
 Eindhoven University of Technology

MASTER

Improvement of the contextual multi-armed bandit algorithm for persuasion profiling

Orekhov, V.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/878d6c52-b175-4080-aa33-9db15b9ca581


Improvement of the
Contextual Multi-armed

Bandit Algorithm for
Persuasion Profiling

Master Thesis

Vladimir Orekhov

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computer Science

Supervisors:
dr. Mykola Pechenizkiy (TU Eindhoven)

dr. Maurits Kaptein (Webpower)
dr. Aristides Gionis (Aalto University)

Assessment committee:
dr. Mykola Pechenizkiy
dr. Maurits Kaptein
prof. dr. Paul De Bra

dr. ir. Irene Vanderfeesten

Eindhoven, August 2015



i



Abstract

Contextual multi-armed bandit (CMAB) problems are sequential decision
problems, where on each step one need to choose one process from several
alternatives and learn by interacting with it. These problems have a lot of
applications in user profiling in the field of marketing automation. One of the
popular application settings for user profiling is an e-commerce store where each
user is treated on an individual level and the content on each page is personalized
according to his profile. The delay between two interactions in this case may
be very small. This setting introduces the restriction of fully online processing,
which ensures that users do not experience any observable delays during the
interactions with the website. In this case, the state-of-the-art algorithms for
CMAB that have proven optimal regret bounds are computationally prohibitive
and reasonable heuristics come in handy.

PersuasionAPI is a persuasion profiling service that solves CMAB problem
on the individual user level under the restriction of fully online processing. This
thesis describes the whole process of improvement of the PersuasionAPI core
algorithm. The new version of the algorithm contains a reinforcement learn-
ing model and implements a heuristic that was designed within this research.
Since the reinforcement learning model embeds static knowledge, the test of the
new improved version of the PersuasionAPI core algorithm against the current
version is based on the historical data from 8 major clients of Webpower. In
the test the new version of the algorithm shows a relative improvement of ap-
proximately 0.4% less cumulative regret compared to the current algorithm and
therefore represents a promising direction for further improvement. The next
suggested step is to conduct field experiments to gain more empirical evidence
of this improvement.

From the company perspective, this thesis not only delivers a concrete prac-
tical improvement, but also brings the prototyping environment that introduces
a quick and cheap way to test and select the most promising hypotheses for
the PersuasionAPI core algorithm improvement. Together with the prototyping
environment, the data-driven improvement process is introduced. These two
results structure and significantly simplify further activities on improving the
PersuasionAPI algorithm within the company.
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Chapter 1

Introduction

1.1 Motivation

In modern marketing there is a variety of techniques aimed at validating the
hypothesis that a certain change to the process of interaction with the customers
will or will not increase/maximize the desired outcome. Such changes to the
process can range from changing the greeting line on a website, the text of a
notification in a mobile application to the time period between e-mailings or even
the color of the button in the graphical user interface calling for action. The
desired outcome can also be anything, as soon as it reflects the most important
metric for the company, the representation of success of the communication,
also referred to as a key result indicator (KRI).

When it comes to introducing such a change, there is typically a hypothesis
that this change will have a positive effect on the desired outcome, as represented
by a change in some target metric. Modern technologies and digital channels
make the process of validating such hypotheses quick, easy, and relatively cheap.
Hypotheses are rarely validated during closed-door meetings; rather, they are
validated through interactions with users and learning from their reactions. A
simple example of such method is two-sample hypothesis testing, or A/B testing.
This method is put into practice by such companies as Google and Booking.com
[1, 2], which are the industry leaders in their business domains.

In A/B testing, two versions of the communication process, which are identical
except for the feature being tested, co-exist and are used randomly on a number
of users (a test pool). Frequently, process A is the current communication
process and process B represents a change to process A and needs to be tested.
The purpose of the test is to discover whether or not the desired outcome metric
is improved when following process B compared with process A. A more general
case of A/B testing is multivariate testing, when more than one variable is being
tested. In the literature [3, 4] this group of approaches is often referred to as
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Randomized Controlled Trials (RCTs). In terms of RCTs, the goal is to estimate
the causal effect of the change applied to the original process.

This approach has been proven to deliver meaningful results quite fast. For
example, Booking.com states that they have been performing A/B tests for a
decade already and consider it as one of their primary decision-making practices
[2]. However, in this case, all the users are perceived as a homogeneous group
regardless of the fact that the bigger the group is, the harder it is to divide it
into only two homogeneous subgroups based on their behavior. Several questions
arise. What if process A leads to an improved desired outcome for 60 percent of
the users and process B leads to the same improvement for 30 percent? Should
the latter average causal effect be sacrificed to follow the rule of the majority?
Should the user base be treated as an inseparable mass?

One of the answers to these questions is adjusting the granularity of the user
segments and applying persuasion techniques that fit best to each of the seg-
ments. Marketing segmentation in general uses a “divide-and-conquer” principle
to transform one large segment that contains all the users to a number of partic-
ular segments that incorporate users with relatively similar behaviors. The task
of market segmentation methods is to cluster users into a number of segments,
where for each pair of users in a cluster, their behavior is much more similar
than for a pair of users from different clusters. For instance, in the modern
research of recommender systems clustering methods are applied both to the
items space and the context space, where the users that have similar contexts
are assumed to have a similar behavior (see Section 4.2.2) [5, 6, 7].

When it comes to e-commerce, one of the most beneficial market segmenta-
tion methods is behavioral or psychographic segmentation. With this method,
segmentation can be performed based on such parameters as usage rate, readi-
ness to buy, interests, values, general activity level and more [8]. In today’s
e-commerce industry, huge amounts of data about users’ behaviors, actions,
and reactions are being collected every day; therefore, market segmentation is
frequently data-driven instead of preplanned. This, again, supports the hypoth-
esis validation approach, and, in this case, the number of segments and rules
specifying the division between those become such hypothesis.

Market segmentation is a great approach and is proven to work. For instance,
in Amazon recommender system the similarity metric is defined for the customer
space and dimensionality reduction is applied to this space in order to effectively
group similar customers into clusters. According to [9], after implementing this
approach “both the click-through and conversion rates – two important mea-
sures of Web-based and email advertising effectiveness – vastly exceed those of
untargeted content such as banner advertisements and top-seller lists”.
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However, such segmentation still operates on a level of customer segments and
is not precise enough to target the needs of individual customers. Distributed
computing frameworks, non-relational random time access databases and gen-
eral availability and low price of storage space enable the extreme case of market
segmentation to the point where every user is a separate segment. There is a
trade-off between the segmentation granularity and the quality of the analysis
that can be conducted for such micro-segments compared with only a few big
segments. In addition, certain restrictions on the complexity of the algorithms
apply when it comes to reinforcement learning completely online, in real time.
Nevertheless, marketing automation products that purport to consider users on
an individual level gained a lot of traction in recent years, and one of them is
PersuasionAPI1, which is the subject of this study.

1.2 Introducing PersuasionAPI

PersuasionAPI is a marketing automation product designed to apply different
sales strategies to users based on their individual behaviors. The fact that there
is still some room for improvement in terms of its performance is the primary
motivation for this thesis.

PersuasionAPI offers an extreme segmentation approach where each user rep-
resents a separate segment. There is a number of persuasive strategies that fre-
quently include authority, scarcity, social proof, and baseline, which can be used
in the communication with each individual user. In a nutshell, these strategies
represent the following patterns of user behavior [10]:

• Social proof : “People will do the things that others do”.

• Scarcity: “People tend to value products or services higher when they are
limited in time, quantity, or availability”.

• Authority: “People will tend to obey authority figures”.

Initially, the user’s reaction to each strategy is not known, and the algorithm
learns it by interacting with the user. The high-level goal of the algorithm is to
find the most beneficial strategy for each user through sequential interactions. In
the literature, this problem is referred to as the multi-armed bandit problem [11,
12, 13]; in the case of PersuasionAPI, this problem is being solved for each user
individually. The multi-armed bandit problems class will be discussed in detail
in Chapter 2. PersuasionAPI as a service (application program interface or
API) is a web marketing customization software that applies its reinforcement
learning algorithm to an input stream of requests on an individual level and
outputs the result in the form of a particular persuasion strategy that is the
most valuable to be used next for that particular person at that particular

1http://www.webpower.eu/marketing-solutions/persuasion-profiling/
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point in the communication with that person. PersuasionAPI can be flexibly
adjusted to different cases, be it a real-time dynamic content generation on a
website based on the user profile or a marketing e-mail campaign.

Figure 1.1: PersuasionAPI use case scenario [14]

Figures 1.1 and 1.2 describe the exact process of communication with the
user within PersuasionAPI. In terms of the API calls there are three main calls.
The first request sent from the user side is called getAdvice and requests an
advice on which persuasion strategy to use in the next interaction with the
current user. The core back-end algorithm of PersuasionAPI solves a multi-
armed bandit problem, chooses strategy s and sends it as a response. After this
strategy is presented to the user, the next request sent from the user side is
called learnEvent and it is sent only in case of success, which is defined within
a particular campaign. The core algorithm then observes user’s response and
updates the persuasion profile of the user accordingly.

1.3 Corporate context

This thesis is a separate project conducted at Webpower2, a marketing au-
tomation company that offers a platform-as-a-service (PaaS) marketing automa-
tion solution and a variety of services based on it.

2http://www.webpower.eu/
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Figure 1.2: PersuasionAPI algorithm description [15]
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Webpower’s management plans to transform the current system architecture
to have a distributed core data analytics platform that will process, store, and
distribute enormous amounts of data in real-time and a number of loosely cou-
pled services that will communicate with the platform. One of the main moti-
vations behind this transformation is the need to enrich Webpower’s offerings
with new services. A promising category of services is based on the individual
profiling and persuasion of customers. To gain expertise in persuasion profiling,
Webpower acquired Science Rockstars company, the company that created the
PersuasionAPI service.

Although the persuasion algorithm used in PersuasionAPI shows competitive
performance compared to the other methods [15], there are still several patterns
in user behavior that are not taken into consideration when a decision about
which persuasion strategy to use is made, meaning that there is likely still some
space to improve.

The overall goal of this thesis is to study different possibilities to improve the
core contextual multi-armed bandit algorithm of the PersuasionAPI product
and to come up with a practical contribution to the improvement of the existing
version of the algorithm. This is the first step towards the new service offering
under Webpower brand.

This improvement in general aims at raising the quality of the persuasion
profiling, or increasing the probability of the desired outcome by choosing the
optimal way of interaction. To monitor the improvement, the specific perfor-
mance metric is chosen and a set of experiments are conducted.

Thesis structure

The thesis has the following structure. Chapter 2 presents the requirements
analysis and introduces the general multi-armed and contextual multi-armed
bandit classes of problems that PersuasionAPI focuses on. In Chapter 3, the
PersuasionAPI version of CMAB problem is discussed and the implementation
details of PersuasionAPI and specific design choices made along the way are de-
scribed. Chapter 4 presents the state-of-the-art improvement directions and
focuses on the most promising direction. Then the process and the methods
of the research that were used are discussed. The following Chapters 5 and
6 focus on the analysis of two specific hypotheses and their application to the
existing algorithm. Chapter 7 covers the process of designing and prototyping
the new improved version of PersuasionAPI. Chapter 8 presents the process
of data-driven improvement of PersuasionAPI core algorithm. Chapter 9 con-
cludes the thesis and describes the outcomes both from the research and the
business perspectives.
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Chapter 2

Problem statement

This chapter contains an overview of the problem being approached within the
PersuasionAPI product. Firstly, the requirements are presented and analyzed.
Secondly, the core multi-armed bandit problem is discussed from various angles
including the more classic approach [16] and the newer reinforcement learning
approach [17]. Some particular parts of the problem are discussed in detail and
proper examples are provided to illustrate the problem.

2.1 Requirements analysis

In this section the requirements of the current version of PersuasionAPI are
presented and critically discussed. Note that these requirements are reflected in
the design choices described in Chapter 3.

2.1.1 No slow start

In PersuasionAPI there are few points of interaction with each user as the
interaction itself occurs within a campaign that typically has a narrow time
frame.

Therefore, the algorithm should be able to give relatively good estimations of
user’s response rates from the very beginning, in other words it should not suffer
from a slow start. This is supported by the reinforcement learning survey, which
states that “many algorithms come with a provable guarantee of asymptotic
convergence to optimal behavior. This is reassuring, but useless in practical
terms. An agent that quickly reaches a plateau at 99 % of optimality may, in
many applications, be preferable to an agent that has a guarantee of eventual
optimality but a sluggish early learning rate” [18].

