
 Eindhoven University of Technology

MASTER

Instantiation of parameterised Boolean equation systems

van Dam, A.

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. Jun. 2025

https://research.tue.nl/en/studentTheses/4fca564b-e743-4ebf-98d7-f73ad8a5a56a

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

Instantiation of Parameterised
Boolean Equation Systems

by
A. van Dam

Supervisors

Dr. Ir. T.A.C. Willemse
Prof. Dr. Ir. J.F. Groote

August 2007, Eindhoven

Abstract

In the field of model checking, several techniques are researched on verifying properties on sys-
tems. Some of those techniques are used in the mCRL2-toolset . Using the mCRL2-toolset it is
possible to specify and analyse systems. In this thesis we will discuss research which is conducted
on techniques to instantiate parameterised boolean equation systems (PBESs), which are part of
the mCRL2-toolset .

PBESs are used to represent a specification of a system combined with a given property one
wants to check on that system. Using symbolic approximation techniques they can be solved in
some cases, but using this technique will often not lead to a solution for the PBES. Because PBESs
use data in their specification, it is possible to instantiate this data in PBESs. We have developed
two techniques to instantiate PBESs.

The first technique, called the finite approach, reduces the complexity of a PBES by instantiat-
ing all finite data types of the predicate variables. On the resulting PBES symbolic approximation
techniques can be applied, which can lead to a solution while the original PBES could not be solved
using those techniques.

The second technique is the lazy approach, which assumes that the PBES has to be solved in
the initial state. It takes the initial state of a PBES and only computes those equations needed
to solve the PBES in the initial state. This approach leads to a boolean equation system (BES),
which can be solved using BES-solving techniques like gauß elimination.

We have conducted case studies on the alternating bit protocol and Lamport’s bakery protocol,
which shows the differences between the two approaches.

Contents

1 Introduction 3
1.1 Related work . 4
1.2 Overview of this thesis . 4

2 Data 5

3 mCRL2 6
3.1 Concepts . 7

4 Parameterised boolean equation systems 10
4.1 Boolean equation systems . 12

5 Instantiation of parameterised boolean equation systems 13
5.1 Researched approaches . 13

5.1.1 Finite approach . 14
5.1.2 Lazy approach . 14
5.1.3 Names of new predicate variables . 15

5.2 Finite approach: Compute an equation for each instantiation 15
5.3 Lazy approach: Only compute needed equations 18
5.4 Implementation . 21
5.5 Optimisations . 23

6 Case studies 25
6.1 Alternating bit protocol . 25
6.2 Lamport’s bakery protocol . 31

7 Conclusions 35
7.1 Future work . 36

A Formats 39
A.1 Internal format of PBESs . 39
A.2 CWI format of a BES . 41
A.3 CADP format of a BES . 43

B Tools 46
B.1 Pbesinfo . 46
B.2 Pbes2bes . 47

C Example lazy approach 48

1

D PBESs of alternating bit protocol and Lamport’s bakery protocol 51
D.1 ABP1 . 51
D.2 ABP2 . 53
D.3 ABP3 . 55
D.4 ABP4 . 58
D.5 BAK1 . 60
D.6 BAK2 . 62
D.7 BAK3 . 65
D.8 BAK4 . 69

2

Chapter 1

Introduction

Model checking is a technique for verifying properties of concurrent systems (systems in which
processes can communicate with each other). The properties are often described by means of an
expression in a temporal logic. The system itself is represented using a specification language like
mCRL2. The verification concludes with a positive result if the property holds on the system and
a negative result (with in some cases an error trace) if the property does not hold on the system.
Ideally the verification process is done automatically, but a lot of verifications are not yet possible
with the existing tools, for example because the state space of systems can be of infinite size.

In the last decade the research on model checking has led to several techniques for model
checking. These techniques are used to reduce state spaces of systems or represent those state
spaces more compact. Some examples of such model checking techniques are:
- Symbolic model checking; e.g. the use of symbolic approximation techniques [GrW05a] and
binary decision diagrams (BDDs, [McM92]).
- Partial order reduction; reduces systems by removing paths to states, if those states can be
reached by executing the same steps in a different order.
- Abstraction; simplifying the state space of a system by removing those parts of that system
which are not of interest for the property which is verified.

Several toolsets have been developed (and are still under development) to make verifying prop-
erties on systems using model checking easier. Examples of those toolsets are the mCRL2-toolset
[MCRL2], developed at the Eindhoven University of Technology (TU/e) and the CADP-toolset
[CADP], developed at the French National Institute for Research in Computer Science and Control
(INRIA). The research in this thesis is based on the mCRL2-toolset.

The mCRL2-toolset uses the mCRL2 specification language, which is a process algebra with data
and timing. With this language concurrent systems can be specified using a data specification
and a process specification. Using the tools of the toolset, a specification of a system can be
transformed to a basic form called linear process specification (LPS). An LPS can be manipulated
to simplify the LPS, a labelled transition system (LTS) can be generated out of that LPS and the
LPS is the basis of a translation to a parameterised boolean equation system (PBES).

The state space of an LPS is often of infinite size. To verify properties on that infinite state
space, PBESs [GrW05] are used, which are the result of combining a specification of a system
(represented by an LPS) with a property (represented by a formula in the first order modal
µ-calculus [GrW05a]). PBESs are therefore an important part of model checking in the mCRL2-
toolset. For instance, answering the question if a property holds on the system, can be done by
computing the solution of a PBES.

3

Techniques to solve subsets of PBESs are available. However, there is a need for techniques
to solve more PBESs. Instantiation of PBESs is a step towards solving a subset of PBESs.
By instantiating PBESs it is possible to reduce the complexity of PBESs, eventually leading to
boolean equation systems (BESs, [Mad97]), which can be solved using BES-solvers. In this thesis
we discuss techniques to instantiate PBESs. The discussed techniques are implemented in the tool
pbes2bes.

1.1 Related work

The µCRL-toolset [MCRL], the predecessor of the mCRL2-toolset, contains a tool mucheck
which can solve a subset of PBESs using symbolic approximation techniques [GrW05a]. To use
symbolic approximation techniques in the mCRL2-toolset a tool pbesssolve, based on the tool
mucheck, is currently implemented. Using the techniques defined in this thesis, it is possible to
increase the performance of symbolic approximation techniques, because the PBESs which have
to be solved are reduced in complexity.

In the CADP-toolset [CADP], there are tools available which create a BES out of an LTS and
a property in terms of a temporal logic formula. Because an LTS is needed to create a BES, it
is not possible to consider systems with in infinite state space. The toolset also contains a BES-
solver which can solve alternation-free BESs [Mat03]. Because only alternation-free BESs can be
solved, the complexity of the temporal formulae which can be checked are restricted. Also, a lot
of BESs which are created using the techniques we define in this thesis will not be solvable with
the BES-solver in the CADP-toolset.

The concurrency workbench [CPS93] supports several verification methods, including verifica-
tion using tableau-based methods on a modal logic based on the propositional (modal) µ-calculus
[Koz83]. Specifications of systems are written in this logic and the workbench can automatically
check those specifications.

1.2 Overview of this thesis

As data is an important part of PBESs, we discuss the way data is used in PBESs in Chapter 2.
The tools are implemented for the mCRL2-toolset. Chapter 3 gives an overview of the toolset.
To be able to instantiate PBESs, we need to define what PBESs are. This is done in Chapter 4.
In Chapter 5, we define two instantiation techniques. The first technique is the finite approach,
which instantiates all finite data types in the PBES. This approach will always terminate, because
infinite data types are not dealt with. The result of the finite approach is a PBES. The finite
approach is discussed in Section 5.2. The second approach is the lazy approach, which assumes
a PBES has to be solved in the initial state. Therefore the result will be a BES with only those
equations the initial state depends on. The lazy approach is discussed in Section 5.3
We implemented those techniques in the tool pbes2bes. We discuss issues which arose during the
implementation in Section 5.4. Examples of those issues are the existence of free data variables
(data variables for which it is not important what value is instantiated for that data variable) in
PBESs and the fact that no rewriter for predicate formulae was available.
In Section 5.5 we describe a number of possible optimisations, which can increase the performance
of the tool and further decrease the complexity of the resulting PBESs and BESs.
We conducted case studies on a number of properties on the alternating bit protocol and Lamport’s
bakery protocol, which we will discuss in Chapter 6.
In Chapter 7, we state a number of conclusions on the research and we identify future work.

4

Chapter 2

Data

Data is an important part of many systems. Any system which must be able to exchange infor-
mation uses data. An example of such systems are communication protocols like the alternating
bit protocol [BaW90]. To be able to describe systems which use data, in the mCRL2 specification
language, systems can be specified with data, which makes it possible to verify data-dependent
systems. PBESs, which are part of the mCRL2-toolset, also use data in their definitions. In this
chapter we give a short overview of the concepts of data which are used in this thesis.

Data is treated in an abstract way. We assume that there are non-empty data sorts, which are
generally written using letters D, E, F, but also includes the sort B, which is the sort over the
boolean values, containing > and ⊥, which represent true and false respectively.

Data sorts consist of zero or more data constructors, which are the basic elements of a data
sort. A data sort is called finite if all the data constructors of that data sort are finite. A data
constructor is finite if it is a constant with the same type as the data sort it defines (like ⊥ and >
for booleans), or a function containing only finite data sorts in its domain.
A data sort is called countable (or denumerable) if there is a mapping from the data sort to the
natural numbers (e.g. the elements in the set can be counted). Examples of countable data sorts
are N (natural numbers) and Z (integers). An example of a data sort which is not countable is R
(real numbers).

A data term is an element which can be built from the constructors of and functions over a
specific data sort. We assume that there is a set D of data variables, with elements d, d1, . . . and
a data language that is sufficiently rich to denote all relevant data terms, for instance 3+d1 ≥ d2.
If a data term is of a form where only the data constructors are used to represent that data term,
we will call this a data element or value in some cases.

A closed data term is a data term which can be rewritten to a data element. For a closed data
term e, we assume there is an interpretation function JeK, that maps e to the data element it
represents.

An open data term is a data term which can not be rewritten to a data element. An example
term is the data term n+1 of data sort N, where n is a data variable of the data sort N. For open
data terms a data environment ε : D → E is needed, that maps each variable from D to a data
value (a specific data term of a data sort) of the correct data sort (E). The interpretation of an
open data term e of data sort B, denoted as JeKε is given by Jε(e)K, where ε is extended to data
terms in the standard way.

5

Chapter 3

mCRL2

The tools which are written during the research described in this thesis, are part of the mCRL2-
toolset [MCRL2]. This toolset is the successor of the µCRL-toolset [GrP94, GrR01]. With the
mCRL2-toolset it is possible to specify systems with data and timing using the mCRL2 specifi-
cation language [GMP06, GMR07], which is based on the Algebra of Communicating Processes
(ACP) [BaW90]. Using the toolset it is possible to transform the specification into other concep-
tual formats as well as manipulate the specification in several ways. An overview of the toolset is
given in figure 3.1.

Figure 3.1: Overview of the mCRL2 toolset

This thesis is about the implementation of the BES-generator, using PBESs and BESs, as we
have marked in the above figure.

6

3.1 Concepts

In this section we will briefly describe the concepts of the mCRL2-toolset.

Specification

The specification describes the behavior of a system in terms of a data specification and a process
specification. In this thesis only specifications without time are considered.

Data Specification Data is an important aspect of many systems. Every system capable
of exchanging information with its environment uses data. Abstracting from the data is often
undesirable. Therefore in mCRL2 a system can be specified including the data it depends on. The
data specification is based on higher-order abstract data types.

A new data type can be declared using the keyword sort. To specify the domain of the sort,
constructors (cons) are used. Functions over the sorts are declared using map. These maps are
defined using equations (eqn), which can use variables (var), denoting arbitrary elements of the
sort.

Example 3.1. The following data specification specifies a sort D, with constructors d1 and d2
and a map inverse. The inverse of d1 is d2 and vice versa.

sort D;
cons d1, d2 : D;
map inverse : D → D;
var d : D;
eqn inverse(d1) = d2;

inverse(d2) = d1;
inverse(inverse(d)) = d;

Besides the user defined data types, there are a number of concrete data types. These concrete
data types consist of standard data types and functions and type constructors. The standard data
types contain positive (N+), natural (N), integer (Z) and real (R) numbers, with a number of
relations and operators on these numbers, such as: <, ≤, ≥, >, -, +, *, div and mod. Also, there
is a data type which represents the booleans (B), with the constants true and false, and operators
∧, ∨, ⇒ and ¬. For all data types, operators denoting equality and inequality are available as
well as an if-then-else function.
Type constructors are used in the declaration of lists, sets and bags containing elements of any sort
(both user defined or predefined). A list of booleans for instance, is defined as List(Bool) and has
constructors [] : List(Bool) (representing the empty list) and B: Bool→ List(Bool) → List(Bool)
(representing a non-empty list). An example of a predefined function over lists is the concatenation
(++), which takes two lists and puts all elements of the second list recursively at the end of the
first list.

Process specification The process specification defines the communicating processes of the
system and an initial state. The behavior of each process is defined by recursive definitions. The
basic elements of such definitions are actions (representing an atomic event) and deadlock (denoted
by δ). These basic elements can be composed to process expressions by sequential composition
and alternative composition. When using sequential composition of p and q (denoted p.q), the
process first executes p and when p is finished it executes q. Alternative composition of p and q
(denoted p+q), chooses non-deterministically between execution of either p or q.

7

Example 3.2. Extending example 3.1 we can add a process P , with data parameter d of sort D,
which executes an action a followed by P with the inverse of d or it executes an action b, followed
by P with d. As initial state we choose P (d1):

act a, b;
proc P (d:D) = a.P (inverse(d)) + b.P (d);
init P (d1);

Processes can be combined using parallel composition (‖) and left merge (T). Parallel composi-
tion p‖q is the interleaving and synchronisation of the actions of p with those of q. The left merge
pTq executes the first action of p, followed by the parallel composition of the remainder of p and
q. It is also possible to define multi-actions (|), which is a bag of actions which are executed at
the same time; a|b executes actions a and b at the same time.

Linear Process Specification

Because a general specification is not suitable for manipulation, and a transition system generated
out of that specification can be of infinite size, an mCRL2-specification is transformed to a linear
process specification (LPS). The behavior of the system in the mCRL2-specification is preserved
in the LPS.
In the data specification of an LPS both the user defined data, as well as the concrete data types
needed for the process specification are present. The process specification in the LPS is of a form
which is usable for further manipulation. These manipulators can simplify an LPS in some cases.

Example 3.3. Using the previous example of the data specification 3.1 and process specification
3.2, an LPS can be generated. This LPS contains all definitions for all sorts, constructors, maps
and equations needed for the process specification. The linear process specification is as follows:

act a, b;
proc P (d:D) = true→ a.P (inverse(d))

+ true→ b.P (d);
init P (d1);

Labelled Transition System

From an LPS a labelled transition system (LTS) can be generated. The LTS contains the behavior
of the model as a statespace. With visualisers such as ltsview or ltsgraph the LTS can be visualised.

µ-Calculus formula

A µ-calculus formula represents a specific property of a system. The grammar of a first order
µ-calculus formula ϕ is the following:

ϕ ::= c | true | false | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ∀d:D.ϕ | ∃d:D.ϕ |
〈α〉ϕ | [α]ϕ | X(e) | (µX(d:D).ϕ)(e) | (νX(d:D).ϕ)(e)

Where c is a boolean expression, e is an arbitrary data term, D is a possibly empty set of data
types and α is an arbitrary action formula which is defined by the following grammar:

α ::= a(e) | > | ⊥ | ¬α | α ∧ α | α ∨ α | ∃d:D.α | ∀d:D.α

The semantics of the first order µ-calculus and action fomulae is described in [GrW05a].
A typical example of a µ-calculus formula is νX.〈true〉true∧[true]X, which represents the property
that a system is deadlock free (after an arbitrary number of steps, there is always another step
possible).

