence in the model. This is also obvious from the fact that the

term FR*FS (number of pixels per second) itself can capture the dependency of

tCPU,active on FR and FS. The remaining coefficients are very small when compared to

C1. Therefore, by eliminating all the terms except FR*FS term, we get a simplified

model.

5.5.1.3 Simplified model (Model 2)

The following model includes only the term FR*FS

tCPU,active = C1*FR*FS (29)

The tcpu,active measured for nine different combinations of frame rate and frame size is

substituted in the above equation. Linear regression on the equations of this model

gives the coefficient C1, which is equal to 0.001. With this coefficient, the model

becomes:

tCPU,active = 0.001*FR*FS (30)

Root Mean Square Error for this model is calculated to be 3.15% (refer Table (10)).

 38

 FR*FS tCPU,active

 (actual)

tCPU,active

(predicted)

1 1 0.37 0.38

2 0.25 0.13 0.10

3 0.06 0.07 0.02

4 0.83 0.30 0.32

5 0.208 0.12 0.08

6 0.05 0.06 0.02

7 0.417 0.17 0.16

8 0.1 0.07 0.04

9 0.03 0.04 0.01

 Root Mean Square Error 3.15%
Table 10: Actual and Model 2 predicted values for tCPU,active

5.5.1.4 Summary of models

The following table shows the summary of models considered so far and their

corresponding Root Mean Square Errors.

 Model C1 C2 C3 C4 RMSE(%)

1 tCPU,active =C1*FR*FS+C2*FR+C3*FS+C4 0.0006 0.001 0.0004 0.021 0.46

1.a Normalization of Model 1 0.305 0.032 0.008 0.021 0.45

2 tCPU,active =C1*FR*FS 0.0008 3.15

2.a Normalization of Model 2 0.384 3.18
Table 11: Summary of the models and their RMSEs

When we compare the two models in the above table, Model 2 has less number of

parameters than Model 1 but the RMSE of Model 2 is much larger (7 times larger)

than that of Model 1.

5.5.2 Model relating tcpu,stall to the FR and FS

Graphs (8) and (9) show that the tcpu,stall increases linearly with frame rate and frame

size by keeping frame size and frame rate constant respectively. But here also, it can

be seen that the rate of increase is not the same in all cases.

0

0.1

0.2

0.3

0.4

0 10 20 30 40

FR(fps)

t C
P

U
,s

ta
ll 4cif

cif

qcif

Graph 8: Graph representing tCPU,stall vs. FR

 39

0

0.1

0.2

0.3

0.4

0 5 10 15 20

FS

t C
P
U

,s
ta

ll 30fps

25fps

12.5fps

Graph 9: Graph representing tCPU,stall vs. FS

Different models considered in Section 5.5.1, to relate tcpu,active to the frame rate and

frame size are considered in this section also to relate tcpu,stall to the frame rate and

frame size.

Table (12) shows the regression coefficients obtained by solving linear equations and

the RMSE of each model.

 Model C1 C2 C3 C4 RMSE(%)

1 tCPU,stall =C1*FR*FS+C2*FR+C3*FS+C4 0.0005 0.001 0.001 0.04 0.29

1.a Normalization of Model 1 0.239 0.044 0.024 0.04 0.33

2 tCPU,stall =C1*FR*FS 0.001 5.08

2.a Normalization of Model 2 0.379 5.11
Table 12: Summary of the models and their RMSEs

The Model 2 of the above table is the simplest but the RMSE of this model is 15 times

larger than the other. Model 1 is the most accurate model with small RMSE.

5.5.3 Model relating tMBS,active to the FS

From the results of Table (8), it can be seen that tMBS, active is independent of the input

frame rate. But tMBS,active increases from the cif resolution to 4cif resolution. tMBS, active

remains the same for cif and qcif resolutions (refer Graph (10)).

0

0,1

0,2

0,3

0,4

0,5

0,6

0 5 10 15 20

FS

t M
B

S
,a

c
ti

v
e 30fps

25fps

12.5fps

Graph 10: Graph representing tMBS, active vs. FS

The following model for relating the tMBS, active to the frame size is considered:

 40

tMBS,active = C1* FS + C2 (31)

The values for the tMBS, active with an input stream of frame rate 30fps and resolution of

4cif , cif and qcif are substituted in the above model.

0.49 = C1*16 + C2

0.42 = C1*4 + C2

0.42 = C1*1 + C2

Normalizing the above equations gives the following equations:

0.49 = C1*1 + C2

0.42 = C1*0.25 + C2

0.42 = C1*0.06 + C2

Solving the above equations through linear regression gives the values for C1 and C2

as 0.08 and 0.41 respectively.

Therefore, the model for predicting the tMBS, active from frame size of the input stream

is given in the following equation and the RMSE of the model is 0.6%

tMBS,active = 0.08* FS + 0.41 (32)

5.6 Compositional model for the white box approach

The method of nesting two or more functions to form a single new function is known

as composition [16]. A compositional model for the white box approach is obtained

by representing tCPU,active, tCPU,stall and tMBS,active of the SoC power model presented in

Section 5.4.2, as a function of application parameters. With compositional model, we

achieve a high level model that predicts the power consumption of the SoC from

application parameters frame rate and frame size. Sections 5.5.1.4, 5.5.2 and 5.5.3

give the models that represent tCPU,active, tCPU,stall and tMBS,active as a function of

application parameters. The SoC power model presented in Section 5.4.2 is given

below:

PSoC,T – (22.7× tQVCP,idle + 88.5× tMBS,idle) = 645.9 × tCPU,active + 316.1 × tCPU,stall + 305.1

× tCPU,idle + 157.5 × tQVCP,active + 221.4 × tMBS,active

Where tQVCP,active is a constant value 0.43 from Table (8). From Table (11) and (12),

the normalized models that relate tCPU,active and tCPU,stall to the FR and FS, with small

RMSE are taken. Equation (32) represents tMBS,active as a function of FS. These models

are given below:

tCPU,active = 0.3047*FR*FS + 0.032*FR + 0.0078*FS + 0.0206

tCPU,stall = 0.239*FR*FS + 0.044*FR + 0.024*FS + 0.04

tMBS,active = 0.08* FS + 0.41

tCPU,idle = 1- tCPU,active - tCPU,stall

tQVCP,idle = 1- 0.43 = 0.57

tMBS,idle = 1- tMBS,active

Substituting the above equations in the SoC power model gives:

 41

PSoC,T = 119.8 × FR*FS + 11.4 × FR + 27.7 FS + 536.3 (33)

The Root Mean Square Error of the above model is calculated to be 16mW, which is

shown in the table below:

 FR*FS FR FS PSoC,T

(actual)

(mW)

PSoC,T

 (predicted)

(mW

1 1 1 1 666.6 695.2

2 0.25 1 0.25 575.7 584.6

3 0.06 1 0.06 550.4 556.6

4 0.83 0.83 1 643.9 672.9

5 0.21 0.83 0.25 570.6 577.6

6 0.05 0.83 0.06 547.9 553.4

7 0.42 0.42 1 598.4 618.7

8 0.1 0.42 0.25 558.1 560.0

9 0.03 0.42 0.06 540.4 546.3

 Root Mean Square Error 16mW
Table 13: Actual and compositional model predicted values for PSoC,T

5.7 Black box approach to relate the average power
consumption of SoC to FR and FS

The average power consumption measured across SoC for different settings of frame

rate and frame size, with CPU power down mode are shown in the table below:

 FR(fps) FS PSoC,T

(mW)

1 30 4cif 666.6

2 30 cif 575.7

3 30 qcif 550.4

4 25 4cif 643.9

5 25 cif 570.6

6 25 qcif 547.9

7 12.5 4cif 598.4

8 12.5 cif 558.1

9 12.5 qcif 540.4
Table 14: PSoC,T measured from different experiments

From the Graph (11), it can be seen that the average power consumption across SoC

increases with the increase in frame rate by keeping frame size constant. But the rate

of increase also depends on the frame size. This is also true for the Graph (12).

