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A. ABSTRACT

The multimedia functionality in modern handheld devices is computationally intensive
and requires a lot of energy. The source of energy in these devices is usually a
battery. Battery technology has not improved at the pace of increase in energy
requirements. An important requirement in these devices is to reduce power
consumption while meeting the timing constraints of multimedia applications.
Multimedia applications have the advantage of allowing run time trade-offs between
(picture) quality and power consumption. The (picture) quality and hence the power
consumption can be controlled by application parameters. In order to allow for run
time trade-offs, one needs to have an estimate of power consumption for various
application parameter settings.

This thesis focuses on developing power models for a System-on-Chip and Double
Data Rate (DDR) memory from application parameters. The power models were
developed through physical measurements on a Philips PNX1500 platform by running
MPEG-4 decoder application. We present two methods to develop power models. The
first method develops power models at a higher abstraction level by excluding
architecture level details, whereas the second method considers architecture level
details. Power models developed with the first method are abstract and easy to model,
but the validity of the models is limited to this specific platform. The architecture level
details of the second method can be projected to other platforms. In this thesis, we
also show that the architecture level details can be used to derive the scalable
frequencies for dynamic frequency scaling method. The experiments with two input
streams of different content suggest that the content of the input stream has no
influence on power models.
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1 Introduction

1.1 Problem description

Modern handheld devices incorporate a lot of multimedia functionality. Multimedia
functions like video encoding and decoding are computationally intensive and cause a
lot of energy consumption [1]. The source of energy in the handheld devices is
usually a battery. Battery technology has not improved at the pace of increase in
energy requirements [2]. Moreover, in handheld devices the capacity of the battery is
limited. The battery is small and cannot be enlarged because of the restricted size and
weight of the handheld. Therefore, in handheld devices reducing energy consumption
while meeting the timing constraints of multimedia applications is an important
requirement.

The energy consumption of a system can be reduced through various parameters of
the application and architecture, and through different power management techniques
like clock gating and dynamic voltage and frequency scaling. In multimedia
applications, it is possible to make trade-offs between picture quality and energy
consumption. For example, with a given battery, some times it is necessary to make
sure that the battery operates long enough for a particular activity like playing video.
In this case, we can extend the battery life by reducing the energy consumption with a
compromise in picture quality but still meeting the timing constraints. The picture
quality can be controlled by various parameters of the application. In order to allow
run time trade-offs, we need to have an estimate of the energy consumption for
various application parameter settings.

The goal of this thesis is twofold: (1) To develop models that can predict the power
consumption of a system from application parameters without considering the
architecture level details. In order to make fast, run time decisions, these models
should be simple and abstract enough. The modeling effort required for these models
is limited because they exclude all the architecture level details. But the validity of
these abstract models is restricted to a specific context, for example to a specific
platform. (2) To develop models that can predict the power consumption of a system
from application parameters by considering the architecture level details. These
models include all the platform parameters that influence the power consumption.
These platform parameters can be used to estimate platform parameters in similar
multimedia platforms. The parameters can also be used to investigate the
compositionality in applications. Accurate estimates of the power consumption
require capturing all the platform parameters that influence the power consumption.
On the other hand, sometimes it is not possible to measure all the parameters due to
platform limitations. Therefore, the models should include the necessary parameters
to allow relevant and adequate predictions.

This thesis work is performed in the context of a European project called BETSY.
The BETSY project investigates theory, models and design methodology to make
well-founded trade-offs between time-constraints, terminal and network resources and
energy consumption. Figure (1) shows a basic BETSY set-up of a video streamed
from a camera through a wireless connection to a handheld computer, where it is
displayed.
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=
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Figure 1: End to End streaming

On the left hand side, the video is captured, encoded (MPEG-4 simple profile) and
sent over a wireless link (IEEE 802.11g). On the right hand side, the encoded video is
received, decoded and rendered. Each of these functions has a number of parameters
that can be set. Some of the parameters are temporal resolution (frames per second),
spatial resolution (number of pixels per frame) and bit rate of the incoming stream.

This thesis focuses on developing and experimentally validating power consumption
models for the combined decoder (MPEG-4 simple profile) and rendering
applications. The application parameters are chosen as the temporal resolution
(frames per second) and spatial resolution (number of pixels per frame). In the rest of
the thesis, these parameters are referred as frame rate and frame size respectively.

The platform chosen for the experiments is Philips PNX 1500, which mainly consists
of a PNX1500 chip (also called SoC in this thesis) and a DDR memory chip.

The platform is chosen such that the power measurements can be performed over
different components of the platform separately. It is assumed that for obtaining
greater measurement accuracy, we need to separate the component impact parameters
properly. With this assumption, we performed the power measurements over SoC and
DDR memory separately.

1.2 Energy vs. power consumption

Although, the words energy consumption and power consumption are often used
interchangeably, there is an important difference between these two words. The power
used by a device is the energy consumed per time unit. Conversely, energy
consumption is the time integral of power. In handheld devices a battery stores a
given quantity of energy. Therefore, in handheld devices the goal is to reduce the
energy consumption to perform all the necessary tasks satisfactorily. Even though
minimizing power consumption cannot minimize the energy consumption in all cases,
there are some cases where it works. For example, for fixed duration tasks such as
playing video or audio, energy consumption is directly proportional to the average
power consumption (since the duration of the task is constant). Hence, in this thesis
the average power consumed for a fixed duration of task execution is considered.

1.3 Approach

In this thesis, power models for the SoC and memory are developed separately and
then these models are combined to get an integrated power model. With reference to
the goal mentioned in the previous section, we opted for two methods which are
described in the following paragraphs. Both the methods are based on physical
measurements in order to guarantee real values with good accuracy.

1.3.1 Black box approach

In this approach, the models are developed at a higher abstraction level by excluding
the architecture level details. Therefore, the SoC and memory are considered as a
black box. The average power consumption across SoC/memory is measured for




different settings of the application parameters: frame rate and frame size. The models
are developed by regression on the measurement data. The regression models are
improved by making trade-offs between accuracy and simplicity of the models.

1.3.2 White box approach

In white box approach, architectural details of the platform are captured as platform
parameters. The white box approach consists of two steps. In the first step, power
consumption is expressed as a function of platform parameters. In the second step, the
platform parameters are expressed as a function of application parameters to get a
high level abstract model that predicts the power consumption from the application
parameters. These two steps are explained in detail in the following paragraphs.

In the first step, the power models for the SoC/memory are developed by analysing
different states and activities of SoC/memory that cause power consumption. These
power models are expressed as a function of different platform parameters. The
platform parameters are identified as two types: application independent platform
parameters and application dependent platform parameters. The application
independent platform parameters are assumed to be independent of the application
parameters, frame rate and frame size. The examples of the application independent
platform parameters are: average power consumption in different states and activities
of the SoC/memory. The application dependent platform parameters are assumed to
be dependent on the application parameters and the examples of these parameters are:
time spent by SoC/memory in a particular state or activity. The average power
consumption and the time spent in different states and activities (application
dependent platform parameters) of the SoC/memory are measured for different
settings of the application parameters, frame rate and frame size. The average power
consumption in different states and activities (application independent platform
parameters) is obtained by regression on the measurement data.

In the second step, the time spent in different states and activities (application
dependent platform parameters) are related to the application parameters. The models
in the second step are also developed by regression on the measurement data. Finally,
a compositional model, which replaces the application dependent platform parameters
of the SoC/memory models with the second step models, is presented.

1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 introduces the Philips PNX 1500
platform and the tools that are used for performance measurements. Chapter 3
describes the experimental set up and the power measurements. In chapter 4, the basic
white box approach power models for the CPU and memory are developed and
discussed. Chapter 5 deals with developing power models for the whole SoC by
taking the CPU power models presented in Chapter 4 as a reference as well as
developing black box approach models for the SoC. Chapter 6 deals with validating
the memory models presented in Chapter 4 through experiments as well as developing
black box approach models for the memory. In Chapter 7, the SoC and memory black
box approach models are combined to get an integrated power model. Chapter 8
presents the experiments performed with a different input stream and discusses the
dependency of the average power consumption on the input stream content. Chapter 9
discusses the effect of frequency and voltage scaling on the average power




consumption. Chapter 10 summarizes the thesis together with the ideas for future
work.




2 Philips PNX1500 and Tools

2.1 PNX1500

The PNX1500 [3] is a complete Audio/Video/Graphics System on Chip. It has a high
performance 32-bit VLIW processor, TriMedia TM3260 that can perform high quality
audio and video signal processing and can also serve as general-purpose control
processor. It runs PSOS operating system. Several image and video processing
accelerators in the SoC assist CPU by providing image scaling and composition.

Figure (2) depicts the functional block diagram of PNX1500.The functionality
provided by SoC can be divided into three categories: decoding, processing and
displaying. MPEG-4 decoding function is implemented in software. Processing and
displaying functions are implemented in hardware accelerators. Quality Video
Composition Processor (QVCP) provides a high-resolution graphics controller with
graphics and video processing. QVCP allows composition of 2 layers, and can output
in 656/HD/VGA or LCD format, up to 10-bit per component and up to 81Mpixel/s.
Memory Based Scalar (MBS) provides functions like image scaling, video format
conversions including colour space conversion, luminance histogram measurements
and non-motion/motion compensated de-interlacing. MMI (Main Memory Interface)
provides interface between 32-bit, 200MHz, 256MB DDR SDRAM and TM3260
CPU, DMA devices and other internal resources that require memory access. The 32-
bit VLIW processor has 5-issue slots, 128 32-bit registers and 16KB data and 64KB
instruction cache. Both instruction and data cache are eight-way-set associative and
with 64B block size. The TM3260 CPU contains four programmable timer/counters,
all with the same function. Three of them are intended for general use where as fourth
timer/counter is reserved for use by the system software and should not be used by
applications.

The PNX1500 is designed to work in two modes: standalone mode and host mode
[3]. In standalone mode, the PNX1500 acts as a master. In this mode, the software
application that runs on TM3260 CPU is retrieved from EEPROM or flash memory
device. In host mode, the PNX1500 acts as a slave. In this mode, the software
application is downloaded into PNX1500 main memory (DDR memory) before
TM3260 CPU is released from reset. Throughout this project, PNX1500 is used in
host mode, where it is installed in the PCI slot of the PC. Advantage of PCI interface
is fast access to shared memory for download and debug.
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Figure 2: Functional block diagram of PNX1500 SoC

2.2 Tools

Philips provides a few tools [4] [5] along with the NDK distribution to provide a
means to interface with the target. These tools provide basic operations like
download, execute, basic tracing along with some run time analysis and performance
measurements. The following subsections explain the tools that are used to download
the application on target architecture and profiling tools that are used for analysis.

2.2.1 dvpMon
dvpMon is a stand-alone Win32 executable that provides a graphical user interface to
handle downloads to TriMedia over various channels such as PCI, JTAG, EJTAG,
and ETHERNET. Figure (3) is a screenshot of the dvpMon. dvpMon has the
following features:
e Download files in .elf, .bin, .mi and .out format
Start and Reset TriMedia
Dump traces from TimeDoctor, Memory
View memory
View and update BIS (Boot Info Structure)
Look up DVP error codes
Launch other tools like TimeDoctor viewer and URD
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Figure 3: Screenshot of dvpMon

2.2.2 URD (Universal Register Debugger)

URD is used to debug registers on target, the PNX1500. URD environment consists
of an application core and a set of supporting files. The application core provides the
basic URD functionality and the support files customize the URD to access and
manipulate the target device. The PC, which runs the URD application and the target,
the PNX1500 are communicated through PCL

Device Description files (*.URD) describe the registers of the target hardware. Using
these register settings, it is possible to change the frequency of CPU and other
hardware blocks on SoC. Current register values can be stored in Current Register
Settings (*.URG) files. Sequences of register accesses can be described with URD
basic macros and stored in a URD Basic Macro description file (*.URM). These files
are used together with the corresponding Device Description file.

Figure (4) shows the screen shot of URD, in which a .urd file gives information about
the registers of the PNX1500 target namely System Reset Module, Clock System,
Power Down MMIO registers, DDR memory controller and Router. It is possible to
read and write the register values on target. It is also possible to reset the target using
URD.
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2.2.3 TimeDoctor

TimeDoctor is a profiling tool that allows users to visualize and analyse TriMedia
programs. In order to do profiling using TimeDoctor tool, it is necessary to compile
the entire platform and application with the TimeDoctor build options and to call
some initialization functions in the application.

TimeDoctor provides profiling information about Task CPU usage, ISR CPU usage,
User Block CPU usage, Cache events, Queues, Semaphores and System events. This
profiling data is obtained by instrumenting OSAL functions using the callout facility
of the OSAL, and by instrumenting the PSOS task switch. Users can also call the
TimeDoctor API directly to define the user events. Time Doctor adds a small amount
of overhead on the system because it calls the callout functions for all the OS events
[4]. This data can then be collected, filtered and formatted. Graphical output traces
will be written to an ASCII .tdi file for importing into the TimeDoctor Viewer.

TimeDoctor provides profile information in three phases namely data collection, data
processing and data presentation. TimeDoctor viewer is used to display data generated
by TimeDoctor in graphical format. Figure (5) is a screenshot of TimeDoctor viewer.
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3 Experimental setup and Measurements

3.1 Introduction

The previous chapter discussed about the Philips PNX 1500 platform and the tools
that are used for performance measurements. This chapter describes the experimental
setup and the power measurements. In this chapter, we also discuss the possible
sources of errors in measurements and modelling.

3.2 Experimental Setup

Vdd = £V PNX1500 Platform
Ri=(0sohms 2
Po‘:‘v:{vvsour’;ply R1=1( 05 ohms » 1
Vdd Vdd
: > v
PNX150C |- DDR »
GND GND

PCI Express

PC

Figure 6: Experimental set-up

Figure (6) shows the experimental set-up block diagram. This block diagram consists
of three blocks namely PC, PNX1500 platform and TV. PCI express cable connects
the PC with the PNX platform board. This connection is used to download the built-in
application from the PC onto the PNX1500 board. Output from displaying functions
of the PNX1500 board is connected to TV through a cable.

Only the relevant components to this thesis are shown in the PNX platform board.
The supply voltage for the PNX1500 chip (also called SoC in this thesis) and DDR
memory chip are derived from the power supply network. The resistors R1 and R2 are
also part of this power supply network. These resistors are shown external to the
power supply network to understand the current flow into the PNX1500 chip and
memory chip. The supply voltage to SoC is called VddPNX1500 and its value is 1.3 V.
Similarly, the supply voltage to DDR memory is called VddDDR and its value is 2.5 V.

3.3 Power measurements

The average power consumption of SoC/Memory is the product of voltage across
SoC/Memory and current drawn by SoC/Memory. Since R1 is in series with the SoC
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and R2 is in series with memory, the current drawn by SoC is I1 and the current
drawn by memory is 12. Therefore, the power consumption equations can be written
as follows:

Psoc = Vaapnxisoo X 11
Pmem = VddDDR x 12

The currents I1 and 12 are calculated as follows:

I1 = (Voltage across R1) /R1 =V1/R1
12 = (Voltage across R2) / R2 =V2/R2

Then, the power consumption equations become

Psoc = (Vagpnxisoo X V1) /R1
Prem = (VddDDR X V2 ) /R2

V; and V, are the average voltages measured across the resistors R; and R,
respectively. Voltage across the resistors is measured using Keithly Model 2700
Multimeter / Data acquisition system [6]. The voltage measured using the instrument
is the average voltage, which is averaged over multiple samples. Therefore, random
error (refer Section 3.4) is averaged over multiple samples. The instrument is set to
display up to two decimal digits and has a precision of 0.01mV. All the measurements
in this thesis were taken at the same offset power which is obtained by resetting the
board before starting the measurements. This avoids errors in the measurements.