8

Parameterised Boolean Equation System

A PBES is generated when an LPS and a µ-calculus formula are combined. In Chapter 4, PBESs
are more thoroughly described.

Example 3.4. The resulting PBES after combining the LPS of example 3.3 and the property
which describes the absence of deadlocks in the system is the following:
ν X(d:D) = (¬ true∨X(inverse(d))∧ (¬ true∨X(d))∧ (true∨ true), which can be rewritten
to:
ν X(d:D) = X(inverse(d)) ∧X(d)

9

Chapter 4

Parameterised boolean equation
systems

PBESs [GrW05] or First order BESs are a special case of fixpoint equation systems [Mad97]
and first appeared in [GrM99]. A PBES is a sequence of fixpoint equations (which we will call
parameterised boolean equation or equation in this thesis), where each fixpoint equation has the
form σX(d1:D1, . . . , dn:Dn) = ϕ, where σ is either µ denoting a minimal fixpoint or ν denoting a
maximal fixpoint.

Each parameterised boolean equation has at its left hand side a predicate variable X ∈ X (where
X is the set of all predicate variables) which binds zero or more data variables d1, . . . , dn. The
signature of X is D1 × . . .×Dn → B. For simplicity, the sequence of data variables will often be
denoted as d:D in the theoretical considerations. A predicate variable with an instantiation for
the sorts of the signature of that predicate variable is called a predicate variable instantiation. For
example, X(3) is a predicate variable instantiation of predicate variable X(n:N).

The right hand side of a parameterised boolean equation is a predicate formula, denoted by
ϕ. It contains data terms, boolean connectives, predicate variables and quantifiers over (possible
infinite) data domains and data. Such predicate formulae are defined by the following grammar:

ϕ ::= b | > | ⊥ | X(e) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀ d:D.ϕ | ∃ d:D.ϕ

Where b is a data term of data sort B, > and ⊥ are elements of data sort B, X is a predicate
variable, e is a data term and d is a data variable of sort D.

Predicate formulae are interpreted in a context of a data environment ε and a predicate envi-
ronment η : X → (D → B). For an arbitrary environment θ (denoting ε or η), we write θ[d := v]
for the environment θ in which variable d is assigned the value v and all other variables remain
unchanged. For a predicate formula ϕ, a data environment ε and a predicate environment η,
ϕ(ηε) denotes the formula ϕ where all free predicate variables X are valued η(X) and all free data
variables d are valued ε(d).

10

Definition 4.1. Semantics of predicate formulae
Let ε be a data environment and η be a predicate environment. The interpretation JϕKηε maps a
predicate formula ϕ to true or false, and is inductively defined as follows:

J>Kηε def= true

J⊥Kηε def= false

JbKηε def= JbKε

JX(e)Kηε def= η(X)(JeKε)

Jϕ1 ∧ ϕ2Kηε
def= Jϕ1Kηε and Jϕ2Kηε

Jϕ1 ∨ ϕ2Kηε
def= Jϕ1Kηε or Jϕ2Kηε

J∀d:D.ϕKηε def=

{
true if for all v ∈ D it holds that JϕKη(ε[d := v])
false otherwise

J∃d:D.ϕKηε def=

{
true if exists v ∈ D it holds that JϕKη(ε[d := v])
false otherwise

The notion of the right hand side and left hand side as described above, leads to the following
definition of a PBES.

Definition 4.2. PBES
A PBES is inductively defined as follows:

• ε is a PBES, namely the empty PBES.

• If E is a PBES, then (σX(d:D) = ϕ)E is a PBES.

In the internal format (see appendix A) used in the mCRL2-toolset , a PBES is represented as
follows:

• Data specification (see section 3.1): Contains all data definitions, which occur in the PBES.

• Equation system: A list of parameterised boolean equations, which represents the equations
of the PBES.

• Initial state: To solve a PBES, besides the PBES itself also an initial state is given, which
is derived from the initial state of the specification of the system. This initial state is
the predicate variable instantiation for which the PBES must be solved. The initial state,
denoted by X(dinit), is one of the predicate variable instantiations in the set of all possible
predicate variable instantiations in the PBES:X(dinit) ∈ {X(d)|X ∈ X∧d ∈ signature(X)},
where signature(X) is the set of all possible instantiations for the data variables in X.

The set of predicate variables at the left hand side of the parameterised boolean equations in a
PBES E, denoted by lhs(E), is defined as lhs(ε) def= ∅ and lhs((σX(d:D) = ϕ)E) def= lhs(E) ∪ {X}.
All predicate variables which occur at the right hand sides of the parameterised boolean equations
in a PBES E are collected in the set rhs(E). The set of free predicate variables in a PBES E is
defined as follows: free(E) = rhs(E)\lhs(E).

In this thesis we only consider closed and well-formed PBESs. A PBES E is closed if all predicate
variables which occur in the right hand side can also be found at the left hand side. Thus: E is
closed if free(E) = ∅. PBES E is well-formed if all predicate variables on the left hand side are
unique.

11

To show basic information on PBESs a tool pbesinfo is implemented in the mCRL2-toolset, which
displays if a PBES is well-formed and closed, the number of parameterised boolean equations, the
number of µ’s, the number of ν’s and the predicate variables with their signature. The tool is
described further in appendix B.1.

When a PBES is computed with timing, in every right hand side of a parameterised boolean
equation a quantifier-expression over the real numbers is present, which in many cases can not be
eliminated. Therefore, if a PBES is timed, it will hardly ever be instantiated to a BES, but it
will be instantiated to a (possibly simplified) PBES. If real-time aspects are not important in a
system, it is possible to create PBESs without timing, so they could be instantiated to BESs. In
this thesis we only consider untimed PBESs.

A parameterised boolean equation σX(d:D)=ϕ is solved if ϕ does not contain predicate vari-
ables. Likewise, a PBES E is solved if all its parameterised boolean equations are solved. A PBES
is solved in X if the predicate variable X does not occur in any right hand side of E. The solution
of a PBES E in the context of a predicate environment η and a data environment ε is inductively
defined as follows, see definition 2.3 of [GrW05]:

Definition 4.3. Solution of a PBES

[ε]ηε def= η

[(σX(d:D) = ϕ)E]ηε def= [E](η[X := σX(d:D).ϕ([E]ηε)])ε

Where σX(d:D).ϕ([E]ηε) is defined as:

µX(d:D).ϕ([E]ηε) def=
∧
{ψ:D → B | λv ∈ D.JϕK([E]η[X := ψ]ε)ε[d := v] v ψ}

νX(d:D).ϕ([E]ηε) def=
∨
{ψ:D → B | ψ v λv ∈ D.JϕK([E]η[X := ψ]ε)ε[d := v]}

Where
∨

,
∧

and v can be explained as follows. Consider an arbitrary data sort D, and all (total)
functions D → B over that sort. The set of all such functions is denoted as [D → B]. The ordering
v on [D → B] is defined as f v g if for all d:D, f(d) implies g(d). The set ([D → B],v) is a
complete lattice (see section 2.1 of [Mad97]). For a subset A of [D → B], we write

∧
A for the

least upper bound, or infinum and
∨
A for the greatest lower bound, or supremum.

Example 4.4. Solution of a PBES
Take a PBES (νX = Y)(µY = X). For a given predicate environment η, its solution is η[X :=
>][Y := >].

Note that if we would have chosen (µY = X)(νX = Y), the solution would have been η[X :=⊥
][Y :=⊥]. This shows that the order in which the equations occur is important.

4.1 Boolean equation systems

Boolean equation systems are thoroughly described in [Mad97]. BESs are a special case of PBESs,
in which there are a number of restrictions:

• The predicate variables must be data-less, and thus are propositional variables,

• The predicate formulae of a BES are more restricted and may only consist of ϕ ::= > | ⊥
| X | ϕ ∧ ϕ | ϕ ∨ ϕ.

Example 4.5. To show the differences between PBESs and BESs, we use the PBESs of examples
3.4 and 4.4. The PBES ν X(d:D) = X(inverse(d)) ∧X(d) is not a BES, because the predicate
variables in the PBES has data variables. On the other hand, the PBES (νX = Y)(µY = X) is a
BES, because both equations has predicate variables without data variables and does not contain
any quantifiers or data terms.

12

Chapter 5

Instantiation of parameterised
boolean equation systems

In the mCRL2-toolset, PBESs are used to represent a system combined with a certain property.
Verification of such a property can be done by computing the solution of a PBES. At the start of
the research, no PBES-solvers were present in the mCRL2-toolset.

A step towards solving PBES is instantiating them. This instantiation can lead to a BES,
which can be solved using BES-solving techniques like gauß elimination (see [Mad97], Section
6.4). If the instantiation does not lead to a BES in a lot of cases it will lead to a PBES which
predicate formulae are of reduced complexity. This can result in better performance of symbolic
approximation techniques for solving PBESs.

In this chapter we discuss the research which is conducted on the instantiation of PBESs. This
research has led to a tool pbes2bes, which implements the approaches discussed later in this chapter.

5.1 Researched approaches

Instantiating the data variables in the signature of predicate variables in a PBES can reduce those
PBESs in complexity and may result in a BES. It can not be guaranteed that such an instantiation
process leads to a finite (P)BES as result. For example, PBES µX(b:B, n:N) = X(b, n+ 1), with
initial state X(>, 0), would lead to an infinite BES if all data variables of predicate variable X
are instantiated with every possible value those data variables can have.

We have researched two techniques to instantiate PBESs. The first technique, called the finite
approach, eliminates all data variables in the predicate variables which are of finite type. This is
done by creating a new parameterised boolean equation for each value a data variable can have.
The second technique, which is called the lazy approach, uses techniques to create a BES, which
only contains those boolean equations which are needed to solve the original PBES in the initial
state.

13

PBES

PBES BES

finite lazy

Figure 5.1: Overview of the lazy and finite approach

5.1.1 Finite approach

The finite approach is a useful technique, when a PBES has data variables which are of infinite
type. These infinite data types will (possibly) lead to a computation of an infinite PBES. Take for
example the following PBES: µX(b:B, n:N) = X(b, n+1), with initial state X(>, 0). Instantiating
all possible values for the data variables leads to an infinite PBES, because N is an infinite data
sort. The finite approach, however, will only instantiate the data variable b, which is of data sort
B and thus results in a PBES with the same solution, but without any finite data variables in the
predicate variables of that PBES. The resulting PBES has a finite number of equations, and thus
the finite approach is guaranteed to give a result in finite time.

The PBES which results from the finite approach can improve the performance of symbolic
model checking techniques, because the right hand sides of the parameterised boolean equations
in the PBES may be of reduced complexity. Because the finite approach does not need the initial
state to compute the resulting PBES, the solution of the whole PBES can still be computed, while
with the lazy approach, the focus is purely on solving the PBES in the initial state.

A disadvantage of the finite approach is that it is possible that more boolean equations are
computed than needed for solving the PBES in the initial state. Also this technique will not lead
to a BES in most cases.

5.1.2 Lazy approach

The lazy approach is a translation from PBESs to BESs, assuming that all quantifiers at the
right hand sides of the parameterised boolean equations can be eliminated. If it is not possible
to eliminate all quantifiers, the result will be a PBES, because quantifiers are not allowed in the
grammar of predicate formulae of BESs.

This approach takes advantage of the fact that we want to solve the PBES in the initial state.
This means we only consider those boolean equations on which the initial state depends. In many
cases, this leads to a much smaller BES than the BES which could eventually be created using
the finite approach.

Using this approach it is possible that a PBES with infinite data types translates to a finite
BES. A typical example of such a PBES is µX(n:N) = n < 3 ∧X(n+ 1), with initial state X(0).

It is possible however, that the lazy approach leads to an infinite computation. Take the example
of the finite approach: µX(b:B, n:N) = X(b, n + 1) with initial state X(>, 0). The initial state
depends on every predicate variable instantiation where b is equal to > and n is equal to any
element of N. Because N is an infinite data sort, the lazy approach will not lead to a finite BES.

14

5.1.3 Names of new predicate variables

Both the finite and lazy approach compute new equations. Those new equations must have unique
predicate variables. There are several possibilities to obtain this:

1. Add the values of the instantiated data variables to the predicate variable. The set of all
possible predicate variables can be described as follows: {Xd|X ∈ X ∧ d ∈ signature(X)},
where signature(X) is the set of all possible instantiations of X. In this thesis we use this
method.

2. Add a (for each predicate variable (instantiation) unique) natural number to the predicate
variable (instantiation).

5.2 Finite approach: Compute an equation for each instan-
tiation

The finite approach can reduce the complexity of a PBES by eliminating all data variables of finite
data type. For each data variable of finite data type, all possible values are instantiated, resulting
in as many new equations computed as there are values for a data variable. Data variables of
infinite data types remain unchanged and therefore the result is a PBES.

In the finite approach, a PBES E is instantiated recursively over the predicate variables which
occur in the left hand sides of E. For each predicate variable X in lhs(E), all equations which
result from instantiating all possible values for the data variables of the finite data types in the
signature of X are computed. Also, all occurrences of X in each right hand side of the equations
in E are replaced with predicate variable instantiations, derived from X, without any finite data
types. So, when instantiating a predicate variable X in an equation σY (d:D, e:E) = ϕ, there are
two possibilities:

1. If X = Y , then all possible equations without any finite data types are computed and in the
right hand side of each computed equation all occurrences of X are replaced with predicate
variable instantiations, derived from X, without finite data types.

2. If X 6= Y , all occurrences of X in ϕ are replaced with predicate variable instantiations,
derived from X, without finite data types.

Definition 5.1. Transformation of a PBES by instantiating finite data types of the signature of
a predicate variable.
Before we can define a transformation function for the finite approach, we need to make a dis-
tinction between finite and infinite data types. Therefore we change the form of parameterised
boolean equations to: σY (d:D, e:E) = ϕ, where D is a possible empty product of finite data sorts
and E is a possible empty product of infinite data sorts. The definition for the transformation
function becomes:

15

ftrans(ε,X) = ε
ftrans((σY (d:D, e:E) = ϕ)E, X) ={
{σYdi(e:E) = fsubst(ϕ[d := di], X) | di ∈ D}(ftrans(E, X)) if Y = X

(σY (d:D, e:E) = fsubst(ϕ,X))(ftrans(E, X)) if Y 6= X

Where D is a possible empty product of finite data sorts, E is a possible empty product of
infinite data sorts, {σYdi(e:E) = fsubst(ϕ[d := di], X)|di ∈ D} denotes the sequence of parame-
terised boolean equations with all possible instantiations for D and fsubst is defined inductively
as follows:

fsubst(b,X) = b

fsubst(ϕ1 ∧ ϕ2, X) = fsubst(ϕ1, X) ∧ fsubst(ϕ2, X)
fsubst(ϕ1 ∨ ϕ2, X) = fsubst(ϕ2, X) ∨ fsubst(ϕ2, X)

fsubst(∀d:D.ϕ,X) =

{
∀d:D.fsubst(ϕ,X) if D is of infinite data type∧

p∈D fsubst(ϕ[d := p], X) if D is of finite data type

fsubst(∃d:D.ϕ,X) =

{
∃d:D.fsubst(ϕ,X) if D is of infinite data type∨

p∈D fsubst(ϕ[d := p], X) if D is of finite data type

fsubst(Y (d, e), X) =

{∨
p∈D(p = d ∧Xp(e)) if Y = X

Y (d, e) if Y 6= X

Where b is a boolean value or an expression which can be rewritten to a boolean value and∨
p∈D(p = d ∧ Xp(e)) represents the disjunction of all possible instantiations of the finite data

sorts of the predicate variable X.

Example 5.2. Transformation function.
Take a PBES Ep =
µX(b:B, n:N) = (Y (b, n, n+ 2) ∧ b) ∨ ¬b
νY (b:B, n,m:N) = X(¬b, n) ∧ Y (b, n+ 1,m) ∧ n ≤ m

To do a complete transformation for Ep, the transformation function must be done for both X
and Y , thus: ftrans(ftrans(Ep, X), Y). The result of this transformation does not contain any
finite data sorts.