Discussion

This requirement affects the choice of the estimation model of the success
probability (discussed in detail in Section 3.2). Two simulation studies of Web
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Persuader, the predecessor of PersuasionAPI is described in [15]. One of the
studies covers the estimation part of the algorithm, where the four methods are
compared, namely two naive strategies (Individual Mean and Grand Mean),
Web Persuader itself and state-of-the-art Hierarchical Bayes Logistic model
(HBL) method. An important criterion of comparison is not only the over-
all performance curve, but also the performance of the algorithm right from the
start.

Evidence for the hypothesis of having few points of interaction is shown based
on the historical data, where for a big number of client companies the average
number of interactions with a user is 4.6 times (discussed in detail in Section 3.3).
Therefore, it is empirically shown that the algorithm used in the PersuasionAPI
should not suffer from a slow start since it can negatively affect the performance
of the algorithm. In other words, there might be a much better estimation model
for a general case, which requires comparatively many observations to start
giving good estimation and it will have a worse performance than a simpler
model just because there is no opportunity to facilitate this many observations.

2.1.2 Fully online processing

When content personalization is implemented in a digital form, it faces a
well-known trade-off between performance and execution time, also known as a
time-quality trade-off [19, 15, 20]. In one of the papers it is described follows:
“In providing personalized services, a website [...] can deliver an optimally per-
sonalized version of the content to the visitor, possibly with a long delay because
of the computational effort needed, or it can deliver a suboptimal version of the
content more quickly” [19].

For the PersuasionAPI case the main priority is smooth user experience,
which incorporates seamless interaction with the site. Therefore, PersuasionAPI
should work completely online, in particular the time between the request for
advice being sent for a particular user and the response being received should be
seamless for this user, which usually stands for the whole round-trip performed
in under a second.

Therefore, PersuasionAPI has a requirement of being completely online. This
requirement imposes restrictions on the computational complexity of the algo-
rithm, which are discussed in detail in Chapter 3.

Discussion

There are solutions that try to minimize the average waiting time for the
users while accepting the computational complexity of good personalization
models [19, 21]. It is possible to approach this problem by designing sophis-
ticated scheduling mechanisms, which order the incoming requests for person-
alized content [19]. One of the papers describes several queueing approaches to
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scheduling such incoming requests and more importantly a batching approach
that determines the optimal batch length. An interesting experimental result of
this work is the dependency of the profit from the batch length. This empirical
chart shows that the profit decreases almost linearly as soon as the batch length
is longer than 0.5 second. This gives additional support to the importance of
seamless user experience and split-second waiting times.

Although several papers demonstrate an interesting approach to scheduling
the incoming requests and processing them in batches, the optimal batch length
can vary from user to user and from website to website. More importantly,
such sophisticated queueing and batching mechanisms lack predictability and
performance guarantees.

These two characteristics are crucial in order to keep the user experience level
on a high mark in virtually any setting, and since user experience is chosen as
a crucial factor in PersuasionAPI, prioritizing time over quality in this case is a
reasonable choice.

2.2 Multi-armed bandit problem in general case

The core challenge of PersuasionAPI product is solving the multi-armed ban-
dit problem in an effective and efficient way, and this problem in general case is
introduced in the following section.

There are many definitions of the multi-armed bandit problems depending on
the areas of its application (economics, statistics, medicine, biology, control, and
more). The most general and applicable to the case being researched states that
a bandit problem involves sequential selections from k ≥ 2 stochastic (random)
processes (a collection of random variables that represent the evolution of some
system of random values over time) [16]. Time may be discrete or continuous;
however, in most cases it is discrete. The objective in the bandit problems is to
maximize the expected value of the payoff:

∞∑
m=1

αmZm, (2.1)

where Zm is the variable observed at stage m and α are non-negative numbers
and αm forms a discounted sequence. This objective is equal to minimizing the
expected regret, which is defined as follows:

∞∑
m=1

αm(R(S∗)−R(S)), (2.2)

where R(S) is the reward function that takes strategy S as an input, S is the
candidate strategy, and S∗ is the optimal strategy that is not known.
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For a finite time horizon the objective can be formulated as minimizing the
undiscounted finite time expected regret given the time horizon T [16, 22]:

T∑
t=1

(R(S∗)−R(S)), (2.3)

The goal of solving a bandit problem is to design a strategy for choosing an
arm (or a stochastic process) at each time t so that the objective stated above
is satisfied. More formally, for a 2-armed bandit the strategy is defined as a
“function that assigns to each (partial) history of observations the integer 1 or
2 indicating the arm to be observed at the next stage”.

An important characteristic of a bandit problem system is that when one
arm is played, there is an outcome or payoff that immediately follows. This
information is crucially important for improving and updating the strategy as
arms are played and payoffs received.

Exploration-exploitation trade-off

A usual setting for a multi-armed bandit problem is that there are k arms and
their θ parameters (in the case of a Bernoulli distributed payoff function) are
not known. This gives high uncertainty, which needs to be decreased over time.
At the same time, the system should at some point start benefiting from the
knowledge gained. To accomplish these two goals, one has two types of actions
to perform at each time t, given the history of previous t - 1 rewards:

• Exploration is used for learning, or playing one of the alternative arms
that are not optimal at time t and gaining knowledge about the payoff1

of these arms and, ideally, finding an arm with a better payoff than the
current one;

• Exploitation is used for earning, or playing the arm that has the best
probability of reward at time t to increase the cumulative reward.

Exploitation is defined as a process of playing the arm with the highest esti-
mated payoff at time t and exploration as a process of playing any other arm.
Any strategy should embed a proper balancing mechanism between exploration
and exploitation. Improper balancing mechanism may result in one of two cor-
ner cases: either the strategy will tend to over-exploit, remaining playing a
suboptimal arm and never having a chance to discover the optimal one, or the
strategy will tend to over-explore, gaining more and more knowledge about the
arms’ payoffs but not making use of this knowledge, and, hence, not playing the
optimal arm that might be already explored.

1In the case of Bernoulli distribution gaining knowledge is just becoming more confident
about the estimation of the θ parameter.
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Strategy

Strategy describes the algorithm of playing one arm at each time t so that
cumulative regret is minimized. Strategies consist of the two parts:

• Estimation of the expected reward;

• Choosing the arm to be played, which covers the exploration-exploitation
trade-off given the model and the estimate.

Example

For simplification purposes, assume that there are two arms with reward
functions described by Bernoulli distributions under parameters θ1 and θ2.
Bernoulli distribution describes a random variable that takes value 1 with prob-
ability p and value 0 with probability 1 − p, and its probability mass function
is f(k, p) = pk(1 − p)1−k. If these parameters are known, then the optimal
strategy would be to select the arm with the highest θ and then play it at each
time t. This strategy will give 0 regret simply because it is impossible to find
a strategy that will give a better cumulative payoff over time. More formally,
the regret is defined as the difference between the cumulative payoff obtained
by using optimal strategy and the one obtained by using the current strategy
(see equation 2.3). During the simulations when the θs used to generate the
test data are given the regret value can be computed for any time t.

Note that although in theory regret can not drop lower than 0 because there
is no strategy that can give a better cumulative payoff than the optimal strategy
on an infinite run, when it comes to simulations where samples are taken from
particular distributions, it can happen that for a particular point in time drawing
a sample from the optimal arm’s distribution will give 0 and drawing a sample
from a non-optimal arm will give 1. If it happens in the beginning, it will cause
regret to temporarily drop below 0.

An example of a trivial strategy is playing one arm every time. Assuming
that the choice between two arms in the beginning is completely random, this
strategy has a 50% chance of choosing the optimal arm with the highest θ
and therefore be optimal. This is clearly not the best strategy in half of the
cases since it does not satisfy the objective of maximizing the expected payoff;
however, at the same time, it is still a valid strategy that describes the action
that needs to be taken at each time t.

2.3 Contextual multi-armed bandit problem

The contextual multi-armed bandit problem is a generalization of the simple
bandit problem discussed above, which introduces environment or context as a
new component of the system. In this case, at each point in time the decision
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of choosing an arm to play depends not only on the previous history, but also
on the current state of the environment. The payoff received is also dependent
not only on the arm played, but also on the current state of the environment.
Environments can be either non-reactive or reactive [23]; in latter case, the
current choice of the arm can affect the environment in the future (i.e., the
environment reacts to the actions taken by the agent).

Modern literature [17] relates contextual bandit problems to the class of rein-
forcement learning problems and introduces slightly different terminology and
definitions as compared with the general bandit problem. The general definition
[17] states that “reinforcement learning involves [agent] learning while interact-
ing with the environment”. The four elements of the reinforcement learning
system are defined as follows:

• Policy (another name for strategy) “defines the learning agent’s way of
behaving at a given time”. The term “policy” in this context means “a
mapping from perceived states of the environment to actions to be taken
when in those states” [17] and has an analogy with stimulus-response set
of rules.

• Reward function is a “[mapping from] each perceived state (or state-
action pair) of the environment to a single number, a reward, indicating
the intrinsic desirability of that state”. This function describes the reward
for each possible combination of the states of the environment and of the
actions taken. Cumulative reward is a subject to be maximized according
to the definition given in Section 2.2.

• Value function is a predictive metric that describes the expected cu-
mulative reward in future based on the state after the current action is
taken.

• Model is an optional element and describes the behavior of the environ-
ment. Models are used for planning, “any way of deciding on a course
of action by considering possible future situations before they are actually
experienced”.

The contextual multi-armed bandit as a reinforcement learning problem has
a set of available actions ai=1..n ∈ At at time t (each action represents an arm)
and the environment has its state Ct at time t. At each point in time t, the
agent chooses one action based on its policy and gets a reward R(ait, Ct), which
is dependent on both the action taken and the current state of the environment.
The agent receives this reward and updates its policy accordingly.

The reinforcement learning definition of CMAB can be seen as an expanded
version of the one discussed previously in Section 2.2. While the reinforcement
learning definition describes the reward function as an exact mapping from
state-action pairs of the environment to the payoffs, the more classic one [16]
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describes arms as stochastic processes, which means that there can be no exact
mapping to the outcomes of these processes and the whole idea is to discover
the parameters of the distributions of random variables instead of mapping
each state-action pair to the exact payoff. The latter definition can be seen as
a generalization of the former one, where there is an exact mapping from each
state-action pair to the expected payoff but the number of states is infinite, so
there is no way to get to know this mapping function precisely and modeling
it in terms of a stochastic process makes the problem approachable. For the
particular problem discussed in the thesis the classic definition is used and user
responses are modeled as stochastic processes.

2.4 Thesis objectives

Given a rather broad topic of improving the algorithm described in the previ-
ous section, it is necessary to define the main objectives as parts of a sequence
of steps. Conceptually, it all begins with research of the current state-of-the-art
and improvement directions and opportunities. After that, some particular hy-
potheses are tested. These tests not only illustrate the process of improvement,
but are also very valuable from the business point of view as they answer the
question of what particular improvement should be implemented in the next
version of the algorithm. Next, the new improved prototypical version of the
PersuasionAPI algorithm is designed, developed and tested to compare its per-
formance against the current version.

More formally, the main objectives of this thesis can be formulated as follows:

• Objective 1: Exploration of possible directions and methods to improve
the existing algorithm (Chapter 4).

• Objective 2: Testing two specific instances of these improvement direc-
tions, namely the effect of repetition on the user response rate and the
correlation between response rate for different pairs of strategies (Chap-
ters 5 and 6).

• Objective 3: Design and development of the improved version of the Per-
suasionAPI algorithm and its testing against the current version (Chapter
7).

• Objective 4: Design of a data-driven improvement process and imple-
mentation of the corresponding prototyping environment (Chapter 8).

The next chapter presents an overview of the implementation of the Persua-
sionAPI core algorithm and describes specific choices made along the way.
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Chapter 3

PersuasionAPI CMAB
algorithm design choices

This chapter maps the generic CMAB problem described in the previous chap-
ter to a particular instance of it within PersuasionAPI product and describes
the current existing version of PersuasionAPI algorithm on a relatively high
level of abstraction, covering the main design choices made along the way.