3.4 Errors

An error is defined as the difference between the measured value and the true value.
The sources of errors in measurement and modelling of this work are divided into two
types. One is the measurement error and the other one is the modelling error. The
following paragraphs describe these errors.

e Measurement errors: The measurement errors are of two types: Random error
and Systematic error. The random error is caused by any factors that randomly
affect the measurement of the variable across the sample. The important thing
about random error is that it does not have any consistent effects across the
entire sample, instead it pushes the observed scores up or down randomly.
This means that if we could see all of the random errors in a distribution they
might add up to zero. Systematic error is caused by any factors that
systematically affect measurement of the variable across the sample.
Systematic errors are caused by the flaw in the measurement instrument or
flaw in the method of selecting a sample or flaw in the technique of estimating
a parameter or can be due to inappropriate assumptions about formulae. To
minimise the systematic errors, it is necessary to check the instrument and
assumptions continuously. The sources of measurement errors in this thesis
are the power measuring instrument, Time Doctor tool and the assumptions in
the models.
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Modelling errors: Modelling error depends on how well the assumed model
suits the data. Root Mean Square Error is a measure for the accuracy of the
models because it is measured in the same units of data and is a representative
of the size of a typical error. Two models whose RMSE:s are in the same units
can be compared to see which one is more accurate. Another important
parameter to be considered in comparing the models is the complexity of the
model. When we trade off model complexity against error measures, it is
possibly not worth adding another independent parameter to a regression
model to decrease the RMSE by only a few more percent. Therefore, when the
RMSE of two models is not deviating much then it is better to choose the
model with less number of parameters.
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4 Energy and Power models for the CPU and Memory

4.1 Introduction

In order to develop power models for the SoC/memory using white box approach, we
need to analyse the sources of power consumption in these hardware components. The
sources of power consumption in SoC are the CPU and hardware accelerators of the
SoC. This chapter discusses the basic concepts of the power consumption in a CMOS
circuit and the power consumption in an embedded processor and memory
considering fixed and variable frequency and voltage methods. After detailed analysis
of various power consuming states and activities of the CPU/memory, we present
power models for the CPU/memory in terms of the platform parameters. Next chapter
develops the power models for the whole SoC by adding the influence of hardware
accelerators to the CPU power model presented in this chapter.

4.2 Power consumption of a CMOS circuit

The power consumption of any CMOS circuit is expressed as the sum of switching
power, leakage power and short-circuit power [7]. Switching power is caused by the
switching activity (charging and discharging) of the capacitor. A portion of the power
is consumed during the switching activity due to the short circuit at the driving gate’s
output, which is referred as short-circuit power. Switching and short-circuit powers
form the dynamic power consumption. There is also a portion of power consumed
irrespective of the switching activity, which is referred as leakage power or static
power consumption. Typically, the short-circuit power is a small percentage, less than
10% of the total power consumption; ignoring short-circuit power results in the
following average power consumption equation [7].

2
P = Pgyitcnh + Pleakage = CX V'pp f+ Vpp X Ileakage (1)
In the above equation, C is a constant representing the average capacitance resulting

from all the active switching cells, Vppis the supply voltage, f is the clock frequency,
and Iicakage 1S the average leakage current.
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Figure 7: Power dissipation in CMOS designs
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4.3 Energy consumption of an embedded processor and
memory

In an embedded system, performing a given task with a given time constraint can be
achieved in different ways [7]. One of them is the fixed frequency and voltage
scheme. The other one is variable frequency and voltage scheme.

In case of fixed frequency and voltage scheme, the processor and memory are
designed to operate at a supply voltage and frequency that satisfies the timing
constraints for the worst-case scenario. When a low timing constraint task has to be
executed, then even after finishing the task the processor and memory consume
power. For example, for a decoder application depending on the frame rate of the
input stream, processor and memory are in idle between the frames. During these idle
periods, the processor and memory consume considerable amount of power.

In case of variable frequency and voltage scheme, the operating frequency is scaled
according to the timing constraints of the application. Processor could lower the
frequency for a low timing constraint task and can increase the frequency for a high
timing constraint task.

Consider a fixed duration task of period T. For fixed frequency and voltage scheme
average energy consumption for a given task completed in time T1 < T is given by:

T
EFIXED = J(Pswitch + Pleakage)dt
0

T1 T T
= [(C1xV,, f)de + [(C2xV,,,” Fdt + [ (Voo X latase)dt )
0 T1 0

Where C; is the average switching capacity during task processing and C, is the
average switching capacity after the task is completed. Operating the processor and
memory in standby (clock shutdown) state after the task is completed at T1, saves the
switching power. Then the Equation (2) becomes:

T Tl T
Eﬁxed = J‘(Pswitch + Pleakage)dt I I(Cl X ‘/[)sz)dt + I(VDD X Ileakage)dt (3)
0 0 0

For a variable frequency and voltage scheme, the clock frequency fI is reduced such
that the same task can be completed in time T. Accordingly, the supply voltage is
changed to Vpp, for the reduced frequency f1. In this case the average energy
consumption is given by:

T T T
Evariable = J(Pswitch + Pleakage)dt = J.(Cl X VDDlzfl)dl' + J.(VDDI X Ileakage)dl’ (4)
0 0 0
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4.4 Energy and Power consumption models for CPU and
Memory

Three forms of energy consumption are identified for any hardware block: static
frequency dependent and activity dependent energy consumption [8] [9]. The last two
contribute to the dynamic energy consumption of the hardware block. The static
power consumption depends on the state and voltage of the hardware block.
Frequency dependent power consumption depends on state, voltage and the clock
frequency at which the hardware block is operating. Activity dependent power
consumption depends on the state, voltage and the frequency of occurrence of an
activity in the given time interval. In some cases, activity dependent power
consumption can become the frequency dependent power consumption. For example
when each clock cycle is viewed as an activity then the activity dependent power
consumption is the same as frequency dependent power consumption.

Total power consumption in an interval T is obtained by summing up the three forms
of power consumptions over all the states, voltages, frequencies and activities. In case
of fixed frequency and voltage scheme, the summation is only over states and
activities. Since only fixed frequency and voltage scheme is considered in this thesis,
the power consumption models for CPU and memory will be described for this
scheme only.

4.4.1 Energy and Power consumption models for CPU

This section presents energy and power consumption models for a CPU with cache.
These models are developed by identifying different states and activities of CPU that
cause power consumption. The power consumption of the CPU in one state is
different from the power consumption in another state. Similarly, power consumption
of CPU for one activity is different from the power consumption of another activity.

For a CPU with cache, three different states are identified: active, stall and idle states
[8]. CPU is in active state when it actually computes. In active state all the CPU’s
logic is connected to the clock.

In modern CPUs, most of the memory accesses are to the cache. Memory accesses are
described as a read or write to the cache. An access to the cache is called cache hit
when a read or a write is succeeded, i.e. the block requested is available in cache in
case of read and a block can be written in to a particular location in case of a write. A
cache read miss occurs when the block is not available in the cache and has to be
fetched from the external memory. Cache write miss occurs when a write to a
particular location is not possible because it is not empty. In case of write back, write
allocate caches, the block in the required location is written back to the main memory
if that block is dirty and then the requested block is loaded into that location. In case
of write through and write no allocate caches; the requested block is updated in main
memory only. Upon a cache miss CPU enters into the stall state. In stall state some
part of the CPU’s logic is disconnected from the clock.

CPU is in idle state when there is no task to be performed. In idle state, large part of
the CPU’s logic is disconnected from the clock.
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It is assumed that there is no other activity dependent power consumption needs to be
identified since the total power consumption of the CPU is captured by these three
states. With this assumption, the average power consumption of the CPU is expressed
as the sum of the power consumptions in individual states.

Pcput = Pcpuactive X tepuactive + Popustatl X tepu stall + Pepu idieX tepusidie ©)

Energy consumption of CPU during period T, is expressed as the sum of energy
consumption in individual states.

Ecrur = Pcpuactive X Tepuaactive + Popu stat X Tepu stan + PepusidieX Tepuidie (6)

Pcpur: Average power consumption of CPU during interval T
Ecpur: Energy consumption of CPU during interval T

Pcpu aciive : Average power consumption of CPU in active state
Pcpu stan : Average power consumption of CPU in stall state
Pcpuidgle : Average power consumption of CPU in idle state
tepu.active: Fraction of time CPU is in active state

tepustanl: Fraction of time CPU is in stall state

tepuidle: Fraction of time CPU is in idle state

Tcpu active : Time spent by CPU in active state

Tcpu stan - Time spent by CPU in stall state

Tcpu.igie : Time spent by CPU in idle state

The power consumption in each state is the sum of static and frequency dependent
power consumption, since there is no activity dependent power consumption.

2
PCPU,active = VDD X Ileakage +ClxV DD f
2
Pcpusian = Vb X Licakage + C2 X Vpp
2
PCPU,idle = VDD X Ileakage +C3xV DD f

Since we are considering only fixed frequency and voltage scheme, the power
consumption in each state is a fixed constant value at a particular frequency and
voltage. Therefore the model for predicting the average power consumption of the
CPU (refer Equation (5)) is expressed as the linear sum of average power
consumption in individual states.

4.4.2 Energy and Power consumption models for Memory

This section presents the energy and power consumption models for a DDR memory.
Similar to CPU models, the memory models are developed by identifying various
power consuming states and activities of memory [8] [9].

DDR memory stands for Double Data Rate memory, which means two data transfers
take place per clock cycle. Dynamic memory must be refreshed regularly, with a
given maximum refresh interval for each page in each bank.

In dynamic memory the data transfers are not with the memory itself, but with sense

amplifiers. Before reading or writing, the contents of one page in one bank are loaded
to sense amplifiers. The act of loading to sense amplifiers is called as activation.
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Activation destroys the data in the memory bank. Therefore, it is necessary to restore
the page in the bank. The act of restoring is called as precharge.

Two different states of the DDR memory are identified: active and idle states. DDR
memory is in active state when at least one page is activated. DDR memory enters
into idle state when all the pages are precharged.

A read or write burst is a sequence of bytes read from or written to the same page of
same bank without interruption. Therefore, the burst is viewed as a sequence of words
belonging to the same page in the same bank. Every burst is preceded by an activation
of the page and followed by a precharge.

We assumed that reads and writes can take place in active state only. The cost of
reading or writing a word is captured by the activities read and write. The energy cost
due to activation and precharge is captured by the activity burst.

Time spent in the active state, but not used for data transfer is known as szall time.
Stall time includes refresh time, and also includes transition costs of different types.
To capture these transitions, we use the notion of efficiency, which captures transfer
time as a fraction of the total active time. Efficiency is used to calculate the total
active time of the DDR memory using the following formula:

tmem,active,T = (nmem,read,T + nmem,write,T) / (fmem X e/ffmem) (7)

With these assumptions and definitions the following models for the energy and
power consumption of the memory is developed.

T : Length of the total time interval

EmemT : Enrgy consumption of memory during interval T

Pmem,T : Average power consumption of memory during interval T
Pem active : Power consumption of the memory during active state
Prem.idie : Power conmsumption of the memory during idle state
€mem,read : Energy cost of one read

€mem, write : Energy cost of one write

€mem,burst : Energy cost of one burst

tmem.active : Fraction of time memory is in active state

tmem.idle : Fraction of time memory is in idle state

Them.active : Time spent by memory in active state

Them.idie : Time spent by memory in idle state

Nmem read,T : Number of occurances of activity read during interval T
Nmem,write,T : Number of occurances of activity write during interval T
Nmem.burst, T : Number of occurances of activity burst during interval T
finem.read : Frequency of the read activity

finem, write : Frequency of the write activity

finem burst : Frequency of the burst activity

Emem,T = Pmem,active X Tmem,active+ Pmem,idle X Tmem,idle + Nmem,read, T X C€mem,read +

Nmem,write, T X Cmem,write + Nmem,burst, T X €mem,burst (8)
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Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + fmem,read X €mem,read +

fmem,write X emem,write + fmem,burst X emem,burst (9)

Above equation is represented as follows for the convenience of notation:

Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + Pmem,read X tmem,read + Pmem,write

X tmem,write + Pmem,burst X tmem,burst (10)

In the above equation fiem read X €mem.read term of Equation (9) is replaced with
Prnem.read X tmem.read » DOth the terms give the average power consumption of the read
activity. Similarly, the terms fiem write X €mem.write a1d Tmem burst X €mem.burst are replaced
with the terms Pmem,write X tmem,write and Pmem,burst X tmem,burst reSPeCtiVely-

Figure (8) represents the memory power model given in Equation (10). The burst
activity overlaps in time with read and write activities because of the multiple banks
in DDR memory. Usually, the transition costs between read and write activities are
included into write activity. Therefore, in Figure (8), the energy cost of write activity
is more than that of read activity.

Power

Burst

Burst

Time

IDLE period- ACTIVE period
Figure 8: Representation of memory power model given in Equation (10)

In later chapters, for validating the memory power model (Equation (10)) we measure
the parameters of the model. Parameters tmem idies tmem.read aNd tmem write Of the model can
be measured through performance counters of DDR controller. But, we found that,
DDR controller of this platform has no counters to measure the tymem purst Of the
memory model. Therefore, with the measurable parameters Equation (10) is modified
as follows:

Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + Pmem,read X tmem,read + Pmem,write

X tmem,write (1 1)

Here,we can measure tpem gl directly through performance counters. Therefore
tmem.active 1 calculated as follows instead of calculating using efficiency (Equation (7)):

tmem,active =1- Tmem,idle

The following figure represents the modified memory power model in Equation (11).
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Figure 9: Representation of modified memory power model given in Equation (11)

In the modified model, we are not considering the average power consumption due to
burst activity separately. Therefore, the average power consumption due to burst
activity is included into the average power consumption of activities read and write.

4.4.3 Parameters of the CPU and memory power models

The parameters of the CPU and memory power models (refer Equation (5) and (10))
are divided into two sets:

1. Application independent platform parameters : Pcpy active, Pcpustan . Pcpusidie,

Pmem,activea Pmem,idlea Pmem,read 5 Pmem,write

2. Application dependent platform parameters: tcpy active » tCPU.stall » (CPU.idle » tmem.actives

tmem,reada tmem,write

Application independent platform parameters are assumed to be specific for the
CPU/memory and its settings, but are independent of the specific context in which the
CPU/memory is being used. For example, power consumed by CPU/memory in a
particular state or for a particular activity depends on the amount of logic that is active
during these states and activities and is expected to be specific for a CPU/memory
irrespective of the application. With this hypothesis, it is assumed that the application
independent platform parameters are independent of the application parameters.

Application dependent platform parameters are assumed to be dependent on the
application parameter settings. For example, if there are more number of frames
(frame rate) or more number of pixels per frame (frame size) to be processed by CPU,
then we can expect that the CPU spends more time in active state and less time in idle
state. Similarly, we can expect more number of accesses to memory in this scenario.
With this hypothesis, it is assumed that the application dependent platform parameters
are dependent on the application parameters.
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5 Power Models for System-on-Chip (SoC)

5.1 Introduction

In the previous chapter, we have developed the white box model for the CPU and
memory considering different power consuming states and activities of the CPU and
memory. This chapter develops power model for the whole SoC by taking the CPU
power model (refer Equation (5)) as a reference. This is achieved by adding the
influence of other hardware components of the SoC to the CPU power model step by
step through experiments.

The white box approach consists of two steps:

(1) Application dependent platform parameters (tcpu.active » tcpu st @0d tepyiaie) and the
average power consumption across SOoC (Psoc 1) are measured experimentally for the
given frame rate and frame size of the input stream. Three different frame rates
(30fps, 25fps and 12.5fps) and frame sizes (4cif, cif and qcif) are considered in the
experiments. Application independent platform parameters (Pcpu active, Pcpu stan and
Pcpu.ide) are calculated by performing linear regression [10] on the equations
substituted with the experimentally measured values for application dependent
platform parameters and Pgoc,t.

(2) The application dependent platform parameters of the SoC power model are
expressed as a function of application parameters (frame rate and frame size) through
regression models.

Finally, from the models of each step described above, a compositional model for the
power consumption of the SoC in terms of applcation parameters is developed. Using
the compositional model, we can predict the average power consumption of the SoC
for any values of frame rate and frame size.

This chapter also develops the black box models without considering the architecture
level details.

5.2 White box approach experiments and results

The Average power consumption measured across the SoC (Psoc 1) during the
execution of the decoder application, not only consists of power consumption due to
CPU, but also power consumption due to other hardware blocks. A fundamental
aspect of the PNX15xx Series system is to provide hardware modules (or hardware
accelerators) that relieve the TM3260 CPU for other video/audio processing [3]. That
means CPU and hardware blocks work simultaneously.