As the example shows, for a transformation of all predicate variables in the PBES, the ftrans-
function has to be executed as many times as there are predicate variables in the PBES. Therefore
we generalise ftrans, to do the transformation for multiple predicate variables at the same time.

16

Definition 5.3. Transformation for multiple variables.

fgtrans(ε,Y) = ε
fgtrans((σY (d:D, e:E) = ϕ)E,Y) ={
{σYdi(e:E) = fgsubst(ϕ[d := di],Y) | di ∈ D}(fgtrans(E,Y)) if Y ∈ Y
(σY (d:D, e:E) = fgsubst(ϕ,Y))(fgtrans(E,Y)) if Y 6∈ Y

Where Y is the set of predicate variables for which the transformation is done, D is a pos-
sible empty product of finite data sorts, E is a possibly empty product of infinite data sorts,
{σYdi(e:E) = fgsubst(ϕ[d := di],Y)|di ∈ D} denotes the sequence of parameterised boolean equa-
tions with all possible instantiations for D and fgsubst is defined inductively as follows:

fgsubst(b,Y) = b

fgsubst(ϕ1 ∧ ϕ2,Y) = fgsubst(ϕ1,Y) ∧ fgsubst(ϕ2,Y)
fgsubst(ϕ1 ∨ ϕ2,Y) = fgsubst(ϕ2,Y) ∨ fgsubst(ϕ2,Y)

fgsubst(∀d:D.ϕ,Y) =

{
∀d:D.fgsubst(ϕ,Y) if D is of infinite data type∧

p∈D fgsubst(ϕ[d := p],Y) if D is of finite data type

fgsubst(∃d:D.ϕ,Y) =

{
∃d:D.fgsubst(ϕ,Y) if D is of infinite data type∨

p∈D fgsubst(ϕ[d := p],Y) if D is of finite data type

fgsubst(Y (d, e),Y) =

{∨
p∈D(p = d ∧ Yp(e)) if Y ∈ Y

Y (d, e) if Y 6∈ Y

Example 5.4. Transformation function for multiple variables at the same time.
Example 5.2 can be rewritten as far as possible using the generalized transformation function,
where Y is the set of predicate variables X and Y :

trans(
µX(b:B, n:N) = (Y (b, n, n+ 2) ∧ b) ∨ ¬b
νY (b:B, n,m:N) = X(¬b, n) ∧ Y (b, n+ 1,m) ∧ n ≤ m

,Y)
= {definition trans }

µX⊥(n:N) = subst((Y (⊥, n, n+ 2)∧ ⊥) ∨ >,Y)
µX>(n:N) = subst((Y (>, n, n+ 2) ∧ >)∨ ⊥,Y)
trans(νY (b:B, n,m:N) = X(¬b, n) ∧ Y (b, n+ 1,m) ∧ n ≤ m, Y)

= {definition subst, definition trans }
µX⊥(n:N) = (

∨
p∈B(p =⊥ ∧Yp(n, n+ 2))∧ ⊥) ∨ >

µX>(n:N) = (
∨

p∈B(p = > ∧ Yp(n, n+ 2)) ∧ >)∨ ⊥
νY⊥(n,m:N) = subst(X(>, n) ∧ Y (⊥, n+ 1,m) ∧ n ≤ m, Y)
νY>(n,m:N) = subst(X(⊥, n) ∧ Y (>, n+ 1,m) ∧ n ≤ m, Y)
trans(ε,Y)

= {definition
∨

, definition subst, definition trans }
µX⊥(n:N) = (((⊥=⊥ ∧Y⊥(n, n+ 2)) ∨ (> =⊥ ∧Y>(n, n+ 2)))∧ ⊥) ∨ >
µX>(n:N) = (((⊥= > ∧ Y⊥(n, n+ 2)) ∨ (> = > ∧ Y>(n, n+ 2))) ∧ >)∨ ⊥
νY⊥(n,m:N) =

∨
p∈B(p = > ∧Xp(n)) ∧

∨
q∈B(q =⊥ ∧Yq(n+ 1,m)) ∧ n ≤ m

νY>(n,m:N) =
∨

p∈B(p =⊥ ∧Xp(n)) ∧
∨

q∈B(q = > ∧ Yq(n+ 1,m)) ∧ n ≤ m

= {definition
∨
}

µX⊥(n:N) = (((⊥=⊥ ∧Y⊥(n, n+ 2)) ∨ (> =⊥ ∧Y>(n, n+ 2)))∧ ⊥) ∨ >
µX>(n:N) = (((⊥= > ∧ Y⊥(n, n+ 2)) ∨ (> = > ∧ Y>(n, n+ 2))) ∧ >)∨ ⊥
νY⊥(n,m:N) = ((⊥= > ∧X⊥(n)) ∨ (> = > ∧X>(n)))

∧((⊥=⊥ ∧Y⊥(n+ 1,m)) ∨ (> =⊥ ∧Y>(n+ 1,m))) ∧ n ≤ m
νY>(n,m:N) = ((⊥=⊥ ∧X⊥(n)) ∨ (> =⊥ ∧X>(n)))

∧((⊥= > ∧ Y⊥(n+ 1,m)) ∨ (> = > ∧ Y>(n+ 1,m))) ∧ n ≤ m

17

Using techniques from [GrW05] and algebraic and logical reasoning, this can be simplified to:
µX⊥(n:N) = >
µX>(n:N) = Y>(n, n+ 2)
νY⊥(n,m:N) = X>(n) ∧ Y⊥(n+ 1,m) ∧ n ≤ m
νY>(n,m:N) = X⊥(n) ∧ Y>(n+ 1,m) ∧ n ≤ m

The instantiation using the finite approach preserves the solution of the PBES, which is proven
in [DPW07]. We will look again at example 5.4. The original PBES E was:
µX(b:B, n:N) = (Y (b, n, n+ 2) ∧ b) ∨ ¬b
νY (b:B, n,m:N) = X(¬b, n) ∧ Y (b, n+ 1,m) ∧ n ≤ m
The resulting PBES Ef became:
µX⊥(n:N) = >
µX>(n:N) = Y>(n, n+ 2)
νY⊥(n,m:N) = X>(n) ∧ Y⊥(n+ 1,m) ∧ n ≤ m
νY>(n,m:N) = X⊥(n) ∧ Y>(n+ 1,m) ∧ n ≤ m
As we can see, the equation with predicate variable X(b:B, n:N) in E resulted in X⊥(n:N) and
X>(n:N) in Ef . Thus, for an equation in Ef it can easily be found from which predicate variable
in E it is derived.

The number of equations in the resulting PBES with respect to the original PBES, depends on
both the number of finite data types and the number of data elements in those finite data types
of the predicate variables. For example, if a PBES has one equation with a predicate variable
X(b, c:B), the resulting PBES will have four equations, because both data variables in X are of
data type B, which has two data elements.

5.3 Lazy approach: Only compute needed equations

As the finite approach does not lead to BESs if the original PBES contains infinite data types
in its predicate variables, there is a need for an approach which can result in BESs in cases with
data variables of infinite data type. Therefore we researched the lazy approach, which assumes we
want to solve a PBES in its initial state. In this approach, we only consider those equations the
initial state depends on.

To compute a BES out of a PBES E using the lazy approach, we start with the initial state
X(dinit) of E. For X(dinit) we compute the equation σXdinit = ϕ[d := dinit]. From this equation
we determine all predicate variable instantiations that occur in ϕ[d := dinit]; we say Xdinit depends
on those predicate variable instantiations. For each predicate variable instantiation the initial state
depends on, an equation is computed and all predicate variable instantiations which the equation
depends on are computed recursively. When all equations are computed, the resulting equation
system has to be constructed in such a way that the order of the equations in E is respected.
Formalising, this leads to the following transformation function:

Definition 5.5. Lazy transformation function
To compute a BES out of a PBES E, using the lazy approach, we define:
ltrans(X(dinit), E) = sort(ltrans′({X(dinit)}, ∅, E), E)
Where X(dinit) is the initial state of the PBES and ltrans′ needs parameters which contains
the set of predicate variable instantiations which have to be done, the set of predicate variable
instantiations which are done, and the original PBES. It is defined inductively as:

ltrans′(∅, done, E) = ε
ltrans′({X(v)} ∪ todo, done, E) =

pbecreate(X(v), E) ltrans′((todo ∪ dep(X(v), E))\(done ∪ {X(v)}), done ∪ {X(v)}, E)

Where X(v) is an arbitrary predicate variable instantiation.

18

The function sort sorts all the boolean equations with respect to the order of the parameterised
boolean equations in the original PBES and is defined inductively as follows:

sort(E, ε) = ε
sort(E, (σX(d : D) = ϕ)E1) =

({(σXn = ϕ) | (σXn = ϕ) ∈ E ∧Xn ∈ {Xd | X ∈ X ∧ d ∈ signature(X)} }) sort(E, E1)

The function dep determines the set of predicate variable instantiations a given predicate
variable instantiation depends on and is defined inductively as:

dep(X(d), ε) = ∅

dep(X(d), (σY (e:E) = ϕ)E ′) =

{
instset(ϕ[e := d]) if X = Y

dep(X(d), E ′) if X 6= Y

Where instset is defined inductively as follows:

instset(b) = ∅
instset(ϕ1 ∧ ϕ2) = instset(ϕ1) ∪ instset(ϕ2)
instset(ϕ1 ∨ ϕ2) = instset(ϕ1) ∪ instset(ϕ2)

instset(∀d:D.ϕ) =
⋃

v∈D

instset(ϕ[d := v])

instset(∃d:D.ϕ) =
⋃

v∈D

instset(ϕ[d := v])

instset(X(d)) = {X(d)}

The function pbecreate computes a boolean equation from an E and a predicate variable in-
stantiation X(v) ∈ E and is defined inductively as:

pbecreate(X(v), ε) = ε

pbecreate(X(v), (σY (d:D) = ϕ)E ′) =

{
σXv = lsubst(ϕ[d := v],X) if X = Y

pbecreate(X(v), E ′) if X 6= Y

Where lsubst is defined inductively as:

lsubst(b,X) = b

lsubst(ϕ1 ∧ ϕ2,X) = lsubst(ϕ1,X) ∧ lsubst(ϕ2,X)
lsubst(ϕ1 ∨ ϕ2,X) = lsubst(ϕ2,X) ∨ lsubst(ϕ2,X)
lsubst(∀d:D.ϕ,X) = ∀d:D.lsubst(ϕ,X)
lsubst(∃d:D.ϕ,X) = ∃d:D.lsubst(ϕ,X)

lsubst(Y (d),X) =
∨

p∈D

(p = d ∧ Yp)

Where X is the set of all predicate variables.

19

Example 5.6. To show how the lazy approach instantiates a PBES we consider the following
PBES:
µX(b:B) = Y (⊥) ∧X(b)
νY (b:B) = X(b)
with initial state X(>). We will denote µX(b:B) = Y (⊥)∧X(b) as σ1 and νY (b:B) = X(b) as σ2,
and the complete system as σ1σ2.

Using the lazy approach we can rewrite this to a BES. Some steps in the example are combined,
and the use of the inductive definitions is assumed to be clear. In appendix C the example is
shown step by step.

ltrans(X(>), σ1σ2)
= {Definition ltrans }

sort(ltrans′({X(>)}, ∅, σ1σ2), σ1σ2)
= {Definition ltrans′}

sort((pbecreate(X(>), σ1σ2)) (ltrans′((∅ ∪ dep(X(>), σ1σ2))\(∅ ∪ {X(>)}), ∅ ∪ {X(>)}, σ1σ2), σ1σ2)
= {Definition pbecreate, definition dep, algebra}

sort((µX> = Y⊥ ∧X>) (ltrans′({Y (⊥)}, {X(>)}, σ1σ2), σ1σ2)
= {Definition ltrans′}

sort((µX> = Y⊥ ∧X>) (pbecreate(Y (⊥), σ1σ2)
(ltrans′((∅ ∪ dep(Y (⊥), σ1σ2))\({X(>)} ∪ {Y (⊥)}), {X(>)} ∪ {Y (⊥)}, σ1σ2), σ1σ2)

= {Definition pbecreate, definition dep, algebra}
sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (ltrans′({X(⊥)}, {X(>), Y (⊥)}, σ1σ2), σ1σ2)

= {Definition ltrans′}
sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (pbecreate(X(⊥), σ1σ2))

(ltrans′((∅ ∪ dep(X(⊥), σ1σ2))\({X(>), Y (⊥)} ∪ {X(⊥)}), {X(>), Y (⊥)} ∪ {X(⊥)}, σ1σ2), σ1σ2)
= {Definition pbecreate, definition dep, algebra}

sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥) (ltrans′((∅, {X(>), Y (⊥), X(⊥)}, σ1σ2), σ1σ2)
= {Definition ltrans′}

sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥), σ1σ2)
= {Definition sort }

(µX> = Y⊥ ∧X>) (µX⊥ = Y⊥ ∧X⊥)
(sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥), σ2))

= {Definition sort }
(µX> = Y⊥ ∧X>) (µX⊥ = Y⊥ ∧X⊥) (νY⊥ = X⊥)

(sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥), ε))
= {Definition sort }

(µX> = Y⊥ ∧X>) (µX⊥ = Y⊥ ∧X⊥) (νY⊥ = X⊥)

The lazy approach preserves the solution of the PBES in the initial state.
The number of equations in the resulting PBES depends on the number of equations the initial
state of the original PBES depends on. For example, the PBES in example 5.6 leads to a BES
with three equations.

20

5.4 Implementation

The finite and lazy approach are implemented in the tool pbes2bes. The transformation and
substitution functions are implemented straightforward using lists of equations and the PBES-
library. This library contains functions to read, save and manipulate parts of a PBES in terms of
the internal format (see appendix A for an overview of the internal format). In the latter of this
section, we discuss some of the difficulties experienced during the implementation.

Free variables In a PBES, free variables may be present. Free variables are data variables in
a parameterised boolean equation which do not occur on the left hand side of that parameterised
boolean equation and are not bound by a quantifier. Such a free variable may be instantiated by
the data environment, but because the variable is free, the value which is instantiated for the free
variable is not of interest. Therefore we instantiate it with a random value.
A function free variables has been added to the library, which returns a data variable list, contain-
ing all free variables in the PBES. All free data variables are replaced with a random instantiation
of the data sort of the variable. For this replacement a slightly changed variant of an existing
function for instantiating a variable by a random instantiation is used. This function (called
Find Dummy) could be rewritten to be part of the PBES-library so other tools can use this func-
tionality too.
To give the user control on which values has to be instantiated, it is possible to implement a
function which asks the user to choose the instantiation he wants to use for the free variable.

Renaming predicate variable (instantiations) All newly computed predicate variables and
predicate variable instantiations must be unique for the PBES. This is achieved by adding all
pretty printed values of the data elements in the predicate variable (instantiation) to a unique
predicate variable (instantiation), each value separated by the @-symbol. So if a predicate variable
instantiation X(true, 7) occurs, it will be rewritten to X@true@7. Data variables which are of
infinite data type are in the finite approach not added to the predicate variable, but remain in the
signature of the predicate variable (instantiation).

Rewriting of predicate formulae and data terms In the libraries of mCRL2 a data rewriter
is already available. However this data rewriter is not capable of dealing with predicate formulae.
Therefore a PBES-rewriter is written, which rewrites a predicate formula ϕ to a (possibly) smaller
form ψ which is equivalent to ϕ. Recall the grammar of ϕ:

ϕ ::= b | > | ⊥ | X(e) | ϕ ∧ ψ | ϕ ∨ ψ | ∀ d:D.ϕ | ∃ d:D.ϕ

Where b is a data term of data sort B, > and ⊥ are elements of data sort B, X is a predicate
variable, e consists of zero or more data sorts and d is a data variable of sort D.