3.1 PersuasionAPI version of CMAB problem

The PersuasionAPI product contains an algorithm and a surrounding infras-
tructure that aims to solve a particular instance of the contextual multi-armed
bandit problem class – web marketing customization on an individual basis.
Specifically, it implements a learning algorithm that maintains a policy of show-
ing one or another persuasive message for each individual user. There is a fixed
number of persuasive messages per marketing campaign, usually containing au-
thority, scarcity, social proof, and baseline persuasive messages. The algorithm
learns from interactions with the users and from user’s responses to be able to
estimate the success probabilities for each strategy.

The next several paragraphs map the main components of a contextual multi-
armed bandit problem to a particular PersuasionAPI case.

Time-flow Time in the system is described as a discrete variable, because only
the sequential order of events is necessary for the algorithm. The underlying
implementation of the algorithm contains the timestamps of the events; however,
for the purposes of solving the bandit problem, only the natural ordering of the
timestamps is used.
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Arms Each strategy represents an arm with the Bernoulli distribution of the
reward. The meaning behind it is that each user will either perform a target
action (be it clicking or facilitating payment or anything that is considered a
meaningful result by a customer) or he will not. A big assumption, which is
supported by psychological and behavioral research, is that people’s reactions to
particular types of persuasion remain relatively constant over time; that is, the
multi-armed bandit problem that models user interactions is stationary and does
not change over time. Thus, it is possible to talk about a Bernoulli distribution
with a constant θ parameter for each user for each persuasion strategy.

Environment/context Currently, context is limited to a very narrow scope
and separate individuals are distinguished; thus, context can be seen as the user
id.

3.2 Estimation of the expected reward

The policy of PersuasionAPI algorithm uses the Bayesian inference method,
which describes how to update the probability of a hypothesis when evidence is
acquired:

P (θ|X) =
P (X|θ)P (θ)

P (X)
=

P (X|θ)P (θ)∫
P (X|θ′)P (θ′)dθ′

, (3.1)

where θ is the hypothesis, or the estimation of the parameter of Bernoulli dis-
tribution, X is observation or evidence (0 or 1 in this case), P (θ) is the prior
probability (the probability of θ before X is observed), P (θ|X) is the poste-
rior probability (the probability of θ when X is observed), and P (X|θ) is the
likelihood function (the probability of observing X given θ).

Getting the value of P (X) is computationally demanding, so the approach
taken for the PersuasionAPI case is to substitute the previous equation with
the following one:

P (θ|X) ∝ P (X|θ)P (θ) (3.2)

Applying the normalization procedure to this proportional equation by adding
a multiplicative factor or a normalizing constant will make that function a prob-
ability distribution (the integral over the entire range is 1).

The likelihood function is modelled by the Bernoulli distribution with param-
eter θ, which is conjugate to the Beta distribution. In terms of the Bayesian
inference model, Beta distribution is a conjugate prior to Bernoulli distribu-
tion; thus, Beta chosen as a prior distribution will give the same Beta family of
distributions for the posterior:

Beta(α1, β1) = Bernoulli(θ)×Beta(α0, β0) (3.3)
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Parameters α and β are called hyperparameters to distinguish them from the
underlying parameter θ, and can be chosen to represent successes and failures,
respectively. In this case, the whole algorithm of updating the model based
on the outcome of the interaction boils down to updating the parameters of
Beta distribution that represent the probability distribution of the θ parameter
for each individual and for each persuasive strategy. In the case of success,
αt = αt−1 + 1 and βt = βt−1, in the case of failure αt = αt−1 and βt = βt−1 + 1.

As a result, the two parameters α and β are stored for each strategy for every
user and are updated based on the result of the interaction with the user. Beta
distribution with these parameters characterizes the likelihood of a particular
strategy to succeed for a particular user. Initially, αt = 1 and βt = 1 represent
a uniform distribution. This conveys the idea that there is no prior knowledge
about how users will respond to persuasive strategies and, therefore, θ param-
eter that specifies the probability of success is initially distributed uniformly.
At the same time, when sufficient data is collected for multiple users it might
be valuable to embed these data into the initial parameters of Beta distribu-
tion (when there was no prior interaction with this user using this particular
persuasive strategy). The approach to this problem is described in the next
section.

Discussion

For the case of MAB with stochastic reward function that has a Bernoulli distri-
bution with unknown parameter it is very common to use a Bayesian approach
and to represent the probability distribution as a conjugate Beta distribution
[24, 13]. It is a simple and effective way to estimate the expected reward.

Another approach can be building a full Hierarchical Bayes model, which is
computationally prohibitive. For example, BayesGeneral scheme requires solv-
ing a two-dimensional convex, non-differentiable minimization problem for two
parameters. This approach leads to a long computation time and an approxi-
mation for it is called Bayes2x2.

It is empirically shown that PersuasionAPI method outperforms both Individ-
ual Mean and Grand Mean methods and has a worse performance compared to
the state-of-the-art Bayesian Hierarchical Logistic (HBL) model [15]. HBL is a
very computationally demanding method since it estimates the success probabil-
ity based on all the history points, therefore it does not fit into the requirement
of fully online processing.
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3.3 Handling insufficient data on an individual
level

The average number of interactions with one user is comparatively small, with
the average number of interactions per one user across 20 client companies be-
ing 12.2. Moreover, Table 1 presented in Appendix A shows two distinct cluster
of clients. One cluster represents campaigns with a relatively longer history of
interactions (31.0 interactions on average) and the other bigger cluster contains
clients that tend to have very few interactions with the user (4.6 interactions on
average). The first cluster represents a typical situation of custom content gen-
eration, when persuasive messages are embedded into a list of products shown
to the user simultaneously. This means that the average number of interactions
in the case of the first group of campaigns is comparable with the number for
the second cluster. The algorithm should be able to deliver relatively good
predictions based on as few as 4.6 interactions.

This question is related to the choice of the initial values for the number of
interactions and the probability of success. One way is to set the initial values
of these parameters to the static values each time a new user is encountered:
a realistic approximation for the success probability and a small number repre-
senting the number of interactions so that the approximated success probability
can converge to the real success probability quickly. However, in the latter case,
information about the mean users’ success probability is not used. In general,
information about users accumulates over time and becomes an increasingly ac-
curate representation of the initial assumptions about the new user than any
static values. It also represents the current mean for a particular experiment at
each run, not just a static approximation.

In the current PersuasionAPI version the following ad hoc heuristic is used to
compute the estimated probability based on the individual and the average over-
all probabilities to obtain the approximate hierarchical model using shrinkage
factor [25, 26]:

p̂is = BisPs + (1−Bis)pis, (3.4)

where Ps is the average probability of success over all the users for the particular
strategy s, pis is the probability of success for the user i for the particular
strategy s, and Bis is the shrinkage factor that gives a weight to both average
and individual success probabilities based on the number of observation for the
individual:

Bis =
1
√
nis

(3.5)
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3.4 Persuasive strategy choice

Every time an advice request comes into the system, meaning that there is an
upcoming communication with a particular user within a marketing campaign
planned, the algorithm should deliver a response containing a strategy that
will be applied to the next communication session. The implementation has to
address the the exploration-exploitation trade-off.

Thompson sampling is one of the oldest heuristics to address the exploration-
exploitation trade-off [27] and is implemented in PersuasionAPI. It embodies a
comparison strategy that takes into consideration not only the most probable
value of the success probability from its distribution (the maximal value from
the distribution), but also the degree of uncertainty. It is sufficient to “to draw
a random sample θ∗ from the posterior at each round and select the action with
the greatest expected reward according to the current draw” [15]. Based on these
random samples, the strategy with the maximal sample is chosen.

Discussion

There are several methods that address the exploration-exploitation trade-off.
In this section they are briefly introduced and critically discussed with respect
to the applicability to PersuasionAPI case. Thompson sampling is shown to
still be a valid choice given the constraints of fully online processing.

The ε-greedy method [28] is often called the simplest yet most used method
in the literature [11, 12, 29, 30]. It selects a random arm with static probability
ε and chooses the arm with the highest empirical mean reward with probability
1− ε. The bound of the expected regret in this case is only linear, which shows
poor performance of the method.

Well-known adjustments of this method are ε-decreasing, when probability ε
is decreasing over time, and ε-first, when the exploration is done all at once by
choosing each of the arms and after that only the arm with the highest empir-
ical mean reward is chosen. ε-decreasing variant has proven poly-logarithmic
bounds.

Another simple method is SoftMax or Boltzmann exploration, which picks
each arm with a probability proportional to its average reward. This algorithm
has a parameter τ and poly-logarithmic bounds are proven for the case of de-
creasing τ [11].

Another popular method is called Gittins indices [31]. In this work it is proven
that the MAB problem is indexable and a formula to compute such indices is
introduced. In particular, this paper introduces Bellman equation and solves it
for a known payoff to obtain particular values (indices). The formula is only
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dependent on α and β parameters of Beta-distribution and discount d in case
of a discounted infinite sequence. On each step, the arm with the highest index
is chosen [24]. This method has an explicit guarantee of being optimal [32, 33].

However, this method is more computationally demanding than Thompson
sampling. Thompson sampling is also proven to be asymptotically optimal [34].
At the same time, it is less computationally complex than the Gittins indices
method.

There is a number of more complex methods that have optimal regret bounds,
such as Exponential weights algorithm for Exploration and Exploitation with
Experts (EXP4 ). However, they are very computationally heavy and in litera-
ture are frequently referred to as computationally prohibitive. For example, in
one of the papers it is stated that “schemes with optimal regret bounds may have
poor empirical performance due to inappropriate assumptions and large con-
stants associated with regret bounds (explore-exploit schemes)” and in another
one it is mentioned that computing the optimal estimation is often infeasible
and approximations are necessary [22].

When copmared to the other methods, Thompson sampling has the best
performance given the restriction of fully online processing and therefore is a
reasonable choice for the PersuasionAPI.
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Chapter 4

Research of the
improvement opportunities

4.1 Application settings

Currently there are two main application areas for PersuasionAPI. One of
them is personalized content generation on websites, which in practice is im-
plemented in a form of embedding persuasive banners into the images of some
selected items in the list of items for e-commerce platforms.

Another case is e-mail marketing. Strictly speaking, this is not a perfect use
case for PersuasionAPI since there is no need in the fully online processing. In
e-mail marketing the time gap between the interactions with the users is much
bigger than compared to the pager reload time in case of the interaction within
an e-commerce store, which allows to go for more complicated algorithms as
soon as the computational complexity is no longer a bottle-neck. Nevertheless,
it is still a valid setting for PersuasionAPI and it had been successfully adjusted
to this setting.

In general, persuasion profiling is performed for multiple clients and each
client can have multiple campaigns. Due to the private data usage laws in
Europe it is prohibited to aggregate user data across campaigns and across
clients.

4.2 Improvement directions

This section presents the state-of-the-art of the CMAB problems and the com-
mon improvement directions. These directions are critically assessed in terms
of their applicability to the PersuasionAPI case and one particular direction is
chosen based on this assessment.
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4.2.1 Large number of arms

One of the popular improvement directions are CMAB with (infinitely) many
arms or strategies [35, 36, 37, 38, 39]. This is an extreme case of a well known
CMAB problem when “one needs to assume extra structure in order to make
the problem tractable” and is a subject of investigation nowadays due to its high
practical applications such as online auctions and web advertisement.

The crucial part of most of the models that tackle this problem is the similarity
metric space, which has one important property: if two arms are close in this
metric space they have similar payoffs. The in-depth discussion of such space
and its relation with Lipschitz-continuous maps and contractions lies beyond
the scope of this thesis.

Several papers research a general MAB problem, when a metric space de-
scribes arms. One of the papers discusses the case when this metric space is
implicit and defined by a tree-based structure that represents a classification of
arms, but not known numerically [37]. Other papers discuss the case when the
metric space is both implicit and defined numerically [38, 39].

Another paper discusses the contextual MAB problem and defines a similarity
space containing distances between the context-arm pairs [35]. In this paper
adaptive partitioning is used instead of the uniform partitioning of the similarity
metric space, which leads to a finer partitioning in high-payoff regions and in
popular regions of context space.

Applicability to PersuasionAPI

This improvement direction is irrelevant for the PersuasionAPI case since
there are currently only four main persuasion strategies and even the clients
that want to get several different messages per strategy hardly go above 15
substrategies.