The application dependent platform parameters (tcpu active, tcpU.stall 20d tepyidle) are
measured using TimeDoctor tool. Figure (10) is a screen shot of the TimeDoctor
statistics. All tasks except IDLE and ROOT are dynamically created at runtime by
providing system calls to the PSOS kernel [11]. The purpose of IDLE task is to
consume CPU cycles when no other task is running. Statistics in Figure (10) give the
number of execution cycles of each task and how much percentage of execution
cycles are stall cycles. The active and stall cycles of the CPU are calculated as the
sum of the individual task cycles.
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#¥| Statistics

Time Range
[ Usze entire range Start Time: End Time
[ [107.386750524256

Os i
100.5199.8MHz 1% _stalls D3 _stalls
Task #Exec HExecls % MCyiz Int/s |MCy/s Awg % MCyi= Awg %
IDLE 5161 45.06 321593% 32314 51816 | 9418 112737 1677% | 0.2 4162 0E2%
RCOT g2 0.764 0108% 0109 0425 |0.022 29365 2066% | 0027 35449 24 94%
Task_fdl0_152_0043 2 o019 0% a a a 268 30.01% a S520 51 6%
Task_fd01_152_0045 2 0019 0% u} a a 1447 1562% u} 4579 5592%
Task_“RW0_230_0049 106896 99603 1.402% 1.409 u} 0.921 9249 B5.35% [ 0199 2001 14.15%
Task_%BI0_226_004s5 5350 49352 0.199% oz a 0108 2173 S54.22% | 0035 7ol 17 .49%

Task_%DM4_152_004h 11068 103.067 64.2158% 64539 157766 (5754 561258 896% 20921 203006 3242%
Task_ADM3_164_004c 17 01538 0.004% 0004 0009 | 0.0M 4734 17.53% | 0.0 8097 29.98%
Task_AVIR_219_004d 3081 23504 0573% 0581 0939 | 0356 12478 B1.2% | 003 2807 1377%

lzr_C0_0o10 43 0.4 0.002%  0.002 i] i] 799 16.15% | 0001 I096  EB2.54%
lzr_A00_000c 4466 41585 0429% 0432 u] 0233 5998 S3493% | 0413 140 30.26%
ler_GWCPO_0003 10896 99603 0697% 0.7 u] 0.34 3421 4867% | 0242 2433 34682%
lzr_MBS0_0016 10673 99353 0.209% 021 i] 0.074a 7o 37 55% | 0081 &4 35E3%

Figure 10: Statistics given by Time Doctor

The application independent platform parameters (Pcpy actives Pcpustan @and Pepuigle) can
not be measured directly. Two approaches were taken to obtain Pcpy active, Pcpuistall
and Pcpy iaie. These approaches are explained in the paragraphs below.

In the first approach, it is assumed that the hardware blocks would be in active state
only during CPU active periods. Therefore, Pcpy aciive includes the power consumption
due to the active CPU and hardware blocks. Several experiments were performed with
the decoder program using a sample stream from the BETSY project with three
different resolutions 4cif,cif and qcif and three different frame rates 12.5fps, 25fps
and 30fps. To characterize the power consumption during decoder program when
CPU is in stall and idle states, some test programs were executed. In Section 5.2.1 and
5.2.2 we explain these test programs. The values obtained for Psec 1, tcpu active s tCPU stall
and tcpudgle during the execution of decoder and test programs are substituted in the
following Equation (12). This equation is considered by taking the CPU power model
(Equation (5)) of previous chapter as a reference.

Psoct = Pcpuactive X tepuactive + Pepu st X tepu stall + Pepu idieX tepusidie (12)

Linear equations obtained by the decoder program and test programs are solved to get
Pcpu actives Pepustan and Pepuidie.

The second approach for obtaining Pcpy active, Pcpu stan @nd Pepy jgie is to perform linear
regression on the available data. Linear regression is performed on the nine linear
equaions obtained from the nine different experiments with the decoder program.

For each of the nine different experiments performed on decoder program, the values
obtained for Psoc.T, tcpuactive » tcPUstall and tepuidle are shown in the Table (1).

In PNX 1500, the maximum frequency at which CPU can operate is 300.375MHz.
When the decoder program is run at this frequency with an input stream of 30fps
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frame rate and 4cif resolution, the CPU spends 78% of the time in idle state. That
means most of the time CPU is in idle state. Running CPU at higher frequency with
78% of idle time is not an optimal condition for the power consumption. Therefore in
order to get the best optimal condition for the power consumption we chose
100.5MHz frequency such that the time spent by CPU in idle state is around 10%.
The 10% of the margin is left to make sure that the CPU meets the timing constraints.

FR(fps) | FS tcpU,active | tCPUstall tepusidie | Psoc,t

(mW)

1 30 4cif 0.49 0.39 0.12 717.1
2 30 cif 0.16 0.26 0.59 689.3
3 30 gcif 0.07 0.22 0.71 679.2
4 25 4cif 0.26 0.35 0.38 708.8
5 25 cif 0.12 0.24 0.63 683.8
6 25 gcif 0.05 0.22 0.73 676.7
7 12.5 4cif 0.23 0.28 0.49 701.9
8 12.5 cif 0.08 0.22 0.69 684.3
9 12.5 gcif 0.04 0.20 0.76 674.2

Table 1: Pg,c.1, tepuactive » tepu,stan and tepyiae Values obtained through various experiments

To obtain the power consumption across the SoC when the CPU is in idle and stall
states, two test programs idle_test and stall_test were executed.

5.2.1 Power consumption in idle state

During the CPU idle state, PSOS runs an idle task. The purpose of PSOS idle task is
to simply consume the CPU cycles when there is no other task to be performed by
CPU. PSOS idle task is nothing but an infinite loop [11].

With the assumption that the hardware blocks are active only during CPU active state,
the power consumption when CPU is in idle (Pcpy,igie) would be the clock power of
CPU and hardware blocks and the power consumption due to idle task execution.

To get the power consumption across SoC during idle state of CPU (Pcpu,idgie), an
idle_test program is executed. During the execution of this program, the hardware
blocks that are active during decoder program are clocked. The hardware blocks that
are active during decoder program are obtained by using Universal Register Debugger
(URD) tool described in Section 2.2.2.

The test program is in C and the main() function consists of only getch() function.
Because of getch() function, until a character is entered from the keyboard, the CPU
would be in idle state and hence PSOS idle task would be executed. The values
measured for tcpu actives tepustan and tepuigle and Psoc 1 during this test program are
substituted in Equation (12).

666.6 = PCPU,activeX 0.00004 + PCPU,stall X 0.166 + PCPU,idleX 0.83 (13)

From the Equation (13), it can be seen that CPU spends only 83% of the time in idle
state during the execution of idle task. The remaining percentage of time is spent in
stall state. The statistics(Figure (11)) show that the 16.6% of stalls during idle task
execution are instruction cache stalls. We assume that the instructions of the idle task
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are flushed out of the cache for some reason and there is a need to get the instructions
back from external memory each time the idle task is executed.
¥ Statistics
Time Range
[v Use entire range

100.5199.8MHz 1$_stalls D% _stalls

Task #Fxec HFxecls Y MCy/s Int/s |MCy/s Avg % MCy/s Awg %
IDLE 4 0547 995959% 1004539 0 |166V3 19676935 16.59% | 006 70264 0.06%
RCOT 3 0636 0011% 0011 o | 0003 3963 2335% | 0004 B490 35.29%

Figure 11: Statistics given by TimeDoctor for idle_test program

5.2.2 Power consumption in stall state

Similarly, with the assumption that the hardware blocks are active only during CPU
active state, the power consumption across SoC, when CPU is in stall state would be
the stall power of CPU and the clock power of hardware blocks.

To obtain the power consumption across SoC during stall state of CPU, a stall_test
program was executed. This test program creates an array in the data cache of the
CPU. Each 64" location (each location equals 1B) of the array is read in the
program.As the cache line size of the TM3260 is 64B, every cache read of this
program creates a miss and brings 64B of data from external memory. Therefore, on
every read of this program the CPU stalls for the data from external memory. The
values obtained for tcpy active > tepu stan @a0d tepu idgle and Psoc r during this test program
are substituted in Equation (12).

654 = PCPU,activeX 0.06 + PCPU,stall x 0.93 + PCPU,idle x 0.004 (14)

5.2.3 Linear equation solutions

Below, we give an example of how the equations are solved to obtain Pcpy active »
Pcpustan and Pepuiare values. Equation(15), is obtained from the decoder program with
an input stream of 4cif resolution and 30fps (from Table(1)).

717.1 = PCPU,active X 0.49 + PCPU,stall X 0.39 + 666.6x 0.12 (15)

Equation (15) along with the equations from idle_test and stall_test (Equation (13)
and (14) respectively) is written in the following matrix form.

637.1 0.49 0.39 0.12 PCPU,active
651.3| =| 0.06 0.93 0.004 || Pcru, sian
666.6 0.00004 0.166 0.83 || Pcru,ide

To obtain Pcpy active » Pcpu stann and Pepu e , the above matrix is solved using
LinearSolve function of Mathematica tool [12]. LinearSolve function solves the
matrix for Pcpuyactive . Pcpu stan and Pepyjaie (in this case 781.3 , 649.9 and 673.1
respectively). Similarly, each of the remaining equations obtained from the decoder
program (From Table (1)) are solved with the equations from idle_test and stall_test
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programs (Equation (13) and (14) respectively). The resulting Pcpy active , Pcpu stan and
Pcpu.idge values are shown in Table(2).

FR |FS tepU active | tcPUstall | tepusidie | Psoc,T | Pepusactive | Pepusstan | Pepusidie
(fps) (mW) | (mW) (mW) | (mW)

30 4eif | 0.49 0.39 0.12 717.1 | 781.3 649.9 673.1
30 cif 0.16 0.26 0.59 689.3 | 817.3 647.6 673.6

30 |qcif |0.07 0.22 0.71 679.2 | 837.0 646.3 673.8

25 4eif | 0.26 0.35 0.38 708.8 | 852.7 645.3 674.0

25 cif 0.12 0.22 0.66 683.8 | 870.1 644.2 674.2

25 qcif | 0.05 0.22 0.73 676.7 | 853.9 645.2 674.0

12.5 | 4cif | 0.23 0.28 0.49 701.9 | 828.9 646.8 673.7

12.5 | cif 0.09 0.20 0.71 684.3 | 855.3 645.1 674.1

O[O0 QA|AN|N|R[W |-

12.5 | qcif | 0.03 0.20 0.77 674.2 | 873.2 644.0 | 674.3

Table 2: The calculated values for Pcpyactive, Pcpu,stan and Pepy aie

5.2.3.1 Analysis of results

Table (2) shows that the tcpy aciive and tcpustan decrease with decrease in frame rate and
frame size. This experimental result validates the assumption that the application
dependent platform parameters depend on the application parameter settings. But the
decrease in tcpusean With frame rate and frame size is not at the rate of decrease in
tcpu.active With frame rate and frame size.

When the time spent by CPU in active state decreases, then the data cache misses as
well as data cache stalls decrease. For example, in case of qcif resolution and 30fps in
Table (2), CPU spends only 7% of the total time in active state (tcpu active). In this case
it is expected that time spent in stall state (tcpuswan) 1S also relative to the tepy aciive- But
tepu st 18 22%. tepustan 18 calculated as the sum of total instruction and data cache
stalls. It was described in Section 5.2.1 that during idle task execution 16.6% are
instruction cache stalls. Since in this example CPU spends 71% of the time in idle
state, the instruction cache stalls during idle state are dominating in the tcpysean. This
explains why tcpy sean 1S not scaling at the rate of tepy acive With frame rate and frame
size.

According to the assumption that the application independent platform parameters are
independent of application parameters, the parameters Pcpy actives Pcpustan and Pepu jdie
in Table (2) should be the same for any combination of frame rate and frame size.
But, Pcpy aciive in Table (2) does not support this assumption. Even though Pcpy stan
and Pcpyjgie in Table (2) are not the same for each combination, the difference is very
small.

Graph (1) shows the increase of Pcpy aciive With the decrease of time spent by CPU in

active state (tcpu active)- Graph (2) and (3) show that Pcpy sian and Pepy jaie are constant
and does not vary with tcpy sian and tepuige respectively.
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Graph 1: Graph representing PCPU,active VS. tCPU,active

In the above graph, active power increases about 10%. We treat this increase of active
power as an overhead in the active state. The reason for this overhead could be the
assumption in Section 5.2 that the hardware blocks would be in active state only
during CPU active periods. This overhead is more visible at less active periods of
CPU. Section 5.4 and 5.4.1 explain about the overhead in detail.
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Graph 2: Graph representing Pcpy s VS tepu,stan
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Graph 3: Graph representing Pcpyiaie VS. tcpu,idie

Another observation from the results is that the power consumption during CPU idle
state is more than the power consumption when CPU is in stall state (refer Table(2)).
This is because of the fact that during idle state, CPU is not really idle but doing small
amount of work during PSOS idle task (refer Section 5.2.1). Pcpyiale can be reduced if
CPU goes in to power down mode during CPU idle state. Section 5.3 explains the
CPU power down mode.
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5.2.4 Linear regression

The second approach for obtaining Pcpy active, Pcpustan and Pepuigre is to perform linear
regression on the available data using the least square error method[13] in MATLAB.
Linear regression method allows to find Pcpu actives Pcpu stan and Pepuigle values that fit
all the linear equations considered. Linear regression is performed on the nine linear
equaions obtained from the data in Table(1) for decoder program. Linear regression
results in the follwing values.

PCPU,active = 609.9mW
PCPU,stall =889.2mW
Pcpuide = 625.6mW

To measure the accuracy of the model, Root Mean Square Error is calculated [14].
The error obtained is 4.46mW. Pcpy aciive(609.9mW) obtained is less than the stall
power Pcpu san (889.2mW). The reason is that the time spent by CPU in stall state is
proportional to the time spent by CPU in active state. Therefore they both are
correlated and are not independent enough to calculate the Pcpy active and Pepu stan
values separately. Therefore, the tcpy active and tepusean Values in the equations are
combined and are solved using linear regression method. The values thus obtained are
as follows:

PCPU,active+stall =732.9mW
PCPU,idle = 662.4 mW

The RMSE of the model with above coefficients is 5.7mW

If we perform linear regression on the nine linear equaions obtained from the data in
Table(1) along with the idle_test and stall_test equations (Equation (13) and (14)
respectively), it helps to calculate the Pcpy active, Pcpu stann @and Pepuigle values more
accurately, because these two tests characterize the power consumption of CPU in
idle and stall states separately. Performing linear regression on the nine decoder
equations along with idle_test and stall_test equations gives the following values:

Pcpuactive = 792.7TmW
Pcpustan =664.4mW
Pcpuide = 673.5mW

The RMSE of the model with above coefficients is 8SmW

5.3 Experiments when CPU is in power down mode

In the latest version of NDK software (NDK 5.3), CPU power down mode feature is
supported. The TM3260 CPU enters partial power down mode by performing a 'store’'
to a specific MMIO address (the POWERDOWN register). The TM3260 then finishes
any pending transactions and goes into a partial power down. In partial power down
mode, cycle counters, timers and interrupt logic in the TM3260 are still active. The
TM3260CPU wakes up from partial power down when an interrupt occurs or there is
an access to its MMIO space. Partial power down mode feature is used by the idle
task in PSOS operating system [15]. It means that during the idle state of CPU, PSOS
idle task makes CPU to enter into partial power down mode. In the previous sections
NDK4.3 software was used, which does not have the CPU power down mode feature.
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In the NDK4.3 version during the idle state of CPU, PSOS idle task is executed which
is an infinite loop (refer Section 5.2.1).

The NDKS5.3 software was installed and the experiments were done with decoder
program with three different resolutions and frame rates. All the experiments were
done at a CPU frequency of 100.5MHz. Table (3) shows the values obtained for
Psoc.1, tepu actives tepustan @nd tepuige for nine different experiments performed with
decoder program.

FR FS tcpU active tepU stall tepusidie | Psoct

(fps) (mW)
1 30 4cif 0.37 0.34 0.29 666.6
2 30 cif 0.13 0.15 0.72 575.7
3 30 qeif 0.07 0.09 0.83 550.4
4 25 4cif 0.30 0.30 0.40 643.9
5 25 cif 0.12 0.13 0.75 570.6
6 25 qeif 0.06 0.09 0.85 547.9
7 12.5 4cif 0.17 0.18 0.65 598.4
8 12.5 cif 0.07 0.09 0.84 558.1
9 12.5 qcif 0.04 0.06 0.90 540.4

Table 3: Psoc,1y tepuactive s tepu,stan and tepyiae Values obtained through various experiments in
CPU power down mode

5.3.1 Power consumption in idle and stall states

Experiments done with idle_test program and stall_test program resulted in the
following equations.