 42

0

200

400

600

800

0 10 20 30 40

FR(fps)

P
S
o
C

,T
(m

W
)

4cif

cif

qcif

Graph 11: Graph representing PSoC,T vs. FR

0

200

400

600

800

0 5 10 15 20

FS

P
S

O
C

,T
(m

W
)

30fps

25fps

12.5fps

Graph 12: Graph representing PSoC,T vs. FS

The following table shows various models considered for predicting the PSoC,T from

FR and FS and their Root Mean Square Errors.

 Model C1 C2 C3 C4 RMSE(mW)

1 PSoC,T =C1*FR*FS+C2*FR+C3*FS+C4 0.22 0.246 0.88 536.6 2.07

1.a Normalization of Model 1 106.5 7.9 14.7 536.3 2.15

2 PSoC,T =C1*FR*FS+C4 0.26 542.8 2.73

2.a Normalization of Model 2 124.3 542.9 2.80
Table 15: Summary of the models and their RMSEs

5.8 Comparison of the white box and black box models

This section compares the models obtained from the white box and black box

approaches. The compositional model of the white box approach from Section 5.6 and

the black box model from the Section 5.7 are given below:

PSoC,T = 119.8*FR*FS + 11.4*FR + 27.7*FS + 536.3 (34)

PSoC,T = 106.5*FR*FS + 7.9*FR + 14.7*FS + 536.3 (35)

The accuracy of the white box model is given by the RMSE of the model, which is

equal to 16mW (refer Table (13)). The RMSE of the black box model is only 2.15mW

(refer Table (15)). The RMSE of the white box approach is 7.4 times more than the

RMSE of the black box approach. Therefore the black box models are more accurate

than the white box models. The reason for large RMSE of the white box model is the

method of composition of the models, in which the errors of individual models add

up.

 43

From both the models (white box and black box models), it can be observed that the

term FR*FS (number of pixels per second) has large influence on the power

consumption when compared to the terms: FR (number of frames per second) and FS

(number of pixels per frame). This is obvious from the models of Table (11) and

Table (12) that the term FR*FS has large influence on tCPU,active and tCPU,stall than the

terms FR and FS. Number of pixels per frame (FS) of the input stream has more

influence on the power consumption than the number of frames per second (FR). This

is because of the fact that the execution periods of QVCP and MBS blocks are

independent of FR but the execution period of MBS depends on FS (refer Section

5.4.1).

Another observation from the models is that there is large amount of constant offset

power (536.3mW) consumed by the platform independent of the application

parameters. This offset power is due to the clock power of the logic when the

hardware components QVCP, MBS and various buses on the platform are in idle

state.

 44

6 Power models for memory

6.1 Introduction

This chapter presents the models to predict the average power consumption of the

memory in two approaches: black box and white box. In the black box approach, a

model that predicts the average power consumption of the memory directly from the

application parameters, frame rate and frame size is developed through linear

regression on experimental data. In white box approach, the power consumption of

the memory is related to application parameters in two steps. The first step of this

approach deals with experimentally validating the memory power consumption model

presented in Section 4.4.2. The power consumption model for memory presented in

Section 4.4.2 is given below:

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write ×

tmem,write (36)

The application dependent platform parameters (tmem,idle, tmem,read and tmem,write) and

Pmem,T of the Equation (36) can be measured for a given frame rate and frame size of

the input stream. Three different frame rates (30fps, 25fps and 12.5fps) and frame

sizes (4cif, cif and qcif) are considered in the experiments. The application

independent platform parameters (Pmem,active, Pmem,idle, Pmem,read and Pmem,write) of the

model are calculated by performing linear regression on the equations substituted with

the experimentally measured values for parameters tmem,active, tmem,idle, tmem,read and

tmem,write and Pmem,T.

In the second step of white box approach, a model relating the application dependent

platform parameters to the application parameters is developed through linear

regression on the experimental data. Finally, from the models of each step, a

compositional model for the power consumption of the memory in terms of applcation

parameters is developed. Using the compositional model, we can predict the average

power consumption of the memory for any values of frame rate and frame size.

6.2 Black box approach experiments and results

6.2.1 Without CPU power down

The average power consumption across the memory is measured during the execution

of the decoder application for different values of frame rate (30fps, 25fps and 12.5fps)

and frame size (4cif, cif and qcif) of the input stream. The maximum frequency of

operation for the DDR memory is 199.8MHz. All the experiments are done at the

maximum frequency.

The following table shows the average power consumption measured for all the

combinations of frame rates and frame sizes.

 45

 FR(fps) FS Pmem,T(mW)

1 30 4cif 802

2 30 cif 575

3 30 qcif 517

4 25 4cif 775

5 25 cif 565

6 25 qcif 510

7 12.5 4cif 715

8 12.5 cif 540

9 12.5 qcif 490
Table 16: Pmem,T values measured for different combinations of FR and FS

0

200

400

600

800

1000

0 10 20 30 40

FR(fps)

P
m

e
m

,T
(m

w
)

4cif

cif

qcif

Graph 13: Graph representing Pmem,T vs. FR

0

200

400

600

800

1000

0 5 10 15 20

FS

P
m

e
m

,T
(m

w
)

30fps

25fps

12.5fps

Graph 14: Graph representing Pmem,T vs. FS

From the Graph (13), it can be seen that the average power consumption of the

memory, Pmem,T increases linearly with the frame rate by keeping frame size constant.

But, the rate of increase in Pmem,T depends on the frame size. The same is true for the

Graph (14). Therefore the following model assumes three terms on which the average

power consumption depends (FR*FS, FR and FS).

Pmem,T = C1*FR*FS + C2*FR + C3*FS+ C4 (37)

Pmem,T measured for the different combinations of FR and FS from Table (16) is

substituted in the above equation. Linear regression on the equations give the

following coefficients:

C1 = 0.23; C2 = 1.22; C3 = 11.95; C4 = 462.31

With the above regression coefficients the model for predicting the average power

consumption becomes:

Pmem,T = 0.23*FR*FS + 1.22*FR + 11.95*FS+ 462.31 (38)

 46

The Root Mean Square Error obtained for the above model is 1.54mW.

Linear regression on the normalized equations of the above model (Equation (37))

gives the following regression coefficients:

C1 = 110.5; C2 = 37.35; C3 = 191.4; C4 = 462.3

Equation(37) can be simplified by removing the term FR, since it has less influence

on predicting the average power consumption when compared to the other terms. The

simplified model along with the initial model and their RMSEs are presented in Table

(17).

 Model C1 C2 C3 C4 RMSE(mW)

1 Pmem,T =C1*FR*FS+C2*FR+C3*FS+C4 0.23 1.22 11.95 462.3 1.54

1.a Normalization of Model 1 110.5 37.3 191.4 462.3 1.55

2 Pmem,T =C1*FR*FS+C3*FS+C4 0.32 9.83 489.9 6.31

2.a Normalization of Model 2 156.2 157.2 490.2 6.43
Table 17: Summary of the models and their RMSEs

When we compare the models in the above table, Model 1 has more accuracy with

small error. Model 2 has less number of parameters, but the error is 4 times larger

than the error of Model 1.

6.2.2 With CPU power down

The following table shows the average power consumption measured across the

memory, Pmem,T for different combinations of frame rate and frame size with CPU

power down mode.

Table 18: Pmem,T values measured for different combinations of FR and FS

 FR(fps) FS Pmem,T

(mW)

1 30 4cif 805

2 30 cif 585

3 30 qcif 528

4 25 4cif 777

5 25 cif 578

6 25 qcif 517

7 12.5 4cif 724

8 12.5 cif 548

9 12.5 qcif 503

 47

The following graphs show that the Pmem,T increases linearly with the FR and FS

0

200

400

600

800

1000

0 10 20 30 40

FR(fps)

P
m

e
m
(m

w
)

4cif

cif

qcif

Graph 15: Graph representing Pmem,T vs. FR

0

200

400

600

800

1000

0 5 10 15 20

FS

P
m

e
m

(m
w

)

30fps

25fps

12.5fps

Graph 16: Graph representing Pmem,T vs. FS

The following table shows various models considered for predicting the Pmem,T from

FR and FS and their Root Mean Square Errors.