21

We will define the PBES-rewriter inductively using a function pbesr denoting the PBES-rewriter
and datar denoting the data rewriter.

pbesr(b) = datar(b)
pbesr(>) = >
pbesr(⊥) = ⊥

pbesr(ϕ ∧ ψ) =

⊥ if pbesr(ϕ) =⊥ ∨pbesr(ψ) =⊥
pbesr(ψ) if pbesr(ϕ) = >
pbesr(ϕ) if pbesr(ψ) = >
pbesr(ϕ) if pbesr(ϕ) = pbesr(ψ)
pbesr(ϕ) ∧ pbesr(ψ) otherwise

pbesr(ϕ ∨ ψ) =

> if pbesr(ϕ) = > ∨ pbesr(ψ) = >
pbesr(ψ) if pbesr(ϕ) =⊥
pbesr(ϕ) if pbesr(ψ) =⊥
pbesr(ϕ) if pbesr(ϕ) = pbesr(ψ)
pbesr(ϕ) ∨ pbesr(ψ) otherwise

pbesr(∀ d:D.ϕ) =

pbesr(ϕ) if d does not occur in ϕ
pbesr(

∧
e:D ϕ[d := e]) if D is of finite data type

∀ d:D.pbesr(ϕ) otherwise

pbesr(∃ d:D.ϕ) =

pbesr(ϕ) if d does not occur in ϕ
pbesr(

∨
e:D ϕ[d := e]) if D is of finite data type

∃ d:D.pbesr(ϕ) otherwise

pbesr(X(e)) = X(datar(e))

This PBES-rewriter has been implemented straightforward from the definition, using the
PBES-library.

Saving in other formats There are several tools which can solve BESs, like the BES-solver in
the CADP-toolset. If the result of the lazy approach is a BES, it is possible to store the BES in
the so called CWI-format. This format is used at the Centrum voor Wiskunde en Informatica in
the BES-solvers they are developing. The CWI format is implemented by first creating a hash-
table which contains each predicate variable indexed with a natural number. Each equation is
rewritten to the CWI format where each predicate variable is replaced with the natural number
in the hash-table. This transformation to the CWI-format, after the computation of the BES has
finished.
Another format which is used, is the format used in the CADP toolset. This format is currently
not implemented. Both formats are described in appendix A.

Finite approach: Enumerate finite sorts Enumeration of finite sorts is used in the finite
approach, to be able to create all possible instantiations for data sorts. It is used in the ftrans
and fgtrans functions. For each constructor of a given sort, a data expression list containing all
possible instantiations is created by enumerating over all possible instantiations of the constructor.

22

5.5 Optimisations

The finite and lazy approach can be optimised to achieve a better performance or being able to
create a BES for a larger subset of PBESs. In this section we will discuss a number of optimisations
which we observed. The first two optimisations are implemented, the other optimisations are
not yet implemented. All optimisations which increase the performance of the tool preserve the
behavior of the definitions.

fgtrans and fgsubst functions When choosing for Y exactly the set of predicate variables
present in a PBES E, both in trans and subst the cases where Y 6∈ Y are never executed. Therefore
these cases are not implemented in the finite approach. When there is a need to implement the
case where Y 6∈ Y, a set with the predicate variables for which the transformation is done must
be present. The cases can be implemented straightforward.

fgsubst and lsubst functions:
∨
p ∈ D (p = d∧Yp) Both in the finite and the lazy approach in

the subst function predicate variable instantiations are rewritten to the form
∨
p ∈ D (p = d∧Yp).

The conjunction will be ⊥ in all cases that p 6= d. Therefore the only case of interest is that where
p = d. In the implementation only the predicate variable Yp is created for the case that p = d,
using the predicate variable renaming function.

Combining rewriting and substitution Rewriting of and substitution on predicate formulae
can take a lot of time. Currently, if a data variable has to be assigned a certain value, the
substitution is done in the whole predicate formula at once, before the rewriting is done. In the case
of conjunctions, disjunctions and quantifier-formulae which can be rewritten to finite conjunctions
or finite disjunctions, it is possible that the substitution is done on parts of a predicate formula
which do not have any influence on the solution of that predicate formula.
An example of such a predicate formula is n > 3∧ϕ, where ϕ is a complex predicate formula with
a number of occurrences of n. If n must be substituted by 2, in the current implementation the
substitution and rewrite process is done as follows:

n > 3 ∧ ϕ
= {Substitution of n by 2}

2 > 3 ∧ ϕ[n := 2]
= {Rewrite left hand side of and-connective}

⊥ ∧ϕ[n := 2]
= {Rewrite and-connective}

⊥

By combining substitution and rewriting, substitution on a part of a predicate formula is only
done if the part is needed for the solution of that predicate formula. For the example, the process
is done as follows:

n > 3 ∧ ϕ
= {Substitution of n by 2 in n > 3}

2 > 3 ∧ ϕ
= {Rewrite left hand side of and-connective}

⊥ ∧ϕ
= {Rewrite and-connective}

⊥

This approach can result in a big gain in performance, if the predicate formulae in the PBES
are complex and parts of it are not needed for the solution of the predicate formulae.

23

Removing quantifiers in pbesr Currently removing quantifiers is only possible if the data
variables of the quantifiers are not used in the quantifier expression, or if all data variables are
of finite data sort. There are, however, more possibilities to remove a quantifier, which will be
discussed here.

If a universal quantification is of the form ∀d:D.condition ⇒ ϕ, the result of an instantiation
of d is always > if the condition is ⊥. In the other cases the result of the expression depends
on ϕ. This results in a conjunction of all cases where the condition is >, which can be a finite
conjunction.

Dually the same is the case if an existential quantification is of the form ∃d:D.condition ∧ ϕ,
where the result of the quantification is the disjunction of all cases where condition is >, which
can be a finite disjunction.

A third way to remove more quantifications, is to use theorem 6.2 of [GrW05a]. This theorem
states that if the expressions of quantifiers are of the form ITE(d=e, ψ, χ) or nested ITE’s on the
last argument of the ITE (where ITE must be read as an if−then−else construct) the quantifiers
can be replaced by a conjunction in case of a universal quantifier and by a disjunction in case of
an existential quantifier.

Ordering of equations in the lazy approach The sort function is implemented as follows:
For each predicate variable X in the original PBES E, the result is checked equation by equation
and it is checked if the predicate variable instantiations is derived from X, by checking if the
predicate variable until the first occurrence of the @-symbol is equal to X. If this is the case, the
equation is added to the final result, otherwise it is added to the set of equations which have to
be sorted.

As all predicate variable names are checked if they are derived from X, an optimisation is
possible: create (for each equation in E) a tuple (X, {σYn = ϕ | Y (n)∧n ∈ signature(Y)∧Y = X}),
where X ∈ lhs(E). Each equation which is computed in the lazy approach is added to the tuple
containing the predicate variable the equation is derived from. Sorting of the resulting system can
be defined as follows:

sort(todo, ε) = ε

sort(todo, (σX(d : D) = ϕ)E ′) = (sort′(todo,X)) (sort(todo, E ′))

Where sort′ is defined as:

sort′(∅, X) = ε

sort′({(Y, Ep)} ∪ todo,X) =

{
Ep if X = Y

sort′(todo,X) if X 6= Y

24

Chapter 6

Case studies

To show the main differences between the finite and lazy approach, we will describe case studies
on the alternating bit protocol and Lamport’s bakery protocol. The alternating bit protocol is a
protocol with a finite state space, where we can show that the lazy algorithm can compute smaller
BESs using the lazy approach, then when we would use the finite approach. Lamport’s bakery
protocol has an infinite state space. A lot of properties on this system will lead to an infinite BES
using the lazy approach. There are, however, properties which will lead to a finite BES.

6.1 Alternating bit protocol

The alternating bit protocol [BaW90] ensures the successful transmission of data through an
unreliable channel, under the assumption that data can be resent an unlimited number of times.
The protocol is shown in figure 6.1.

K

S

L

R
r1(d) s4(d)

Figure 6.1: Alternating bit protocol

First, we will explain the alternating bit protocol informally. The sender (S) reads a message
from r1, adds a bit to it, and sends it repeatedly to the receiver (R) through the unreliable channel
K, until it receives an acknowledgement with the bit value added by the sender. the receiver reads
messages from channel K. If a message is read by the receiver, it checks if the bit has the correct
value. If that is the case, it sends the message (excluding the added bit) to s4, and sends the bit
to the unreliable channel L. The receiver keeps sending this bit until it receives a message with
the bit-value alternated to the one it is sending. When a message is sent to s4 and the sender has
received an acknowledgement, the sender reads the next value from r1 and inverts the bit value
and send this to the receiver.

25

The mCRL2-specification we use is the one which can be found in the mCRL2 toolset and is
as follows:

sort
D = struct d1 | d2;
Error = struct e;

act
r1,s4: D;
s2,r2,c2: D # Bool;
s3,r3,c3: D # Bool;
s3,r3,c3: Error;
s5,r5,c5: Bool;
s6,r6,c6: Bool;
s6,r6,c6: Error;
i;

proc
S(b:Bool) = sum d:D. r1(d).T(d,b);

T(d:D,b:Bool) = s2(d,b).(r6(b).S(!b)+(r6(!b)+r6(e)).T(d,b));

R(b:Bool) = sum d:D. r3(d,b).s4(d).s5(b).R(!b) +
(sum d:D.r3(d,!b)+r3(e)).s5(!b).R(b);

K = sum d:D,b:Bool. r2(d,b).(i.s3(d,b) + i.s3(e)).K;

L = sum b:Bool. r5(b).(i.s6(b)+i.s6(e)).L;

init
allow({r1,s4,c2,c3,c5,c6,i},
comm({r2|s2->c2, r3|s3->c3, r5|s5->c5, r6|s6->c6},

S(true) || K || L || R(true)
)

);

Where c2, c3, c5 and c6 are communicating actions which represent the process of sending and
receiving between the four components of the alternating bit protocol. The action i is used for a
non-deterministic choice between sending a message, or an error (because K and L are unreliable
channels).

The properties we will look into for the alternating bit protocol are:

ABP1 No deadlock can occur
ABP2 If a message is sent, it is possible that it is read
ABP3 If a message is sent, it will be read eventually, if it isn’t lost permanently
ABP4 No miracles: Messages are not created by the protocol

For each property a PBES is created, which we will identify by the number of the property. The
finite and lazy approach will be used for every PBES.

26

To illustrate the size of the resulting equation systems, in each PBES we also use the tool
mcrl22lps with the option -w, which replaces infinite data sorts by enumerated sorts where possible.
These enumerated sorts are of finite type. The number of elements in that sort can be derived
from the name of the sort. The sort has the name Enumn, where n is the number of elements in
the sort.

For each property we will show the µ-calculus-formula in the syntax that is used by the tool
lps2pbes, the signature of the predicate variables of the resulting PBES (obtained using the tool
pbesinfo, see chapter 4), the number of equations using the different approaches (which is computed
from the signature for the PBES in the finite approach and obtained using the tool pbesinfo for the
lazy approach), and the time in seconds it took to compute the results for the different approaches1.
Using a BES-solver, we solve the resulting BESs to check if the property holds on the alternating
bit protocol.

ABP1 The µ-calculus formula, which describes that no deadlock can occur, is the following:

nu X.<true>true && [true]X

The PBES for ABP1 can be found in appendix D.1 and consist of one parameterised boolean
equation with predicate variable X. The signature of X is the following:
X :: Pos x D x Bool x Pos x D x Bool x Pos x

Bool x Pos x D x Bool -> Bool
The PBES using enumerations have the following signature:
X :: Enum3 x D x Bool x Enum4 x D x Bool x Enum4 x

Bool x Enum4 x D x Bool -> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations 74 74 128 24576
Time 0.20 0.15 0.57 43.53

Table 6.1: Results for ABP1

The lazy approach (with or without using enumerations) and the finite approach using enu-
merations result in a BES, so each predicate variable is of type Bool. In the finite approach using
data variables of type Pos, the result is a PBES and all predicate variables are derived from X
and have the following signature:
X :: Pos x Pos x Pos x Pos -> Bool

The property holds for the alternating bit protocol.

1For the computations a dual core Pentium D 3 GHz with 1 GB of memory was used.

27

ABP2 The property looks like this:

nu X. (
[true]X

&&
forall dd:D. ([r1(dd)](mu Y. (<true>Y || <s4(dd)>true)))

)

The PBES for ABP2 can be found in appendix D.2 and consist of two parameterised boolean
equations with predicate variables X and Y . The signature of X and Y is the following:
X :: Pos x D x Bool x Pos x D x Bool x

Pos x Bool x Pos x D x Bool -> Bool
Y :: Pos x D x Bool x Pos x D x Bool x

Pos x Bool x Pos x D x Bool x D -> Bool
The PBES using enumerations have the following signature:
X :: Enum3 x D x Bool x Enum4 x D x Bool x

Enum4 x Bool x Enum4 x D x Bool -> Bool
Y :: Enum3 x D x Bool x Enum4 x D x Bool x

Enum4 x Bool x Enum4 x D x Bool x D -> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations 110 110 384 73728
Time 0.25 0.18 1.44 113.69

Table 6.2: Results for ABP2

The lazy approach (with or without using enumerations) and the finite approach using enu-
merations result in a BES, so each predicate variable is of type Bool. In the finite approach using
data variables of type Pos, the result is a PBES and all predicate variables which are derived from
X and Y have the following signature:
X :: Pos x Pos x Pos x Pos -> Bool
Y :: Pos x Pos x Pos x Pos -> Bool

The property holds for the alternating bit protocol.

ABP3 The property is like ABP2, but with a fairness constraint and looks like this:

nu X. (
[true]X

&&
forall dd:D. ([r1(dd)](nu Y. mu Z. ([(!s4(dd)) && (!i)]Z && [i]Y)))

)

The PBES for ABP3 can be found in appendix D.3 and consist of three parameterised boolean
equations with predicate variables X, Y and Z. The signature of X, Y and Z is the following:
X :: Pos x D x Bool x Pos x D x Bool x

Pos x Bool x Pos x D x Bool -> Bool
Y :: Pos x D x Bool x Pos x D x Bool x

Pos x Bool x Pos x D x Bool x D -> Bool
Z :: Pos x D x Bool x Pos x D x Bool x

Pos x Bool x Pos x D x Bool x D -> Bool

28

The PBES using enumerations have the following signature:
X :: Enum3 x D x Bool x Enum4 x D x Bool x

Enum4 x Bool x Enum4 x D x Bool -> Bool
Y :: Enum3 x D x Bool x Enum4 x D x Bool x

Enum4 x Bool x Enum4 x D x Bool x D -> Bool
Z :: Enum3 x D x Bool x Enum4 x D x Bool x

Enum4 x Bool x Enum4 x D x Bool x D -> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations 130 130 640 122880
Time 0.25 0.19 1.46 131.26

Table 6.3: Results for ABP4

The lazy approach (with or without using enumerations) and the finite approach using enu-
merations result in a BES, so each predicate variable is of type Bool. In the finite approach using
data variables of type Pos, the result is a PBES and all predicate variables which are derived from
X and Y have the following signature:
X :: Pos x Pos x Pos x Pos -> Bool
Y :: Pos x Pos x Pos x Pos -> Bool
Y :: Pos x Pos x Pos x Pos -> Bool

The property holds for the alternating bit protocol.