4.2.2 Context enrichment

Several other papers tackle the problem of the multi-armed bandit context en-
richment within recommender systems [5, 6, 7, 40]. In one of the papers the
context space and the corresponding similarity metric is introduced in addition
to an item space and its similarity metric, which is fairly common for recom-
mender systems [5]. In this work authors implement an item cluster tree that
efficiently partitions the item space into K clusters. These clusters represent
sets of items that are similar to each other. The recommender system at each
time t selects a cluster based on the current context and the history, which is
a collection of past contexts, cluster selections and payoff observations. It then
recommends a random item from the selected cluster.
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The other paper related to the context enrichment within recommender sys-
tems introduces an improvement to the ε-greedy algorithm that integrates case
base reasoning [6]. In this paper a case is described as a pair of a situation
occurring while a user is browsing on his mobile device and user preferences in
this situation. The suggested two-step approach is to (1) find situations that
are similar to the current one and (2) solve the exploration-exploitation problem
of CMAB. The context discussed in this paper is limited to location, time and
social connection.

A common approach to the context enrichment that can be seen from the
papers discussed above is collecting historical data and performing computa-
tions on it when the next recommendation needs to be given. One of the papers
describes the approach as follows: “to integrate CBR into each iteration: be-
fore choosing the document, the algorithm computes the similarity between the
present situation and each one in the situation base; if there is a situation that
can be re-used, the algorithm retrieves it, and then applies an exploration/ex-
ploitation strategy” [6]. The other one has a comparable approach: “given a
user’s context, our algorithm aggregates its past history over a ball centered on
the user’s context” [5].

Applicability to PersuasionAPI

The approaches described above base their estimations on the historical data,
which obviously brings more computational complexity. More formally, the time
complexity of such algorithms is at least linear O(N), where N is the number
of historical events. Unfortunately, no explicit discussion on the exact imple-
mentation and its time/space complexity is available to give more information
about it, but it is reasonable to assume that such solutions introduce at least
linear time complexity, while PersuasionAPI aims at fully online processing and
constant O(1) time complexity.

The current version of PersuasionAPI algorithm uses the context in a very
narrow scope. More formally, the context in terms of the contextual multi-
armed bandits problem currently contains only the user identifier, which enables
persuasion on an individual level. The context describes what information is
used to come up with an estimation of response rates for all the persuasion
strategies. In future, additional information about the users can be used to
come up with better estimations of the response rates.

Enriching the context of PersuasionAPI can help to go beyond the binary
result of the interaction and answer the question of why a user positively re-
sponded to the strategy given the context.

However, this contextual data is not (yet) collected and is not available in the
historical data set. Any improvements would be purely theoretical and would
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be based on simulations using generated data. This would not help to discover
trends in user behavior based on the large existing historical data set that is
available.

4.2.3 Refinements for specific cases

There is a big number of articles related to the specific application case, for
which CMAB is adjusted and refined.

One of the papers shows that bandit algorithms are attractive alternatives to
current adaptive treatment allocation strategies in clinical trials [11].

It is also possible to describe CMAB in the setting of online advertising, where
ads have limited lifetime [41]. A common assumption in this case is that in such
constantly changing environment bandit arms born and die regularly. In [41] the
algorithm for both deterministic and stochastic reward functions is presented
and the main adjustment is the reduced exploration phase.

MAB problems are also discussed in application to learning a ranking of doc-
uments. This task is different from the usual MAB problem when a single
best result needs to be computed because a ranking of documents needs to be
computed instead [42]. Paper [42] questions the independence between docu-
ments for ranking and assumes that the utility of documents is not independent,
therefore similarities are taken into account.

Another article tackles the dependencies among arms and presents a frame-
work for exploiting these dependencies in multi-armed bandit problems when
the dependencies are in the form of a generative model on clusters of arms [22].

4.2.4 Reinforcement learning model

Planning in reinforcement learning is defined as “any way of deciding on a
course of action by considering possible future situations before they are actually
experienced” [17]. The other paper states that “planning in reinforcement learn-
ing refers to the use of models of the environment to compute value functions
and thereby to optimize or improve policies” [43]. The part that is responsible
for planning is the reinforcement learning model that describes the behavior of
the environment and is considered optional within the reinforcement learning.

Planning is an important part of modern CMAB research, however to the
best of author’s knowledge it is not explicitly discussed within the papers and
in most cases is taken as granted. Papers researching the problem of infinitely
large number of arms [37, 38, 39] assume that the metric space is implicit
and defined by a tree-based structure, which can also be defined numerically.
This metric space embeds the static information about the degree of similarity
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between arms and is a reinforcement learning model that is used for planning.
The question of obtaining such a model is not discussed in these papers.

When tackling MAB problems with dependent arms, it is common to assume
that all the arms are clustered into K clusters and the dependencies among
arms in a cluster are described by a generative model, the form of which is
known [22]. This cluster set along with the known dependency model is a static
information that is embedded into the reinforcement learning model, however
the process of obtaining this information is again not discussed in the paper.

The question of obtaining the reinforcement learning model is an interesting
area that most of the times is not explicitly discussed, especially for the con-
straint that is derived from the requirements, namely low computational com-
plexity. Therefore, building a reinforcement learning model is a valid research
topic and is interesting from a research point of view.

Applicability to PersuasionAPI

Currently, the PersuasionAPI algorithm works as a pure reinforcement learn-
ing system in the sense that it learns by interacting with the environment and no
historical data is used in the system. There are certain regulations that restrict
private data usage, in the case of PersuasionAPI, these forbid to accumulation
of user data across clients based on private data, such as e-mail address or driv-
ing license number. For instance, it is not allowed to accumulate historical data
representing users’ response behaviors to different persuasion strategies within
one campaign/experiment and then use this data in another campaign/experi-
ment, drawing a conclusion the two users from the two experiments represent
one person based on the private data stored in their profiles that can identify
them. All in all, strict European policies related to data privacy mean that any
improvements that involve historical data usage should be carefully checked
against these policies.

That being said, there are still opportunities to improve the algorithm by
building a reinforcement learning model. One of the improvements proposed
in this thesis is to build a model that embodies the static knowledge that is
proven to be true independently from the information obtained from a particular
experiment or campaign.

Example There is a hypothesis stating that the more times a user is pre-
sented with the same persuasive strategy consecutively, the more his response
rate drops for this particular strategy. In simple terms, the user expects the
items mentioned in the persuasive message (authority, scarcity, social proof,
and other strategies) to be rare, and when they occur one after another he be-
comes increasingly suspicious and the probability of optimal behavior of this

25



user drops. A model based on this knowledge will somehow decrease the num-
ber of consecutive advises with the same strategy given to the same user. In
the simplest case, such a model can contain a rather straight forward rule that
forbids choosing the same strategy that was chosen for the previous interaction.
Note that this most probably would not be the best strategy as it does not
perform well in the case where the response rate for one strategy is much better
than for all the others and the algorithm will still advise the clearly optimal
strategy only 50% of the times based on the inflexible rule in the model.

4.2.5 Improvement direction choice and motivation

After several state-of-the-art directions of the improvement of CMAB meth-
ods were examined and critically assessed in the sections above, building a
reinforcement learning model was chosen as the most perspective direction due
to several factors:

• Research aspect: this is not a commonly addressed problem in the
literature and in many cases static reinforcement learning model is taken
as a prerequisite [22, 37, 38, 39].

• Business aspect: embedding a static reinforcement learning model is
more of an incremental innovation rather than a disruptive one and does
not require the whole algorithm to be re-implemented from scratch. This
means faster results to the business with minimal investments.

• Embedding static information that enables better planning fits well into
all the requirements, especially the fully online processing requirement and
does not have a negative effect on computation complexity.

4.3 Process

The process of identifying new and promising ways to improve the existing
PersuasionAPI algorithm is proposed according to the following steps:

1. Build a hypothesis based on initial knowledge, psychological and market-
ing sources of knowledge, and expert opinions.

2. Collect and clean the appropriate historical data from PersuasionAPI in-
frastructure and transform it to serve the purpose of validating a particular
hypothesis.

3. Mine the data gathered during the previous step to discover the trends
that will validate or invalidate the hypothesis.

4. In the case where the hypothesis is valid, suggest on the PersuasionAPI
algorithm improvement that incorporates the phenomenon proven to exist
by the hypothesis’ validation.
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The process described above is part of the overall data-driven improvement
process described in Chapter 8 and was applied to validate the two hypotheses of
this thesis, which both fall into the category of building a reinforcement learning
model. This area is considered to be both challenging from a research point view
and valuable from the business perspective, in that it answers the question of
whether or not it is a promising direction for further algorithm improvement in
future.

4.4 Methods

The method used to test the validity of the hypotheses is data-driven valida-
tion, which requires the use of real data that need to be retrieved and mined
before the actual validation can be performed. This section describes the data
retrieval and mining steps, which were similar or identical for all the hypothesis
validations.

PersuasionAPI data is stored in a MongoDB database, and has two logical
parts. One part contains the most up-to-date information for each user and is
accessed whenever it is necessary to get an advice. The other part contains all
the historical data and has the role of an event log. This event log contains
the information about the so-called “random” user group for which the next
strategy is chosen randomly. The latter is needed to test the hypothesis. The
data used for this purpose are fused from 20 clients and contain almost 82 million
interactions with 6.7 million users. The process of data retrieval is described in
the next subsection.

User ID Strategy ID Success
”u34211” 0 0
”u44566” 3 1
”u01032” 2 0
”u34211” 2 0

...
”u44112” 1 1

Table 4.1: The initial snapshot of historical data

Data retrieval

Data retrieval was coded in Java. With the help of MongoDB Java driver, all
the necessary data was retrieved from the database in a raw format, converted
into “comma separated values” (CSV) format and stored as a file (see Table
4.1). This approach ensures the following:

• Unlike querying a live database, there is a single source of data used for
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all the mining procedures for different hypotheses and applying the same
stable algorithm to this data source will always give the same result.

• All the mining procedures are independent from the network connection
with MongoDB server.

• There is no need to perform the same computations again to build a base
data set.
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Chapter 5

Hypothesis 1: repetition
effect

5.1 Motivation

This hypothesis has its roots in the field of human psychology. There are cer-
tain differences in the recognition of the novel things as opposed to the familiar
ones. More formally, the “novelty/encoding hypothesis” and the experiments
related to it show that “accuracy of explicit (episodic) recognition was higher
for novel than for familiar words” [44, 45].

In the case of PersuasionAPI, this results in a lower accuracy of recognition for
familiar persuasive sentences representing the same strategy, which may result in
a lower response rate. Given PersuasionAPI’s context, there are usually several
interactions within one session. This means that the same strategy used in two
or more consecutive interactions may result in a response rate decrease.

This is being tested within the first hypothesis already described as an ex-
ample in the previous chapter and, in short, states the following: the more
times a user is presented the same persuasive strategy consecutively the more
his response rate drops for this particular strategy.

5.2 General response rates comparison

Firstly, data was retrieved, collected, and mined as described in the previous
section so that it is ready for the specific tests.

Based on the data stored as a file, it is possible to compute various statistics
that can validate or invalidate the initial hypothesis. During the validation, two
statistics need to be compared: the average decrease in response rate when one

29



strategy is presented to a user on two consecutive interactions and the average
decrease in response rate when two different strategies are presented to a user
one after the other. Note that due to the low average number of interactions
per user and the necessity of the exploration phase the case of the same strategy
chosen consecutively three or more times was much smaller and therefore was
left out of the tests.

Another useful statistic that was computed prior to the actual validation was
the total number of interactions per contact, starting from the first contact with
the user. It turned out that the largest number of interactions occur during the
first and second contacts with the user. This means that the whole validation
can be based on the first two interactions and can represent the overall trend as
it is more reliable because there are more users participating, which gives more
reliable averages of the response rate.

The next step was to compute the averages for the first and the second inter-
actions in the case of “paired” strategies (meaning that the same strategy was
used consecutively) and “not paired” ones across all users. This was done with
a Java program, and the results are presented in Table 5.1.