 Model C1 C2 C3 C4 RMSE(mW)

1 Pmem,T =C1*FR*FS+C2*FR+C3*FS+C4 0.21 1.24 12.06 473.4 2.53

1.a Normalization of Model 1 99.73 37.6 192.9 473.4 2.34

2 Pmem,T =C1*FR*FS+C3*FS+C4 0.3 9.92 501.2 6.7

2.a Normalization of Model 2 145.7 158.5 501.6 6.7
Table 19: Summary of the models and their RMSEs

From the above table, it can be seen that Model 1 has small RMSE and thus has more

accuracy. Model 2 is simpler than Model 1 with less number of parameters but the

RMSE of Model 2 is 2.9 times larger than the RMSE of Model 1.

6.2.2.1 Comparison of black box models of SoC and memory (with

CPU power down)

This section compares the power models of SoC and memory obtained with black box

approach. Table (15) of Chapter 5 gives the power model of SoC with black box

approach. We chose the normalized model with small RMSE (2.15mW) from Table

(15) and the model is given below:

PSoC,T = 106.5*FR*FS + 7.9*FR + 14.7*FS + 536.3

From Table (19), we chose the normalized power model of memory with small RMSE

(2.34mW). The model is given below:

Pmem,T = 99.7*FR*FS + 37.6*FR + 192.9*FS + 473.4

 48

Both the models suggest that the term FR has less influence on the power

consumption of the SOC and memory. The term FS (number of pixels per frame) has

large influence on the power consumption of memory, whereas the term FR*FS has

large influence on the power consumption of SoC.

On SoC side, time spent by CPU in active state (tCPU,active) is more influenced by the

term FR*FS than the other terms (refer Section 5.5.1.4). The hardware blocks QVCP

and MBS executions are not influenced by FR. The execution periods of MBS block

depends only on FS (refer Section 5.4.1). The large influence of FR*FS term on the

power consumption of the SoC indicates that the CPU has more influence on the

power consumption of SoC when compared to the hardware blocks. The large

influence of FS term on the power consumption of the memory indicates that the

hardware blocks (specially MBS block) have more influence on the power

consumption of memory than the CPU.

6.3 White box approach experiments and results

6.3.1 Measurement of application dependent platform parameters
through experiments

The data path width of the DDR memory is 32-bit. The DDR controller provides an

interface between CPU, DMA devices and the DDR memory. To allow for the

performance measurements, the DDR controller includes a set of registers that

measure the data traffic [15]. To measure the read and write traffic from CPU as well

as from DMA devices, incrementing 32-bit counters are used. The controller also

includes a counter to count the idle cycles. The TimeDoctor tool is used to collect the

values of these counters.

During the execution of the decoder application, the values from the abovementioned

counters are read through the TimeDoctor tool. Table (20) shows the Pmem,T and the

counter values measured for different combinations of frame rate and frame size

without CPU power down mode. Similarly, Table (21) shows the Pmem,T and the

counter values with CPU power down mode. The experiments were done at a memory

frequency of 199.8 MHz and at a CPU frequency of 100.5 MHz (refer Section 5.2).

 FR

(fps)

FS CPUread

(Mcy)

CPUwrite

(Mcy)

DMAread

(Mcy)

DMAwrite

(Mcy)

DDRidle

(Mcy)

1 30 4cif 7.38 4.46 6.30 4.98 167.8

2 30 cif 3.50 1.46 1.56 1.20 189.8

3 30 qcif 2.58 0.73 0.45 0.32 193.8

4 25 4cif 6.49 3.75 6.33 4.99 171.8

5 25 cif 3.07 1.25 1.62 1.25 189.8

6 25 qcif 2.32 0.65 0.45 0.32 193.8

7 12.5 4cif 3.96 2.09 6.31 4.98 177.8

8 12.5 cif 2.09 0.76 1.63 1.25 191.8

9 12.5 qcif 1.61 0.43 0.45 0.32 195.8
Table 20: Read and write cycles from CPU and DMA devices measured through TimeDoctor tool

in different experiments without CPU power down mode

 49

 FR

(fps)

FS

CPUread

(Mcy)

CPUwrite

(Mcy)

DMAread

(Mcy)

DMAwrite

(Mcy)

DDRidle

(Mcy)

1 30 4cif 6.26 4.94 6.26 4.94 167.8

2 30 cif 1.61 1.23 1.61 1.23 187.8

3 30 qcif 0.45 0.37 0.45 0.37 193.8

4 25 4cif 6.39 5.03 6.35 5.00 171.8

5 25 cif 1.63 1.25 1.63 1.25 189.8

6 25 qcif 0.45 0.32 0.45 0.32 193.8

7 12.5 4cif 6.31 4.97 6.31 4.97 177.8

8 12.5 cif 1.62 1.24 1.62 1.24 191.8

9 12.5 qcif 0.45 0.31 0.45 0.31 195.8
Table 21: Read and write cycles from CPU and DMA devices measured through TimeDoctor tool

in different experiments with CPU power down mode

In Table (20), the read and write accesses from CPU to memory increase with the

increase in frame rate and frame size. This experimental result validates the

assumption that the application dependent platform parameters depend on the

application parameters (refer section 6.1). But, the read and write accesses from DMA

traffic i.e. read and write accesses from QVCP and MBS blocks increase with the

increase in frame size but are independent of changes in frame rate (refer Section

5.4.1).

It is expected that the read and write accesses from CPU and DMA devices with CPU

power down mode also have the same relation with the application parameters as for

without CPU power down mode. But from the Table (21), it can be seen that read and

write accesses from CPU do not vary with the frame rate. The statistics given by

TimeDoctor tool for frame rates 30fps, 25fps and 12.5fps at a frame size of 4cif are

given in Table (22). From the statistics, it can be seen that the reads and writes from

CPU during the decoding task (TASK_VDM4_182_0051 in Figure (10)) decrease

with the decrease in frame rate. But, there are reads and writes from the CPU during

the execution of idle task (IDLE in Figure (10)) and the number of read and write

cycles are increasing when the frame rate is decreasing. This increase in read and

write cycles with the decrease in frame rate during idle task compensates the normal

effect of decrease in read and write accesses with frame rate during decoding task.

Because of this, in Table (21) we see no dependency of read and write accesses on

frame rate.

 idle task decoding task idle+decoding tasks

 FR(fps) FS CPUread

(Mcy)

CPUwrite

(Mcy)

CPUread

(Mcy)

CPUwrite

(Mcy)

CPUread

(Mcy)

CPUwrite

(Mcy)

1 30 4cif 1.2 0.8 4.7 3.9 5.8 4.7

2 25 4cif 1.8 1.2 4.1 3.5 5.9 4.7

3 12.5 4cif 3.8 2.9 2.2 1.8 5.9 4.8
Table 22: CPU read/write cycles from/to the memory during idle and decoding tasks

We measured the number of read and write misses (missread and misswrite in Table

(23)) from the instruction and data cache of the CPU (using TM3260 CPU counters)

during idle task for the frame rate and frame size given in Table (22). The measured

values are given Table (23). There are very few read and write misses from the CPU

during idle task.

 50

 FR(fps) FS missread

(M)

misswrite

(M)

CPUread

(Mcy)

CPUwrite

(Mcy)

1 30 4cif 0.03 0.001 1.2 0.8

2 25 4cif 0.08 0.001 1.8 1.2

3 12.5 4cif 0.08 0.001 3.8 2.9
Table 23: Cache read/write misses and CPU read/write cycles from/to the memory during idle

task

Analysis of the relation between the number of cache read/write misses and CPU

read/write cycles from/to the memory are beyond the scope of this work. Hence, in

the rest of this chapter, the white box models are developed considering the

measurement data from without CPU power down experiments.