512.6 = PCPU,activeX 0.00004 + PCPU,stall x 0.00034 + PCPU,idle x 0.999 (16)
6514 = PCPU,active x 0.06 + PCPU,stall x 093 + PCPU,idle x 0.004 (17)

From Equation (16), it can be observed that the power consumption across SoC
during idle_test (Psoct = 512.6) is reduced by 23.1% when compared to the power
consumption (Psoct = 666.6) in without CPU power down mode. From Equation (16),
it can be seen that CPU spends 99.9% of time in idle state. But, when CPU is not in
power down mode, CPU spends only 83% (refer Equation (13)) of time in idle state
and the remaining percentage of time (16.6%) in stall state. The 16.6% of stalls
caused by the instruction cache misses during the idle task execution. Now, with CPU
power down mode, idle task of PSOS makes CPU to enter into partial power down
mode and there are no instruction cache misses. Therefore there are no stalls in this
case.

Since CPU spends 99.9% of time in idle state during idle_test program, Pgyc 1
(512.6mW) from this test is taken as the power consumption when CPU is in idle state

(Pcpusidie)-

5.3.2 Linear equation solutions

Psoc 1 (512.6mW) from the idle_test is substituted in the Pcpyjqie Of the equations
obtained from decoder and stall programs. Equation(18) is obtained by substituting
Pcpuidge as 512.6mW, in the equation obtained by decoder program with an input
stream of 4cif resolution and 30fps (refer Table(3)). Similarly, Equation (19) is
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obtained by substituting Pcpy igie as 512.6mW, in the equation of stall program
(Equation(17)).

666.6 = PCPU,active x 0.37 + PCPU,stall % 0.34 + 512.6x 0.29 (18)
651.4 = Pcpu.aciive X 0.06 + Pcpy sian X 0.93 + 512.6x 0.004 (19)
This results in the following set of equations:

517.9 = Pcpuaciive X 0.37 + Pcpy sian X 0.34 (20)
649.3 = PCPU,activeX 0.06 + PCPU,stall % 0.93 (21)

The above equations can be written in the form of a matrix as shown below.

5179 _ 037 034 PCPU, active

649.3]  |0.06 0.93 || Pcru.sar
To obtain Pcpy active and Pepuy gian » the two linear equations (Equation (20) and (21))
are solved using LinearSolve function of Mathematica tool. LinearSolve function
solves the matrix for Pcpy active and Pepysan (in this case 808 and 641.3 respectively).
Similarly, each of the remaining decoder equations of Table (3) are solved with

Eqaution (21). The resulting Pcpy_active and Pcpy sian values are shown in the following
table.

FR(fps) | FS tepuactive | tepusall | Psoc,T-Pepusidie™tepusidie | Pepusactive | Popusstan

(mW) (mW) (mW)
1 30 4eif | 0.37 0.34 517.6 808.0 641.3
2 30 cif 0.13 0.15 207.1 843.3 638.8
3 30 qcif | 0.07 0.09 122.9 893.8 636.3
4 25 4cif | 0.30 0.30 438.3 815.6 641.3
5 25 cif 0.12 0.13 186.2 845.9 638.8
6 25 gcif | 0.06 0.09 112.2 873.6 636.3
7 12.5 4eif | 0.17 0.18 265.2 888.8 636.3
8 12.5 cif 0.07 0.09 129.5 992.3 628.7
9 12.5 gcif | 0.04 0.06 80.8 1088.3 623.7

Table 4: The values calculated for Pcpy active, Pcrustan in CPU power down mode

5.3.2.1 Analysis of results

With CPU power down mode, idle power (Pcpy jaie = 512.6) obtained is smaller than
the stall power (Pcpy sian in Table (4)). This is not the case in Section 5.2.3 (without
CPU power down), where the idle power is larger than the stall power in Table (2).
The difference comes from the fact that during idle task execution CPU goes into
partial power down mode with NDK5.3 version, whereas an infinite loop is executed
in NDK4.3 version.

From the Table (4), it can be seen that the fraction of time CPU is in active and stall
states (tcpuactive and tcpustan) decreases with the decrease in frame rate and frame size,
which supports the assumption that the application dependent platform parameters
depend on the application parameters. It can also be observed that tcpy acrive and

tepu stalls DOth scale almost at the same rate with frame rate and size. The reason for
this is obvious because of the fact that there are no stalls in the idle state of CPU
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(refer Section 5.3.1). The stalls in the active state of CPU are directly proprtional to
the time spent by CPU in active state.

Graph (4) shows that Pcpy aciive increases with the decrease in tepy active- But Pepy stan 18
independent of tcpy sn(refer Graph (4)). The systematic increase of active power in
Graph (4) supports the observation in Section 5.2.3.1 that there is an overhead
included in the CPU active state. As described earlier, Section 5.4 and 5.4.1 explain in
detail about this overhead.
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Graph 4: Graph representing Pcpy active VS- tcpu active
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Graph 5: Graph representing Pcpy san VS- tepu stan

5.3.3 Linear regression

The second approach for obtaining Pcpu active, Pcpu stan @nd Pepy jgie is to perform linear
regression on the available data. Linear regression is performed on the nine linear
equations obtained from the data in Table (3) for decoder program. Linear regression
results in the follwing values.

Pcpu active = 799.5mW

Pcpy stan =648.1mW

Pcpudge = 523.6mW

The Root Mean Squar Error obtained for the model is 2.9mW (refer Table(5)). The

power consumption model for the SoC with above linear regression coefficients is
given below:

Psoct = 799.5 X tepu active + 648.1 X tepu stan + 523.6X tepu idie (22)
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FR(fps) | FS tepuactive | tcPUstall | LCPULidle Psoc.r Psoc,r
(actual) (predicted)
(mW) (mW)
1 30 4cif 0.37 0.34 0.29 666.6 668.0
2 30 cif 0.13 0.15 0.72 575.7 578.1
3 30 qcif 0.07 0.09 0.83 550.4 548.9
4 25 4cif 0.30 0.30 0.40 643.9 643.7
5 25 cif 0.12 0.13 0.75 570.6 572.9
6 25 gcif 0.06 0.09 0.85 547.9 551.3
7 12.5 4cif 0.17 0.18 0.65 598.4 592.9
8 12.5 cif 0.07 0.09 0.84 558.1 554.1
9 12.5 qcif 0.04 0.06 0.90 540.4 542.1
Root Mean Square Error | 2.9mW

Table 5: Actual and model predicted values for the Pg,c ¢

The reason for obtaining larger values for Pcpy san (648.1mW) and Pepy iaie
(523.6mW) when compared to the Pcpy g values in Table (4) and Pepyiare
(512.6mW) from idle_test program is explained as follows. From the Graphs (1) and
(4), it was observed that there is some overhed in active state of CPU. But in linear
regression approach, this overhead is distributed over the three states. Therefore,
Pcpu.active (799.5mW) is smaller and Pepy stan and Pepu igie are larger when compared to
the results in the first approach.

5.4 Refined power consumption model

In the first approach, it was assumed that the hardware blocks are active only when
CPU is in active state (refer Section 5.2). To validate this assumption, we need to
monitor the behaviour of hardware blocks.

TimeDoctor tool is used to get the information about ISR (Interrupt service routine)
CPU usage (refer Section 2.2.3). ISR informs CPU, whenever a hardware block is
started and stopped (refer Figure (12)). Using the tmtdUserBlockCreate ( ),
tmtdUserBlockEnter ( ) and tmtdUserBlockLeave ( ) API's of TimeDoctor tool [4],
the execution cycles of hardware blocks are measured. From Figure (12), it can be
seen that two hardware blocks: QVCP and MBS are active during decoder
application. These hardware blocks are active periodically irrespective of the state of
the CPU. Hence, the assumption that the hardware blocks are active only during
active state of the CPU is not correct. The cost (power consumption) of active
harware blocks is distributed over all the states of the CPU. But, in the first approach
(refer Section 5.2), this overhead was included only in the active state of the CPU
since the idle_test and stall_test do not include the power consumption due to active
hardware blocks.
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Figure 12: Screen shot of TimeDoctor viewer

In the second approach (Linear regression), the overhead due to hardware blocks is
included in all the three states of the CPU. But, the actual values for Pcpy active Pcpu stanl
and Pcpy jge would be smaller than the values obtained in Section 5.3.3, if the power
consumption model for SoC (Equation (12)) is included with the cost of the hardware
blocks (QVCP and MBS) as well.

Povep acive : Power consumed by QVCP block in active state
PMBs.active - Power consumed by MBS block in active state
Povcep,igie : Power consumed by QVCP block in idle state
Puss.idle : Power consumed by QVCP block in idle state
tovcp.aciive - Fraction of time QVCP block is in active state
tMBS. active - Fraction of time MBS block is in active state
tovep,idie : Fraction of time QVCP block is in idle state
tMBs.idle - Fraction of time MBS block is in idle state

Psoct = Pcpuactive X tepuactive + Popu st X tepu st PepusidieX tepuidie + Povepactive X
tQvep activet PMBS active X tMBS active + Povep.idieX tovepidie + PMBs.idieX tvpsidgie  (23)

5.4.1 Experiments

Experiments were done with decoder program for three different resolutions and
frame rates in CPU power down mode. Through TimeDoctor tool, the percentage of
time spent by QVCP and MBS blocks in active state was calculated (refer Table (6)).
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FR ES tCPU,active tCPU,stall tCPU,idle tQVCP,active tMBS,active PSoC,T

(fps) (mW)
1 30 4cif 0.37 0.34 0.29 0.42 0.49 666.6
2 30 cif 0.13 0.15 0.72 0.43 0.42 575.7
3 30 qeif 0.07 0.09 0.83 0.43 0.42 550.4
4 25 4cif 0.30 0.30 0.40 0.43 0.50 643.9
5 25 cif 0.12 0.13 0.75 0.43 0.43 570.6
6 25 qeif 0.06 0.09 0.85 0.43 0.42 547.9
7 12.5 | 4cif 0.17 0.18 0.65 0.43 0.48 598.4
8 125 |cif 0.07 0.09 0.84 0.43 0.42 558.1
9 12.5 | geif 0.04 0.06 0.90 0.43 0.42 540.4

Table 6: Ps,c,1, tepu, actives tepu, stants EcpU, idies tQVCP, actives tMBs, active Values obtained through various
experiments

From Table (6), it can be seen that the percentage of time spent by QVCP in active
state (tovcp aciive) 1S constant and does not vary with the frame rate and frame size. For
MBS, percentage of time spent in active state (tmpsactive) do€s not vary with frame rate
also. But, typs active fOr 4cif resolution is more when compared to cif and qcif
resolutions. The QVCP and MBS blocks operate at the display frame rate i.e. at SOHz.
For example, for an input stream of frame rate 25fps, every 40ms a frame is executed,
but QVCP and MBS blocks are executed twice in 40ms, which means at a frame rate
of 50Hz (refer Figure (12)). Therefore, QVCP and MBS block executions are
independent of the input frame rate. The tqvcp acive 1 independent of the input frame
size, because the QVCP block processes all the pixels of the display resolution i.e.
4cif, irrespective of the input frame size. The MBS block does the image scaling by
reading the video data from memory and writing the scaled pictures back to the
memory. Since, MBS does the pixel based processing [15], tmss active depends on the
input frame size.

The reason for obtaining larger values for Pcpy,active Shown in Graphs (1) and (4 )
when tcpy aciive 1S Small is explained as follows. The percentage of time spent by CPU
in active state (tcpu.acive) decreases with the decrease in frame rate and frame size. But
the time spent by QVCP and MBS blocks is constant with frame rate and frame size.
Since the same amount of overhead is included in CPU active state irrespective of
tepU actives 1t 1S Obvious that the overhead is more visible at small active
percentages(tcpu.active)-

5.4.1.1 Linear regression

The QVCP and MBS blocks have only two state active and idle. Therefore, tovcp,die
and tyipsiqle Values are calculated using the following equations:

tovep,idie =1- tQvep active
tvBs,idle =1- tMBS,active

The values obtained for Psoc 1, tcpu actives tcPU stalls tCPU,idles TQVCPLactives IMBS actives tQVCP,idle
and typs iale for the nine different experiments are substituted in Equation(23). Solving

the nine equations by linear regression gives the following results.

PCPU,active=648-5mW
PCPU,stall =318.0 mW
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Pcpu.idle = 307.3 mW
Pqvcp active =189.4 mW
PMBS,active = 523 mW
Povepidie = 188.2 mW
Pueside= 53.5 mW

The power consumtion model for SoC with the above regression coefficients is:

Psoct = 648.5 X tepuaciive + 318.0 X tepu siann + 307.3 X tepusidie + 189.4 X tovep active +

52.3 X tmBs,active + 188.2 X tovep,idie + 33.5 X tmps idie

The Root Mean Square Error of the above model is 2.13mW (refer Table 7). The

(24)

above model is more accurate with 26% of reduction in RMSE when compared to the
model in Section 5.3.3. But, at the same time the number of parameters of Equation
(24) is doubled when compared to Equation (22) of Section 5.3.3.

FR | FS | tcpuactive | tepusiall | tepuidie | tQvepactive | tMBS.active | tQvepidie | tvBsidie | Psoct | PsocT
(fps) (actual) | (predicted)
(mW) | (mW)
1130 4cif | 0.37 0.34 0.29 0.42 0.49 0.58 0.51 666.6 666.6
2130 cif |0.13 0.15 0.72 0.43 0.42 0.57 0.58 575.7 574.6
3130 qcif | 0.07 0.09 0.83 0.43 0.42 0.57 0.58 550.4 550.4
4125 4cif | 0.30 0.30 0.40 0.43 0.50 0.57 0.50 643.9 645.0
5125 cif |0.12 0.13 0.75 0.43 0.43 0.57 0.57 570.6 572.3
6|25 qcif | 0.06 0.09 0.85 0.43 0.42 0.57 0.58 547.9 550.1
71125 | 4cif | 0.17 0.18 0.65 0.43 0.48 0.57 0.52 598.4 596.6
81 12.5 | cif |0.07 0.09 0.84 0.43 0.42 0.57 0.58 558.1 553.5
91 12.5 | qcif | 0.04 0.06 0.90 0.43 0.42 0.57 0.58 540.4 542.9
Root Mean Square Error 2.13mW

Table 7: Actual and model predicted values for Pg,c 1

5.4.2 Further simplification of the SoC power consumption model
The model presented in the last section is a good approximation for predicting power

consumption, but it is not the simple model because of the number of parameters.

Power consumed by QVCP and MBS blocks in idle state (parameters Pqycp iaie and

Pumss.idle) 1 the clock power of the blocks and can be measured in an experimental

setup.

To measure the clock power, frequency of operation of these blocks during the
execution of decoder program has to be known. The frequency of opeartion of these

hardware blocks is obtained by reading the corresponding register values through
URD tool, during the execution of decoder program. The opearting frequency of

QVCP and MBS blocks are 27MHz and 108MHz respectively. The clock power of
these blocks is calculated as follows:

At the reset position of the target, the clock frequency of the QVCP and MBS blocks
is set as 27MHz and 108MHz respectively. The power consumption across SoC at this
time is measured. Now the clock of the MBS block is disabled and then power

consumption is measured. The difference between the two values gives the clock

power of MBS block(Pumgs.idge), Which is 85.85mW. Now, the clock of the MBS block
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is enabled. The same procedure is followed to get the clock power of QVCP block,
which is 22.7mW.