Response rate (1st

interaction)
Response rate (2nd

interaction)
Sample size

Paired
0.0616329987 0.0432507665 152321

Not paired
0.0615868408 0.0438910146 454740

Table 5.1: Results of the experiment of comparing paired and not paired strate-
gies used consecutively during the 1st and the 2nd interactions over all users

Based on these results, it is possible to compare the proportions of the de-
creases of the response rates for paired versus not paired strategies:

P̂p = pp2 − pp1 ≈ 0.01838 (5.1)

P̂np = pnp2 − pnp1 ≈ 0.01770 (5.2)

To do that, a hypothesis test was chosen with the two-proportion z-test
procedure. The null hypothesis is that the two proportions are equal:

H0 : Pp = Pnp (5.3)

The alternative hypothesis represents the alternative that needs to be (in)validated
and is chosen to state that the two proportions are not equal:
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HA : Pp 6= Pnp (5.4)

Following the two-proportion z-test steps, the proportion of successes in two
samples combined was computed as well as its squared error:

P̂ =
P̂p ∗Np + P̂np ∗Nnp

Np +Nnp
= 0.01787 (5.5)

SE =

√
P̂ ∗ (1− P̂ ) ∗

(
1

Np
+

1

Nnp

)
= 0.0000001291 (5.6)

The test statistic (z-score) was computed based on the previous products:

z =
P̂p − P̂np

SE
≈ 5271.3178 (5.7)

Formally, at this point the P-value needs to be computed for both inequality
situations:

P = P (Z ≤ −5271.3178) + P (Z ≥ 5271.3178) (5.8)

The z-score that was obtained in this comparison is large and far beyond the
usual [−4, 4] interval. Given the fact that even a z-score 4 would fit into 0.01
significance value, it can be stated that the difference between Pp and Pnp is
significant.

However, this test rejects the idea that the two probabilities are exactly the
same, which does not necessarily mean that the difference is worth a closer look.
The reason for rejecting this hypothesis is the comparatively large number of
observations N (order of 105). This case is described in [46], which states
that when N is large, “virtually any parsimonious parametric model [..] will
be strongly rejected by any standard hypothesis test using the usual confidence
intervals. Virtually all specific null hypotheses will be rejected using present
standards”.

In this case, the results of this experiment show that there is a significant
difference between the case when the same strategy is used consecutively and
the case when two different strategies are used consecutively. However, this is a
far lower level of difference than was expected. Since the result obtained after
this experiment lacks certainty, it is reasonable to repeat the same experiment
for the individual strategy level.

1Strictly speaking, with the chosen precision of 5 digits after the decimal point SE =
0.00000.

31



5.3 Individual strategy level response rates com-
parison

Despite the discussion in the previous section there is still a question of
whether or not the high-level results obtained in the previous comparison can
characterize what is going on at the individual strategy level. Since all 20 clients
used the same four distinctive persuasive strategies, it is possible to run the same
experiment on the strategy level to see whether or not the same trend that was
clear during the previous experiment is proven for each strategy.

In this case, the response rates for paired strategies were computed for each
strategy separately and after that this decrease was compared to the decrease
for not paired strategies computed in the previous comparison. The results of
the next experiment are presented in Table 5.2. Note that the same experiment
was repeated for all the pairs of interactions where the same strategy was chosen
repeatedly and it shows the same trends as the ones in Table 5.2.

RR1
2 RR2 Sample

size
Z-score Sign.3

0.05
Sign.
0.01

Strategy 1
0.063141237 0.0412765396 37915 5.8633 Pass Pass

Strategy 2
0.0634088825 0.0478710861 38165 -3.0857 Pass Pass

Strategy 3
0.0610477398 0.0411121673 37872 3.1613 Pass Pass

Strategy 4
0.0589707493 0.0427290265 38369 -2.0809 Pass Fail

Table 5.2: Results of the experiment of comparing paired and not paired strate-
gies used consecutively during the 1st and the 2nd interactions for each strategy

5.4 Conclusion

The results of both experiments show several trends. First of all, there is an
overall trend of decreased response rate on the next interaction compared with
the previous one, and the small overall the difference between the decrease rates
for paired and not paired strategies.

In the second experiment, the same metrics were computed for each strategy
separately, and this granularity level adjustment gave a more detailed view of

2A shortcut for the Response Rate (first interaction).
3A shortcut for significance level.
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the data set with respect to the hypothesis being tested. Table 5.2 shows that
the relative decrease varies from strategy to strategy and even changes its sign:
for strategies 1 and 3 there is an increase of the response rate for the paired
case compared with the not paired case. This fact proves the hypothesis of the
negative effect of consecutively used strategies on the response rate to be wrong
at least for strategies 1 and 3. In general,Table 5.2 shows a positive effect for
some strategies and a negative effect for the other strategies, which makes it
hard to predict whether or not there is a negative effect for the new strategy a
new client may decide to implement.

Overall, the effect discussed above is neither stable nor predictable for future
strategies, which makes it impossible to embed any static rule into a reinforce-
ment learning model, as was planned. The hypothesis in its initial form is
invalidated.

33



34



Chapter 6

Hypothesis 2: correlations
between strategies

6.1 Motivation

The need for cognition, or the tendency for the individual to engage in and
enjoy thinking, is first mentioned in [47]. This study showed that people can
be clustered into two groups, with need for cognition being high or low. The
corresponding research revealed an important experimental result that is rele-
vant for the field of persuasion profiling. In their previous publications authors
described the persuasion process “as either one in which message recipients ac-
tively process the arguments presented in a communication or one in which the
message arguments are virtually irrelevant to persuasion, since attitude change
results from various noncontent cues in the situation”. In [47] they called these
two processes as the central and peripheral routes: the latter opens opportuni-
ties for persuasive communication where the persuasion setting (such as speed
of speech or expertise) predominates, whereas the former operates when the
message content is processed rationally.

These authors stated that the extent to which recipients are motivated by
their need for cognition to think about the issues they confront may determine
the route (either central or peripheral) – in other words their individual vulnera-
bility to persuasive messages [47, 48]. This statement leads to a hypothesis that
people with low need for cognition will be more vulnerable to any persuasive
message. This can be validated by checking correlations between the success
probabilities for each pair of strategies.

Formally, the second hypothesis as well as the first one aims at building a rein-
forcement learning model and focuses on the mutual dependencies between the
success probabilities of different strategies. As before, the data were retrieved,
collected, and mined in preparation for the specific tests.
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The next step was to compute the correlation coefficients between different
strategies. There are several possible approaches to do that and two of them
(Pearson’s correlation coefficients and contingency table) are discussed in this
chapter.

6.2 Correlation: Pearson’s correlation coefficients

The first step was to rebuild the data set from a set of event records into
a set of user records with the success probabilities of four strategies related to
each user. Simply put, the outcome of the transformation was a data frame:
each row represented a user and each column represented a strategy. The actual
transformation can be conceptually represented like this:

(Ui, Sij , scsij) =⇒ (Ui, [p̂i1..p̂iN ]), (6.1)

where i identifies a specific user, j identifies a specific event record, S stands
for strategy, scs represents success or failure of the interaction and pik is the
average success probability of strategy k for user i.

R language was chosen during previous steps because of its simplicity and
implementation speed given the task of transforming one data frame into an-
other and performing some additional computations along the way. However,
R implementation yielded a very poor performance, which resulted in hours
of computations to transform a data set of 426 Megabytes (MB). The initial
goal was to choose an environment that would allow rapid prototyping, and R
was suitable for prototyping statistical and learning algorithms; however, as it
turned out, it is not a good environment for performing heavy computations on
big data sets.

Besides, this transformation has a high parallelization coefficient, which means
that every event record can be processed independently. Spark technology using
Python language was chosen as a more suitable environment for the purpose of
fast parallel computation. Python, in this case, is used as a functional program-
ming language and the whole transformation process is implemented in a chain
of operations on Resilient Distributed Datasets (RDDs).

The method used for computing correlation comprised two main steps. The
first step was to estimate success probabilities for each strategy and each indi-
vidual, averaged over all interactions. This gives a matrix where each row rep-
resents an individual user and each column represents a strategy, and each cell
contains an estimation of success probability. The second step was to compute
correlations using Pearson’s coefficients between each pair of matrix columns.
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S1 S2 S3 S4

S1 1.0 0.139886313658 0.139617173946 0.139346015849
S2 0.139886313658 1.0 0.14002336345 0.140130992547
S3 0.139617173946 0.14002336345 1.0 0.13843020816
S4 0.139346015849 0.140130992547 0.13843020816 1.0

Table 6.1: Correlation coefficient between different strategies (version 1)

Both steps were implemented in Spark and Python in its functional fla-
vor. Pearson’s coefficients computation was implemented from scratch in a
distributed environment (the main equation used was equation 6.2) and then
basic statistics library MLib was used to validate the custom-made computation
method. These results were delivered amazingly fast, in under 2 minutes.

Rxy =

N
n∑

i=1

xiyi −
n∑

i=1

xi
n∑

i=1

yi√
N

n∑
i=1

x2i −
(

n∑
i=1

xi

)2
√
N

n∑
i=1

y2i −
(

n∑
i=1

yi

)2
(6.2)

The results are presented in Table 6.1 and show a positive correlation between
all the pairs of strategies.

Although these coefficients show some correlation, it is not as large as ex-
pected. To understand whether or not the implementation of the method af-
fected the outcomes, several checks and tests were performed.

Since the functionality that computed the correlation coefficients was checked
against MLib implementation and proven to work correctly by returning iden-
tical results, the second test focused on the correct data vectors formed for the
correlation computation. It turned out that it was not completely correct as
soon as in the implementation there was no difference between 0.0 as an average
response rate and 0.0 as a signal of no interactions for this strategy-user pair.
For the purposes of handling missing data, pairwise deletion was used [49]. Af-
ter that, the correlation coefficients were recomputed, which yielded a higher
correlation for all pairs of strategies (see Table 6.2). In Figure 6.1, correlations
are visualized by plotting the success probabilities for each pair of strategies on
scatter plots. The complete Python script for Spark is presented in Appendix
C.

The final step after computing Pearson’s correlation coefficients is to formu-
late the null and the alternative hypotheses and to perform significance testing:

H0 : Rxy = 0 (6.3)
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Figure 6.1: Scatter plots of the correlations between the success probabilities
for each pair of strategies

S1 S2 S3 S4

S1 1.0 0.247503734044 0.251313654705 0.250928335387
S2 0.247503734044 1.0 0.251798737338 0.251542743559
S3 0.251313654705 0.251798737338 1.0 0.250587845746
S4 0.250928335387 0.251542743559 0.250587845746 1.0

Table 6.2: Correlation coefficient between different strategies (version 1)
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S1 S2 S3 S4

S1 X 324042 323265 323696
S2 324042 X 323837 324090
S3 323265 323837 X 323563
S4 323696 324090 323563 X

Table 6.3: Numbers of observations for each pair of strategies

S1 S2 S3 S4

S1 X 140.8751 142.8716 142.7476
S2 140.8751 X 143.2739 143.1842
S3 142.8716 143.2739 X 142.5247
S4 142.7476 143.1842 142.5247 X

Table 6.4: T-values corresponding to the correlation coefficients

HA : Rxy 6= 0 (6.4)

The corresponding test statistic is presented in equation 6.5.

t = Rxy ·
√
N − 2√

1−R2
xy

(6.5)

The numbers of observations for each pair of strategies are presented in Table
6.3 and the corresponding t-values are presented in Table 6.4. Such big t-values
correspond to very small P-values, which means that the null hypothesis is
invalidated. Now it can be stated that there is a significant correlation between
each pair of strategies.

6.3 Correlation: contingency table

Contingency tables and methods of its analysis present another option for
computing the correlation between strategies. A contingency table is a matrix-
format table that shows the frequency distribution of the variables. In the case
of PersuasionAPI, it is a table for two binary variables where each represents a
strategy and can have a true/false value (see Table 6.5 for the observed values).

Si = True Si = False Si total
Sj = True N11 N10 N1•
Sj = False N01 N00 N0•

Sj total N•1 N•0 N

Table 6.5: Contingency table for two strategies
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Chi-square statistics
Non-significant Significant

SL 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001
0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 10.83

Table 6.6: Chi-square distribution table

The next step is to compute Chi-square statistics, which in a nutshell shows
how far the actual observed values lie from the expected case when the success
probabilities are equal (see 6.6).

χ2 =
N(N11 ∗N00 −N10 ∗N01)2

(N•1 +N•0 +N0• +N1•)
(6.6)

The last step is to use the Chi-square distribution table to determine the
significance of computed values. Since the purpose is to find the correlation
between two variables, there is one degree of freedom and, in this case, the
relevant part of the Chi-square distribution table is presented in Table 6.6.