6.3.2 Calculation of application independent platform parameters
through linear regression

For the decoder application a burst length of 8 is used. Burst length can be set through

the registers of the DDR controller. Since the data path width of DDR memory is 32-

bit, the burst size is 32B and therefore 8 words. The counters for measuring read and

write data are incremented by 32, which means the values in these counters are the

number of read and write words. Since, DDR memory can output 32-bit data per

cycle, the read and write words from the counters can also be represented as read and

write cycles. Therefore, the TimeDoctor tool gives the values from the counters as

read and write cycles. Number of bursts in a given stream can be calculated by

dividing the sum of read and write words from the counters with sburst i.e. 8 words.

But the number of cycles taken by the memory for activate-precharge (burst) activity

is not known.

As described in Section 4.4.2, from the parameters that can be measured

experimentally, the following model is considered:

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write×

tmem,write (39)

tmem,active = 1 - tmem,idle (40)

The tmem,active is calculated as the difference of total time and idle time. tmem,idle ,

tmem,read and tmem,write of Equation (39) are calculated from the idle, read and write

cycles of Table(20). tmem,active is calculated by using Equation (40). The values

calculated for tmem,idle, tmem,read ,tmem,write and tmem,active for different combinations of

frame rate and frame size are given in the Table(24). Table also shows the Pmem,T

measured for each combination.

 51

 FR

(fps)

FS tmem,idle tmem,active tmem,read tmem,write Pmem,T

(mW)

1 30 4cif 0.84 0.16 0.069 0.047 802

2 30 cif 0.95 0.05 0.025 0.013 575

3 30 qcif 0.97 0.03 0.015 0.005 517

4 25 4cif 0.86 0.14 0.060 0.044 775

5 25 cif 0.95 0.05 0.020 0.013 565

6 25 qcif 0.97 0.03 0.014 0.005 510

7 12.5 4cif 0.89 0.11 0.051 0.035 715

8 12.5 cif 0.96 0.04 0.019 0.010 540

9 12.5 qcif 0.98 0.02 0.010 0.004 490
Table 24: tmem,idle, tmem,active, tmem,read and tmem,write values calculated for different combinations of

FR and FS

The values for Pmem,T, tmem,idle, tmem,read, tmem,write and tmem,active from the nine different

experiments are substituted in the Equation (39). Performing linear regression on the

nine equations gives the following values for Pmem,active, Pmem,,idle, Pmem,read and

Pmem,write.

Pmem,active = 829.9 mW

Pmem,,idle = 462.5mW

Pmem,read = 1068.9mW

Pmem,write = 4466.1mW

The RMSE obtained for the model (Equation (39)) with the above coefficients is

4.07mW (refer Table (25)).

 FR

(fps)

FS tmem,idle tmem,active tmem,read tmem,write Pmem,T(measured)

(mW)

Pmem,T(predicted)

(mW)

1 30 4cif 0.84 0.16 0.069 0.047 802 806

2 30 cif 0.95 0.05 0.025 0.013 575 571

3 30 qcif 0.97 0.03 0.015 0.005 517 517

4 25 4cif 0.86 0.14 0.060 0.044 775 775

5 25 cif 0.95 0.05 0.020 0.013 565 560

6 25 qcif 0.97 0.03 0.014 0.005 510 506

7 12.5 4cif 0.89 0.11 0.051 0.035 715 713

8 12.5 cif 0.96 0.04 0.019 0.010 540 543

9 12.5 qcif 0.98 0.02 0.010 0.004 490 498

 Root Mean Square Error 4.07mW
Table 25: Measured and model predicted values for Pmem,T and the corresponding RMSE

6.3.3 Simplified model

The values for tmem,read and tmem,write (refer Table (24)) are small and are closely

related to each other. Since tmem,read and tmem,write are not independent enough it is

difficult to distinguish the read and write power consumption (Pmem,read and Pmem,write)

separately through linear regression. Therefore the Equation (39) is further simplified

by combining the tmem,read and tmem,write as shown below.

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read&write × tmem,read&write (41)

 52

The values for tmem,active,tmem,idle and tmem,read&write from Table (24) are substituted in the

above model. Performing linear regression on the obtained linear equations gives the

following values for Pmem,active, Pmem,,idle and Pmem,read&write.

Pmem,active = 1600.4mW

Pmem,,idle = 450.5mW

Pmem,read&write = 1526.8mW

The RMSE of the above memory model with the regression coefficients is calculated

to be 5.91mW which is 1.5 times larger than the RMSE (4.07mW) of the previous

model (Equation(39)). But, the simplified model has less number of parameters when

compared to the previous model.

6.4 Models relating application dependent platform
parameters to application parameters

The second step of the white box approach is to relate the application dependent

platform parameters (tmem,active, tmem,read and tmem,write) to the application parameters

frame rate and frame size. In this section, models relating the application dependent

platform parameters to the application parameters are developed.

6.4.1 Models relating tmem,active to the FR and FS

The following graphs show that the tmem,active increases linearly with FR and FS by

keeping the other parameter constant. The values for tmem,active are taken from the

Table (24).

0

0.05

0.1

0.15

0.2

0 10 20 30 40

FR(fps)

t m
e
m

,a
c
ti
v
e 4cif

cif

qcif

Graph 17: Graph representing tmem,active vs. FR

0

0.05

0.1

0.15

0.2

0 5 10 15 20

FS

t m
e

m
,a

c
ti

v
e 30fps

25fps

12.5fps

Graph 18: Graph representing tmem,active vs. FS

From the above graphs, it can be seen that tmem,active depends on both FR and FS. For

example, in Graph (17), the rate of increase of tmem,active with FR is more for 4cif

 53

resolution than for cif and qcif resolutions. Similarly, the rate of increase of tmem,active

with FS (refer Graph (18)) is more for 30fps than for 25fps and 12.5fps. Therefore, to

predict tmem,active from FR and FS, the following linear model is considered.

tmem,active = C1*FR*FS + C2*FR + C3*FS+ C4 (42)

The values for tmem,active from Table(24) for different values of FR and FS are

substituted in the above equation. The linear equations thus obtained are solved

through linear regression. The following coefficients are obtained from linear

regression.

C1 = 0.0002; C2 = 0.0003; C3 =0.004; C4 = 0.013

In order to make a comparison between the coefficients in terms of their influence on

predicting the tmem,active, the equations obtained from the above model are normalized.

Performing linear regression on the normalized equations gives the following

coefficients.

C1 = 0.07; C2 = 0.008; C3 =0.063; C4 = 0.0126

The RMSE obtained for the model with above regression coefficients is 0.25%.

From the above coefficients, it can be seen that the terms FR*FS (C1) and FS (C3)

have large impact on tmem,active than the term FR (C2) and the constant (C4). Therefore

Equation (42) can be simplified by removing the terms that have less influence on

tmem,active. In the following model, only the terms FR*FS and FS are considered.

tmem,active = C1*FR*FS + C3*FS (43)

Linear regression on the equations obtained by substituting tmem,active , FR and FS from

Table(24) in the above model gives the following coefficients.

C1 = 0.0002; C3 =0.005

Performing linear regression on the normalized equations of the simplified model

gives the following coefficients.

C1 = 0.08; C2 = 0.08

The RMSE obtained for the simplified model with the above regression coefficients is

1.3% which is 5.2 times larger than the RMSE (0.25%) of the previous model

(Equation (42)). The following table shows the summary of the models considered

and their Root Mean Square Errors.

 Model C1 C2 C3 C4 RMSE(%)

1 tmem,active = C1*FR*FS+C2*FR+C3*FS+C4 0.0002 0.0003 0.004 0.013 0.25

1.a Normalization of Model 1 0.07 0.008 0.063 0.013 0.25

2 tmem,active = C1*FR*FS+C3*FS 0.0002 0.005 1.3

2.a Normalization of Model 2 0.08 0.08 1.3
Table 26: Summary of models and their RMSEs

 54

6.4.2 Models relating tmem,read to the FR and FS

The values for tmem,read for different combinations of FR and FS are taken from the

Table (24). The following graphs show that tmem,read increases linearly with FR and FS

by keeping the other parameter constant.