With the values of Pgvcpidle and Pygs jaie » in Equation (23), the unknown parameters
are reduced to five (Pcpu aciive Pcpustan Pepusidie Povep active and Puygs active)- Povep,idle and
Pumgs.idle are substituted in the Equations (23), the resulting equation is:

Psoc,t — (22.7X tovcp,idiet 85.85X twmps,idie)
= Pcpu active X tcPUactive + Pcpu statl X tepustall + PepuiidieX tepuidie + Povepactive X
tQ\/CP,active + PMBS,active X tMBS,active (25 )

Linear regression is performed on the nine equations obtained from the decoder
program to get the parameters; Pcpu,acive Pepusstanl Pepusidies Pocp.active and Pugs active.
Linear regression results in the following values for the parameters:

Pcpu active= 645.9 mW
Pcpustan= 316.1 mW
Pcpuige= 305.1 mW
Povep active = 157.5 mW
PuMBS active = 221.4 mW

The power consumtion model for the SoC with the above regression coefficients is:

Psoct — (22.7X tgvcp,idie + 85.85X tmasidie)
= 645.9 X tepuaciive + 316.1 X tepy s + 305.1 X tepujigie +
157.5 X tovep active + 221.4 X tMBs active (26)

The RMSE of the above model is 2.13mW (refer Table (8)), which is equal to the
RMSE of the previous model (Equation (24)).

FR | FS | tcpuactive | tcpussiall | tepusidie | tQvepactive | tMBS.active | Psoc,t | Psoc,T
(fps) (actual) | (predicted)
(mW) | (mW)
1130 4cif | 0.37 0.34 0.29 0.42 0.49 609.6 609.6
2130 cif |0.13 0.15 0.72 0.43 0.42 512.9 511.8
3130 qcif | 0.07 0.09 0.83 0.43 0.42 487.6 487.6
4125 4cif | 0.30 0.30 0.40 0.43 0.50 588.0 589.1
5125 cif |0.12 0.13 0.75 0.43 0.43 508.7 510.4
6|25 gcif | 0.06 0.09 0.85 0.43 0.42 485.1 487.3
71125 | 4cif | 0.17 0.18 0.65 0.43 0.48 540.8 539.0
81 12.5 | cif |0.07 0.09 0.84 0.43 0.42 495.3 490.7
9| 12.5 | qcif | 0.04 0.06 0.90 0.43 0.42 477.6 480.1
Root Mean Square Error 2.13mW

Table 8: Actual and model predicted values for Pgs,cr
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5.5 Models relating application dependent platform
parameters to the application parameters

It was observed from the results of Table(2) and (4) that the fraction of time spent by
CPU in active and stall states (tepu.active a0d tepustan) during the execution of decoder
program decreases with the decrease in frame rate and frame size of the input stream.
Time spent by QVCP block in active state tqycp, aciive 1S independent of the input frame
rate and frame size.Time spent by MBS block in active state (tvgs, active) Varies with
the input frame size and is independent of the input frame rate (refer Table (6)). In
this section the parameters tepy actives tepu,stall AN tvBs, active are related to the application
parameters. Through out this section the data from Table (8) is used to develop the
models.

5.5.1 Models relating tcpy aciive t0 the FR & FS

Graph (6) shows that tepuacive increases linearly with frame rate for a constant frame
size.

0.40
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2 / —e— 4cif
¥ 020 i
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“ 040 .///—/""' qeif

0.00 ‘ ‘ ‘
0 10 20 30 40
FR(fps)

Graph 6: Graph representing t.,, active VS- FR

Similarly, Graph (7) shows that, the tcpy acive increases linearly with frame size for a
constant frame rate. In Graph (7), the values taken for the frame size are relative
values not the absolute values.

Number of pixels for 4cif resolution is: 704 X 576
Number of pixels for cif resolution is: 352 x 288
Number of pixels for qcif resolution is: 176 x 144

Since number of pixels per frame increases four times from qcif to cif and similarly
from cif to 4cif, the values taken for 4cif, cif and qcif in Graph (7) are 16, 4 and 1
respectively.
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Graph 7: Graph representing t.,, sctive V5. FS
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5.5.1.1 Initial model (Model 1)

The tepuacive varies linearly with the frame rate and frame size by keeping frame size
and frame rate constant respectively. But, in Graph (6) the rate at which tepu active 18
increasing with frame rate is different for different frame size (number of pixels per
frame). This is true for the Graph (7) as well. This suggest that the tcpy aciive, DOt Only
depends on frame rate and frame size individually but also on the combination of
them. That means tp, aciive depends on the total number of pixels per second (FR*FS)
as well. The following linear model is assumed to relate the tepy aciive to frame rate and
frame size.

tcpuactive = C1*FR*FS + C2*FR + C3*FS+ C4 27

The tepuacive measured for nine different combinations of frame rate and frame size
(refer Table (8)) are substituted in the above equation:

0.37 = C1*480+ C2*30 + C3*16 +C4
0.13 =C1*120+ C2*30 + C3*4 +C4
0.07 =C1#30 + C2*¥30+ C3*1 +C4
0.30 = C1*400+ C2*25 + C3*16 +C4
0.12 =C1*100 + C2*25 + C3*4 + C4
0.06 =C1*¥25 + C2*25 + C3*1 +C4
0.17 = C1*200+ C2*12.5 + C3*16 + C4
0.07 =C1*50 + C2*12.5 + C3*4 +C4
0.04 = C1*12.5 + C2*12.5 + C3*1 +C4

Linear regression on the above nine equations result in the following regression
coefficients:

C1 =0.0006; C2 =0.001; C3 = 0.0004; C4 =0.021

With the above regression coefficients, the model for predicting the active percentage
of CPU becomes:

tcpuactive = 0.0006¥FR*FS + 0.001*FR + 0.0004*FS+ 0.021 (28)
FR*FS FR ES tCPU,active tCPU,active
(fps) (actual) (predicted)
1 |480 30 16 0.37 0.36
2 1120 30 4 0.13 0.13
3 130 30 1 0.07 0.07
4 | 400 25 16 0.30 0.31
5 100 25 4 0.12 0.11
6 |25 25 1 0.06 0.06
7 1200 12.5 16 0.17 0.17
8 |50 12.5 4 0.07 0.07
9 |12.5 12.5 1 0.04 0.04
Root Mean Square Error 0.46%

Table 9: Actual and Model 1 predicted values for tcpy active
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RMSE for the above model is calculated to be 0.46% (refer Table(9)). By normalizing
the model presented in this section, it is also possible to compare the regression
coefficients. The regression coefficients can be compared to see which term of the
model has more influence on predicting the tcpy active-

5.5.1.2 Normalization of the Model 1

Following are the linear equations obtained by normalizing the model presented in the
last section:

0.37=C1*1 + C2*1 + C3*1 +C4
0.13=C1*0.25 + C2*1 +C3*0.25+C4
0.07 =C1*0.06 + C2*1 + C3*0.06 + C4
0.30=C1*0.83 + C2*0.83 + C3*1 +C4
0.12 = C1*0.208 + C2*0.83 + C3*0.25 + C4
0.06 =C1*0.05 +C2*0.83 + C3*0.06 +C4
0.17=C1%0.417 + C2*0.417 + C3*1+ C4
0.07 = C1*0.1 + C2*0.417 + C3*0.25+ C4
0.04 = C1*0.03 + C2*0.417 + C3*0.06 +C4

The coefficients obtained by performing linear regression on the above equations are:

C1=0.305
C2=0.032
C3 =0.008
C4 =0.021

The coefficient C1 is larger than all other coefficients and this suggests that the term
FR*FS has large influence in the model. This is also obvious from the fact that the
term FR*FS (number of pixels per second) itself can capture the dependency of
tcpuactive ON FR and FS. The remaining coefficients are very small when compared to
C1. Therefore, by eliminating all the terms except FR*FS term, we get a simplified
model.

5.5.1.3 Simplified model (Model 2)
The following model includes only the term FR*FS

fcpu.active = CI1*FR*FS (29)
The tepuacive measured for nine different combinations of frame rate and frame size is
substituted in the above equation. Linear regression on the equations of this model
gives the coefficient C1, which is equal to 0.001. With this coefficient, the model
becomes:

tcpuactive = 0.001*FR*FS (30)

Root Mean Square Error for this model is calculated to be 3.15% (refer Table (10)).
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FR*FS tCPU,active tCPU,active
(actual) (predicted)
1)1 0.37 0.38
210.25 0.13 0.10
310.06 0.07 0.02
410.83 0.30 0.32
510208 |0.12 0.08
6 |0.05 0.06 0.02
710417 |0.17 0.16
810.1 0.07 0.04
910.03 0.04 0.01
Root Mean Square Error | 3.15%

Table 10: Actual and Model 2 predicted values for tcpy active

5.5.1.4 Summary of models

The following table shows the summary of models considered so far and their
corresponding Root Mean Square Errors.

Model Cl C2 C3 C4 RMSE(%)
1 | tepuiactve =C1*¥*FR*FS+C2*FR+C3*FS+C4 | 0.0006 | 0.001 | 0.0004 | 0.021 | 0.46
1.a | Normalization of Model 1 0.305 |0.032|0.008 |0.021 | 0.45
2 tCPU active =C1*FR*FS 0.0008 3.15
2.a | Normalization of Model 2 0.384 3.18

Table 11: Summary of the models and their RMSEs

When we compare the two models in the above table, Model 2 has less number of
parameters than Model 1 but the RMSE of Model 2 is much larger (7 times larger)

tha

n that of Model 1.

5.5.2 Model relating t.p, stan to the FR and FS

Graphs (8) and (9) show that the tcp, i increases linearly with frame rate and frame

size by keeping frame size and frame rate constant respectively. But here also, it can

be seen that the rate of increase is not the same in all cases.
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Graph 8: Graph representing tcpygan vS. FR
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Graph 9: Graph representing tcpy san vSs. FS

Different models considered in Section 5.5.1, to relate tepy acive t0 the frame rate and
frame size are considered in this section also to relate tepy s to the frame rate and
frame size.

Table (12) shows the regression coefficients obtained by solving linear equations and

the RMSE of each model.
Model Cl C2 C3 C4 | RMSE(%)
1 | tepustan =C1¥*FR*FS+C2*FR+C3*FS+C4 | 0.0005 | 0.001 | 0.001 | 0.04 | 0.29
1.a | Normalization of Model 1 0.239 |0.044 ] 0.024 | 0.04 | 0.33
2 | tcpusan =C1*FR*FS 0.001 5.08
2.a | Normalization of Model 2 0.379 5.11

Table 12: Summary of the models and their RMSEs

The Model 2 of the above table is the simplest but the RMSE of this model is 15 times
larger than the other. Model 1 is the most accurate model with small RMSE.

5.5.3 Model relating tygs active to the FS

From the results of Table (8), it can be seen that typs, active iS independent of the input
frame rate. But typs aciive increases from the cif resolution to 4cif resolution. tygs, active
remains the same for cif and qcif resolutions (refer Graph (10)).
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Graph 10: Graph representing tygs, scive VS- FS

The following model for relating the typs, active to the frame size is considered:
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MBS, active = CI*FS +C2 (31)

The values for the tygs, active With an input stream of frame rate 30fps and resolution of
4cif , cif and qcif are substituted in the above model.

0.49 =C1*16 + C2
042=C1*4 +C2
042 =C1*1+C2

Normalizing the above equations gives the following equations:

049 =C1*1+C2
0.42=C1*0.25 +C2
0.42 =C1*0.06 + C2

Solving the above equations through linear regression gives the values for C1 and C2
as 0.08 and 0.41 respectively.

Therefore, the model for predicting the typps, active from frame size of the input stream
is given in the following equation and the RMSE of the model is 0.6%

tupsactive = 0.08% FS +0.41 (32)

5.6 Compositional model for the white box approach

The method of nesting two or more functions to form a single new function is known
as composition [16]. A compositional model for the white box approach is obtained
by representing tcpy.actives tcpU stal A0d tyips active Of the SOC power model presented in
Section 5.4.2, as a function of application parameters. With compositional model, we
achieve a high level model that predicts the power consumption of the SoC from
application parameters frame rate and frame size. Sections 5.5.1.4, 5.5.2 and 5.5.3
give the models that represent tepy actives tcpU stal aNd tvps active S @ function of
application parameters. The SoC power model presented in Section 5.4.2 is given
below:

Psoc,t — (22.7X tovep,idie + 88.5X tmps,idle) = 645.9 X tcpu active + 316.1 X tepy sian + 305.1
X tepusidie + 157.5 X tovepactive + 221.4 X tmps active

Where tqvep acive 1S @ constant value 0.43 from Table (8). From Table (11) and (12),
the normalized models that relate tcpy.active and tcpu scan to the FR and FS, with small
RMSE are taken. Equation (32) represents tvps active @S @ function of FS. These models
are given below:

tcpuaciive = 0.3047*FR*FS + 0.032*FR + 0.0078*FS + 0.0206
tepustan = 0.239*FR*ES + 0.044*FR + 0.024*FS + 0.04
tMBs.active = 0.08* FS + 0.41

tepusidie = 1- tepusactive - tCPU,stall
tQvep,idie = 1-0.43 =0.57
tvBs,idle = 1- tMBs active

Substituting the above equations in the SoC power model gives:
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Psoct = 119.8 x FR*FS + 11.4 X FR + 27.7 FS + 536.3 (33)

The Root Mean Square Error of the above model is calculated to be 16mW, which is
shown in the table below:

FR*FS | FR FS Psoc.r Psoc.r

(actual) (predicted)
(mW) (mW
1 1 1 1 666.6 695.2
2 0.25 1 0.25 575.7 584.6
3 0.06 1 0.06 550.4 556.6
4 0.83 0.83 1 643.9 672.9
5 0.21 0.83 0.25 570.6 5717.6
6 0.05 0.83 0.06 547.9 553.4
7 0.42 0.42 1 598.4 618.7
8 0.1 0.42 0.25 558.1 560.0
9 0.03 0.42 0.06 540.4 546.3

Root Mean Square Error | 16mW

Table 13: Actual and compositional model predicted values for Pg,c 1

5.7 Black box approach to relate the average power
consumption of SoC to FR and FS

The average power consumption measured across SoC for different settings of frame
rate and frame size, with CPU power down mode are shown in the table below:

FR(fps) | FS Psoc.t

(mW)

1 30 4cif 666.6
2 30 cif 575.7
3 30 qcif 550.4
4 25 4cif 643.9
5 25 cif 570.6
6 25 qcif 547.9
7 12.5 4cif 598.4
8 12.5 cif 558.1
9 12.5 qcif 540.4

Table 14: Pg,c,r measured from different experiments
From the Graph (11), it can be seen that the average power consumption across SoC

increases with the increase in frame rate by keeping frame size constant. But the rate
of increase also depends on the frame size. This is also true for the Graph (12).

41




800
%\ 600 - — —e— 4cif
F 400 —m— cif
2 200 - qeif
(6] T T T
(] 10 20 30 40
FR(fps)
Graph 11: Graph representing Pgs,cr vs. FR
800
__#
% 600 - —— —e— 30fps
E 400 —m— 25fps
2 200 12.5fps
o
0 T T T
0 5 10 15 20
FS

Graph 12: Graph representing Pgs,c 1 vs. FS

The following table shows various models considered for predicting the Psoc 1 from
FR and FS and their Root Mean Square Errors.

Model Cl C2 C3 |C4 RMSE(mW)
1 | Psocr =CT1*FR*FS+C2*FR+C3*FS+C4 | 0.22 | 0.246 | 0.88 | 536.6 | 2.07
1.a | Normalization of Model 1 106.5 | 7.9 14.7 | 536.3 | 2.15
2 | Psocr =C1*FR*FS+C4 0.26 542.8 | 2.73
2.a | Normalization of Model 2 124.3 542.9 | 2.80

Table 15: Summary of the models and their RMSEs

5.8 Comparison of the white box and black box models
This section compares the models obtained from the white box and black box

approaches. The compositional model of the white box approach from Section 5.6 and
the black box model from the Section 5.7 are given below:

Psoc,t

Psoc,t

119.8*FR*FS + 11.4*FR + 27.7*FS + 536.3

106.5*FR*FS + 7.9*FR + 14.7*FS + 536.3

(34)

(35)

The accuracy of the white box model is given by the RMSE of the model, which is
equal to 16mW (refer Table (13)). The RMSE of the black box model is only 2.15mW
(refer Table (15)). The RMSE of the white box approach is 7.4 times more than the
RMSE of the black box approach. Therefore the black box models are more accurate
than the white box models. The reason for large RMSE of the white box model is the
method of composition of the models, in which the errors of individual models add

up.
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From both the models (white box and black box models), it can be observed that the
term FR*FS (number of pixels per second) has large influence on the power
consumption when compared to the terms: FR (number of frames per second) and FS
(number of pixels per frame). This is obvious from the models of Table (11) and
Table (12) that the term FR*FS has large influence on tcpy active and tepy sian than the
terms FR and FS. Number of pixels per frame (FS) of the input stream has more
influence on the power consumption than the number of frames per second (FR). This
is because of the fact that the execution periods of QVCP and MBS blocks are
independent of FR but the execution period of MBS depends on FS (refer Section
54.1).