ABP4 The µ-calculus formula which describes that no messages are created in the protocol, is
the following:

nu X. (forall dd:D. ([!r1(dd)]X && [s4(dd)]false))

The PBES for ABP4 can be found in appendix D.4 and consist of one parameterised boolean
equation with predicate variable X. The signature of X is the following:
X :: Pos x D x Bool x Pos x D x Bool x

Pos x Bool x Pos x D x Bool -> Bool
The PBES using enumerations have the following signature:
X :: Enum3 x D x Bool x Enum4 x D x Bool x

Enum4 x Bool x Enum4 x D x Bool -> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations 74 74 128 24576
Time 0.16 0.13 0.70 37.12

Table 6.4: Results for ABP4

29

The lazy approach (with or without using enumerations) and the finite approach using enu-
merations result in a BES, so each predicate variable is of type Bool. In the finite approach using
data variables of type Pos, the result is a PBES and all predicate variables are derived from X
and have the following signature:
X :: Pos x Pos x Pos x Pos -> Bool

The property holds for the alternating bit protocol.

Rewriting of quantifiers Using PBES ABP1, we will show some of the techniques for removing
quantifiers.

In ABP1 the following quantifier-expression is present: ∃ d0 00:D. (s30 == 1). From this
expression the quantifier can be removed, because the variable e0 00 is not used in the expression.

Another expression which is present is:
∃ e5 00:B. (s31 == 3 ∧ s33 == 1 ∧ if (e5 00, b2, !b2) == b4).
Because B is a finite sort, the quantifier can be removed:
(s31 == 3 ∧ s33 == 1 ∧ if(>, b2, !b2) == b4) ∨ (s31 == 3 ∧ s33 == 1 ∧ if(⊥, b2, !b2) == b4)
which can be simplified to
(s31 == 3 ∧ s33 == 1 ∧ b2 == b4)) ∨ (s31 == 3 ∧ s33 == 1∧!b2 == b4).

Conclusion The alternating bit protocol is a good example of a specification for which a BES
can be computed using the lazy approach. The finite approach can lead to BESs also, but these
are way bigger, in the case of the alternating bit protocol up to 1000 times.

30

6.2 Lamport’s bakery protocol

Lamport’s Bakery Protocol [Ray86] is described as follows. A process, which is waiting to enter
it’s critical section, chooses a number, larger than any number already chosen. Processes with a
lower number are allowed to enter the critical before processes with a higher number. Because the
number which is chosen can grow indefinitely, the state space of this protocol is infinite.

The mCRL2-specification of Lamport’s Bakery Protocol can be found in the mCRL2 toolset
and is as follows:

act
send,get,c: Bool # Nat;
request,enter,leave: Bool;

proc P(b:Bool) = request(b).P0(b,0) + send(b,0).P(b);

P0(b:Bool,n:Nat) = (sum m:Nat. get(!b,m).P1(b,m + 1)) + send(b,n).P0(b,n);

P1(b:Bool,n:Nat) =
(sum m:Nat. get(!(b),m).
((n < m || m == 0) -> C1(b,n) +

(m <= n && m != 0) -> P1(b,n))) + send(b,n).P1(b,n);

C1(b:Bool,n:Nat) = enter(b).C2(b,n) + send(b,n).C1(b,n);

C2(b:Bool,n:Nat) = leave(b).P(b) + send(b,n).C2(b,n);

init
allow({request,enter,leave,c},
comm({get|send->c}, P(true) || P(false))

);

The properties we will look into for Lamport’s bakery protocol are:

BAK1 No deadlock can occur
BAK2 All processes requesting a number can eventually enter the critical section
BAK3 All processes requesting a number inevitably enter the critical section
BAK4 A process inevitably enters a critical section

For each property a PBES is created, which we will identify by the number of the property. The
finite and lazy approach will be used on every PBES.

To illustrate the size of the resulting equation systems, in each PBES we also use the tool
mcrl22lps with the option -w, which replaces infinite data sorts by enumerated sorts where possible.
These enumerated sorts are of finite type. The number of elements in that sort can be derived
from the name of the sort. The sort has the name Enumn, where n is the number of elements in
the sort.

For each property we will show the µ-calculus-formula, the signature of the predicate variables
of the resulting PBES (obtained using the tool pbesinfo, the number of equations using the differ-
ent approaches (which is computed from the signature for the PBES in the finite approach and

31

obtained using the tool pbesinfo for the lazy approach), and the time in seconds it took to compute
the results for the different approaches2.

BAK1 The µ-calculus formula which describes that no deadlock can occur, is the following:

nu X.<true>true && [true]X

The PBES for BAK1 can be found in appendix D.5 and consist of one parameterised boolean
equation with predicate variable X. The signature of X is the following:
X :: Pos x Nat x Bool x Nat x Pos x Nat x Bool x Nat -> Bool
The PBES using enumerations have the following signature:
X :: Enum6 x Nat x Bool x Nat x Enum6 x Nat x Bool x Nat -> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations - - 4 144
Time - - 0.13 0.39

Table 6.5: Results for BAK1

The lazy approach leads to an infinite computation because the data variables of type Nat can
grow indefinitely. The finite approach also can not instantiate the data variables of type Nat and
therefore a PBES is returned. The signature for each data variable when using the finite approach
without enumerations is:
X :: Pos x Nat x Nat x Pos x Nat x Nat -> Bool
When using enumerations, the signature becomes:
X :: Nat x Nat x Nat x Nat -> Bool

The property can not be checked using BES-solvers, because the result is a PBES and not a
BES.

BAK2 The µ-calculus formula is the following:

nu X. (
[true]X

&&
forall b:B. ([request(b)](mu Y. (<true>Y || <enter(b)>true)))

)

The PBES for BAK2 can be found in appendix D.6 and consist of two parameterised boolean
equations with predicate variables X and Y . The signature of X and Y are the following:
X :: Pos x Nat x Bool x Nat x Pos x Nat x Bool x Nat -> Bool
Y :: Pos x Nat x Bool x Nat x Pos x Nat x Bool x Nat x Bool -> Bool
The PBES using enumerations have the following signature:
X :: Enum6 x Nat x Bool x Nat x Enum6 x Nat x Bool x Nat -> Bool
X :: Enum6 x Nat x Bool x Nat x Enum6 x Nat x Bool x Nat x Bool-> Bool

2For the computations a dual core Pentium D 3 GHz with 1 GB of memory was used.

32

The number of equations computed for each approach, together with the time needed to com-
pute the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations - - 12 432
Time - - 0.22 0.91

Table 6.6: Results for BAK2

The lazy approach leads to an infinite computation because the data variables of type Nat can
grow indefinitely. The finite approach also can not instantiate the data variables of type Nat and
therefore a PBES is returned. The signature for each data variable when using the finite approach
without enumerations is:
X :: Pos x Nat x Nat x Pos x Nat x Nat -> Bool
Y :: Pos x Nat x Nat x Pos x Nat x Nat -> Bool
When using enumerations, the signature becomes:
X :: Nat x Nat x Nat x Nat -> Bool
Y :: Nat x Nat x Nat x Nat -> Bool

The property can not be checked using BES-solvers, because the result is a PBES and not a
BES.

BAK3 The µ-calculus formula is the following:

nu X. (
[true]X

&&
forall b:B. ([request(b)]

(mu Y. (([true]Y && <true>true) || <enter(b)>true)))
)

The PBES for BAK3 can be found in appendix D.7 and consist of two parameterised boolean
equations with predicate variables X and Y . The signature of X and Y are the following:
X :: Pos x Nat x Bool x Nat x Pos x Nat x Bool x Nat -> Bool
Y :: Pos x Nat x Bool x Nat x Pos x Nat x Bool x Nat x Bool -> Bool
The PBES using enumerations have the following signature:
X :: Enum6 x Nat x Bool x Nat x Enum6 x Nat x Bool x Nat -> Bool
X :: Enum6 x Nat x Bool x Nat x Enum6 x Nat x Bool x Nat x Bool-> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations - - 12 432
Time - - 0.29 1.15

Table 6.7: Results for BAK3

33

The lazy approach leads to an infinite computation because the data variables of type Nat can
grow indefinitely. The finite approach also can not instantiate the data variables of type Nat and
therefore a PBES is returned. The signature for each data variable when using the finite approach
without enumerations is:
X :: Pos x Nat x Nat x Pos x Nat x Nat -> Bool
Y :: Pos x Nat x Nat x Pos x Nat x Nat -> Bool
When using enumerations, the signature becomes:
X :: Nat x Nat x Nat x Nat -> Bool
Y :: Nat x Nat x Nat x Nat -> Bool

The property can not be checked using BES-solvers, because the result is a PBES and not a
BES.

BAK4 The µ-calculus formula which describes that a process inevitably enters a critical section,
is the following:

mu X. [!enter(true)]X

The PBES for BAK4 can be found in appendix D.8 and consist of one parameterised boolean
equation with predicate variable X. The signature of X is the following:
X :: Pos x Nat x Bool x Nat x Pos x Nat x Bool x Nat -> Bool
The PBES using enumerations have the following signature:
X :: Enum6 x Nat x Bool x Nat x Enum6 x Nat x Bool x Nat -> Bool

The number of equations computed for each approach, together with the time needed to compute
the result is shown in the following table.

Type lazy lazy enum finite finite enum
equations 37 37 4 144
Time 0.25 0.19 0.10 0.29

Table 6.8: Results for BAK4

The lazy approach leads to a finite BES with 37 equations, while the statespace of the system
is of infinite size. The BES is finite, because all paths starting from an enter(true) action do
not have to be considered, because enter(true) has occurred.
The finite approach can not instantiate the data variables of type Nat and therefore a PBES is
returned. The signature for each data variable when using the finite approach without enumera-
tions is:
X :: Pos x Nat x Nat x Pos x Nat x Nat -> Bool
When using enumerations, the signature becomes:
X :: Nat x Nat x Nat x Nat -> Bool

The property holds on Lamport’s bakery protocol.

Conclusion Lamport’s Bakery Protocol shows that there are specifications where the lazy ap-
proach will have an infinite computation. The finite approach however is guaranteed to terminate,
resulting in a (smaller) PBES, which can make symbolic model checking easier. The fourth prop-
erty however, shows that it is possible that in a system with an infinite state space, a finite BES
can be computed with the lazy approach.

34

Chapter 7

Conclusions

To verify if a property holds on a system, it suffices to compute the solution of the PBES, which
represents the combination of the system and property. A step towards computing the solution of
PBESs, is instantiating them. This instantiation process can reduce the complexity of the equa-
tions in the PBES, eventually leading to a BES. In this thesis we have considered two approaches
for instantiating PBESs.

The finite approach instantiates all data variables of finite data type. Using the finite approach,
the result will not necessarily be a BES, but the right hand sides of the equations in the PBES
can be reduced in complexity by instantiating all finite data types. Because no data variables
of infinite data type are instantiated, the computation is guaranteed to terminate. The finite
approach can increase the performance of symbolic approximation techniques due to the reduced
complexity of the equations.

The lazy approach assumes the PBES to be solved in the initial state. Therefore it only computes
those equations the initial state depends on. In most cases, this will lead to a smaller BES than
the finite approach would lead to (if it would result in a BES at all). If the initial state depends
on an infinite number of equations, the lazy approach will result in an infinite computation. On
systems with infinite state spaces, it can be the case that a property on such a system leads to
a finite BES in the lazy approach. For example the fourth property we considered on Lamport’s
bakery protocol leads to a finite BES.

The case studies have shown that (using BES-solvers) it is possible to verify a number of
properties on systems by instantiating PBESs. The alternating bit protocol (which has a finite
state space) has shown that the lazy approach can lead to (much) smaller BESs then the finite
approach could lead to. Lamport’s bakery protocol is a system with an infinite state space and for
a lot of properties, the lazy approach would result in an infinite computation. Therefore the finite
approach can be used in those cases, to reduce the complexity of the PBES. For some properties
on Lamport’s bakery protocol the lazy approach will lead to a finite BES.

As we have seen, it is now possible with the mCRL2-toolset to verify properties on systems,
although external BES-solvers must be used, because a BES-solver is not yet present in the toolset.

35

7.1 Future work

The performance of the finite and lazy approach depends heavily on the complexity of the predicate
formulae in the PBES. Therefore, the performance can be improved greatly, if predicate formulae
can be dealt with in a more effective way. By implementing a combination of substitution and
rewriting, in a lot of cases (big) parts of predicate formulae does not have to be computed.
Another optimisation which can be implemented is the improved sorting algorithm, which will
reduce the time used by sorting the result in the lazy approach.

It is possible to rewrite predicate formulae by implementing the quantifier elimination tech-
niques. In the lazy approach, this will lead to BESs for a bigger subset of PBESs and both in the
finite and lazy approach, the complexity of the resulting PBESs and BESs will be reduced.

The function Find Dummy to get a random instantiation for a data variable (as used by the
instantiation of free variables) can be useful in more tools on PBESs. Therefore it is a good idea
to implement this function as part of the PBES-library.

The CADP-format as output format when a BES is computed could be implemented to be able
to solve BESs using the CADP-toolset.

36

Bibliography

[BaW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[BeG94] M.A. Bezem and J.F. Groote. Invariants in Process Algebra with Data. In B. Jonsson
and J. Parrow, editors, Proceedings 5th Conference on Concurrency Theory (CON-
CUR’94), Lecture Notes in Computer Science, volume 836, pages 401-416. Springer-
Verlag, 1994.

[CADP] http://www.inrialpes.fr/vasy/cadp/.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics-
based tool for the verification of finite-state systems. In ACM Transactions on Program-
ming Languages and Systems, volume 15(1), pages 36-72. ACM Press, January 1993.

[DPW07] A. van Dam, S.C.W. Ploeger and T.A.C. Willemse. Instantiation for Parameterised
Boolean Equation Systems. in preparation, 2007.

[Gar05] H. Garavel. The Open/Caesar Reference Manual. Chapter 16, pages 143-165. 2005.

[Gro97] J.F. Groote. The syntax and semantics of timed µCRL. Technical Report SEN-R9709.
CWI, 1997

[GrP94] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Algebra of Commu-
nicating Processes, Workshops in Computing, A. Ponse et al., pages 26-62. 1994.

[GrM99] J.F. Groote and R. Mateescu. Verification of Temporal Properties of Processes in a
Setting with Data. In A.M. Haeberer, editor, Algebraic Methodology and Software Tech-
nology: 7th International Conference (AMAST’98), Lecture Notes in Computer Science,
volume 1548, pages 74-90. Springer-Verlag, 1999.

[GrR01] J.F. Groote and M. Reniers. Algebraic process verification. In Handbook of Process
Algebra, J.A. Bergstra et al., pages 1151-1208. Elsevier Science, 2001.

[GMP06] J.F. Groote, A.H.J. Mathijssen, S.C.W. Ploeger, M.A. Reniers, M.J. van Weerdenburg
and J. van der Wulp. Process Algebra and mCRL2. IPA Basic Course on Formal Methods
2006. January 2006.

[GMR07] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko and M.J. van Weerdenburg.
The Formal Specification Language mCRL2. To appear in: Proc. Methods for Modelling
Software Systems. Dagstuhl Seminar Proceedings 06351 (2007).

[GrW05] J.F. Groote and T.A.C. Willemse. Parameterised Boolean Equation Systems. In S.
Abramsky and M. Mavronicolas, editors, Theoretical Computer Science, volume 343,
pages 332-369. Elsevier, 2005.

[GrW05a] J.F. Groote and T.A.C. Willemse. Model-checking processes with data. In Science of
Computer Programming, volume 56, pages 251-273. Elsevier, 2005.

37

[Koz83] D. Kozen. Results on the propositional µ-calculus. In M. Nivat, editor, Theoretical
Computer Science, volume 27, pages 333-354. Elsevier, 1983

[Mad97] A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD the-
sis. Technical University of Munich, 1997.

[Mat03] R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Sys-
tems. In Proceedings of the 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS’2003 (Warsaw, Poland). April 2003

[McM92] K.L. McMillan. Symbolic Model Checking. PhD thesis. Carnegie Mellon University, 1992

[MCRL] http://homepages.cwi.nl/ mcrl/.

[MCRL2] http://www.mcrl2.org/.

[Ray86] M. Raynal. Algorithms for Mutual Exclusion. North Oxford Academic, 1986.