0.000

0.020

0.040

0.060

0.080

0 10 20 30 40

FR(fps)

t m
e
m

,r
e
a
d 4cif

cif

qcif

Graph 19: Graph representing tmem,read vs. FR

0.000

0.020

0.040

0.060

0.080

0 5 10 15 20

FS

t m
e
m

,r
e
a
d 30fps

25fps

12.5fps

Graph 20: Graph representing tmem,read vs. FS

The following table shows the models considered for predicting the tmem,read from FR

and FS and their Root Mean Square Errors.

 Model C1 C2 C3 C4 RMSE(%)

1 tmem,read = C1*FR*FS+C2*FR+C3*FS+C4 0.0001 0.0002 0.002 0.005 0.04

1.a Normalization of Model 1 0.02 0.006 0.03 0.005 0.04

2 tmem,read = C1*FR*FS+C3*FS 0.0001 0.0025 0.7

2.a Normalization of Model 2 0.03 0.04 0.7
Table 27: Summary of models and their RMSEs

When we compare the models in the above table, the RMSE of the Model 2 is 17.5

times larger than the RMSE of the Model 1 with only reduction in two parameters.

6.4.3 Models relating tmem,write to the FR and FS

From the graphs below, it can be seen that the tmem,write without CPU power down

increases linearly with FR and FS.

 55

0.000

0.010

0.020

0.030

0.040

0.050

0 10 20 30 40

FR(fps)

t m
e

m
,w

ri
te 4cif

cif

qcif

Graph 21: Graph representing tmem,write vs. FR

0.000

0.010

0.020

0.030

0.040

0.050

0 5 10 15 20

FS

t m
e
m

,w
ri

te 30fps

25fps

12.5fps

Graph 22: Graph representing tmem,write vs. FS

The following table shows the models considered for predicting the tmem,write from FR

and FS and their Root Mean Square Errors.

 Model(Normalized) C1 C2 C3 C4 RMSE(%)

1 tmem,write = C1*FR*FS+C2*FR+C3*FS+C4 0.02 0.0006 0.02 0.002 0.03

2 tmem,write = C1*FR*FS+C3*FS 0.02 0.03 0.15

Table 28: Summary of models and their RMSEs

6.5 Compositional model for the white box approach

A compositional model is obtained by representing tmem,active, tmem,read and tmem,write of

the memory power model presented in Section 6.3.2, as a function of application

parameters. With compositional model, we achieve a high level model that predicts

the power consumption of the memory from application parameters, frame rate and

frame size. Sections 6.4.1, 6.4.2 and 6.4.3 give the models that represent tmem,active,

tmem,read and tmem,write as a function of application parameters. The memory power

model presented in Section 6.3.2 is given below:

Pmem,T = Pmem,active × tmem,active + Pmem,idle × tmem,idle + Pmem,read × tmem,read + Pmem,write×

tmem,write (44)

From Table (26), (27) and (28), the normalized models which relate tmem,active, tmem,read

and tmem,write to the FR and FS, with small RMSE are taken. These models are given

below:

tmem,active = 0.07*FR*FS + 0.008*FR + 0.063*FS + 0.013

tmem,read = 0.02*FR*FS + 0.006*FR + 0.03*FS + 0.005

 56

tmem,write = 0.02*FR*FS + 0.0006*FR + 0.02*FS + 0.002

tmem,idle = 1- tmem,active

Substituting the above equations in the memory power model (Equation (44)) gives:

Pmem,T = 136.4*FR*FS + 12.0*FR + 144.5*FS + 481.4 (45)

The Root Mean Square Error of the above model is calculated to be 17mW, which is

shown in the table below:

 FR*FS FR(fps) FS Pmem,T

(actual)

(mW)

Pmem,T

(predicted)

(mW)

1 1 1 1 802 774

2 0.25 1 0.25 575 564

3 0.06 1 0.06 517 510

4 0.83 0.83 1 775 749

5 0.21 0.83 0.25 565 556

6 0.05 0.83 0.06 510 507

7 0.42 0.42 1 715 688

8 0.1 0.42 0.25 540 536

9 0.03 0.42 0.06 490 499

 Root Mean Square Error 17mW
Table 29: Measured and compositional model predicted values for Pmem,T and the corresponding

RMSE

6.6 Comparison of the white box and black box models
(without CPU power down)

This section compares the models obtained from the white box and black box

approaches. The compositional model of the white box approach from Section 6.5 and

the black box model from the Section 6.2.1 are given below:

Pmem,T = 136.4*FR*FS + 12.0*FR + 144.5*FS + 481.4

Pmem,T = 110.5*FR*FS + 37.3*FR + 191.4*FS + 462.3

The RMSE of the white box model is 17mW (refer Table (29)) which is 11 times

larger than the RMSE of the black box model (1.55mW from Table (17)). Therefore,

the black box model is more accurate than the white box models. The reason for large

RMSE of the white box model is obvious from the method of composition of the

models, in which the errors of individual models add up.

From both the models (white box and black box models), it can be observed that the

term FS (number of pixels per frame) has large influence on the power consumption

when compared to the terms; FR (number of frames per second) and FR*FS (number

of pixels per second). As described in Section 6.2.2.1, the large influence of FS term

on the power consumption of the memory suggests that the hardware blocks (specially

MBS block) have more influence on the power consumption of memory than the

CPU. Another observation from the models is that there is a large amount of constant

offset power (481.4mW and 462.mW) consumed by the memory, independent of the

 57

application parameters. This offset power is due to the clock power of the logic when

the memory is in idle state.

 58

7 Integrated power model from the power models of
SoC and memory

7.1 Introduction

Chapters 5 presented a black box model that relates the average power consumption

of SoC to the application parameters. Chapter 6 presented a black box model that

relates the average power consumption of memory to the application parameters.

Since SoC and DDR memory are two independent components and the power

measurements were done for both the components separately, we can combine the

power models for SoC and memory to obtain an integrated model. Through the

integrated model, we get a high-level model that predicts the power consumption of

the MPEG-4 decoder application from the application parameters.

The integrated model can also be developed for the white box models. But, we chose

black box models because these models are more accurate than the white box models

with small RMSE (refer Section 5.8 and 6.6). We chose CPU power down mode

models to make the integrated model, because the average power consumption with

CPU power down mode is smaller than that of without CPU power down mode.

7.2 Integrated power model

From the Table (15) and Table (19), the normalized models for predicting the average

power consumption of the SoC (PSoC,T) and memory (Pmem,T) with small RMSE

(2.15mW and 2.34mW respectively) are chosen to make the integrated model.

PSoC,T = 106.5*FR*FS + 7.9*FR +14.7*FS+ 536.3

Pmem,T = 99.7*FR*FS + 37.9*FR +192.9*FS+ 473.4

The above two models for predicting the average power consumption of the SoC and

memory are in the same format, therefore, combining them gives an integrated model

that predicts the net average power consumption from the application parameters.

Pnet = PSoC,T + Pmem,T (46)

Pnet = 206.2*FR*FS + 45.8*FR + 207.6*FS + 1009.7 (47)

The RMSE of the above model is the sum of RMSEs of the individual SoC and

memory power models i.e. 4.5mW

7.2.1 Analysis

From the coefficients of the Equation (47), it can be observed that the terms FR*FS

(number of pixels per second) and FS (number of pixels per frame) have the same

influence on the net average power consumption.

When we observe the power models of SoC and memory individually, the term

FR*FS has large influence on the power consumption of SoC where as the term FS

(number of pixels per frame) has large influence on the power consumption of

memory (refer the Section 6.2.2.1 for explanation). From the Section 6.2.2.1, we

observed that on SoC side CPU has more influence on the power consumption of SoC

and on memory side hardware blocks have more influence on the power consumption

 59

of memory. But, when we combine the models both the terms (FR*FS and FS) got

equal significance and therefore both CPU and hardware blocks have the equal

influence on the net average power consumption.