Another observation from the models is that there is large amount of constant offset
power (536.3mW) consumed by the platform independent of the application
parameters. This offset power is due to the clock power of the logic when the
hardware components QVCP, MBS and various buses on the platform are in idle
state.
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6 Power models for memory

6.1 Introduction

This chapter presents the models to predict the average power consumption of the
memory in two approaches: black box and white box. In the black box approach, a
model that predicts the average power consumption of the memory directly from the
application parameters, frame rate and frame size is developed through linear
regression on experimental data. In white box approach, the power consumption of
the memory is related to application parameters in two steps. The first step of this
approach deals with experimentally validating the memory power consumption model
presented in Section 4.4.2. The power consumption model for memory presented in
Section 4.4.2 is given below:

Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + Pmem,read X tmem,read + Pmem,write X

tmem,write (36)

The application dependent platform parameters (tmem.idie> tmem.read aNd tmem write ) and
Piem 1 Of the Equation (36) can be measured for a given frame rate and frame size of
the input stream. Three different frame rates (30fps, 25fps and 12.5fps) and frame
sizes (4cif, cif and qcif) are considered in the experiments. The application
independent platform parameters (Pmem actives Pmem.idies Pmem.read @0d Prem write) Of the
model are calculated by performing linear regression on the equations substituted with
the experimentally measured values for parameters tyem actives tmem.idles tmem.read and
tmem,write and Pmem,T.

In the second step of white box approach, a model relating the application dependent
platform parameters to the application parameters is developed through linear
regression on the experimental data. Finally, from the models of each step, a
compositional model for the power consumption of the memory in terms of applcation
parameters is developed. Using the compositional model, we can predict the average
power consumption of the memory for any values of frame rate and frame size.

6.2 Black box approach experiments and results

6.2.1 Without CPU power down

The average power consumption across the memory is measured during the execution
of the decoder application for different values of frame rate (30fps, 25fps and 12.5fps)
and frame size (4cif, cif and qcif) of the input stream. The maximum frequency of
operation for the DDR memory is 199.8MHz. All the experiments are done at the
maximum frequency.

The following table shows the average power consumption measured for all the
combinations of frame rates and frame sizes.
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FR(fps) | FS Prem,r(mW)

1 30 4cif 802

2 30 cif 575

3 30 qcif 517

4 25 4cif 775

5 25 cif 565

6 25 gcif 510

7 12.5 4cif 715

8 12.5 cif 540

9 12.5 qcif 490

Table 16: Py, 1 values measured for different combinations of FR and FS
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Graph 14: Graph representing Pyem 1 vs. FS

From the Graph (13), it can be seen that the average power consumption of the
memory, Ppem 1 increases linearly with the frame rate by keeping frame size constant.
But, the rate of increase in P r depends on the frame size. The same is true for the
Graph (14). Therefore the following model assumes three terms on which the average
power consumption depends (FR*FS, FR and FS).

Premt = C1*FR*FS + C2*FR + C3*FS+ C4 (37)

Prem measured for the different combinations of FR and FS from Table (16) is
substituted in the above equation. Linear regression on the equations give the
following coefficients:

C1=0.23;C2=1.22; C3=11.95; C4 =462.31
With the above regression coefficients the model for predicting the average power

consumption becomes:
Premt = 0.23*FR*FS + 1.22*FR + 11.95*%FS+ 462.31 (38)
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The Root Mean Square Error obtained for the above model is 1.54mW.

Linear regression on the normalized equations of the above model (Equation (37))

gives the following regression coefficients:

C1=110.5;C2=37.35;C3=191.4; C4 =462.3

Equation(37) can be simplified by removing the term FR, since it has less influence
on predicting the average power consumption when compared to the other terms. The
simplified model along with the initial model and their RMSEs are presented in Table

17).
Model Cl C2 |C3 C4 RMSE(mW)
1 | Pmemt =C1*FR*FS+C2*FR+C3*FS+C4 | 0.23 | 1.22 | 11.95 | 462.3 | 1.54
1.a | Normalization of Model 1 110.5|37.3 1914 | 462.3 | 1.55
2 | Pumemt =C1*FR*FS+C3*FS+C4 0.32 9.83 |489.96.31
2.a | Normalization of Model 2 156.2 157.2 1 490.2 | 6.43

Table 17: Summary of the models and their RMSEs

When we compare the models in the above table, Model 1 has more accuracy with
small error. Model 2 has less number of parameters, but the error is 4 times larger

than the error of Model 1.

6.2.2 With CPU power down

The following table shows the average power consumption measured across the
memory, Ppem 1 for different combinations of frame rate and frame size with CPU

power down mode.

FR(fps) | FS PremT

(mW)
1 30 4cif 805
2 30 cif 585
3 30 qcif 528
4 25 4cif 777
5 25 cif 578
6 25 qcif 517
7 12.5 4cif 724
8 12.5 cif 548
9 12.5 qcif 503

Table 18: Ppem,r values measured for different combinations of FR and FS
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The following graphs show that the Py rincreases linearly with the FR and FS
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Graph 16: Graph representing Ppepn 1 vs. FS

The following table shows various models considered for predicting the Pyem 1 from
FR and FS and their Root Mean Square Errors.

Model Cl C2 |C3 C4 RMSE(mW)
1 | Pomemt =C1*FR*FS+C2*FR+C3*FS+C4 | 0.21 | 1.24 | 12.06 | 473.4 | 2.53
1.a | Normalization of Model 1 99.73 1 37.6 | 1929 | 473.4 | 2.34
2 | Pyemt =C1*FR*FS+C3*FS+C4 0.3 9.92 |501.2]6.7
2.a | Normalization of Model 2 145.7 158.5 | 501.6 | 6.7

Table 19: Summary of the models and their RMSEs

From the above table, it can be seen that Model 1 has small RMSE and thus has more
accuracy. Model 2 is simpler than Model 1 with less number of parameters but the
RMSE of Model 2 is 2.9 times larger than the RMSE of Model 1.

6.2.2.1 Comparison of black box models of SoC and memory (with
CPU power down)

This section compares the power models of SoC and memory obtained with black box
approach. Table (15) of Chapter 5 gives the power model of SoC with black box
approach. We chose the normalized model with small RMSE (2.15mW) from Table
(15) and the model is given below:

Psocr = 106.5*FR*FS + 7.9*FR + 14.7*FS + 536.3

From Table (19), we chose the normalized power model of memory with small RMSE
(2.34mW). The model is given below:

Premr = 99.7*FR*FS + 37.6¥FR + 192.9*FS + 473.4
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Both the models suggest that the term FR has less influence on the power
consumption of the SOC and memory. The term FS (number of pixels per frame) has
large influence on the power consumption of memory, whereas the term FR*FS has
large influence on the power consumption of SoC.

On SoC side, time spent by CPU in active state (tcpu.active) 1S more influenced by the
term FR*FS than the other terms (refer Section 5.5.1.4). The hardware blocks QVCP
and MBS executions are not influenced by FR. The execution periods of MBS block
depends only on FS (refer Section 5.4.1). The large influence of FR*FS term on the
power consumption of the SoC indicates that the CPU has more influence on the
power consumption of SoC when compared to the hardware blocks. The large
influence of FS term on the power consumption of the memory indicates that the
hardware blocks (specially MBS block) have more influence on the power
consumption of memory than the CPU.

6.3 White box approach experiments and results

6.3.1 Measurement of application dependent platform parameters
through experiments

The data path width of the DDR memory is 32-bit. The DDR controller provides an
interface between CPU, DMA devices and the DDR memory. To allow for the
performance measurements, the DDR controller includes a set of registers that
measure the data traffic [15]. To measure the read and write traffic from CPU as well
as from DMA devices, incrementing 32-bit counters are used. The controller also
includes a counter to count the idle cycles. The TimeDoctor tool is used to collect the
values of these counters.

During the execution of the decoder application, the values from the abovementioned
counters are read through the TimeDoctor tool. Table (20) shows the P 1 and the
counter values measured for different combinations of frame rate and frame size
without CPU power down mode. Similarly, Table (21) shows the Pyem 1 and the
counter values with CPU power down mode. The experiments were done at a memory
frequency of 199.8 MHz and at a CPU frequency of 100.5 MHz (refer Section 5.2).

FR FS CPUread CPUwrite DMAread DMAwrite DDRidle

(fps) Mcy) | (Mey) (Mcy) (Mcy) (Mcy)
1 30 4cif | 7.38 4.46 6.30 4.98 167.8
2 30 cif |3.50 1.46 1.56 1.20 189.8
3 30 gcif | 2.58 0.73 0.45 0.32 193.8
4 25 4cif | 6.49 3.75 6.33 4.99 171.8
5 25 cif |3.07 1.25 1.62 1.25 189.8
6 25 qcif | 2.32 0.65 0.45 0.32 193.8
7 12.5 | 4cif | 3.96 2.09 6.31 4.98 177.8
8 12.5 | cif |2.09 0.76 1.63 1.25 191.8
9 12.5 | qcif | 1.61 0.43 0.45 0.32 195.8

Table 20: Read and write cycles from CPU and DMA devices measured through TimeDoctor tool
in different experiments without CPU power down mode
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FR ES CPUread CPUwrite DMAread DMAwrite DDRidle

(fps) (Mcy) | (Mcy) (Mcy) (Mcy) (Mcy)
1 30 4eif | 6.26 4.94 6.26 4.94 167.8
2 30 cif 1.61 1.23 1.61 1.23 187.8
3 30 qcif | 0.45 0.37 0.45 0.37 193.8
4 25 4eif | 6.39 5.03 6.35 5.00 171.8
5 25 cif 1.63 1.25 1.63 1.25 189.8
6 25 qcif | 0.45 0.32 0.45 0.32 193.8
7 12.5 4eif | 6.31 4.97 6.31 4.97 177.8
8 12.5 cif 1.62 1.24 1.62 1.24 191.8
9 12.5 qcif | 0.45 0.31 0.45 0.31 195.8

Table 21: Read and write cycles from CPU and DMA devices measured through TimeDoctor tool
in different experiments with CPU power down mode

In Table (20), the read and write accesses from CPU to memory increase with the
increase in frame rate and frame size. This experimental result validates the
assumption that the application dependent platform parameters depend on the
application parameters (refer section 6.1). But, the read and write accesses from DMA
traffic i.e. read and write accesses from QVCP and MBS blocks increase with the

increase in frame size but are independent of changes in frame rate (refer Section
5.4.1).

It is expected that the read and write accesses from CPU and DMA devices with CPU
power down mode also have the same relation with the application parameters as for
without CPU power down mode. But from the Table (21), it can be seen that read and
write accesses from CPU do not vary with the frame rate. The statistics given by
TimeDoctor tool for frame rates 30fps, 25fps and 12.5fps at a frame size of 4cif are
given in Table (22). From the statistics, it can be seen that the reads and writes from
CPU during the decoding task (TASK_VDM4_182_0051 in Figure (10)) decrease
with the decrease in frame rate. But, there are reads and writes from the CPU during
the execution of idle task (IDLE in Figure (10)) and the number of read and write
cycles are increasing when the frame rate is decreasing. This increase in read and
write cycles with the decrease in frame rate during idle task compensates the normal
effect of decrease in read and write accesses with frame rate during decoding task.
Because of this, in Table (21) we see no dependency of read and write accesses on
frame rate.

idle task decoding task idle+decoding tasks
FR(fPS) ES CPUread CPUwrite CPUread CPUwrite CPUread CPUwrite
Mcy) | Mcy) | (Mcy) | (Mey) | (Mey) | (Mcy)
1 30 4eif | 1.2 0.8 4.7 3.9 5.8 4.7
2 25 4eif | 1.8 1.2 4.1 3.5 5.9 4.7
3 12.5 4cif | 3.8 2.9 2.2 1.8 5.9 4.8

Table 22: CPU read/write cycles from/to the memory during idle and decoding tasks

We measured the number of read and write misses (IMiSS;aq and MisSy,i« in Table

(23)) from the instruction and data cache of the CPU (using TM3260 CPU counters)
during idle task for the frame rate and frame size given in Table (22). The measured
values are given Table (23). There are very few read and write misses from the CPU

during idle task.
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FR(fPS) ES missread n'lisswrite CPUread CPUwrite
M) M) (Mcy) (Mcy)
1 30 4cif 0.03 0.001 1.2 0.8
2 25 4cif 0.08 0.001 1.8 1.2
3 12.5 4cif 0.08 0.001 3.8 2.9

Table 23: Cache read/write misses and CPU read/write cycles from/to the memory during idle
task

Analysis of the relation between the number of cache read/write misses and CPU
read/write cycles from/to the memory are beyond the scope of this work. Hence, in
the rest of this chapter, the white box models are developed considering the
measurement data from without CPU power down experiments.

6.3.2 Calculation of application independent platform parameters
through linear regression

For the decoder application a burst length of 8 is used. Burst length can be set through
the registers of the DDR controller. Since the data path width of DDR memory is 32-
bit, the burst size is 32B and therefore 8 words. The counters for measuring read and
write data are incremented by 32, which means the values in these counters are the
number of read and write words. Since, DDR memory can output 32-bit data per
cycle, the read and write words from the counters can also be represented as read and
write cycles. Therefore, the TimeDoctor tool gives the values from the counters as
read and write cycles. Number of bursts in a given stream can be calculated by
dividing the sum of read and write words from the counters with sy, i.e. 8 words.
But the number of cycles taken by the memory for activate-precharge (burst) activity
is not known.

As described in Section 4.4.2, from the parameters that can be measured
experimentally, the following model is considered:

Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + Pmem,read X tmem,read + Pmem,write><

tmem,write (39)
tmem,active =1- tmem,idle (40)

The tmemactive 1S calculated as the difference of total time and idle time. tmemidie »
tmem.read aNd tymem write Of Equation (39) are calculated from the idle, read and write
cycles of Table(20). tmemactive 1S calculated by using Equation (40). The values
calculated for tmemidies tmem.read »tmem,write a0d tmem active fOr different combinations of
frame rate and frame size are given in the Table(24). Table also shows the Ppem 1
measured for each combination.
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FR ES tmem,idle tmem,active tmem,read tmem,write Pmem,T
(fps) (mW)
1 30 4eif | 0.84 0.16 0.069 | 0.047 802
2 30 cif 0.95 0.05 0.025 |0.013 575
3 30 qcif | 0.97 0.03 0.015 | 0.005 517
4 25 4eif | 0.86 0.14 0.060 | 0.044 775
5 25 cif 0.95 0.05 0.020 ] 0.013 565
6 25 qcif | 0.97 0.03 0.014 | 0.005 510
7 12.5 | 4cif | 0.89 0.11 0.051 | 0.035 715
8 12.5 |cif 0.96 0.04 0.019 | 0.010 540
9 12.5 | qcif | 0.98 0.02 0.010 | 0.004 490

Table 24: tyem;idies tmem,active, Emem,read AN tnem write Values calculated for different combinations of
FR and FS

The values for Prem T, tmem.idies tmem,reads tmem,write a1 tmem active from the nine different
experiments are substituted in the Equation (39). Performing linear regression on the
nine equations gives the following values for Pyem actives Pmem.idies Pmem.read and

Pmem,write-

Pmem,active =829.9 mW

Prem,ige = 462.5mW

Pmem,read =1068.9mW

Premwiite = 4466.1mW

The RMSE obtained for the model (Equation (39)) with the above coefficients is
4.07mW (refer Table (25)).