The problem with method is its complexity when applied to the case of Per-
suasionAPI. In the situation where there are multiple interactions per user, this
method should be changed: for each user all pairs of the responses for the two
strategies should be retrieved and inserted into the contingency table. This
method is shown as an alternative to the one performed in the previous section.

6.4 Conclusion

Overall, the correlation coefficients presented in Table 6.2 show that all the
strategies are not independent and there is a positive correlation between each
pair of strategies. The fact that there are correlations between each pair of
strategies is also mentioned in [50], where the authors drew this conclusion
based on data from several experiments. This means that it is possible to give
a better prediction of user response rate for strategy i if there is information
about the user response rate for strategy j.
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Chapter 7

Prototyping and
implementation

In the previous two chapters, two particular hypotheses have been analyzed
and discussed. The hypothesis about the negative effect of repetition was inval-
idated. The hypothesis about the correlation between strategies was validated.
This chapter describes the actual implementation of the improved algorithm
that follows hypotheses’ validation.

7.1 Preparing the data

For validation and testing purposes, historical data needed to be transformed
from the general data snapshot retrieved in Section 4.4 (see Table 4.1) into
a suitable data frame that contained for each event/interaction the user id,
the average success probabilities for each strategy (precomputed from historical
data and not known in real life), draws from each of the Bernoulli distributions
specified by these probabilities and the index of optimal strategy in terms of
multi-armed bandit problems (see Table 7.1). This is the index of the strategy
with the maximal average success probability, which is obviously not known in
real life and is used to compute the cumulative regret metrics.

User ID p1 p2 p3 p4 o1 o2 o3 o4 Best (index)
”u34211” 0.00 0.10 0.31 0.02 0 0 0 0 2
”u44566” 0.30 0.00 0.10 0.00 1 0 0 0 0
”u01032” 0.10 0.11 0.01 0.23 0 0 0 0 3
”u34211” 0.00 0.10 0.31 0.02 0 0 1 0 2

...
”u44112” 0.00 0.20 0.00 0.01 0 0 0 0 1

Table 7.1: The data frame for algorithm validation and testing
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Draws from the distributions are needed to simulate user behavior and give
a response (either success or failure) for each particular strategy and for each
particular interaction. Note that embedding these draws into the data frame
is crucial since it makes all the tests based on this data independent from the
random sampling factor. In other words, any algorithm that will be tested on
these data and that will advise strategy S to user U during interaction i will
receive the same simulated response from this user.

This data frame was constructed via a Python script executed on Spark,
which is an improved version of the script from the second hypothesis validation
(Chapter 6). The statistics package Stat from the MLLib library was used for
sampling from the distributions.

One of the features worth mentioning that was implemented in the script is
filtering based on the number of interactions. The task was to exclude the users
with more than N interactions from the data frame. The first step was to get
all the users that have more than N interactions:

1 outliers = logData.map(lambda x: x.split(’,’)).map(lambda x: (x[0],

1)).reduceByKey(lambda a, b: a + b).filter(lambda (k, v): v >

5).cache()

The second step was to filter out these users from the main data frame:

1 reducedLogData = logData.map(lambda x : x.split(’,’)).map(lambda x:

(x[0], x)).subtractByKey(outliers).cache()

Finally, it was necessary to transform the data frame into a one with com-
posite keys (user id and strategy id):

1 reducedLogData = reducedLogData.map(lambda (k, x) : (x[0] + ’,’ + x[2],

x[1])).cache()

7.2 Implementation of the current version

The current implementation of the core PersuasionAPI algorithm is in Java
and is distributed across several classes. It is not flexible and is not suitable for
rapid prototyping and monitoring the results, which is crucial when it comes
to the algorithm’s improvement. Therefore, there was a strong need for an
environment that would enable rapid prototyping and monitoring of the results.
Due to lack of documentation and redundant Java code, it is far from self-
explanatory and this task was not a straight forward porting of the algorithm
into a prototyping environment; rather, the algorithm was built from scratch
based on the main design choices described in Chapter 3.
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The current version of the algorithm has been implemented within the re-
search and the main class is presented in Appendix B. Apache Commons Math3
library was used for implementing the Thompson sampling.

The next step was to embed the knowledge obtained from the validation of
the hypothesis into the new version of the algorithm.

7.3 Success probability estimation method re-
design

This section describes the prototyping of the new version of the Persuasion-
API algorithm based on the hypotheses validation and analysis performed in
Chapters 5 and 6 and illustrates the possible ways of bringing these results to
life by embedding them into the next version of the PersuasionAPI algorithm.

Since the first hypothesis is invalidated it gives a “no-go” to possible exten-
sions of the algorithm that aim at re-ordering sequences of the same strategies
presented consecutively.

The second hypothesis was validated and is in the implementation phase.
Since the current version of PersuasionAPI algorithm is already implemented
and tested in the prototyping environment, the next step is to embed the knowl-
edge about correlation between pairs of strategies into the algorithm and see
how it performs against the current version. There are two ways to implement
this: one is a full hierarchical model and the other one is a reasonable heuristic.

The full hierarchical model [51] measures hierarchical effects that occur “when
predictor variables are measured at more than one level” [52]. Previously hierar-
chical effects were covered by the Stein’s shrinkage estimator heuristic (equation
3.5). The full hierarchical model is computationally very demanding as com-
pared with the heuristic approach and since one of the restrictions for Persua-
sionAPI implementation is giving out the advice completely online and avoid-
ing computational complexity, implementing the full hierarchical model is not
recommended in this case. Instead, one can think of another heuristic that
can model the mutual correlation between the strategies. This section focuses
on possible heuristics that can improve the existing algorithm and embed the
proven fact of mutual correlation between strategies.

Although the exact production model and implementation require deeper re-
search, during this research several heuristics were offered to cover the mutual
correlation effect. One of the important assumptions embedded in these heuris-
tics is that the correlation between each pair of strategies remains constant over
time and, thus, can be modelled with the constant coefficients Corij . One of
the first heuristics that was tested was the one presented in equation 7.1
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p̂is =

S∑
j=1

nj
N
Corjs(BijPj + (1−Bij)pij), (7.1)

where Pj is the average probability of success over all the users for the particular
strategy j, pij is the probability of success for the user i for the particular
strategy j, Bis is the shrinkage factor introduced earlier, Corjs is the correlation
coefficient, and

nj

N is a normalization coefficient.

For a simple two-strategy case, equation 7.1 will look like this:

p̂i1 =
n1
N
Cor11(Bi1P1 + (1−Bi1)pi1) +

n2
N
Cor12(Bi2P2 + (1−Bi2)pi2), (7.2)

where Cor11 as well as any Corii are equal to 1.

However, two problems were spotted in this heuristics. Firstly, it is not prop-
erly balanced. Consider a case of two strategies with four and six observations
in total for each strategy. Assuming that both probabilities p̂is are estimated
as 1.0 and Cor12 = 0.24:

p̂i1 =
n1
N
Cor11p̂i1 +

n2
N
Cor12p̂i2 = 0.4 · 1.0 · 1.0 + 0.6 · 0.24 · 1.0 = 0.544 (7.3)

This approximation is far from the expected 1.0 and thus is poor. This
happens due to improper balancing since the chosen normalization coefficients
do not add up to 1. The proper normalization coefficients should add up to 1
and are shown in equation 7.4.

p̂is =

S∑
j=1

nj
N
· Corjs ·

1

T
(BijPj + (1−Bij)pij) (7.4)

T is the normalization sum that ensures proper normalization (see equation
7.5).

T =

S∑
j=1

nj
N
· Corjs (7.5)

Secondly, the normalized coefficients do not prioritize the observed current
strategy for which the success probability is being estimated based on some
measure of certainty. In other words, if the number of observations for strategy
x is much bigger than the same number for strategy y, then the approximation
of the success probability for client i for strategy y will be heavily biased by
strategy y regardless of the fact that there are significant data collected about
strategy x. Consider a case of two strategies with 10 and 990 observations in
total for each strategy. Assuming that p̂i1 = 0.9, p̂i2 = 0.1 and Cor12 = 0.24:
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p̂i1 =
n1
N
· 1 · 1

T
· p̂i1 +

n2
N
· 0.24 · 1

T
· p̂i2 = 0.036 + 0.096 = 0.132 (7.6)

This approximation is heavily biased toward the estimated success proba-
bility of strategy 2, although there have been significantly many interactions
within strategy 1 already.

Based on the design choices described in Chapter 3, it is reasonable to replace
a weight coefficient

nj

N with a second level shrinkage estimator, which changes
equation 7.1 to the following equation:

p̂is =

(
1− 1
√
ns

)
· 1

T
· (BisPs + (1−Bis)pis) + (7.7)

1
√
ns

S∑
j=1,j!=s

Corjs ·
1

T
· (BijPj + (1−Bij)pij)

7.4 Prototyping the improved version

The heuristics discussed above cover the method of probability estimation and
do not impact the other parts of the algorithm. Therefore, all the code that cov-
ers this method was encapsulated in the Estimation interface implementations
(see listing 7.1). The current implementation is given in listing 7.3.

Listing 7.1: Success probability estimation interface

1 package papi;

2

3 public interface Estimation {

4 public double getEstimation(Double[] currentP, Integer[] currentN,

double[] P, int[] N, int strategyID);

5 }

Listing 7.2: Current implementation of the success probability estimation

1 package papi;

2

3 public class BasicEstimation implements Estimation {

4

5 @Override

6 public double getEstimation(Double[] p, Integer[] n, double[] P, int[]

N, int strategyID) {

7 double shrinkage = 1 / Math.sqrt(n[strategyID]);

8 return(shrinkage * P[strategyID] + (1 - shrinkage) * p[strategyID]);

9 }

10 }
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Listing 7.3: The new improved implementation of the success probability esti-
mation

1 package papi;

2

3 public class CorrelationEstimation implements Estimation {

4

5 @Override

6 public double getEstimation(Double[] p, Integer[] n, double[] P,

int[] N, int strategyID) {

7 int strategiesNumber = p.length;

8 double[][]cor = {{1.0, 0.247503734044, 0.251313654705,

0.250928335387 },

9 {0.247503734044, 1.0, 0.251798737338, 0.251542743559},

10 {0.251313654705, 0.251798737338, 1.0, 0.250587845746},

11 {0.250928335387, 0.251542743559, 0.250587845746, 1.0}};

12

13 double shrinkage = 1 / Math.sqrt(n[strategyID]);

14 double shrinkage2level = 1 / Math.sqrt(N[strategyID]);

15

16 double sum = (1 - shrinkage2level);

17

18 for (int h = 0; h < strategiesNumber; h++) {

19 if (strategyID != h) {

20 sum += shrinkage2level * coef * cor[h][strategyID];

21 }

22 }

23

24 double estimatedP =

25 (1 - shrinkage2level) / sum * (shrinkage * P[strategyID] + (1 -

shrinkage) * p[strategyID]);

26

27 for (int h = 0; h < strategiesNumber; h++) {

28 if (strategyID != h) {

29 double shrinkage2 = 1 / Math.sqrt(n[h]);

30 estimatedP += shrinkage2level * coef * cor[h][strategyID] / sum

* (shrinkage2 * P[h] + (1 - shrinkage2) * p[h]);

31 }

32 }

33 return estimatedP;

34 }

35 }

7.5 Testing

After the new prototypical version of the PersuasionAPI algorithm is imple-
mented, it is time to test it against the current version. Before doing that, it
is also useful to compare both methods with other methods, such as Individual
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Mean and Grand Mean. Note that this comparison was already performed on
test data [15], but never on a large volume of historical data. For this pur-
pose, both Individual Mean and Grand Mean methods were implemented in the
prototypical Java environment described in the previous sections.

The main comparison metric is cumulative regret (see equation 7.8). In the
case of PersuasionAPI, it is simply the sum of all the differences between the
binary outcomes of playing the optimal strategy and the strategy suggested by
the algorithm:

t∑
n=1

(R(S∗)−R(S)) (7.8)

In the code, this metric is computed at each step and then stored in a list,
one entry per step (see listing 7.4).

Listing 7.4: Cumulative regret computation

1 List<Integer> cumulativeRegret = new LinkedList<Integer>();

2 for (Event e : events) {

3 [...]