The term FR (number of frames per second) has less influence on the net average

power consumption when compared to the other terms, because the hardware

components QVCP and MBS operate at the output frame rate i.e.50Hz and are

independent of the input frame rate (refer Section 5.4.1).

In Equation (47), the net average power consumption is influenced by two parts. One

part is the constant offset power (Poffset) which is independent of the application

parameters. The offset power is obtained by the clock power of the components

during their idle periods. The other part is the power (Papplication) that varies with the

application parameters and is predicted by the model. The following table shows the

Pnet, Poffset and Papplication values for each experiment with different frame rate and

relative frame size of the input stream. Papplication is calculated as the difference of Pnet

and Poffset values.

Experiment FR(fps) FS Pnet

(mW)

Poffset

(mW)

Pnet - Poffset

= Papplication

(mW)

1 30 16 1471.6 1009.7 461.9

2 30 4 1421.4 1009.7 411.7

3 30 1 1322.5 1009.7 312.8

4 25 16 1160.7 1009.7 151.0

5 25 4 1148.7 1009.7 139.0

6 25 1 1106.6 1009.7 96.9

7 12.5 16 1079.0 1009.7 69.3

8 12.5 4 1064.9 1009.7 55.2

9 12.5 1 1043.4 1009.7 33.7
Table 30: Poffset and Papplication values calculated for different experiments

In Graph (23), the X-axis shows the experiment number and the Y-axis shows the net

average power consumption. The graph shows the contribution of Poffset and Papplication

to the net average power consumption (Pnet).

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9

Experiments

P
n

e
t
(m

W
)

Papplication

Poffset

Graph 23: Graph showing the contribution of Poffset and Papplication to the net average power

consumption (Pnet)

 60

The reduction in the net average power consumption by varying the application

parameters frame rate and frame size from 30fps, 4cif resolution (Experiment 1) to

12.5fps, qcif resolution (Experiment 9) is 30%. From Graph (23), offset power (Poffset)

is clearly the dominating part in the net average power consumption (Pnet). The offset

power is 85% (averaged over the experiments) of the net average power consumption.

The offset power is obtained by the clock power of the components during their idle

periods. In CPU power down mode, during the idle state CPU is clock gated.

Therefore, the contributors to the offset power are the hardware blocks of the SoC and

the DDR memory. The main contributors are the QVCP, MBS, control bus DCS, data

bus PMAN, MMI and the DDR memory, which can not be clock gated during their

idle periods in this platform. To reduce the energy consumption during idle periods of

the components other than clock gating the components, dynamic frequency and

voltage scaling can also be used. Chapter 9 discusses about the dynamic frequency

and voltage scaling.

 61

8 SoC and Memory experiments with a different input
stream

8.1 Introduction

This chapter discusses the experiments performed with the same decoder application

for a different input stream. These experiments were done to check the influence of

content of the input stream on power models of the SoC and memory. Stream 1 (used

for the experiments in earlier chapters) and Stream 2 (used for the experiments in this

chapter) are completely different in their content. The streams are selected in such a

way that we test the extreme conditions of motion in pictures. The Stream 1 is a slow

motion picture where as the Stream 2 is a fast motion picture. If the streams with

extreme motion conditions result in similar power consumption and internal

parameters, then it strongly suggests that the models developed in the previous

chapters can be used, in general, for any other input stream.

8.2 Experiments and results

The experiments were performed with CPU power down mode. Since, the earlier

experiments were done at a CPU frequency of 100.5 MHz and Memory frequency of

199.8 MHz, the experiments in this chapter were also done at the same frequencies.

8.2.1 SoC experiments

The average power consumption and the application dependent platform parameters

of the SoC are measured at three different frame rates and frame sizes of the input

stream. The following table shows the measured values.

Experiment FR(fps) FS tCPU,active tCPU,stall tCPU,idle tQVCP,active tMBS,active PSoC,T(mW)

1 30 4cif 0.38 0.34 0.28 0.43 0.49 666.6

2 30 cif 0.14 0.15 0.72 0.43 0.42 575.7

3 30 qcif 0.07 0.10 0.83 0.43 0.42 550.5

4 25 4cif 0.32 0.29 0.39 0.43 0.49 648.9

5 25 cif 0.12 0.13 0.75 0.43 0.42 570.6

6 25 qcif 0.07 0.10 0.83 0.43 0.42 547.9

7 12.5 4cif 0.19 0.18 0.63 0.43 0.49 603.5

8 12.5 cif 0.07 0.10 0.84 0.43 0.42 558.1

9 12.5 qcif 0.04 0.07 0.89 0.43 0.42 540.4
Table 31: The PSoC,T, tCPU,active, tCPU,stall, tCPU,idle, tQVCP,active and tMBS,active values measured for

Stream 2

The values for PSoC,T, tCPU,active, tCPU,stall, tQVCP,active and tMBS,active in the above table are

compared to the values in Table (6) of chapter 5. The following graphs show the

comparison. In the graphs, X-axis gives the number of the experiment in the order

given in Table (31).

 62

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

1 2 3 4 5 6 7 8 9

Experiments

P
S
O

C
 (
m

W
)

Stream1

Stream2

Graph 24: Graph comparing the PSoC,T values measured with stream 1 and stream 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

Experiments

t C
P

U
,a

c
ti

v
e

Stream1

Stream2

Graph 25: Graph comparing the tCPU,active values measured with stream 1 and stream 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

Experiments

t C
P

U
,s

ta
ll

Stream1

Stream2

Graph 26: Graph comparing the tCPU,stall values measured with stream 1 and stream 2

 63

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9

Experiments

t Q
V
C

P
,a

c
ti
v
e

Stream1

Stream2

Graph 27: Graph comparing the tQVCP,active values measured with stream 1 and stream 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9

Experiments

t M
B

S
,a

c
ti

v
e

Stream1

Stream2

Graph 28: Graph comparing the tMBS,active values measured with stream 1 and stream 2

In half of the experiments, the parameters PSOC, tCPU,active, tCPU,stall, tQVCP,active and

tMBS,active are found to be the same for both the streams. The maximum variation for

each parameter between Stream 1 and Stream 2 is given in the table below. There is

no significant trend of increase or decrease in the parameter values between the

streams.

Parameter Max variation

PSoC,T 0.85%

tCPU,active 14.2%

tCPU,stall 14.3%

tQVCP,active 2.38%

tMBS,active 2.32%
Table 32: The maximum variation of the Stream 2 parameters with respect to the Stream 1

parameters

The maximum variation percentage for the tCPU,active and tCPU,stall in the above table

seems large but actually they occurred for very small values of tCPU,active and tCPU,stall.

 64

8.2.2 Memory experiments

Similarly, the average power consumption and the Set 2 parameters of the memory

are measured for the nine different combinations of frame rate and frame size. The

following table shows the measured values.

Experiment FR (fps) FS tmem,idle tmem,active tmem,read tmem,write Pmem,T(measured)

(mW)

1 30 4cif 0.85 0.15 0.064 0.050 800

2 30 cif 0.94 0.06 0.016 0.013 584

3 30 qcif 0.97 0.03 0.005 0.003 528

4 25 4cif 0.86 0.14 0.064 0.050 778.5

5 25 cif 0.95 0.05 0.016 0.013 575

6 25 qcif 0.97 0.03 0.005 0.003 523

7 12.5 4cif 0.89 0.11 0.064 0.050 721.5

8 12.5 cif 0.96 0.04 0.016 0.013 552

9 12.5 qcif 0.98 0.02 0.005 0.003 506.5
Table 33: The Pmem,T, tmem,idle, tmem,active, tmem,read and tmem,write values measured for Stream2

The values measured for the Pmem,T, tmem,active, tmem,read, tmem,write for stream1(refer

Table (21)) are compared with the values measured for stream 2 (refer Table (33)).

The following graphs show the comparison.