FR FS tmem,idle tmem,active tmem,read tmem,write Pmem,T(measured) Pmem,T(predicted)
(fps) (mW) (mW)

1 |30 4cif | 0.84 0.16 0.069 | 0.047 802 806

2 |30 cif | 0.95 0.05 0.025 |0.013 575 571

3 130 qcif | 0.97 0.03 0.015 | 0.005 517 517

4 125 4cif | 0.86 0.14 0.060 | 0.044 775 775

5 |25 cif | 0.95 0.05 0.020 |0.013 565 560

6 |25 gcif | 0.97 0.03 0.014 | 0.005 510 506

7 | 12.5 | 4cif | 0.89 0.11 0.051 |0.035 715 713

8 | 12.5 | cif | 0.96 0.04 0.019 ]0.010 540 543

9 |12.5 | qcif | 0.98 0.02 0.010 | 0.004 | 490 498

Root Mean Square Error | 4.07mW

Table 25: Measured and model predicted values for Py, r and the corresponding RMSE

6.3.3 Simplified model

The values for tmem read aNd tmem wiite (refer Table (24)) are small and are closely
related to each other. Since tyem read aNd tmem write are not independent enough it is
difficult to distinguish the read and write power consumption (Pyem read a0d Prem write)
separately through linear regression. Therefore the Equation (39) is further simplified
by combining the tmem read aNd tmem write @5 Shown below.

Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + Pmem,read&write X tmem,read&write (41)
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The values for timem activestmem.idie aNd tmem readg&write from Table (24) are substituted in the
above model. Performing linear regression on the obtained linear equations gives the
fOHOWng values fOI' Pmem,activea Pmem,,idle and Pmem,read&write‘

Pmem,active = 1600.4mW
Prem,idle =450.5mW
Pmem,read&write =1526.8mW

The RMSE of the above memory model with the regression coefficients is calculated
to be 5.91mW which is 1.5 times larger than the RMSE (4.07mW) of the previous
model (Equation(39)). But, the simplified model has less number of parameters when
compared to the previous model.

6.4 Models relating application dependent platform
parameters to application parameters

The second step of the white box approach is to relate the application dependent

platform parameters (tmem.actives tmem,read a0d tmem write) tO the application parameters

frame rate and frame size. In this section, models relating the application dependent
platform parameters to the application parameters are developed.

6.4.1 Models relating tmem active to the FR and FS

The following graphs show that the tiem active increases linearly with FR and FS by
keeping the other parameter constant. The values for tyem active are taken from the
Table (24).
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Graph 18: Graph representing t;em active VS- FS

From the above graphs, it can be seen that tyem aciive depends on both FR and FS. For
example, in Graph (17), the rate of increase of tyem active With FR is more for 4cif
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resolution than for cif and qcif resolutions. Similarly, the rate of increase of tyem.active
with FS (refer Graph (18)) is more for 30fps than for 25fps and 12.5fps. Therefore, to
predict tmem active from FR and FS, the following linear model is considered.

tmem,active = C1*FR*FS + C2*FR + C3*FS+ C4

The values for tyem active from Table(24) for different values of FR and FS are

(42)

substituted in the above equation. The linear equations thus obtained are solved
through linear regression. The following coefficients are obtained from linear
regression.

C1 =0.0002; C2 =0.0003; C3 =0.004; C4 = 0.013

In order to make a comparison between the coefficients in terms of their influence on
predicting the tmem actives the equations obtained from the above model are normalized.
Performing linear regression on the normalized equations gives the following
coefficients.

C1 =0.07; C2 =0.008; C3 =0.063; C4 = 0.0126

The RMSE obtained for the model with above regression coefficients is 0.25%.

From the above coefficients, it can be seen that the terms FR*FS (C1) and FS (C3)

have large impact on tyem aciive than the term FR (C2) and the constant (C4). Therefore
Equation (42) can be simplified by removing the terms that have less influence on
tmem.active, IN the following model, only the terms FR*FS and FS are considered.

tmem,active = C1*FR*FS + C3*FS

(43)

Linear regression on the equations obtained by substituting tyem active » FR and FS from
Table(24) in the above model gives the following coefficients.

C1 =0.0002; C3 =0.005

Performing linear regression on the normalized equations of the simplified model
gives the following coefficients.

C1=0.08;C2=0.08

The RMSE obtained for the simplified model with the above regression coefficients is
1.3% which is 5.2 times larger than the RMSE (0.25%) of the previous model

(Equation (42)). The following table shows the summary of the models considered

and their Root Mean Square Errors.

Model Cl C2 C3 C4 RMSE(%)
I | tmemactive = C1¥*FR*FS+C2*FR+C3*FS+C4 | 0.0002 | 0.0003 | 0.004 | 0.013 | 0.25
1.a | Normalization of Model 1 0.07 0.008 | 0.063 | 0.013 | 0.25
2 | tmemactive = C1*FR*FS+C3*FS 0.0002 0.005 1.3
2.a | Normalization of Model 2 0.08 0.08 1.3

Table 26: Summary of models and their RMSEs
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The values for tyemreaq for different combinations of FR and FS are taken from the
Table (24). The following graphs show that tpem read increases linearly with FR and FS

by keeping the other parameter constant.
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Graph 20: Graph representing t,,em reaa VS. FS

The following table shows the models considered for predicting the tiem read from FR
and FS and their Root Mean Square Errors.

Model Cl C2 C3 C4 RMSE(%)
1 | tmemread = CI¥*FR*ES+C2*FR+C3*FS+C4 | 0.0001 | 0.0002 | 0.002 | 0.005 | 0.04
1.a | Normalization of Model 1 0.02 0.006 | 0.03 0.005 | 0.04
2 | tmemread = C1¥*FR*ES+C3*FS 0.0001 0.0025 0.7
2.a | Normalization of Model 2 0.03 0.04 0.7

Table 27: Summary of models and their RMSEs

When we compare the models in the above table, the RMSE of the Model 2 is 17.5
times larger than the RMSE of the Model 1 with only reduction in two parameters.

6.4.3 Models relating tmem write to the FR and FS

From the graphs below, it can be seen that the tyem write Without CPU power down
increases linearly with FR and FS.
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The following table shows the models considered for predicting the tmem write from FR
and FS and their Root Mean Square Errors.

Model(Normalized) Cl |C2 C3 |C4 RMSE(%)
1| tmem,write = C1¥*FR*FS+C2*FR+C3*FS+C4 | 0.02 | 0.0006 | 0.02 | 0.002 | 0.03
2 | tmem,write = C1*FR*FS+C3*FS 0.02 0.03 0.15

Table 28: Summary of models and their RMSEs

6.5 Compositional model for the white box approach

A compositional model is obtained by representing timem actives tmem.read @Nd tmem write OF
the memory power model presented in Section 6.3.2, as a function of application
parameters. With compositional model, we achieve a high level model that predicts
the power consumption of the memory from application parameters, frame rate and
frame size. Sections 6.4.1, 6.4.2 and 6.4.3 give the models that represent tmem active,
tmem.read A0 tmem write @S @ function of application parameters. The memory power
model presented in Section 6.3.2 is given below:

Pmem,T = Pmem,active X tmem,active + Pmem,idle X tmem,idle + Pmem,read X tmem,read + Pmem,write><

(44)

tmem,write

From Table (26), (27) and (28), the normalized models which relate tyem actives tmem.read
and tmemwrite to the FR and FS, with small RMSE are taken. These models are given

below:

tmemactive = 0.07*FR*ES + 0.008*FR + 0.063*FS + 0.013
tmemread = 0.02*FR*ES + 0.006*FR + 0.03*FS + 0.005
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tmem,write = 0.02*¥FR*ES + 0.0006*FR + 0.02*FS + 0.002

tmem,idle =1- tmem,active
Substituting the above equations in the memory power model (Equation (44)) gives:
Premr = 136.4*FR*FS + 12.0*FR + 144.5%FS + 481.4 (45)

The Root Mean Square Error of the above model is calculated to be 17mW, which is
shown in the table below:

FR*FS | FR(fps) | FS Prem,t Puem.t
(actual) (predicted)
(mW) (mW)
1 1 1 1 802 774
2 0.25 1 0.25 575 564
3 0.06 1 0.06 517 510
4 0.83 0.83 1 775 749
5 0.21 0.83 0.25 565 556
6 0.05 0.83 0.06 510 507
7 0.42 0.42 1 715 688
8 0.1 0.42 0.25 540 536
9 0.03 0.42 0.06 490 499
Root Mean Square Error 17mW

Table 29: Measured and compositional model predicted values for Py, r and the corresponding
RMSE

6.6 Comparison of the white box and black box models
(without CPU power down)

This section compares the models obtained from the white box and black box
approaches. The compositional model of the white box approach from Section 6.5 and
the black box model from the Section 6.2.1 are given below:

136.4*FR*FS + 12.0*FR + 144.5*FS + 481.4

Pmem,T

110.5*FR*FS + 37.3*FR + 191.4*FS + 462.3

Pmem,T

The RMSE of the white box model is 17mW (refer Table (29)) which is 11 times
larger than the RMSE of the black box model (1.55mW from Table (17)). Therefore,
the black box model is more accurate than the white box models. The reason for large
RMSE of the white box model is obvious from the method of composition of the
models, in which the errors of individual models add up.

From both the models (white box and black box models), it can be observed that the
term FS (number of pixels per frame) has large influence on the power consumption
when compared to the terms; FR (number of frames per second) and FR*FS (number
of pixels per second). As described in Section 6.2.2.1, the large influence of FS term
on the power consumption of the memory suggests that the hardware blocks (specially
MBS block) have more influence on the power consumption of memory than the
CPU. Another observation from the models is that there is a large amount of constant
offset power (481.4mW and 462.mW) consumed by the memory, independent of the
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application parameters. This offset power is due to the clock power of the logic when
the memory is in idle state.
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7 Integrated power model from the power models of
SoC and memory

7.1 Introduction

Chapters 5 presented a black box model that relates the average power consumption
of SoC to the application parameters. Chapter 6 presented a black box model that
relates the average power consumption of memory to the application parameters.
Since SoC and DDR memory are two independent components and the power
measurements were done for both the components separately, we can combine the
power models for SoC and memory to obtain an integrated model. Through the
integrated model, we get a high-level model that predicts the power consumption of
the MPEG-4 decoder application from the application parameters.

The integrated model can also be developed for the white box models. But, we chose
black box models because these models are more accurate than the white box models
with small RMSE (refer Section 5.8 and 6.6). We chose CPU power down mode
models to make the integrated model, because the average power consumption with
CPU power down mode is smaller than that of without CPU power down mode.

7.2 Integrated power model

From the Table (15) and Table (19), the normalized models for predicting the average
power consumption of the SoC (Psoc.t) and memory (Ppem ) With small RMSE
(2.15mW and 2.34mW respectively) are chosen to make the integrated model.

Psocr = 106.5¥FR*FS + 7.9*%FR +14.7*FS+ 536.3
Prem,t = 99.7*FR*FS + 37.9*FR +192.9*FS+ 473.4

The above two models for predicting the average power consumption of the SoC and
memory are in the same format, therefore, combining them gives an integrated model
that predicts the net average power consumption from the application parameters.

Pnet = PSOC,T + Pmem,T (46)
Poet = 206.2*FR*FS + 45.8*FR + 207.6*FS + 1009.7 @7

The RMSE of the above model is the sum of RMSEs of the individual SoC and
memory power models i.e. 4.5mW

7.2.1 Analysis

From the coefficients of the Equation (47), it can be observed that the terms FR*FS
(number of pixels per second) and FS (number of pixels per frame) have the same
influence on the net average power consumption.

When we observe the power models of SoC and memory individually, the term
FR*FS has large influence on the power consumption of SoC where as the term FS
(number of pixels per frame) has large influence on the power consumption of
memory (refer the Section 6.2.2.1 for explanation). From the Section 6.2.2.1, we
observed that on SoC side CPU has more influence on the power consumption of SoC
and on memory side hardware blocks have more influence on the power consumption
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of memory. But, when we combine the models both the terms (FR*FS and FS) got
equal significance and therefore both CPU and hardware blocks have the equal
influence on the net average power consumption.

The term FR (number of frames per second) has less influence on the net average
power consumption when compared to the other terms, because the hardware
components QVCP and MBS operate at the output frame rate i.e.50Hz and are
independent of the input frame rate (refer Section 5.4.1).

In Equation (47), the net average power consumption is influenced by two parts. One
part is the constant offset power (Po¢ser) Which is independent of the application
parameters. The offset power is obtained by the clock power of the components
during their idle periods. The other part is the power (Pyppiication) that varies with the
application parameters and is predicted by the model. The following table shows the
Prets Pottser and Pyppiication Values for each experiment with different frame rate and
relative frame size of the input stream. Pyppiicaion 18 calculated as the difference of Pye
and Poree; values.

Experiment FR(fPS) FS Pnet Poffset Pnet - Poffset
(mW) (mW) = Papplication
(mW)
1 30 16 1471.6 1009.7 461.9
2 30 4 1421.4 1009.7 411.7
3 30 1 1322.5 1009.7 312.8
4 25 16 1160.7 1009.7 151.0
5 25 4 1148.7 1009.7 139.0
6 25 1 1106.6 1009.7 96.9
7 12.5 16 1079.0 1009.7 69.3
8 12.5 4 1064.9 1009.7 55.2
9 12.5 1 1043.4 1009.7 33.7

Table 30: Py and Pyppjication Values calculated for different experiments

In Graph (23), the X-axis shows the experiment number and the Y-axis shows the net
average power consumption. The graph shows the contribution of Pyfssec and Pappiication
to the net average power consumption (Ppe).
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Graph 23: Graph showing the contribution of P and P, ication t0 the net average power
consumption (P,)
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The reduction in the net average power consumption by varying the application
parameters frame rate and frame size from 30fps, 4cif resolution (Experiment 1) to
12.51ps, qcif resolution (Experiment 9) is 30%. From Graph (23), offset power (Pogfset)
is clearly the dominating part in the net average power consumption (Py). The offset
power is 85% (averaged over the experiments) of the net average power consumption.
The offset power is obtained by the clock power of the components during their idle
periods. In CPU power down mode, during the idle state CPU is clock gated.
Therefore, the contributors to the offset power are the hardware blocks of the SoC and
the DDR memory. The main contributors are the QVCP, MBS, control bus DCS, data
bus PMAN, MMI and the DDR memory, which can not be clock gated during their
idle periods in this platform. To reduce the energy consumption during idle periods of
the components other than clock gating the components, dynamic frequency and
voltage scaling can also be used. Chapter 9 discusses about the dynamic frequency
and voltage scaling.
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8 SoC and Memory experiments with a different input
stream

8.1 Introduction

This chapter discusses the experiments performed with the same decoder application
for a different input stream. These experiments were done to check the influence of
content of the input stream on power models of the SoC and memory. Stream 1 (used
for the experiments in earlier chapters) and Stream 2 (used for the experiments in this
chapter) are completely different in their content. The streams are selected in such a
way that we test the extreme conditions of motion in pictures. The Stream 1 is a slow
motion picture where as the Stream 2 is a fast motion picture. If the streams with
extreme motion conditions result in similar power consumption and internal
parameters, then it strongly suggests that the models developed in the previous
chapters can be used, in general, for any other input stream.

8.2 Experiments and results

The experiments were performed with CPU power down mode. Since, the earlier
experiments were done at a CPU frequency of 100.5 MHz and Memory frequency of
199.8 MHz, the experiments in this chapter were also done at the same frequencies.

8.2.1 SoC experiments

The average power consumption and the application dependent platform parameters
of the SoC are measured at three different frame rates and frame sizes of the input
stream. The following table shows the measured values.

Experiment | FR(fps) | FS | tcpu.aciive | tecpustall | tepusidie | tQvepactive | tMBS active | Psoc,r(mW)
1 30 4cif | 0.38 0.34 0.28 0.43 0.49 666.6
2 30 cif |0.14 0.15 0.72 0.43 0.42 575.7
3 30 qcif | 0.07 0.10 0.83 0.43 0.42 550.5
4 25 4cif | 0.32 0.29 0.39 0.43 0.49 648.9
5 25 cif |0.12 0.13 0.75 0.43 0.42 570.6
6 25 qcif | 0.07 0.10 0.83 0.43 0.42 547.9
7 12.5 4cif | 0.19 0.18 0.63 0.43 0.49 603.5
8 12.5 cif |0.07 0.10 0.84 0.43 0.42 558.1
9 12.5 qeif | 0.04 0.07 0.89 0.43 0.42 540.4

Table 31: The Ps,c,r, tepu,actives tepugstans tepujidies tovep,active A tyipsactive Values measured for
Stream 2

The values for Psoct, tcpu aciives tepU stalls tQvep,active a0d tvBs active 10 the above table are
compared to the values in Table (6) of chapter 5. The following graphs show the

comparison. In the graphs, X-axis gives the number of the experiment in the order
given in Table (31).
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In half of the experiments, the parameters Psoc, tcpu actives tcpUstalls tQVCP,active and
tMBS.active are found to be the same for both the streams. The maximum variation for
each parameter between Stream 1 and Stream 2 is given in the table below. There is
no significant trend of increase or decrease in the parameter values between the
streams.