4 int base = cumulativeRegret.size() > 0 ?

cumulativeRegret.get(cumulativeRegret.size() - 1) : 0;

5 cumulativeRegret.add(base + idealOutcome - outcome);

Such cumulative regret vectors were produced for the current PersuasionAPI
algorithm, Grand Mean, and Individual Mean and then plotted on the same
figure with a log scale on x axis (see Figure 7.1).

The results of this comparison repeat the outcomes described in [15]; that
is the Grand Mean performs worse than the other two methods and Persua-
sionAPI has the best performance of the three methods, until it is eventually
outperformed by the Individual Mean method, when the number of observations
grows.

During the next experiment the new improved version of the algorithm was
executed against the current one and Individual Mean and Grand Mean methods
base on the data for 8 clients. Each method was executed 10 times and then
the average performance was taken into account for each client. This data was
once again averaged across clients and is presented in Figure 7.2. It shows how
the new version of PersuasionAPI algorithm outperforms the current one on the
range (4000, 30000) and is performing virtually identical to the current version
on the range (1, 4000).

47



Figure 7.1: Comparison of the PersuasionAPI algorithm with Individual Mean
and Grand Mean
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Figure 7.2: Comparison of the PersuasionAPI algorithm with the new improved
version, Individual Mean and Grand Mean
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7.6 Complexity analysis

The new improved version of the algorithm is able to perform two types of
actions – giving an advice on which strategy to use and updating the user profile
based on the received information. For the complexity analysis it is necessary
to define the main variables: number of strategies S, number of users U and
number of interactions for a particular user till time t Iut. In terms of Big-O
notation, the time complexity of the method that gives the advice on which
strategy to use depends only on the number of strategies and has a complexity
of O(S) and, since the number of strategies is constant, the complexity is O(1).
The method that updates the profile has a complexity of O(1).

The state-of-the-art methods that were discussed earlier deliver better esti-
mations and have theoretically proven regret bounds, but this quality comes
at a price of increased computational complexity. The state-of-the-art methods
[53, 54, 55] that guarantee optimal regret bounds have polynomial and even ex-
ponential complexity and often introduce complex distributions, sampling from
which is very computationally demanding.

Strictly speaking, there is no proven theoretical guarantee of the regret bound
for the proposed algorithm as well as for the original PersuasionAPI algorithm,
and this proof is a valid follow-up research question. Nevertheless, the empirical
evidence is shown for a log-linear regret bound for the original algorithm in [15]
and the proposed improved algorithm showed a better performance during the
simulations and therefore it is reasonable to assume that the same regret bound
holds for the new improved version.

7.7 Conclusion

During the prototyping and implementation phases of the research the initial
data frame was transformed into one suitable for testing purposes and several
heuristics for the mutual correlation between strategies were suggested and crit-
ically evaluated. After that, the part of the algorithm that needed to be changed
was located and encapsulated into a separate interface. The new improved ver-
sion of the algorithm was implemented as well as the more orthodox methods
(Individual Mean and Grand Mean). After that, these methods were tested
against each other using cumulative regret as the primary performance metric.
The new version of the algorithm outperformed the current version on a wide
range of observations.
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Chapter 8

The data-driven
improvement process of
PersuasionAPI

Apart from testing two particular hypotheses and implementing the second
one into a new improved version of the PersuasionAPI algorithm, a more gen-
eral outcome was achieved as a result of the thesis, which is the tested pro-
cess of data-driven improvement of PersuasionAPI. This chapter introduces the
data-driven improvement process, followed in this research and according to the
following steps

• Getting and cleaning historical data;

• Mining the data to validate or invalidate the hypothesis being tested;

• Implementation (in the case where the hypothesis is validated);

• Testing against the previous version (both on generated and historical
data).

8.1 Getting and cleaning the data

During this step, data need to be retrieved from data storage, formatted, and
cleaned. These data should be a static snapshot of the historical data available
so that the changes that happen to the live data storage do not affect the results.
The results of this step are cleaned and pre-formatted snapshots of data ready
for mining.

For both of the hypotheses, the same basic snapshot of data was used, which
consists of the historical events that occurred within 20 experiments, one event
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per line. For the second hypothesis, a more complex data frame was built,
that contained the average success probabilities of each strategy for each user,
one user per line. The set of most up-to-date snapshots is available for future
hypotheses validation and is one of the results of this thesis.

The basic snapshot of data has already been retrieved from the production
database such that all the new data frames can be built on top of it if and when
necessary without interacting with the production environment. More than
that, a more complex data frame used in the second hypothesis is available
together with the transformation code. However, it is possible that one will
need a different data frame to check other hypotheses, in which case it is highly
suggested to use the existing base data snapshot and to reuse the existing code
to minimize the time needed for getting the data ready.

8.2 Data mining

This is the core step in hypothesis validation and is an iterative process.
After each iteration, results have to be carefully analyzed and, quite frequently,
new methods should be applied during the next iteration to either support or
invalidate the results of the previous one. This process can be significantly
different for various hypotheses.

Data mining was performed for the two hypotheses within this thesis. For
the first hypothesis, data mining was performed on both general and strategy
levels. In each case, the first two interactions were taken into consideration and
the average response rates for the first and second interactions were then com-
pared. For the second hypothesis, correlation was computed based on Pearson’s
coefficients both with the incomplete pairs data and without it (using pairwise
exclusion). Another method, namely contingency tables, was described in detail
and suggested for such classes of hypotheses.

The data mining step was completed for the two hypotheses and, since this
step is highly individual for every hypothesis, it is unlikely to have a high code
reuse for this step in future. However, Spark, together with a functional pro-
gramming, simplified and significantly sped up data mining in the case of the
second hypothesis and is suggested for cases where heavy computations with
a high parallelism coefficient are performed. Java and Python code for both
hypotheses is available on demand and represents the one of the results of this
thesis.

8.3 Prototyping and implementation

There is an environment that consists of the current version of the Persua-
sionAPI algorithm and test data generation scripts and metrics measurement
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scripts ready for tests. The improved version of the algorithm is implemented,
thereby embedding the knowledge obtained from the validation of the hypoth-
esis, and is tested against the current version and both Individual Mean and
Grand Mean methods.

The current version of the PersuasionAPI algorithm was implemented and
tested in a prototyping environment (see Appendix B). Together with the al-
gorithm, test data generation methods were implemented in R environment to
perform testing. All together, these environments serve for (1) prototyping the
improved version of the algorithm, and (2) testing it against the current version.

8.4 Testing

Testing the new version of the algorithm against the current one is the way
to check if there is any improvement and whether or not it is significant enough
to implement the new version in production. This comparison includes two
runs, in both of which algorithm’s performance is monitored for both versions.
The first run is based on the generated data in which the hypothesis is embed-
ded. This is a rather straight forward approach that helps to test whether or
not the algorithm is implemented correctly and is able to capture patterns in
data that form a hypothesis. However, the second run is required to check the
improvement on real historical data instead of artificially generated data.

There are several test data generation methods: the current version of Per-
suasionAPI algorithm, the snapshots of historical data, the performance metric
and the new improved version of the algorithm in place, which together form a
prototyping and testing environment.

Note that this process is not novel in the research field. It is common to design
an offline simulation framework and then conducted evaluations with real online
event log data [6], which is very similar to the process described above. However,
this is a valuable outcome from the business perspective as it delivers a ready
and tested process of the data-driven improvement of PersuasionAPI that is
applicable for further improvements and is accompanied by the prototyping
infrastructure.
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Chapter 9

Conclusion

This chapter presents the results of the thesis, together with the main chal-
lenges met along the way, and describes the main contributions from both the
research and the business perspective. It concludes with a discussion of the
applicability of this research in a broader sense.

9.1 Results

This section describes the results of the research, focusing on the objectives
that were set up in Section 2.4.

Objective 1

After several state-of-the-art directions of the improvement of CMAB meth-
ods were examined and critically assessed in Chapter 4, building a reinforcement
learning model was chosen as the most perspective direction as a more attractive
both from the research and the business perspective and due to its fit into the
requirements (see section 4.2.5). For this improvement direction, two hypothe-
ses were formed based on psychological and marketing sources of knowledge and
expert opinions.

Objective 2

The two hypotheses chosen for validation were the effect of repetition on user’s
response rate and the correlation between response rate for different pairs of
strategies. They were tested, and the first hypothesis was invalidated while the
second one had a strong empirical support through all the performed tests.

Objective 3

After the hypotheses were tested, the improved version of PersuasionAPI
algorithm was designed, implemented and tested.
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Firstly, the current version of PersuasionAPI algorithm was implemented in
a prototyping environment. Secondly, the proper heuristic that embedded the
knowledge gained from the second hypothesis validation was built. Thirdly,
the new improved version of the algorithm was implemented together with two
other orthodox methods (for comparison purposes). Lastly, the key testing
metric was defined and the new version of the algorithm was tested against the
current version and showed performance improvements.

Objective 4

The data-driven improvement process was designed and tested specifically for
the PersuasionAPI case. The prototyping/testing environment was developed
and tested and includes the following parts:

• Historical data snapshots together with the data retrieval scripts in Java;

• Several scripts in Spark/Python enabling fast and efficient data mining;

• Prototype of the current PersuasionAPI algorithm that allows rapid de-
velopment and improvement (as opposed to the production code);

• Prototype of the new improved version of the PersuasionAPI algorithm;

• Testing environment including the performance metric, the two other
methods to compare with and the testing metric monitoring functionality.

Challenges

There were several challenges along the way worth mentioning as they can
give a more complete picture of the research process described in this thesis.

One of the characteristics of this research was the large amount of historical
data available, which at some point forced both the methods and the tools of
the research to be changed.

Regarding the methods, one of the more complex steps was the interpretation
of the hypotheses testing results. For the first hypothesis, a general significance
test was applied to understand whether or not the difference between the in-
creases of the response rate was significant. Although this test showed that the
difference was significant, it was clear that from the business perspective that
such an incremental change is not worth improving the algorithm. The answer
given in [46] explains that in the case of a large number of observations (nowa-
days referred to as “big data”), traditional methods like significance testing do
not work, as they perceive virtually any variables that are not equal as signifi-
cantly different. When the same method was applied at the individual strategy
level, it showed that the decrease is also not stable, making it very hard to draw
patterns from the historical data.
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Traditional tools, such as R language, in some cases were not able to handle
the amount of data and computations. For instance, data mining for the second
hypothesis was extremely slow when implemented in R and the technology stack
was changed to Spark and Python in its functional programming variant.

When it came to implementing the core PersuasionAPI algorithm, its pro-
duction implementation lacked comments and structure and was far from self-
explanatory. It was risky to try to port of the algorithm into a prototyping
environment without a proper understanding of what was going on. At some
point, it was decided to understand all the design choices of the PersuasionAPI
algorithm and then implement the algorithm from scratch.

9.2 Contributions

9.2.1 Research side

The main high-level research result is the fact that in the case of Persuasion-
API there are some static factors that affect users response rates and embed-
ding some of them into the algorithm (more formally – building a reinforcement
learning model) is beneficial and rises the quality of PersuasionAPI profiling,
meaning the increased response rates.

This result is backed up by the strong empirical evidence for the second hy-
pothesis and by the initial performance benchmark of the new version of the
algorithm that clearly shows the potential of the new improved version of the
algorithm. There are certain static patterns in user behavior, one of which is
that their responses to different persuasive strategies are not completely inde-
pendent, which means that embedding these patterns and therefore building a
reinforcement learning model instead of starting every experiment from scratch
is the primary suggested direction for the improvement of the algorithm. For
instance, in this research the correlation coefficients between the success prob-
abilities of each pair of strategies were computed and later embedded into a
static reinforcement learning model of the new version of the PersuasionAPI.

9.2.2 Business side

There are two results of the thesis that are the most valuable for the business
side:

1. The prototype of the new version of the algorithm with a better perfor-
mance, which is a very practical and applicable result.

2. The data-driven improvement process together with the prototyping en-
vironment that were designed and built during this thesis. This two ele-
ments are not novel in terms of the research world, but for the company
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they structure and significantly simplify further activities on improving
the PersuasionAPI algorithm.

9.3 Discussion

9.3.1 Webpower company

From company perspective, this thesis in a broader sense is applicable to
the whole process of the PersuasionAPI core CMAB algorithm improvement. It
contains a precise description of practical steps that need to be taken in order to
further improve the PesuasionAPI algorithm and the prototyping environment
that introduces a quick and cheap way to test and select the most promising
hypotheses for the PersuasionAPI core algorithm improvement. Note that the
prototyping environment and the process description is already available to the
data team.