38

Appendix A

Formats

A.1 Internal format of PBESs

This chapter describes the grammar of PBESs in terms of the internal format.

PBES

<PBES> ::= PBES(<DataSpec>, <PBEqn>*, <PropVarInst>)
In the internal format a PBES takes a data specification, which contains rewrite rules, definitions
and declarations on the data. Also it takes zero or more parameterised boolean equations and an
initial state, which is empty if the PBES has no parameterised boolean equations.

Predicate Variable Instantiation

<PropVarInst> ::= PropVarInst(<String>, <DataExpr>*)
A <PropVarInst> is the internal representation of a predicate variable instantiation.

PBES equation

<PBEqn> ::= PBEqn(<FixPoint>, <PropVarDecl>, <PBExpr>)
A parameterised boolean equation has a fixpoint, a predicate variable and a parameterised boolean
expression which represents the right hand side of the parameterised boolean equation.

Fixpoint symbol

<FixPoint> ::= Mu
| Nu

Predicate Variable

<PropVarDecl> ::= PropVarDecl(<String>, <DataVarId>*)
A <PropVarDecl> is the internal representation of a predicate variable.

39

PBES expression

<PBExpr> ::= <DataExpr>
| PBESTrue
| PBESFalse
| PBESAnd(<PBExpr>, <PBExpr>)
| PBESOr(<PBExpr>, <PBExpr>)
| PBESForall(<DataVarId>+, <PBExpr>)
| PBESExists(<DataVarId>+, <PBExpr>)
| <PropVarInst>

where a <DataExpr> contains an arbitrary data expression and a <DataVarId> is an arbitrary
data variable.

40

A.2 CWI format of a BES

CWI uses a representation of a BES, which is a straightforward derivation of the BESs as described
in section 4.1.

Representation of operators, constants

Math-representation CWI-representation
µ min
ν max
∧ &
∨ |
> T
⊥ F

Grammar of the CWI representation of a BES

The grammar for a BES in the CWI format, is the following:
<axiom> ::= <bes>
<bes> ::= <boolean equation*>
<boolean equation> ::= <fixpoint> <predicate variable> = <bes expression>
<fixpoint> ::= min

| max
<predicate variable> ::= <natural number>
<bes expression> ::= F

| T
| (<bes expression> & <bes expression>)
| (<bes expression> | <bes expression>)
| <predicate variable>

Note that:

• <natural-number> is a non-negative integer.

Example of a BES in the CWI format

max 0 = 1 & 2
max 1 = 0 | 1 | 2
max 2 = 5 & 3
max 3 = 1 | 4
max 4 = T
min 5 = 6 | 7
min 6 = F
min 7 = 7 & 8
min 8 = 5 | 6 | 8

41

This represents the following BES:
νX0 = X1 ∧X2

νX1 = X0 ∨X1 ∨X2

νX2 = Y0 ∧X3

νX3 = X1 ∨X4

νX4 = >
µY0 = Y1 ∨ Y2

µY1 =⊥
µY2 = Y2 ∧ Y3

µY3 = Y0 ∨ Y1 ∨ Y3

42

A.3 CADP format of a BES

In the CADP format, a BES is a sequence of boolean equation blocks, in which each boolean
equation block consists of boolean equations with the same fixpoint symbol.

Representation of operators, constants

Math-representation CADP-representation
µ mu
ν nu
∧ and
∨ or
> true
⊥ false

Requirements on boolean equation blocks:

• For a BES with N boolean equation blocks, each boolean equation block has an index in the
range [0...N).

• Every boolean equation block has a number of boolean variables, called Xi, where i is the
index, starting at 0.

• Each boolean equation block is identified by a blockname Bi, where i is the index of the
boolean equation block.

• Every boolean equation block has a fixpoint (mu, nu) assigned.

• At the left hand side of a boolean equation only one predicate variable is allowed, and it has
to be a unique variable for that boolean equation block.

• At the right hand side of a boolean equation only predicate variables, constants (true,
false) and operators (and, or) are allowed.

• A local variable is a variable in the right hand side of a boolean equation which is declared
in the boolean equation block it appears.

• A global variable is a variable in the right hand side of a boolean equation which is declared
in another boolean equation block than it appears.

• Every predicate variable must be declared somewhere in the boolean equation block or in
another boolean equation block if it is a global variable.

• Every boolean equation has only one type of operators. Boolean equations with only and
operators are called conjunctive, boolean equations with only or operators are called dis-
junctive.

• The empty disjunctive equation is false, the empty conjunctive operator is true.

• Xi depends on Xj if Xj is used in the right hand side of boolean equation Xi.

• A boolean equation block Bi depends on Block Bj if a variable in Bi depends on a variable
in Bj.

Order

The order of boolean equation blocks may not be changed in the format. The order of boolean
equations in a boolean equation block, however, may be changed.

43

Grammar of the CADP representation of a BES

The grammar for the BES is a slightly adapted variant from the grammar presented in [Gar05].
To allow empty BESs, an addition <empty-bes> is made to <block-list>, denoting an empty
sequence of boolean equation blocks. The <unique> and <mode> clauses are omitted, because they
are implementation specific for the CADP-toolkit, and thus not interesting for representing BESs
The grammar for a BES, as in [Gar05], is the following:
<axiom> ::= <block-list>
<block-list> ::= <block>

| <block> <block-list>
| <empty-bes>

<block> ::= block <sign> <block-identifier> is
<equation-list>

end block
<sign> ::= mu

| nu
<block-identifier> ::= B<natural-number>
<equation-list> ::= <equation>

| <equation> <equation-list>
<equation> ::= <local-variable-identifier>
<local-variable-identifier> ::= X<natural-number>
<global-variable-identifier> ::= X<natural-number> <natural-number>
<formula> ::= <atomic-formula>

| <disjunctive-formula>
| <conjunctive-formula>

<atomic-formula> ::= false
| true
| <local-variable-identifier>
| <global-variable-identifier>

<disjunctive-formula> ::= <atomic-formula> or <atomic-formula>
| <atomic-formula> or <disjunctive-formula>

<conjunctive-formula> ::= <atomic-formula> and <atomic-formula>
| <atomic-formula> and <conjunctive-formula>

Note that:

• <natural-number> is a non-negative integer.

• X<natural-number> denotes a local variable with respect to the current block. So X1 is
variable X1 in the current block. Each local variable can be written in a global form, by
adding the identifier of the block in the variable name.

• X<natural-number> <natural-number> denotes a global variable. So X0 1 is variable X0 in
block B1.

• Blocks must appear by an ordering of increasing blocknumbers.

Example of a BES in the CADP format

block nu B0 is
X0 = X1 and X2
X1 = X0 or X1 or X2
X2 = X0 1 and X3
X3 = X1 or X4
X4 = true

end block

44

block mu B1 is
X0 = X1 or X2
X1 = false
X2 = X2 and X3
X3 = X0 or X1 or X3

end block

A possible representation of the above BES in the format used in the previous chapter (using
different predicate variables for different fixpoint operators):
νX0 = X1 ∧X2

νX1 = X0 ∨X1 ∨X2

νX2 = Y0 ∧X3

νX3 = X1 ∨X4

νX4 = >
µY0 = Y1 ∨ Y2

µY1 =⊥
µY2 = Y2 ∧ Y3

µY3 = Y0 ∨ Y1 ∨ Y3

45

Appendix B

Tools

In this appendix we give a short overview of the tools which are written as result of the research.

B.1 Pbesinfo

To gain insight in the used PBES-format in the mCRL2-toolset , a tool named pbesinfo has been
made. This tool has the same usage as many other tools in the toolkit. This means that an input
file is given to the tool (say input.pbes). To read the input-file, the LPS-framework is used. The
tool pbesinfo will show information about the PBES.

Information displayed

Pbesinfo displays the following information:

• If the PBES is well formed and / or closed

• Number of parameterised boolean equations

• Number of µ’s

• Number of ν’s

• The set of predicate variables which have a µ as a fixpoint

• The set of predicate variables which have a ν as a fixpoint

• All predicate variables, with their signature.

The last three shown parts are optional (using commandline option -f/–full), because in big sys-
tems, this leads to unreadable output.

46

Example B.1. Assume the following PBES (the representation of the PBES in the example is
not the actual representation of a PBES in binary form):

µX(n:N) = Y (1/3 ∗ n, n+ 1) ∨ n > 10
νY (r:R, n:N) = Z(⊥, r, n− 1) ∧X(n)

µZ(b:B, r:R, n:N) = (b ==⊥ ∧X(n+ 1)) ∨ (b == > ∧ Y (r, n))

Pbesinfo will show the following information:

The PBES is closed and well formed
Number of equations: 3
Number of mu’s: 2 (X, Z)
Number of nu’s: 1 (Y)
Predicate variables: X :: Nat -> Bool

Y :: Real x Nat -> Bool
Z :: Bool x Real x Nat -> Bool

B.2 Pbes2bes

The tool pbes2bes implements the finite and lazy approach as defined in chapter 5. The tool takes
a PBES and depending if a name for an outputfile is given, it will put the result to the console or
to the file specified.

The tool can be run with the following tool-specific options:

• -s/–strategy. Use the specified strategy (lazy or finite).

• -o/–output. Use the specified output format (binary, internal or CWI).

47

Appendix C

Example lazy approach

In this appendix we show how the transformation for the lazy approach is done step by step.

Take a PBES:
µX(b:B) = Y (⊥) ∧X(b)
νY (b:B) = X(b)
with initial state X(>).
We denote µX(b:B) = Y (⊥) ∧ X(b) by σ1 and νY (b:B) = X(b) by σ2, so we denote the whole
PBES as σ1σ2.

trans(X(>), σ1σ2)
= {Definition trans }

sort(trans′({X(>)}, ∅, σ1σ2), σ1σ2)
= {Definition trans′}

sort(
pbecreate(X(>), σ1σ2)
trans′((∅ ∪ dep(X(>), σ1σ2))\(∅ ∪ {X(>)}), ∅ ∪ {X(>)}, σ1σ2)

, σ1σ2)
= {Definition pbecreate, see sub1; dep, see sub2; algebra}

sort(
µX> = Y⊥ ∧X>
trans′({Y (⊥), X(>)}\{X(>)}, {X(>)}, σ1σ2)

, σ1σ2)
= {Algebra}

sort(
µX> = Y⊥ ∧X>
trans′({Y (⊥)}, {X(>)}, σ1σ2)

, σ1σ2)
= {Definition trans′}

sort(
µX> = Y⊥ ∧X>
pbecreate(Y (⊥), σ1σ2)
trans′((∅ ∪ dep(Y (⊥), σ1σ2))\({X(>)} ∪ {Y (⊥)}), {X(>)} ∪ {Y (⊥)}, σ1σ2)

, σ1σ2)
= {Definition pbecreate, see sub3; dep, see sub4; algebra}

sort(
µX> = Y⊥ ∧X>
νY⊥ = X⊥
trans′({X(⊥)}\{X(>), Y (⊥)}, {X(>), Y (⊥)}, σ1σ2)

, σ1σ2)

48

= {Algebra}
sort(

µX> = Y⊥ ∧X>
νY⊥ = X⊥
trans′({X(⊥)}, {X(>), Y (⊥)}, σ1σ2)

, σ1σ2)
= {Definition trans′}

sort(
µX> = Y⊥ ∧X>
νY⊥ = X⊥
pbecreate(X(⊥), σ1σ2)
trans′((∅ ∪ dep(X(>), σ1σ2))\({X(>), Y (⊥)} ∪ {X(>)}), {X(>), Y (⊥)} ∪ {X(>)}, σ1σ2)

, σ1σ2)
= {Definition pbecreate, see sub5; dep, see sub6; algebra}

sort(
µX> = Y⊥ ∧X>
νY⊥ = X⊥
µX⊥ = Y⊥ ∧X⊥
trans′({Y (⊥), X(⊥)}\({X(>), Y (⊥), X(>)}), {X(>), Y (⊥), X(>)}, σ1σ2)

, σ1σ2)
= {Algebra}

sort(
µX> = Y⊥ ∧X>
νY⊥ = X⊥
µX⊥ = Y⊥ ∧X⊥
trans′(∅, {X(>), Y (⊥), X(⊥)}, σ1σ2)

, σ1σ2)
= {Definition trans′}

sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥), σ1σ2)
= {Definition sort }

(µX> = Y⊥ ∧X>) (µX⊥ = Y⊥ ∧X⊥)
sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥), σ2)

= {Definition sort }
(µX> = Y⊥ ∧X>) (µX⊥ = Y⊥ ∧X⊥) (νY⊥ = X⊥)

sort((µX> = Y⊥ ∧X>) (νY⊥ = X⊥) (µX⊥ = Y⊥ ∧X⊥), ε)
= {Definition sort }

(µX> = Y⊥ ∧X>) (µX⊥ = Y⊥ ∧X⊥) (νY⊥ = X⊥)

Sub1 pbecreate(X(>), σ1σ2)

pbecreate(X(>), σ1σ2)
= {Definition pbecreate }

µX> = subst(Y (⊥) ∧X(>),X)
= {Definition subst }

µX> = subst(Y (⊥),X) ∧ subst(X(>),X)
= {Definition subst }

µX> = Y⊥ ∧X>

49

Sub2 dep(X(>), σ1σ2)

dep(X(>), σ1σ2)
= {Definition dep }

instset(Y (⊥) ∧X(>))
= {Definition instset }

instset(Y (⊥)) ∪ instset(X(>))
= {Definition instset }

{Y (⊥)} ∪ {X(>)}
= {Algebra}

{Y (⊥), X(>)}

Sub3 pbecreate(Y (⊥), σ1σ2)

pbecreate(Y (⊥), σ1σ2)
= {Definition pbecreate }

pbecreate(Y (⊥), σ2)
= {Definition pbecreate }

νY⊥ = subst(X(⊥),X)
= {Definition subst }

νY⊥ = X⊥

Sub4 dep(Y (⊥), σ1σ2)

dep(Y (⊥), σ1σ2)
= {Definition dep }

dep(Y (⊥), σ2)
= {Definition dep }

instset(X(⊥))
= {Definition instset }

{X(⊥)}

Sub5 pbecreate(X(⊥), σ1σ2)

pbecreate(X(⊥), σ1σ2)
= {Definition pbecreate }

µX⊥ = subst(Y (⊥) ∧X(⊥),X)
= {Definition subst }

µX⊥ = subst(Y (⊥),X) ∧ subst(X(⊥),X)
= {Definition subst }

µX⊥ = Y⊥ ∧X⊥

Sub6 dep(X(⊥), σ1σ2)

dep(X(⊥), σ1σ2)
= {Definition dep }

instset(Y (⊥) ∧X(⊥))
= {Definition instset }

instset(Y (⊥)) ∪ instset(X(⊥))
= {Definition instset }

{Y (⊥)} ∪ {X(⊥)}
= {Algebra}

{Y (⊥), X(⊥)}

50

Appendix D

PBESs of alternating bit protocol
and Lamport’s bakery protocol

In this appendix we show the PBESs which resulted from the case study.