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

1 2 3 4 5 6 7 8 9

Experiments

P
m

e
m
(m

W
)

Stream 1

Stream 2

Graph 29: Graph comparing the Pmem,T values measured with stream 1 and stream 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9

Experiments

t m
e
m

,a
c
ti
v
e

Stream 1

Stream 2

Graph 30: Graph comparing the tmem,active values measured with stream 1 and stream 2

 65

0.000

0.020

0.040

0.060

0.080

1 2 3 4 5 6 7 8 9

Experiments

t m
e
m

,r
e
a
d

Stream 1

Stream 2

Graph 31: Graph comparing the tmem,read values measured with stream 1 and stream 2

0.000

0.020

0.040

0.060

1 2 3 4 5 6 7 8 9

Experiments

t m
e
m

,w
ri

te

Stream 1

Stream 2

Graph 32: Graph comparing the tmem,write values measured with stream 1 and stream 2

In case of memory also, for half of the experiments, the parameters Pmem,T, tmem,active,

tmem,read and tmem,write are found to be the same for both the streams. The maximum

variation for each parameter between Stream 1 and Stream 2 is given in the table

below. There is no significant trend of increase or decrease in the parameter values

between the streams. Therefore, the variations seem to be more of a measurement

error rather than a trend.

Parameter Max variation

Pmem,T 1.16%

tmem,active 6.25%

tmem,read 25%

tmem,write 25%
Table 34: The maximum variation of the Stream 2 parameters with respect to the Stream 1

parameters

The maximum variation percentage for the tmem,read and tmem,write in the above table

seems large but actually they occurred for very small values of tmem,read and tmem,write.

8.3 Conclusion

From the experiments of this chapter, we observed that there is no significant

variation of the power consumption and application dependent platform parameters of

the SoC and memory for input streams with different content. These results strongly

 66

suggest that the content of the input stream has no influence on the power models of

the SoC and memory.

 67

9 Effect of frequency scaling

9.1 Introduction

The compositional model given in chapter 7 was developed by considering fixed

frequency and voltage method. All the experiments in previous chapters were done at

a fixed frequency of CPU i.e. at 100.5MHz. At this frequency, CPU spends only 4%

of the total time (refer Table (3)) in active state for decoding an input stream with

12.5fps and qcif resolution. In this case, if we scale down the frequency of the CPU

such that CPU spends most of the time in active state, we can save the energy

consumption in idle state. Figure (13) shows the two cases, without frequency scaling

and with frequency scaling.

Figure 13: Energy consumption without and with frequency scaling

Energy consumption in active state remains same for both the cases, because when we

scale down the frequency active time increases linearly but active power decreases

linearly (refer Equation (1) of chapter 4). Frequency scaling gives only linear

reduction in the energy consumption, but by reducing frequency we can also reduce

the supply voltage which gives quadratic reduction in the energy consumption. We

can also save the energy consumption in idle state, by using clock gating technique in

which the clock of the CPU is disabled during idle state. This technique was used in

the experiments of previous chapters and referred as CPU power down mode (refer

Section 5.3 of Chapter 5).

In this chapter, by using the application dependent platform parameters of the CPU,

tCPU,active and tCPU,stall we calculate (using linear relation between time and frequency)

scalable frequencies for the CPU for different frame rates and frame sizes of the input

stream. With the calculated frequencies, we performed experiments to observe the

effect of frequency scaling on power consumption. Frequency scaling does not give

reduction in the average power consumption with CPU power down mode, because

CPU is already clock gated during idle state in this method.

9.2 Frequency scaling of CPU

Table (35) shows the frequency at which CPU would be in active and stall states for

80% of the total time for each combination of FR and FS with CPU power down

mode. We leave a margin of 20% to make sure that the timing constraints are not

violated. Since frequency and time vary linearly with each other the following

equation is taken to calculate the scalable frequencies.

fscaled = (torig/0.8) * forig

 68

fscaled: The scaled frequency at which CPU is in active and stall states for 80% of the

time

torig: Percentage of time CPU is in active and stall states at 100.5MHz frequency

forig: Reference frequency of the CPU i.e.100.5MHz

torig value is calculated as the sum of tCPU,active and tCPU, stall values in the Table(3) of

Chapter 5.

 FR(fps) FS forig torig fscaled

1 30 4cif 100.5 71 89

2 30 cif 100.5 28 35

3 30 qcif 100.5 16 20

4 25 4cif 100.5 60 75

5 25 cif 100.5 25 31

6 25 qcif 100.5 15 19

7 12.5 4cif 100.5 35 44

8 12.5 cif 100.5 16 20

9 12.5 qcif 100.5 10 13
Table 35: Scalable frequencies

By using the estimation of fscaled values from the above table, experiments are

performed with nine combinations of frame rate and frame size of the input stream

and the average power consumption across SoC (PSOC,T_f_scaled) is measured for each

combination (refer Table (36)). It is not possible to set exact values for fscaled as given

in the Table (35), because of the PLL settings. Therefore in the experiments, fscaled is

selected to be close to the theoretical values given in Table (35).

 FR

(fps)

FS torig

(%)

forig

(%)

tscaled

(%)

fscaled

(MHz)

PSoC,T_orig

(mW)

PSoC,T_f_scaled

(mW)

1 30 4cif 71 100.5 77 99.9 666.6 685.4

2 30 cif 28 100.5 73 37.5 575.7 583.0

3 30 qcif 16 100.5 78 20.3 550.4 562.9

4 25 4cif 60 100.5 83 75 643.9 661.9

5 25 cif 25 100.5 79 30.4 570.6 586.4

6 25 qcif 15 100.5 75 18.8 547.9 560.3

7 12.5 4cif 35 100.5 84 40.5 598.4 615.0

8 12.5 cif 16 100.5 74 20.3 558.1 568.1

9 12.5 qcif 10 100.5 87 10.1 540.4 534.2
Table 36: SoC power consumption measured with frequency scaling for CPU power down mode

As described earlier the average power consumption of the SoC with frequency

scaling (PSOC,T_f_scaled) is not reduced when compared to the average power

consumption of the SoC with CPU power down mode (PSOC,T_orig). The reason for

increase of PSOC,T_f_scaled value when compared to PSOC,T_orig is that the relation

between frequency and power consumption is not exactly linear. This is because, the

power consumption of SoC (PSoC,T) also includes leakage power (Equation (1) of

Chapter 4) which remains constant with frequency changes and only varies with

voltage.

 69

But, without power down mode, we can observe significant reduction in the average

power consumption with frequency scaling (refer Table (37)). Table (37) shows the

average power consumption of the SoC with frequency scaling (PSOC,T_f_scaled) for an

input stream with more number of pixels per second (30fps and 4cif resolution) and

less number of pixels per second (12.5fps and qcif resolution). For an input stream of

12.5fps and qcif resolution PSOC,T_f_scaled value at 10.1 MHz, is reduced by 21% when

compared to PSOC,T_orig value at 100.5MHz. According to the linear relation between

frequency and power, in this case we expect for a 90% of reduction in power (from

100.5MHz to 10.1MHz: 90% reduction in frequency). But actually the power is

reduced only 21%.

As described earlier, here the relation between frequency and power consumption is

not exactly linear because of the leakage power (Equation (1) of Chapter 4) which

remains constant with frequency changes and only varies with voltage. The

PSOC,T_f_scaled value for input stream with 12.5fps and qcif resolution is reduced by

25.3% with reference to the input stream with 30fps and 4cif resolution. Without

frequency scaling the reduction is only 6% (refer Table (37)).

 FR

(fps)

FS torig

(%)

forig

(%)

tscaled

(%)

fscaled

(MHz)

PSoC,T_orig

(mW)

PSoC,T_f_scaled

(mW)

1 30 4cif 88 100.5 89 99.9 717.1 715.2

2 12.5 qcif 23 100.5 75 10.1 674.2 534.2
Table 37: SoC power consumption measured with frequency scaling for without CPU power

down mode

9.3 Conclusion

This chapter shows that, by using the application dependent platform parameters of

white box approach we can estimate the scalable frequencies for the CPU. Therefore,

the application dependent platform parameters can be used to actively control the

CPU frequency of operation.