9.3.2 Research body

The outcomes of the thesis have a broader area of application than just a
particular PersuasionAPI case. This section discusses the applicability of this
thesis to the CMAB research body.

The novel part of this thesis is the improvement of a CMAB algorithm by
building a reinforcement learning model under two constraints that are un-
derpinned by the requirements, namely persuasion on an individual level and
fully online processing. In this thesis a CMAB algorithm was improved by em-
bedding a reinforcement learning model that contains the correlation data yet
maintaining a constant O(1) time complexity for CMAB getAdvice and learn-
Event methods. The state-of-the-art methods deliver better estimations and
have theoretically proven regret bounds, but this quality comes at a price of
increased computational complexity. The state-of-the-art methods [53, 54, 55]
that guarantee optimal regret bounds have polynomial and even exponential
complexity and often introduce complex distributions, sampling from which is
very computationally demanding. Other methods that group users into clusters
have at least linear complexity O(N) [5, 6] and do not facilitate persuasion on
an individual level.

The heuristic introduced in Section 7.3 uses the information about the cor-
relations between different arms of a CMAB together with the Spark code that
efficiently computes the correlation coefficients can be reused in more or less any
CMAB problem setting as long as (1) the number of arms is relatively small
and (2) there is at least some correlation between pairs of arms. This setting is
most commonly seen in but not limited to persuasion profiling.

58



Another high-level outcome that contributes to the research body of social
science is the empirical support of the hypothesis about the need for cognition
applied to the persuasion techniques [47, 48], which in short states that people
with low need for cognition will be more vulnerable to any persuasive message
(see Section 6.1). This research shows strong empirical support for this hy-
pothesis and describes a promising way of improving virtually any persuasion
profiling approach by considering this fact.
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A Detailed statistics of the experiments included
into the historical data set

Interactions Users Interactions per user
21766199 741876 29.34
788834 261188 3.02
6749 358 18.85
5184774 711098 7.29
71588 51562 1.39
40437 33566 1.20
14828355 408974 36.26
344208 127989 2.69
134883 71889 1.88
1120619 249346 4.49
16787 2775 6.05
86430 57932 1.49
686485 251718 2.73
44776 17189 2.60
167491 44740 3.74
94826 74648 1.27
13732138 603027 22.77
13274340 2811189 4.72
31795 19114 1.66
9496780 173677 54.68

Table 1: Total numbers of users and interactions for 20 clients included into the
historical data set
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B PersuasionAPI core algorithm prototype im-
plementation

Listing 1: PersuasionAPI core algorithm implementation in R

1 package papi;

2

3 import java.io.BufferedReader;

4 import java.io.FileReader;

5 import java.io.FileWriter;

6 import java.io.IOException;

7 import java.util.HashMap;

8 import java.util.LinkedList;

9 import java.util.List;

10 import java.util.Map;

11

12 import org.apache.commons.math3.distribution.BetaDistribution;

13

14 public class Papi {

15

16 /**

17 * Number of strategies used in the dataset

18 */

19 private int strategiesNumber;

20

21 /**

22 * An interface that represents the estimation method used

23 */

24 private Estimation estimationMethod;

25

26 public Papi(Estimation method, int strategiesNumber) {

27 this.estimationMethod = method;

28 this.strategiesNumber = strategiesNumber;

29 }

30

31 /**

32 * @author vladimir Stores an interaction event, one per line in a

dataset

33 */

34 public static class Event {

35

36 /**

37 * User’s identifier

38 */

39 private String id;

40

41 /**

42 * Average success probabilities for each strategy (not known),

counted previously based on the
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43 * historical "random" data

44 */

45 private double[] probabilities;

46

47 /**

48 * Draws from the Bernoulli distributions of probabilities (embedded

into the dataset to make

49 * sure

50 */

51 private boolean[] outcomes;

52

53 /**

54 * Index of the optimal strategy (not known)

55 */

56 private int indexBest;

57

58 /**

59 * Number of strategies used in the particular event (note that this

number should be always

60 * equal to the number of strategies of the whole dataset, this is

taken care of during the

61 * dataset generation)

62 */

63 private static int strategiesNumber = 0;

64

65 public Event(String rawStr) {

66

67 // Parsing raw String into an object

68 String[] elements = rawStr.split(",");

69 strategiesNumber = (elements.length - 2) / 2;

70

71 probabilities = new double[strategiesNumber];

72 outcomes = new boolean[strategiesNumber];

73

74 id = elements[0];

75

76 for (int i = 0; i < strategiesNumber; i++) {

77 probabilities[i] = Double.valueOf(elements[i + 1]);

78 outcomes[i] = elements[strategiesNumber + i + 1].equals("0") ?

false : true;

79 }

80

81 indexBest = Integer.valueOf(elements[strategiesNumber * 2 + 1]);

82 }

83 }

84

85 public List<Integer> sequentialProcessing(List<Event> events) throws

IOException {

86 strategiesNumber = Event.strategiesNumber == 0 ? 4 :

Event.strategiesNumber;
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87 double[] P = new double[strategiesNumber];

88 int[] N = new int[strategiesNumber];

89

90 for (int i = 0; i < strategiesNumber; i++) {

91 P[i] = 0.5;

92 N[i] = 2;

93 }

94

95 // A list that stores cumulative regret for each point in time

(discrete)

96 List<Integer> cumulativeRegret = new LinkedList<Integer>();

97

98 Map<String, Double[]> p = new HashMap<String, Double[]>();

99 Map<String, Integer[]> n = new HashMap<String, Integer[]>();

100

101 for (Event e : events) {

102

103 // Initialization of individual level N and P in case no

observations were processed so far

104 // for this user id

105 if (!p.containsKey(e.id)) {

106 Integer[] initialN = new Integer[strategiesNumber];

107 Double[] initialP = new Double[strategiesNumber];

108 for (int i = 0; i < strategiesNumber; i++) {

109 initialP[i] = P[i];

110 initialN[i] = 2;

111 }

112

113 p.put(e.id, initialP);

114 n.put(e.id, initialN);

115 }

116

117 Double[] currentP = p.get(e.id);

118 Integer[] currentN = n.get(e.id);

119

120 int winningIndex = -1;

121 double winningValue = -1;

122

123 // Thompson sampling

124 for (int i = 0; i < strategiesNumber; i++) {

125

126 // Getting the estimation of P (delegated to the Estimation

interface implementation)

127 double estimatedP = estimationMethod.getEstimation(currentP,

currentN, P, N, i);

128

129 double alpha = estimatedP * currentN[i];

130 double beta = (1 - estimatedP) * currentN[i];

131

132 BetaDistribution distr = new BetaDistribution(alpha, beta);
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133 double sample = distr.sample();

134

135 if (sample > winningValue) {

136 winningIndex = i;

137 winningValue = sample;

138 }

139 }

140

141 int outcome = e.outcomes[winningIndex] ? 1 : 0;

142 int idealOutcome = e.outcomes[e.indexBest] ? 1 : 0;

143

144 // Updating the number of observations (both overall and

individual)

145 currentN[winningIndex]++;

146 N[winningIndex]++;

147

148 // Updating the probability (both overall and individual)

149 currentP[winningIndex] += (outcome - currentP[winningIndex]) /

currentN[winningIndex];

150 P[winningIndex] += (outcome - P[winningIndex]) / N[winningIndex];

151

152 // Computing the cumulative regret metrics

153 int base =

154 cumulativeRegret.size() > 0 ?

cumulativeRegret.get(cumulativeRegret.size() - 1) : 0;

155 cumulativeRegret.add(base + idealOutcome - outcome);

156 }

157

158 FileWriter writer = new FileWriter("cumRegretPapi.csv");

159

160 for (int X : cumulativeRegret) {

161 writer.append(X + "\n");

162 }

163

164 writer.flush();

165 writer.close();

166

167 return cumulativeRegret;

168 }

169

170 // An example on how sequential processing should be initiated

171 public static void main(String[] args) throws IOException {

172 List<Event> events = new LinkedList<Event>();

173

174 String csvFile = "{INPUT_PATH}/algo-dataset.txt";

175 BufferedReader br = null;

176 String line = "";

177

178 br = new BufferedReader(new FileReader(csvFile));

179 while ((line = br.readLine()) != null) {
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180 events.add(new Event(line));

181 }

182 br.close();

183

184 Papi papi = new Papi(new BasicEstimation(), 4);

185

186 papi.sequentialProcessing(events);

187 }

188 }
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C Correlation check implementation

Listing 2: Correlation check implemented in Spark and Python

1 from pyspark import SparkContext

2 import math

3 from pyspark.mllib.stat import Statistics

4

5 logFile = "{PATH_TO_LOGS}/randomUsers.csv"

6 sc = SparkContext("local[*]", "Correlation")

7 logData = sc.textFile(logFile).repartition(8)

8

9 print(logData.count())

10

11 # simple and straight-forward conversion

12 def func(a):

13 if(a == "true"):

14 return(1.0)

15 else:

16 return(0.0)

17

18 # A function to fulfill the probabilities that were not counted

19 def simplify(y):

20 probabilities = 5*[-1.0]

21 for i in range(0, 4):

22 found = False

23 for entry in y:

24 if int(entry[0]) == i:

25 probabilities[i] = float(entry[1])

26 found = True

27

28 return probabilities

29

30 def getFakeKey(v, var1, var2):

31 if cmp(v[var1], -1.0) == 0 or cmp(v[var2], -1.0) == 0:

32 return 0

33 else:

34 return 1

35

36

37 def countCorrelationScore(data, var1, var2):

38 # counting the number of records - straight forward transformation

into (0, 1) key-value pairs,

39 # then reducing by 0 key

40 data = data.filter(lambda (k, v): getFakeKey(v, var1, var2) == 1)

41

42 n = data.map(lambda x: (0, 1)).reduceByKey(lambda a, b: a +

b).first()[1]
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43 sum1 = data.map(lambda (k, v): (1, v[var1])).reduceByKey(lambda a,

b: a + b).first()[1]

44 sum2 = data.map(lambda (k, v): (1, v[var2])).reduceByKey(lambda a,

b: a + b).first()[1]

45 pow1 = data.map(lambda (k, v): (1, math.pow(v[var1],

2))).reduceByKey(lambda a, b: a + b).first()[1]

46 pow2 = data.map(lambda (k, v): (1, math.pow(v[var2],

2))).reduceByKey(lambda a, b: a + b).first()[1]

47

48 multi = data.map(lambda (k, v): (1, v[var1] *

v[var2])).reduceByKey(lambda a, b: a + b).first()[1]

49

50 res = (n*multi - sum1*sum2)/(math.sqrt(n*pow1 - math.pow(sum1,

2))*math.sqrt(n*pow2 - math.pow(sum2, 2)))

51 return res

52

53 base = logData.map(lambda x : x.split(’,’)).map(lambda x : (x[0] + ’,’ +

x[2], x[1])).cache()

54

55 # number of successes per user per strategy

56 part1 = base.map(lambda (k, a): (k, func(a))).reduceByKey(lambda a, b: a

+ b).cache()

57

58 # number of events stored per user per strategy

59 part2 = base.map(lambda (k, a): (k, 1)).reduceByKey(lambda a, b: a +

b).cache()

60

61 part3 = part1.join(part2).map(lambda (k, (a,b)): (k, a/b)).map(lambda

(k, a) : (k.split(",")[0], (k.split(",")[1], a)))\

62 .groupByKey().map(lambda x : (x[0], sorted(list(x[1])))).map(lambda

(x, y): (x, simplify(y))).cache()

63 part3.repartition(1).saveAsTextFile("{OUTPUT_PATH}/output.txt")

64 part3 = part3.filter(lambda (k, v): getFakeKey(v, i, j) == 1)

65

66 f = open(’correlation’, ’w’)

67

68 for i in range(0, 4):

69 for j in range(0, 4):

70 #MLib implementation

71 f.write(str(Statistics.corr(part3.map(lambda (k, v) : v[i]),

part3.map(lambda (k, v) : v[j]), method="pearson")))

72

73 #Custom-made method

74 #f.write(str(countCorrelationScore(part3, i, j)) + " ")

75 f.write("\n")

76 f.close()
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