D.1 ABP1

nu X(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool) =

(((((((((
(exists d0_00: D. val(s30 == 1))

||
val(s31 == 4 && s33 == 1))

||
(exists e5_00: Bool. val((s31 == 3 && s33 == 1)

&& if(e5_00, b2, !b2) == b4)))
||
(exists e3_00: Bool. val(s32 == 2)))

||
val(s33 == 2))

||
(exists e4_00: Bool. val(s32 == 1 && if(e4_00, s33 == 4, s33 == 3))))

||
(exists e2_00: Bool. val(s31 == 2)))

||
(exists e0_00: Bool. val((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3)))
||
val(s30 == 2 && s31 == 1))

||
val(s30 == 3 && s32 == 4))

&&
((((((((
(forall d0_00: D. val(!(s30 == 1))

|| X(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2))
&&
val(!(s31 == 4 && s33 == 1))

|| X(s30, d, b, 1, freevar7, freevar8, s32, b3, 4, freevar15, b2))
&&

51

(forall e5_00: Bool. val(!((s31 == 3 && s33 == 1)
&&
if(e5_00, b2, !b2) == b4))

|| X(s30, d, b, 1, freevar5, freevar6, s32, b3,
if(e5_00, 2, 4), C2_fun(e5_00, d7, freevar14), b2)))

&&
(forall e3_00: Bool. val(!(s32 == 2))

|| X(s30, d, b, s31, d7, b4, if(e3_00, 4, 3),
if(e3_00, freevar10, b3), s33, d6, b2)))

&&
val(!(s33 == 2))

|| X(s30, d, b, s31, d7, b4, s32, b3, 3, freevar16, b2))
&&
(forall e4_00: Bool. val(!(s32 == 1 && if(e4_00, s33 == 4, s33 == 3)))

|| X(s30, d, b, s31, d7, b4, 2, if(e4_00, !b2, b2), 1,
C2_fun(e4_00, freevar18, freevar17), if(e4_00, b2, !b2))))

&&
(forall e2_00: Bool. val(!(s31 == 2))

|| X(s30, d, b, if(e2_00, 4, 3), C2_fun(e2_00, freevar3, d7),
if(e2_00, freevar4, b4), s32, b3, s33, d6, b2)))

&&
(forall e0_00: Bool. val(!((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3))
|| X(if(e0_00, 2, 1), C2_fun(e0_00, d, freevar0),

if(e0_00, b, !b), s31, d7, b4, 1, freevar11, s33, d6, b2)))
&&
val(!(s30 == 2 && s31 == 1))

|| X(3, d, b, 2, d, b, s32, b3, s33, d6, b2))
&&
val(!(s30 == 3 && s32 == 4))

||
X(2, d, b, s31, d7, b4, 1, freevar12, s33, d6, b2);

init X(1, freevar, true, 1, freevar1, freevar2,
1, freevar9, 1, freevar13, true);

52

D.2 ABP2

nu X(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool) =

(((((((((
(forall d0_00: D. val(!(s30 == 1))

|| X(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2))
&&
val(!(s31 == 4 && s33 == 1))

|| X(s30, d, b, 1, freevar7, freevar8, s32, b3, 4, freevar15, b2))
&&
(forall e5_00: Bool. val(!((s31 == 3 && s33 == 1)

&& if(e5_00, b2, !b2) == b4))
|| X(s30, d, b, 1, freevar5, freevar6, s32, b3,

if(e5_00, 2, 4), C2_fun(e5_00, d7, freevar14), b2)))
&&
(forall e3_00: Bool. val(!(s32 == 2))

|| X(s30, d, b, s31, d7, b4, if(e3_00, 4, 3),
if(e3_00, freevar10, b3), s33, d6, b2)))

&&
val(!(s33 == 2))

|| X(s30, d, b, s31, d7, b4, s32, b3, 3, freevar16, b2))
&&
(forall e4_00: Bool. val(!(s32 == 1 && if(e4_00, s33 == 4, s33 == 3)))

|| X(s30, d, b, s31, d7, b4, 2, if(e4_00, !b2, b2), 1,
C2_fun(e4_00, freevar18, freevar17), if(e4_00, b2, !b2))))

&&
(forall e2_00: Bool. val(!(s31 == 2))

|| X(s30, d, b, if(e2_00, 4, 3), C2_fun(e2_00, freevar3, d7),
if(e2_00, freevar4, b4), s32, b3, s33, d6, b2)))

&&
(forall e0_00: Bool. val(!((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3))
|| X(if(e0_00, 2, 1), C2_fun(e0_00, d, freevar0),

if(e0_00, b, !b), s31, d7, b4, 1, freevar11, s33, d6, b2)))
&&
val(!(s30 == 2 && s31 == 1))

|| X(3, d, b, 2, d, b, s32, b3, s33, d6, b2))
&&
val(!(s30 == 3 && s32 == 4))

|| X(2, d, b, s31, d7, b4, 1, freevar12, s33, d6, b2))
&&
(exists d00: D. (((((forall d0_00: D. (val(d0_00 != d00)

|| val(!(s30 == 1)))
|| Y(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2, d00))

&& (forall e5_00: Bool. true))
&& (forall e3_00: Bool. true))
&& (forall e4_00: Bool. true))
&& (forall e2_00: Bool. true))
&& (forall e0_00: Bool. true));

nu Y(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool, d00: D) =

(((((((((

53

(exists d0_00: D. val(s30 == 1)
&& Y(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2, d00))

||
val(s31 == 4 && s33 == 1)

&& Y(s30, d, b, 1, freevar7, freevar8, s32,
b3, 4, freevar15, b2, d00))

||
(exists e5_00: Bool. val((s31 == 3 && s33 == 1)

&& if(e5_00, b2, !b2) == b4)
&& Y(s30, d, b, 1, freevar5, freevar6, s32, b3,

if(e5_00, 2, 4), C2_fun(e5_00, d7, freevar14), b2, d00)))
||
(exists e3_00: Bool. val(s32 == 2)

&& Y(s30, d, b, s31, d7, b4, if(e3_00, 4, 3),
if(e3_00, freevar10, b3), s33, d6, b2, d00)))

||
val(s33 == 2)

&& Y(s30, d, b, s31, d7, b4, s32, b3, 3, freevar16, b2, d00))
||
(exists e4_00: Bool. val(s32 == 1 && if(e4_00, s33 == 4, s33 == 3))

&& Y(s30, d, b, s31, d7, b4, 2, if(e4_00, !b2, b2), 1,
C2_fun(e4_00, freevar18, freevar17), if(e4_00, b2, !b2), d00)))

||
(exists e2_00: Bool. val(s31 == 2)

&& Y(s30, d, b, if(e2_00, 4, 3), C2_fun(e2_00, freevar3, d7),
if(e2_00, freevar4, b4), s32, b3, s33, d6, b2, d00)))

||
(exists e0_00: Bool. val((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3)
&& Y(if(e0_00, 2, 1), C2_fun(e0_00, d, freevar0), if(e0_00, b, !b),

s31, d7, b4, 1, freevar11, s33, d6, b2, d00)))
||
val(s30 == 2 && s31 == 1)

&& Y(3, d, b, 2, d, b, s32, b3, s33, d6, b2, d00))
||
val(s30 == 3 && s32 == 4)

&& Y(2, d, b, s31, d7, b4, 1, freevar12, s33, d6, b2, d00))
||
(((((
(exists d0_00: D. false)

||
(exists e5_00: Bool. false))

||
(exists e3_00: Bool. false))

||
val(d6 == d00) && val(s33 == 2))

||
(exists e4_00: Bool. false))

||
(exists e2_00: Bool. false))

|| (exists e0_00: Bool. false);

init X(1, freevar, true, 1, freevar1, freevar2,
1, freevar9, 1, freevar13, true);

54

D.3 ABP3

nu X(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool) =

(((((((((
(forall d0_00: D. val(!(s30 == 1))

|| X(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2))
&&
val(!(s31 == 4 && s33 == 1))

|| X(s30, d, b, 1, freevar7, freevar8, s32, b3, 4, freevar15, b2))
&&
(forall e5_00: Bool. val(!((s31 == 3 && s33 == 1)

&& if(e5_00, b2, !b2) == b4))
|| X(s30, d, b, 1, freevar5, freevar6, s32, b3,

if(e5_00, 2, 4), C2_fun(e5_00, d7, freevar14), b2)))
&&
(forall e3_00: Bool. val(!(s32 == 2))

|| X(s30, d, b, s31, d7, b4, if(e3_00, 4, 3),
if(e3_00, freevar10, b3), s33, d6, b2)))

&&
val(!(s33 == 2))

|| X(s30, d, b, s31, d7, b4, s32, b3, 3, freevar16, b2))
&&
(forall e4_00: Bool. val(!(s32 == 1 && if(e4_00, s33 == 4, s33 == 3)))

|| X(s30, d, b, s31, d7, b4, 2, if(e4_00, !b2, b2), 1,
C2_fun(e4_00, freevar18, freevar17), if(e4_00, b2, !b2))))

&&
(forall e2_00: Bool. val(!(s31 == 2))

|| X(s30, d, b, if(e2_00, 4, 3), C2_fun(e2_00, freevar3, d7),
if(e2_00, freevar4, b4), s32, b3, s33, d6, b2)))

&&
(forall e0_00: Bool. val(!((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3))
|| X(if(e0_00, 2, 1), C2_fun(e0_00, d, freevar0),

if(e0_00, b, !b), s31, d7, b4, 1, freevar11, s33, d6, b2)))
&&
val(!(s30 == 2 && s31 == 1))

|| X(3, d, b, 2, d, b, s32, b3, s33, d6, b2))
&&
val(!(s30 == 3 && s32 == 4))

|| X(2, d, b, s31, d7, b4, 1, freevar12, s33, d6, b2))
&&
(exists dd: D. (((((forall d0_00: D. (val(d0_00 != dd)

|| val(!(s30 == 1)))
|| Y(2, d0_00, b, s31, d7, b4, s32, b3,

s33, d6, b2, dd))
&& (forall e5_00: Bool. true))
&& (forall e3_00: Bool. true))
&& (forall e4_00: Bool. true))

&& (forall e2_00: Bool. true))
&& (forall e0_00: Bool. true));

nu Y(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool, dd: D) =

55

Z(s30, d, b, s31, d7, b4, s32, b3, s33, d6, b2, dd);

mu Z(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool, dd: D) =

(((((((((
(forall d0_00: D. val(!(s30 == 1))

|| Z(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2, dd))
&&
val(!(s31 == 4 && s33 == 1))

|| Z(s30, d, b, 1, freevar7, freevar8, s32,
b3, 4, freevar15, b2, dd))

&&
(forall e5_00: Bool. val(!((s31 == 3 && s33 == 1)

&& if(e5_00, b2, !b2) == b4))
|| Z(s30, d, b, 1, freevar5, freevar6, s32, b3,

if(e5_00, 2, 4), C2_fun(e5_00, d7, freevar14), b2, dd)))
&&
(forall e3_00: Bool. true))

&&
(val(d6 == dd)

|| val(!(s33 == 2)))
|| Z(s30, d, b, s31, d7, b4, s32, b3, 3, freevar16, b2, dd))

&&
(forall e4_00: Bool. val(!(s32 == 1 && if(e4_00, s33 == 4, s33 == 3)))

|| Z(s30, d, b, s31, d7, b4, 2, if(e4_00, !b2, b2), 1,
C2_fun(e4_00, freevar18, freevar17), if(e4_00, b2, !b2), dd)))

&&
(forall e2_00: Bool. true))

&&
(forall e0_00: Bool. val(!((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3))
|| Z(if(e0_00, 2, 1), C2_fun(e0_00, d, freevar0), if(e0_00, b, !b),

s31, d7, b4, 1, freevar11, s33, d6, b2, dd)))
&&
val(!(s30 == 2 && s31 == 1))

|| Z(3, d, b, 2, d, b, s32, b3, s33, d6, b2, dd))
&&
val(!(s30 == 3 && s32 == 4))

|| Z(2, d, b, s31, d7, b4, 1, freevar12, s33, d6, b2, dd))
&&

((((
(forall d0_00: D. true)

&&
(forall e5_00: Bool. true))

&&
(forall e3_00: Bool. val(!(s32 == 2))

|| Y(s30, d, b, s31, d7, b4, if(e3_00, 4, 3),
if(e3_00, freevar10, b3), s33, d6, b2, dd)))

&&
(forall e4_00: Bool. true))

&&
(forall e2_00: Bool. val(!(s31 == 2))

|| Y(s30, d, b, if(e2_00, 4, 3), C2_fun(e2_00, freevar3, d7),
if(e2_00, freevar4, b4), s32, b3, s33, d6, b2, dd)))

56

&&
(forall e0_00: Bool. true);

init X(1, freevar, true, 1, freevar1, freevar2,
1, freevar9, 1, freevar13, true);

57

D.4 ABP4

nu X(s30: Pos, d: D, b: Bool, s31: Pos, d7: D, b4: Bool,
s32: Pos, b3: Bool, s33: Pos, d6: D, b2: Bool) =

exists dd: D. (((((((((
(forall d0_00: D. (val(d0_00 == dd) || val(!(s30 == 1)))

|| X(2, d0_00, b, s31, d7, b4, s32, b3, s33, d6, b2))
&&
val(!(s31 == 4 && s33 == 1))

|| X(s30, d, b, 1, freevar7, freevar8,
s32, b3, 4, freevar15, b2))

&&
(forall e5_00: Bool. val(!((s31 == 3 && s33 == 1)

&& if(e5_00, b2, !b2) == b4))
|| X(s30, d, b, 1, freevar5, freevar6, s32, b3,

if(e5_00, 2, 4), C2_fun(e5_00, d7, freevar14), b2)))
&&
(forall e3_00: Bool. val(!(s32 == 2))

|| X(s30, d, b, s31, d7, b4, if(e3_00, 4, 3),
if(e3_00, freevar10, b3), s33, d6, b2)))

&&
val(!(s33 == 2))

|| X(s30, d, b, s31, d7, b4, s32, b3, 3, freevar16, b2))
&&
(forall e4_00: Bool. val(!(s32 == 1 && if(e4_00, s33 == 4, s33 == 3)))

|| X(s30, d, b, s31, d7, b4, 2, if(e4_00, !b2, b2), 1,
C2_fun(e4_00, freevar18, freevar17), if(e4_00, b2, !b2))))

&&
(forall e2_00: Bool. val(!(s31 == 2))

|| X(s30, d, b, if(e2_00, 4, 3), C2_fun(e2_00, freevar3, d7),
if(e2_00, freevar4, b4), s32, b3, s33, d6, b2)))

&&
(forall e0_00: Bool. val(!((s30 == 3 && s32 == 3)

&& if(e0_00, !b, b) == b3))
|| X(if(e0_00, 2, 1), C2_fun(e0_00, d, freevar0),

if(e0_00, b, !b), s31, d7, b4, 1, freevar11, s33, d6, b2)))
&&
val(!(s30 == 2 && s31 == 1))

|| X(3, d, b, 2, d, b, s32, b3, s33, d6, b2))
&& val(!(s30 == 3 && s32 == 4))
|| X(2, d, b, s31, d7, b4, 1, freevar12, s33, d6, b2))

&&
(((((
(forall d0_00: D. true)

&&
(forall e5_00: Bool. true))

&&
(forall e3_00: Bool. true))

&&
val(d6 != dd) || val(!(s33 == 2)))

&&
(forall e4_00: Bool. true))

&&
(forall e2_00: Bool. true))

58

&&
(forall e0_00: Bool. true);

init X(1, freevar, true, 1, freevar1, freevar2,
1, freevar9, 1, freevar13, true);

59

D.5 BAK1

nu X(s3: Pos, m: Nat, b: Bool, n: Nat, s30: Pos, m3: Nat, b0: Bool, n0: Nat) =
((((((
(val(s3 == 5) || val(s3 == 1))

||
(exists e3_00: Bool. val(if(e3_00, s3 == 6, s3 == 4 && n < m

|| m == 0))))
||
(exists e9_00: Bool. val(if(e9_00, s30 == 6, s30 == 4 && n0 < m3

|| m3 == 0))))
||
val(s30 == 1))

||
val(s30 == 5))

||
(exists e4_00: Enum3, e8_00: Enum7.
val((C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&& C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&& !b == b0)))

||
(exists e_00: Enum7, e10_00: Enum3.
val((C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)
&& C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))
&& !b0 == b)))

&&
((((((
(val(!(s3 == 5))
|| X(1, freevar10, b, freevar11, s30, m3, b0, n0))

&&
val(!(s3 == 1))
|| X(2, freevar1, b, 0, s30, m3, b0, n0))

&&
(forall e3_00: Bool. val(!if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0))

|| X(5, if(e3_00, freevar13, freevar7), b, n, s30, m3, b0, n0)))
&&
(forall e9_00: Bool.