Parameter | Max variation

Psocr 0.85%

tCPU,active 14.2%

tCPU stall 14.3%

tQVCP,active 2.38%

tMBS,active 2.32%

Table 32: The maximum variation of the Stream 2 parameters with respect to the Stream 1
parameters

The maximum variation percentage for the tcpy active and tepy sian in the above table
seems large but actually they occurred for very small values of tcpy active and tepu stail.
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8.2.2 Memory experiments

Similarly, the average power consumption and the Set 2 parameters of the memory
are measured for the nine different combinations of frame rate and frame size. The
following table shows the measured values.

Experiment FR (fPS) FS tmem,idle tmem,active tmem,read tmem,write Pmem,T(measured)
(mW)

1 30 4cif | 0.85 0.15 0.064 | 0.050 800

2 30 cif |0.94 0.06 0.016 |0.013 584

3 30 gcif | 0.97 0.03 0.005 | 0.003 528

4 25 4cif | 0.86 0.14 0.064 | 0.050 778.5

5 25 cif 0.95 0.05 0.016 | 0.013 575

6 25 qcif | 0.97 0.03 0.005 | 0.003 523

7 12.5 4cif | 0.89 0.11 0.064 | 0.050 721.5

8 12.5 cif |0.96 0.04 0.016 |0.013 552

9 12.5 gcif | 0.98 0.02 0.005 | 0.003 506.5

Table 33: The Pyem 1> tmemidie, tmem,actives tmem,read AN tiyem write Values measured for Stream2

The values measured for the Prem T, tmem.actives tmem.read> tmem,write fOT Stream 1 (refer
Table (21)) are compared with the values measured for stream 2 (refer Table (33)).
The following graphs show the comparison.
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Graph 29: Graph comparing the Py, r values measured with stream 1 and stream 2
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In case of memory also, for half of the experiments, the parameters Pmem T, tmem,actives
tmem.read AN tmem write are found to be the same for both the streams. The maximum
variation for each parameter between Stream 1 and Stream 2 is given in the table
below. There is no significant trend of increase or decrease in the parameter values
between the streams. Therefore, the variations seem to be more of a measurement
error rather than a trend.

Parameter | Max variation

Prem T 1.16%

tmem,active 6 . 25 %

tmem,read 25 %

tmem,write 25 %

Table 34: The maximum variation of the Stream 2 parameters with respect to the Stream 1
parameters

The maximum variation percentage for the tmem read aNd tmem write in the above table
seems large but actually they occurred for very small values of tmem read a0d tmem,write.

8.3 Conclusion

From the experiments of this chapter, we observed that there is no significant
variation of the power consumption and application dependent platform parameters of
the SoC and memory for input streams with different content. These results strongly
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suggest that the content of the input stream has no influence on the power models of
the SoC and memory.
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9 Effect of frequency scaling

9.1 Introduction

The compositional model given in chapter 7 was developed by considering fixed
frequency and voltage method. All the experiments in previous chapters were done at
a fixed frequency of CPU i.e. at 100.5MHz. At this frequency, CPU spends only 4%
of the total time (refer Table (3)) in active state for decoding an input stream with
12.5fps and qcif resolution. In this case, if we scale down the frequency of the CPU
such that CPU spends most of the time in active state, we can save the energy
consumption in idle state. Figure (13) shows the two cases, without frequency scaling
and with frequency scaling.

Powel Power

Eactive

Eactive

Eidle

Time Time

T
Without Frequency Scaling With Frequency Scaling

Figure 13: Energy consumption without and with frequency scaling

Energy consumption in active state remains same for both the cases, because when we
scale down the frequency active time increases linearly but active power decreases
linearly (refer Equation (1) of chapter 4). Frequency scaling gives only linear
reduction in the energy consumption, but by reducing frequency we can also reduce
the supply voltage which gives quadratic reduction in the energy consumption. We
can also save the energy consumption in idle state, by using clock gating technique in
which the clock of the CPU is disabled during idle state. This technique was used in
the experiments of previous chapters and referred as CPU power down mode (refer
Section 5.3 of Chapter 5).

In this chapter, by using the application dependent platform parameters of the CPU,
tepu active and tepusan We calculate (using linear relation between time and frequency)
scalable frequencies for the CPU for different frame rates and frame sizes of the input
stream. With the calculated frequencies, we performed experiments to observe the
effect of frequency scaling on power consumption. Frequency scaling does not give
reduction in the average power consumption with CPU power down mode, because
CPU is already clock gated during idle state in this method.

9.2 Frequency scaling of CPU

Table (35) shows the frequency at which CPU would be in active and stall states for
80% of the total time for each combination of FR and FS with CPU power down
mode. We leave a margin of 20% to make sure that the timing constraints are not
violated. Since frequency and time vary linearly with each other the following
equation is taken to calculate the scalable frequencies.

fscaled = (torig/ 08) * forig
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fscatea: The scaled frequency at which CPU is in active and stall states for 80% of the
time

torig: Percentage of time CPU is in active and stall states at 100.5MHz frequency
forig: Reference frequency of the CPU i.e.100.5MHz

torig Value is calculated as the sum of tcpu aciive and tepu, s Values in the Table(3) of
Chapter 5.

FR(fPS) ES forig Corig fscaled

1]30 4cif | 100.5 |71 | 89
2130 cif |100.5]28 |35
3130 qeif | 100.5 | 16 | 20
4125 4cif | 100.5 [ 60 | 75
5125 cif |100.5]25 |31
6|25 qeif | 100.5 |15 | 19
71125 4cif | 100.5 |35 | 44
81125 cif [100.5]16 |20
91125 qeif | 100.5 | 10 | 13

Table 35: Scalable frequencies

By using the estimation of fyeq values from the above table, experiments are
performed with nine combinations of frame rate and frame size of the input stream
and the average power consumption across SOoC (Psoc.1 1 scaled) 18 measured for each
combination (refer Table (36)). It is not possible to set exact values for fy,eq as given
in the Table (35), because of the PLL settings. Therefore in the experiments, fycjeq 1S
selected to be close to the theoretical values given in Table (35).

FR FS torig forig tscaled fscaled PSoC,T_ori g PSoC,T_f_scaled

(fps) (%) | () | (%) | MHz) | (mW) (mW)
1|30 4eif | 71 100.5 |77 99.9 666.6 685.4
2|30 cif |28 100.5 |73 37.5 575.7 583.0
3130 qcif | 16 100.5 | 78 20.3 550.4 562.9
4|25 4cif | 60 100.5 | 83 75 643.9 661.9
5125 cif |25 100.5 |79 30.4 570.6 586.4
6 | 25 qcif | 15 100.5 |75 18.8 547.9 560.3
7 | 12.5 | 4cif | 35 100.5 | 84 40.5 598.4 615.0
8 | 12,5 |cif |16 100.5 | 74 20.3 558.1 568.1
9 | 12.5 |qcif | 10 100.5 | 87 10.1 540.4 534.2

Table 36: SoC power consumption measured with frequency scaling for CPU power down mode

As described earlier the average power consumption of the SoC with frequency
scaling (Psoc.T £ scaled) 1S DOt reduced when compared to the average power
consumption of the SoC with CPU power down mode (Psoc,t _orig). The reason for
increase of Psoc,1 f scaled Value when compared to Psoc 1 _orig 1S that the relation
between frequency and power consumption is not exactly linear. This is because, the
power consumption of SoC (Ps.c 1) also includes leakage power (Equation (1) of
Chapter 4) which remains constant with frequency changes and only varies with
voltage.
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But, without power down mode, we can observe significant reduction in the average
power consumption with frequency scaling (refer Table (37)). Table (37) shows the
average power consumption of the SoC with frequency scaling (PsocT f scaled) fOr an
input stream with more number of pixels per second (30fps and 4cif resolution) and
less number of pixels per second (12.5fps and qcif resolution). For an input stream of
12.5fps and qcif resolution Psoc.t £ scaled Value at 10.1 MHz, is reduced by 21% when
compared to Psoc 1 orig Value at 100.5MHz. According to the linear relation between
frequency and power, in this case we expect for a 90% of reduction in power (from
100.5MHz to 10.1MHz: 90% reduction in frequency). But actually the power is
reduced only 21%.

As described earlier, here the relation between frequency and power consumption is
not exactly linear because of the leakage power (Equation (1) of Chapter 4) which
remains constant with frequency changes and only varies with voltage. The
Psoc T ¢ scaled Value for input stream with 12.5fps and qcif resolution is reduced by
25.3% with reference to the input stream with 30fps and 4cif resolution. Without
frequency scaling the reduction is only 6% (refer Table (37)).

FR FS torig forig tscaled fscaled PSoC,Tforig PSoC,Tfffscaled
(fps) (%) | () | (%) | MHz) | (mW) (mW)
1130 4cif | 88 100.5 | 89 99.9 717.1 715.2
2 |12.5 |qcif |23 100.5 |75 10.1 674.2 534.2

Table 37: SoC power consumption measured with frequency scaling for without CPU power
down mode

9.3 Conclusion

This chapter shows that, by using the application dependent platform parameters of
white box approach we can estimate the scalable frequencies for the CPU. Therefore,
the application dependent platform parameters can be used to actively control the
CPU frequency of operation.
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10 Conclusions

In this thesis, the power models for the SoC and memory are developed with two
different approaches namely black box and white box approaches. The black box
models relate the power consumption of the SoC and memory to the application
parameters without considering architecture level details. The black box models are
abstract and easy to model. The white box approach models relate the power
consumption of the SoC and memory to the application parameters, by considering
the architecture level details and through composition of the models. Because of the
method of composition, the RMSE of the white box models is larger than that of the
black box models. Therefore, the black box models are more accurate than the white
box models. But the validity of the black box models is limited to this specific
platform and application.

Regardless of the accuracy of the white box models, there are several advantages of
this approach. This approach analyses the platform parameters that cause the power
consumption in detail. The platform parameters measured in this approach can be
used as an estimation for other platforms and applications. As discussed in Chapter 9,
the application dependent platform parameters can be used to actively control the
CPU frequency of operation and thereby the power consumption. Moreover, the
application dependent platform parameters can be used to investigate the
compositionality in applications. For example, for running two applications on a CPU
concurrently, we need to have an estimate of the CPU utilization by these
applications. If we know the time spent by CPU in active and idle states for two
applications separately, this information can be used to estimate the timing
requirements for the compositional application. As a continuation of this work, it is
recommended to investigate the compositionality in multimedia applications by using
the application dependent platform parameters of the applications.

Besides the individual models for the power consumption of SoC and memory, this
thesis also presents the net power consumption model by integrating the individual
models of SoC and memory. From the SoC power model, the observation was that the
CPU has more influence on the power consumption of SoC than the hardware
components. From the memory power model, it was observed that the hardware
components have more influence on the power consumption of memory than the
CPU. When we integrated the individual models of SOC and memory we observed
that both CPU and hardware components have equal influence on the net average
power consumption. From the integrated model we also observed that the offset
power (clock power of the components during their idle periods) is the dominating
part in the net average power consumption. The offset power is 85% (averaged over
the experiments) of the net average power consumption.

In this thesis, the experiments were performed with the same decoder application but
with two different input streams whose content represents the extreme conditions of
motion in the pictures. The results from the experiments suggest that the content of
the input stream has no impact on the power consumption and on the application
dependent platform parameters. But, it is necessary to perform experiments with some
more input streams to make conclusions about the influence of the input stream
content on the power models.
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Validating the white box approach models through experiments in the PNX1500
platform involves quite a lot of effort. This platform does not allow the measurement
of all the parameters needed by the models, for example the time required for the
burst activity (tmemburst) in the memory model. It is necessary to have platforms that
support performance measurements by providing required performance counters and
registers.

In this thesis, the power models were developed by using linear regression method.
Accuracy of results obtained from linear regression method depends on, how well the
parameters are independent from one another. One technique to make the parameters
independent is to run special test programs that characterize each parameter
separately. But, if the parameters are strongly correlated and it is not possible to have
special test programs, then combining the parameters gives more accurate results than
separating them.
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APPENDIX
¢ Building programs to PNX1500 platform

While building the programs to PNX1500, there are several environmental variables
that need to be set [17]. NDK package is provided with a batch file named
ndk4_env.bat, to set the environment variables. Target for which the programs need
to be built was chosen as “pnx1500 tm3260” in the batch file. Some of the other
important variables used in this project are given below.

1. Build “flavour” can be Debug, Trace, Assert or Retail. Debug mode is needed
to use Debugger. Because of the compiler option settings, code compiled in
this mode runs at half the speed of code compiled at Retail mode. Trace mode
is similar to that of Debug mode except the difference in compiler option
settings. In Assert mode debug is not enabled but assertions are enabled.
Assertions are used to check for programming errors. In Retail mode all
assertions and traces are disabled at compile time. In this project Retail mode
is chosen.

2. Host type: For a PCI plug-in board hosted operation it has to be set as
WinNT.

3. Diversity: The diversity “ _sp_" is set to specify single processor mode. In
order to enable TimeDoctor tool support diversity “_td_"" has been set.

4. Endianess: Is chosen as little endian “el”. Even though PNX1500 CPU chip
hardware is theoretically support big endian operation, the NDK/MPTK
software is neither tested for the big endian mode nor supports it.

Figure (14) is a screen shot of ndk4_env.bat, from which all the settings of
environmental variables described above can be seen.
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PPATH=C:~UXIPHNP~
u).n(l:u —C \UINDOUS
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Wou can build the components using the build_exe
Suntax: build_exe “component—path with makefile'
Example: build exe apps-HelloWorld

YEN

Figure 14: Screen shot of ndk4_env.bat
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In dvpMon, PCI channel option is chosen to enable communication through PCI.
Figure (15) is a screen shot of dload.exe, which is a dvpMon’s command line
interface to download applications to TriMedia. For decoder application .out file

along with encoded stream is downloaded to TriMedia.

Download winnt - pnx1500

Processor

=1
Unit 0 |
Mem Start oooooooo Cache Limit 03FA0000
05 Mem Size|04000000 O Update BIS [ Switch to &App Dir on Execute

Image

Filename |C:'\Nexperia\MF‘TKﬁbuilds\.apps\exolh‘lpeg%vi\bin\.tmﬁpsosﬁstaticﬁeLthZBDﬁtj

Arguments |-ur| cAHT TPt ps_streamshbetsy streamshroning 2-8m-qoif_30fpz_ O, avi j
Fath |E:\Nereria\NDK4.3\bln j [
o !
dload Go stop

Figure 15: Screen shot of dload.exe

< Multimeter

This instrument has a 6%2-digit display and can store up to 55,000 readings in the

internal buffer. Figure (16) shows the front panel of the Multimeter. There are several
keys on the front panel that help user to operate the multimeter. The function of some

keys is described below.

e Store: Using this key it is possible to select number of readings to be stored

during the execution of the application.

e Recall: This key is used to display stored readings and buffer statistics. It
displays average voltage, standard deviation, minimum and maximum

voltages measured.

e Rate: This key is used to set the integration time (measurement speed) of the

A/D converter, i.e. the period of time input signal is measured.

It is also possible to remote program the multimeter through a Standard I/O Interface
RS-232. National Instruments LabVIEW package is used to collect and analyze data

stored in the buffer.

I
Figure 16: Front panel of the multimeter

74




% Steps for an experiment
In this section, overall steps for performing an experiment are described in order.

1.
2.
3.

4,

s

Build the application using ndk4_env.bat for target PNX1500

Reset the target using dvpMon or URD

Frequency of the CPU can be set to required value using URD registers.
Default is 300.375MHz.

Program Keithly multimeter from PC through Keithly communicator for the
required settings.

Use dload.exe of dvpMon, to download application in .out format along with
encoded stream to target.

Start Keithly multimeter buffer to store the voltage readings.

Dump TimeDoctor buffer when the execution of application is finished.
Use LabView to collect and analyse the data stored in buffer

75