 70

10 Conclusions
In this thesis, the power models for the SoC and memory are developed with two

different approaches namely black box and white box approaches. The black box

models relate the power consumption of the SoC and memory to the application

parameters without considering architecture level details. The black box models are

abstract and easy to model. The white box approach models relate the power

consumption of the SoC and memory to the application parameters, by considering

the architecture level details and through composition of the models. Because of the

method of composition, the RMSE of the white box models is larger than that of the

black box models. Therefore, the black box models are more accurate than the white

box models. But the validity of the black box models is limited to this specific

platform and application.

Regardless of the accuracy of the white box models, there are several advantages of

this approach. This approach analyses the platform parameters that cause the power

consumption in detail. The platform parameters measured in this approach can be

used as an estimation for other platforms and applications. As discussed in Chapter 9,

the application dependent platform parameters can be used to actively control the

CPU frequency of operation and thereby the power consumption. Moreover, the

application dependent platform parameters can be used to investigate the

compositionality in applications. For example, for running two applications on a CPU

concurrently, we need to have an estimate of the CPU utilization by these

applications. If we know the time spent by CPU in active and idle states for two

applications separately, this information can be used to estimate the timing

requirements for the compositional application. As a continuation of this work, it is

recommended to investigate the compositionality in multimedia applications by using

the application dependent platform parameters of the applications.

Besides the individual models for the power consumption of SoC and memory, this

thesis also presents the net power consumption model by integrating the individual

models of SoC and memory. From the SoC power model, the observation was that the

CPU has more influence on the power consumption of SoC than the hardware

components. From the memory power model, it was observed that the hardware

components have more influence on the power consumption of memory than the

CPU. When we integrated the individual models of SOC and memory we observed

that both CPU and hardware components have equal influence on the net average

power consumption. From the integrated model we also observed that the offset

power (clock power of the components during their idle periods) is the dominating

part in the net average power consumption. The offset power is 85% (averaged over

the experiments) of the net average power consumption.

In this thesis, the experiments were performed with the same decoder application but

with two different input streams whose content represents the extreme conditions of

motion in the pictures. The results from the experiments suggest that the content of

the input stream has no impact on the power consumption and on the application

dependent platform parameters. But, it is necessary to perform experiments with some

more input streams to make conclusions about the influence of the input stream

content on the power models.

 71

Validating the white box approach models through experiments in the PNX1500

platform involves quite a lot of effort. This platform does not allow the measurement

of all the parameters needed by the models, for example the time required for the

burst activity (tmem,burst) in the memory model. It is necessary to have platforms that

support performance measurements by providing required performance counters and

registers.

In this thesis, the power models were developed by using linear regression method.

Accuracy of results obtained from linear regression method depends on, how well the

parameters are independent from one another. One technique to make the parameters

independent is to run special test programs that characterize each parameter

separately. But, if the parameters are strongly correlated and it is not possible to have

special test programs, then combining the parameters gives more accurate results than

separating them.

 72

References
 [1] Design for Low-Power at the Electronic System Level:

http://www.soccentral.com/soccontent/documents/ESL_Design_for_Low_Po

wer_ChipVision.pdf#search=%22Design%20for%20Low-

Power%20at%20the%20Electronic%20System%20Level%22

[2] Investigating Hardware and Software Approaches to Increasing the Battery

Life of mobile Embedded Systems

http://www.kudurshian.net/projects/kudurshian3.pdf

[3] Philips, PNX1500 series data book 19 April 2005

[4] Philips, NDK Tools support, user manual v4.3, 18 April 2005

[5] Philips, NDK Software architecture, user manual v4.3, 18 April 2005

[6] Model 2700 Multimeter/Switch System User’s Manual

[7] On-Chip Power Management utilizing an embedded hardware controller and a

low-power serial interface:

http://www.national.com/appinfo/power/files/OnchipPWRMgmtEmbeddedW

orld021704.pdf

[8] Contribution to BETSY, version 0.4 by Liesbeth Steffens

[9] Calculating memory system power for DDR2, TN-47-04, Micron Technology,

Inc., 2004.

[10] Linear regression : http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

[11] Philips, PSOS System Concepts

[12] Mathematica introduction:

http://www.maths.uwa.edu.au/~fowkes/Courses/M3A5/Mathemintro.pdf#sear

ch=%22linearsolve%20mathematica%20%22

[13] A MATLAB guide to Linear Algebra:

 http://www.nyu.edu/classes/edwards/chap7.html

[14] Performance Measures for Numeric Predictions:

http://grb.mnsu.edu/grbts/doc/manual/Error_Measurements.html

[15] Philips, PNX1500 series data book 17 March 2006

[16] Composition: http://mathworld.wolfram.com/Composition.html

[17] Philips, Getting started with PNX1500 software development, user manual

v4.3, 18 April 2005

 73

APPENDIX

� Building programs to PNX1500 platform

While building the programs to PNX1500, there are several environmental variables

that need to be set [17]. NDK package is provided with a batch file named

ndk4_env.bat, to set the environment variables. Target for which the programs need

to be built was chosen as “pnx1500 tm3260” in the batch file. Some of the other

important variables used in this project are given below.

1. Build “flavour” can be Debug, Trace, Assert or Retail. Debug mode is needed

to use Debugger. Because of the compiler option settings, code compiled in

this mode runs at half the speed of code compiled at Retail mode. Trace mode

is similar to that of Debug mode except the difference in compiler option

settings. In Assert mode debug is not enabled but assertions are enabled.

Assertions are used to check for programming errors. In Retail mode all

assertions and traces are disabled at compile time. In this project Retail mode

is chosen.

2. Host type: For a PCI plug-in board hosted operation it has to be set as

WinNT.

3. Diversity: The diversity “ _sp_” is set to specify single processor mode. In

order to enable TimeDoctor tool support diversity “_td_” has been set.

4. Endianess: Is chosen as little endian “el”. Even though PNX1500 CPU chip

hardware is theoretically support big endian operation, the NDK/MPTK

software is neither tested for the big endian mode nor supports it.

Figure (14) is a screen shot of ndk4_env.bat, from which all the settings of

environmental variables described above can be seen.

Figure 14: Screen shot of ndk4_env.bat

 74

In dvpMon, PCI channel option is chosen to enable communication through PCI.

Figure (15) is a screen shot of dload.exe, which is a dvpMon’s command line

interface to download applications to TriMedia. For decoder application .out file

along with encoded stream is downloaded to TriMedia.

Figure 15: Screen shot of dload.exe

� Multimeter

This instrument has a 6½-digit display and can store up to 55,000 readings in the

internal buffer. Figure (16) shows the front panel of the Multimeter. There are several

keys on the front panel that help user to operate the multimeter. The function of some

keys is described below.

• Store: Using this key it is possible to select number of readings to be stored

during the execution of the application.

• Recall: This key is used to display stored readings and buffer statistics. It

displays average voltage, standard deviation, minimum and maximum

voltages measured.

• Rate: This key is used to set the integration time (measurement speed) of the

A/D converter, i.e. the period of time input signal is measured.

It is also possible to remote program the multimeter through a Standard I/O Interface

RS-232. National Instruments LabVIEW package is used to collect and analyze data

stored in the buffer.

Figure 16: Front panel of the multimeter

 75

� Steps for an experiment

In this section, overall steps for performing an experiment are described in order.

1. Build the application using ndk4_env.bat for target PNX1500

2. Reset the target using dvpMon or URD

3. Frequency of the CPU can be set to required value using URD registers.

Default is 300.375MHz.

4. Program Keithly multimeter from PC through Keithly communicator for the

required settings.

5. Use dload.exe of dvpMon, to download application in .out format along with

encoded stream to target.

6. Start Keithly multimeter buffer to store the voltage readings.

7. Dump TimeDoctor buffer when the execution of application is finished.

8. Use LabView to collect and analyse the data stored in buffer