val(!if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))
|| X(s3, m, b, n, 5, if(e9_00, freevar30, freevar24), b0, n0)))

&&
val(!(s30 == 1))
|| X(s3, m, b, n, 2, freevar18, b0, 0))

&&
val(!(s30 == 5))
|| X(s3, m, b, n, 1, freevar27, b0, freevar28))

&&
(forall e4_00: Enum3, e8_00: Enum7.
val(!((C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&& C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&& !b == b0))

||

60

X(C3_fun1(e4_00, 3, 4, 4),
C3_fun0(e4_00, freevar4, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0),

C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0)),
b,
C3_fun0(e4_00, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0) + 1, n, n),
C7_fun1(e8_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e8_00, freevar31, freevar29, freevar26, freevar25,

freevar23, freevar22, freevar19),
b0,
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, freevar20))))

&&
(forall e_00: Enum7, e10_00: Enum3.

val(!(
(C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1) &&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0
&& !(m3 == 0)))

&& !b0 == b))
||
X(C7_fun1(e_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e_00, freevar14, freevar12, freevar9, freevar8,

freevar6, freevar5, freevar2),
b,
C7_fun0(e_00, n, n, n, n, n, n, freevar3),
C3_fun1(e10_00, 3, 4, 4),
C3_fun0(e10_00, freevar21, C7_fun0(e_00, n, n, n, n, n, n, 0),

C7_fun0(e_00, n, n, n, n, n, n, 0)),
b0,
C3_fun0(e10_00, C7_fun0(e_00, n, n, n, n, n, n, 0) + 1, n0, n0)));

init X(1, freevar, true, freevar0, 1, freevar16, false, freevar17);

61

D.6 BAK2

nu X(s3: Pos, m: Nat, b: Bool, n: Nat, s30: Pos, m3: Nat, b0: Bool, n0: Nat) =
(((((((
(val(!(s3 == 5)) || X(1, freevar10, b, freevar11, s30, m3, b0, n0))

&&
val(!(s3 == 1)) || X(2, freevar1, b, 0, s30, m3, b0, n0))

&&
(forall e3_00: Bool. val(!if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0))

|| X(5, if(e3_00, freevar13, freevar7), b, n, s30, m3, b0, n0)))
&&
(forall e9_00: Bool. val(!if(e9_00,

s30 == 6,
s30 == 4 && n0 < m3 || m3 == 0))

|| X(s3, m, b, n, 5, if(e9_00, freevar30, freevar24), b0, n0)))
&&
val(!(s30 == 1))

|| X(s3, m, b, n, 2, freevar18, b0, 0)) && val(!(s30 == 5))
|| X(s3, m, b, n, 1, freevar27, b0, freevar28))

&&
(forall e4_00: Enum3, e8_00: Enum7.

val(!((
C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&&
C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&&
!b == b0))

||
X(C3_fun1(e4_00, 3, 4, 4),
C3_fun0(e4_00, freevar4, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0),

C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0)),
b,
C3_fun0(e4_00, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0) + 1, n, n),
C7_fun1(e8_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e8_00, freevar31, freevar29, freevar26, freevar25,

freevar23, freevar22, freevar19),
b0,
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, freevar20))))

&&
(forall e_00: Enum7, e10_00: Enum3.

val(!((
C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)
&&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))
&& !b0 == b))

||
X(C7_fun1(e_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e_00, freevar14, freevar12, freevar9, freevar8,

freevar6, freevar5, freevar2),
b,
C7_fun0(e_00, n, n, n, n, n, n, freevar3),
C3_fun1(e10_00, 3, 4, 4),

62

C3_fun0(e10_00, freevar21, C7_fun0(e_00, n, n, n, n, n, n, 0),
C7_fun0(e_00, n, n, n, n, n, n, 0)),

b0,
C3_fun0(e10_00, C7_fun0(e_00, n, n, n, n, n, n, 0) + 1, n0, n0))))

&&
(exists b00: Bool.

(((((
(val(b != b00)

||
val(!(s3 == 1)))

||
Y(2, freevar1, b, 0, s30, m3, b0, n0, b00))

&&
(forall e3_00: Bool. true))

&&
(forall e9_00: Bool. true))

&&
(val(b0 != b00) || val(!(s30 == 1)))

|| Y(s3, m, b, n, 2, freevar18, b0, 0, b00))
&&

(forall e4_00: Enum3, e8_00: Enum7. true))
&&

(forall e_00: Enum7, e10_00: Enum3. true));

mu Y(s3: Pos, m: Nat, b: Bool, n: Nat, s30: Pos,
m3: Nat, b0: Bool, n0: Nat, b00: Bool) =

(((((((
(val(s3 == 5) && Y(1, freevar10, b, freevar11, s30, m3, b0, n0, b00))

||
val(s3 == 1) && Y(2, freevar1, b, 0, s30, m3, b0, n0, b00))

||
(exists e3_00: Bool.

val(if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0))
&& Y(5, if(e3_00, freevar13, freevar7), b, n, s30, m3, b0, n0, b00)))

||
(exists e9_00: Bool.

val(if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))
&& Y(s3, m, b, n, 5, if(e9_00, freevar30, freevar24), b0, n0, b00)))

||
val(s30 == 1) && Y(s3, m, b, n, 2, freevar18, b0, 0, b00))

||
val(s30 == 5) && Y(s3, m, b, n, 1, freevar27, b0, freevar28, b00))

||
(exists e4_00: Enum3, e8_00: Enum7.

val((
C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&&
C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&&
!b == b0)

&&
Y(C3_fun1(e4_00, 3, 4, 4),
C3_fun0(e4_00, freevar4, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0),

63

C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0)),
b,
C3_fun0(e4_00, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0) + 1, n, n),
C7_fun1(e8_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e8_00, freevar31, freevar29, freevar26, freevar25,

freevar23, freevar22, freevar19),
b0,
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, freevar20), b00)))

||
(exists e_00: Enum7, e10_00: Enum3.

val((
C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)
&&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))
&&
!b0 == b)

&&
Y(C7_fun1(e_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e_00, freevar14, freevar12, freevar9, freevar8,

freevar6, freevar5, freevar2),
b,
C7_fun0(e_00, n, n, n, n, n, n, freevar3),
C3_fun1(e10_00, 3, 4, 4),
C3_fun0(e10_00, freevar21, C7_fun0(e_00, n, n, n, n, n, n, 0),

C7_fun0(e_00, n, n, n, n, n, n, 0)),
b0,
C3_fun0(e10_00, C7_fun0(e_00, n, n, n, n, n, n, 0) + 1, n0, n0),
b00)))

||
(((exists e3_00: Bool.

val(b == b00)
&&

val(if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0)))
||

(exists e9_00: Bool. val(b0 == b00)
&& val(if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))))

||
(exists e4_00: Enum3, e8_00: Enum7. false))

||
(exists e_00: Enum7, e10_00: Enum3. false);

init X(1, freevar, true, freevar0, 1, freevar16, false, freevar17);

64

D.7 BAK3

nu X(s3: Pos, m: Nat, b: Bool, n: Nat, s30: Pos, m3: Nat, b0: Bool, n0: Nat) =
(((((((
(val(!(s3 == 5)) || X(1, freevar10, b, freevar11, s30, m3, b0, n0))

&&
val(!(s3 == 1)) || X(2, freevar1, b, 0, s30, m3, b0, n0))

&&
(forall e3_00: Bool.

val(!if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0))
|| X(5, if(e3_00, freevar13, freevar7), b, n, s30, m3, b0, n0)))

&&
(forall e9_00: Bool.

val(!if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))
|| X(s3, m, b, n, 5, if(e9_00, freevar30, freevar24), b0, n0)))

&&
val(!(s30 == 1)) || X(s3, m, b, n, 2, freevar18, b0, 0))

&&
val(!(s30 == 5)) || X(s3, m, b, n, 1, freevar27, b0, freevar28))

&&
(forall e4_00: Enum3, e8_00: Enum7.

val(!((
C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&&
C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&&

!b == b0))
||
X(C3_fun1(e4_00, 3, 4, 4),
C3_fun0(e4_00, freevar4, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0),

C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0)),
b,
C3_fun0(e4_00, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0) + 1, n, n),
C7_fun1(e8_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e8_00, freevar31, freevar29, freevar26, freevar25, freevar23,

freevar22, freevar19),
b0,
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, freevar20))))

&&
(forall e_00: Enum7, e10_00: Enum3.

val(!((
C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)
&&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))

&&
!b0 == b))

||
X(C7_fun1(e_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e_00, freevar14, freevar12, freevar9, freevar8, freevar6,

freevar5, freevar2),
b,
C7_fun0(e_00, n, n, n, n, n, n, freevar3),

65

C3_fun1(e10_00, 3, 4, 4),
C3_fun0(e10_00, freevar21, C7_fun0(e_00, n, n, n, n, n, n, 0),

C7_fun0(e_00, n, n, n, n, n, n, 0)),
b0,
C3_fun0(e10_00, C7_fun0(e_00, n, n, n, n, n, n, 0) + 1, n0, n0))))

&&
(exists b00: Bool.

(((((
(val(b != b00) || val(!(s3 == 1)))

||
Y(2, freevar1, b, 0, s30, m3, b0, n0, b00))

&&
(forall e3_00: Bool. true))

&&
(forall e9_00: Bool. true))

&&
(val(b0 != b00) || val(!(s30 == 1)))

||
Y(s3, m, b, n, 2, freevar18, b0, 0, b00))

&&
(forall e4_00: Enum3, e8_00: Enum7. true))

&&
(forall e_00: Enum7, e10_00: Enum3. true));

mu Y(s3: Pos, m: Nat, b: Bool, n: Nat, s30: Pos, m3: Nat,
b0: Bool, n0: Nat, b00: Bool) =

((((((((
(val(!(s3 == 5)) || Y(1, freevar10, b, freevar11, s30, m3, b0, n0, b00))

&&
val(!(s3 == 1)) || Y(2, freevar1, b, 0, s30, m3, b0, n0, b00))

&&
(forall e3_00: Bool.

val(!if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0))
|| Y(5, if(e3_00, freevar13, freevar7), b, n, s30, m3, b0, n0, b00)))

&&
(forall e9_00: Bool.

val(!if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))
|| Y(s3, m, b, n, 5, if(e9_00, freevar30, freevar24), b0, n0, b00)))

&&
val(!(s30 == 1)) || Y(s3, m, b, n, 2, freevar18, b0, 0, b00))

&&
val(!(s30 == 5)) || Y(s3, m, b, n, 1, freevar27, b0, freevar28, b00))

&&
(forall e4_00: Enum3, e8_00: Enum7.

val(!((
C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&&
C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&&
!b == b0))

||
Y(C3_fun1(e4_00, 3, 4, 4),

66

C3_fun0(e4_00, freevar4, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0),
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0)),

b,
C3_fun0(e4_00, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0) + 1, n, n),
C7_fun1(e8_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e8_00, freevar31, freevar29, freevar26, freevar25, freevar23,

freevar22, freevar19),
b0,
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, freevar20),
b00)))

&&
(forall e_00: Enum7, e10_00: Enum3.

val(!((
C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)
&&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))
&&
!b0 == b))

||
Y(C7_fun1(e_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e_00, freevar14, freevar12, freevar9, freevar8, freevar6,

freevar5, freevar2),
b,
C7_fun0(e_00, n, n, n, n, n, n, freevar3),
C3_fun1(e10_00, 3, 4, 4),
C3_fun0(e10_00, freevar21, C7_fun0(e_00, n, n, n, n, n, n, 0),

C7_fun0(e_00, n, n, n, n, n, n, 0)),
b0,
C3_fun0(e10_00, C7_fun0(e_00, n, n, n, n, n, n, 0) + 1, n0, n0),
b00)))

&&
(((((
(val(s3 == 5) || val(s3 == 1))

||
(exists e3_00: Bool. val(if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0))))

||
(exists e9_00: Bool.

val(if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))))
||
val(s30 == 1))

||
val(s30 == 5))

||
(exists e4_00: Enum3, e8_00: Enum7.

val((
C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&&
C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&&
!b == b0)))

||
(exists e_00: Enum7, e10_00: Enum3.

67

val((
C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),

s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)
&&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))

&&
!b0 == b)))

||
(((exists e3_00: Bool. val(b == b00)

&& val(if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0)))
||
(exists e9_00: Bool. val(b0 == b00)

&& val(if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0))))
||
(exists e4_00: Enum3, e8_00: Enum7. false))

||
(exists e_00: Enum7, e10_00: Enum3. false);

init X(1, freevar, true, freevar0, 1, freevar16, false, freevar17);

68

D.8 BAK4

nu X(s3: Pos, m: Nat, b: Bool, n: Nat, s30: Pos, m3: Nat, b0: Bool, n0: Nat) =
((((((
(val(!(s3 == 5)) || X(1, freevar10, b, freevar11, s30, m3, b0, n0))

&&
val(!(s3 == 1)) || X(2, freevar1, b, 0, s30, m3, b0, n0))

&&
(forall e3_00: Bool.

(val(b == true)
||
val(!if(e3_00, s3 == 6, s3 == 4 && n < m || m == 0)))

||
X(5, if(e3_00, freevar13, freevar7), b, n, s30, m3, b0, n0)))

&&
(forall e9_00: Bool.

(val(b0 == true)
||
val(!if(e9_00, s30 == 6, s30 == 4 && n0 < m3 || m3 == 0)))

||
X(s3, m, b, n, 5, if(e9_00, freevar30, freevar24), b0, n0)))

&&
val(!(s30 == 1)) || X(s3, m, b, n, 2, freevar18, b0, 0))

&&
val(!(s30 == 5)) || X(s3, m, b, n, 1, freevar27, b0, freevar28))

&&
(forall e4_00: Enum3, e8_00: Enum7.

val(!((C3_fun(e4_00, s3 == 2, s3 == 3, s3 == 4 && m <= n && !(m == 0))
&&
C7_fun(e8_00, s30 == 6, s30 == 5, s30 == 4 && m3 <= n0 && !(m3 == 0),

s30 == 4 && n0 < m3 || m3 == 0, s30 == 3, s30 == 2, s30 == 1))
&&
!b == b0))

||
X(C3_fun1(e4_00, 3, 4, 4),
C3_fun0(e4_00, freevar4, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0),

C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0)),
b,
C3_fun0(e4_00, C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, 0) + 1, n, n),
C7_fun1(e8_00, 6, 5, 3, 6, 3, 2, 1),
C7_fun0(e8_00, freevar31, freevar29, freevar26, freevar25,

freevar23, freevar22, freevar19),
b0,
C7_fun0(e8_00, n0, n0, n0, n0, n0, n0, freevar20))))

&&
(forall e_00: Enum7, e10_00: Enum3.

val(!((C7_fun(e_00, s3 == 6, s3 == 5, s3 == 4 && m <= n && !(m == 0),
s3 == 4 && n < m || m == 0, s3 == 3, s3 == 2, s3 == 1)

&&
C3_fun(e10_00, s30 == 2, s30 == 3, s30 == 4 && m3 <= n0 && !(m3 == 0)))

&&
!b0 == b))

||
X(C7_fun1(e_00, 6, 5, 3, 6, 3, 2, 1),

69

C7_fun0(e_00, freevar14, freevar12, freevar9, freevar8,
freevar6, freevar5, freevar2),

b,
C7_fun0(e_00, n, n, n, n, n, n, freevar3),
C3_fun1(e10_00, 3, 4, 4),
C3_fun0(e10_00, freevar21, C7_fun0(e_00, n, n, n, n, n, n, 0),

C7_fun0(e_00, n, n, n, n, n, n, 0)),
b0,
C3_fun0(e10_00, C7_fun0(e_00, n, n, n, n, n, n, 0) + 1, n0, n0)));

init X(1, freevar, true, freevar0, 1, freevar16, false, freevar17);

70

