EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Equational reasoning in cocktail

Coppens, David L.

Award date:
2007

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Mar. 2025

https://research.tue.nl/en/studentTheses/c82432bf-a742-4a8a-a34d-5bec8ea81ad9

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

Equational Reasoning in Cocktail

by
D.L. Coppens

Supervisor:
dr.ir. M.G.J. Franssen

August 14, 2007

Abstract

Cocktail is a software tool intended to offer assistance to the process of de-
riving a program from its specification, using the Hoare/Dijkstra method.
It contains an interactive theorem prover, which allows users to interactively
construct proofs for theorems, as well as an automated theorem prover to
automatically construct proofs. The automated theorem prover of Cocktail
is based on the tableau method. One of its shortcomings is the lack of sup-
port for equational reasoning.

This thesis describes an extension of the tableau method to allow reasoning
with equalities. Rigid E-unification problems are introduced, along with an
algorithm to solve rigid E-unification problems. Calculus BSE is introduced
to rewrite rigid E-unification problems into more simple ones.

In order to use this calculus we introduce sets of constraints. We need to
determine satisfiability of such constraint sets. This is done by calculating
their solved form. From this solved form several simple systems are derived,
using a graph structure. If at least one of these simple systems is satisfiable,
the constraint set is satisfiable.

Contents

Abstract

1 Introduction
1.1 Problem statement
1.2 Structure of this thesis

2 Preliminaries
2.1 Notation e
2.2 Definitions
2.2.1 Skolem Negation Normal Form

3 Project context
3.1 Cocktail
3.2 Tableau method

3.2.1 Closing a leaf of the tableau
3.2.2 Properties of the tableau method
3.2.3 What about equalities?

Rigid E-Unification
4.1 Definition of Rigid E-Unification

4.1.1 Decidability and complexity
4.1.2 Rigid E-unification and the tableau method

Solving a Rigid E-Unification problem

Ground problemso
Introducing constraints

Calculus BSE
Constraint Satisfiability
5.4.1 Overview of the procedure

iii

13
15
16

19
19
21
21

iv CONTENTS

6 Implementation 35
6.1 Simple Systems oo 35
6.1.1 Using directed acyclic graphs 36

6.2 Solving Tool 41
6.2.1 Overview 41

7 Results 43
7.1 Project overview o 43
7.2 Futuwrework 44
A Proving fib(2) =1 47

Bibliography 52

Chapter 1

Introduction

When using an algorithm that was specified to solve some (difficult) prob-
lem, it is important that this algorithm is correct. Here, correctness means
that the algorithm adheres to its specification (i.e. it solves the problem it
is supposed to solve).

An approach to proving correctness of an algorithm is to formalize the spec-
ification of the algorithm using first-order logic. Then the algorithm can
be derived from this specification step by step, using Hoare triples defining
pre- and postconditions of each step. Each step gives rise to a set of proof
obligations that need to be fulfilled in order for the derivation to be correct.
This approach to programming was introduced by E.W.D. Dijkstra and is
taught to computer science students at Eindhoven University of Technology.
For more information about this method we refer to [Kal90].

1.1 Problem statement

Cocktail is a tool that supports the approach described above. It allows the
designer of an algorithm to give a formal specification and derive a program
from this specification. The tool keeps track of the proof obligations and
allows users to fulfill these obligations both in an interactive and automatic
way. A short introduction to Cocktail is given in chapter 3.

In [Fra00] a listing of the shortcomings of Cocktail is presented. Amongst
these shortcomings is the lack of support for equational reasoning in the Au-
tomated Theorem Prover (ATP). Since most proofs in this context require
equational reasoning, many seemingly easy proofs can not be constructed

1

2 CHAPTER 1. INTRODUCTION

automatically. Fortunately, the shortcoming is presented in [Fra00] along
with a possible solution: rigid E-unification.

The main goal of the project that is described in this thesis can be stated
as follows:

“Study rigid E-unification in the literature and create an implementa-
tion of an algorithm that can solve rigid E-unification problems, which
can be used in the Cocktail architecture.”

1.2 Structure of this thesis

First, preliminary definitions are given that are used throughout the thesis,
as well as some explanation about the notation used.

The rest of the thesis is structured as follows:

Context and background

We will discuss the context and background of this project in chapter 3.
The tool Cocktail is introduced briefly. Its ATP is discussed in somewhat
more detail, since it is the focus of this project. During this discussion it will
become clear why the currently used ATP is unable to reason with equations.

Problem definition

The formal definition of (rigid) E-unification is given in chapter 4. Several
different versions of E-unification are discussed, along with their properties.
It will become clear that we will need to solve rigid E-unification problems
in order to reason with equality using the ATP of Cocktail.

Solution to the problem

After the formal definition of the problem, chapter 5 describes the steps
needed to find a solution to a rigid e-unification problem. First a calculus,
named BSE, is described that can be used to rewrite the problem. Further-
more, an algorithm is discussed to determine the satisfiability of ordering
constraints. Such constraints are introduced along with the calculus BSE
and are the key to solving the rigid e-unification problem.

1.2. STRUCTURE OF THIS THESIS 3

Implementation

The algorithm described in chapter 5 is implemented. Implementation spe-
cific details regarding this solving method are described in chapter 6.

Conclusion

Finally, the outcome of the project is discussed in chapter 7, along with a
description of future work that might be considered. This thesis is concluded
with an appendix in which an example of a proof using the tableau method
extended with rigid e-unification is described in detail.

Chapter 2

Preliminaries

This chapter introduces some general notation and definitions used through-
out this thesis.

2.1 Notation

P[z] means that first-order logic formula P contains subterm z. Substi-
tuting a variable x by some term ¢ in term P[z] is denoted as Plx := {],
following the convention used in [Fra00].

An equality is denoted by s = ¢. In this thesis no difference is made between
s =t and t = s, since the = operator is symmetric. Formulas of the form
—(s =t) are written as s # t and are called inequalities.

The following notation is used to indicate that some equality s = ¢ holds in
a given context: {sy =t1,...,8, =ty Fys=1.

2.2 Definitions

We define first-order logic. Let P be a set of predicate symbols, F a set of
function symbols and let V be a set of variables. First-order logic is built up
using terms and formulas. In [HRO00] these are defined as follows in Backus
Naur form:

Definition 2.2.1 (Terms)
Let T be the set of terms. T is defined as follows:

6 CHAPTER 2. PRELIMINARIES

T o= x| f(tr,...,tn)

where x € V, f € F and f has arityn, (Vi: 1 <i<n:t;€7T)andt,s€T.
Functions f with arity zero are regarded as constants.

Definition 2.2.2 (Formulas)
Let Prop be the set of formulas. Prop is defined inductively as follows:

Prop = P(ti,....tn) | (0Q) [(RAR) [(QV R) |
QRQ=R)|(Vz:=:Q)| (Fz:Q)

where P € P with arityn, Vi:1<i<n:t; €T),z €V, Q € Prop and
R € Prop.

Variables that occur in a term can be free or can be bound by some quan-
tifier. We will formally define these concepts now.

Definition 2.2.3 (Free variables)
Function F'V that calculates all free variables in some first-order logic for-
mula or term is defined recursively as follows:

o FV(z)=u, forz eV
°

[ty tn)) = FV () U... UFV(t,)

QVR)=FV(Q= R)=FV(Q)UFV(R)

(
FV(
FV(s =
FV(
o FV(-Q)=FV(Q
FV(
FV(
FV(3z:2e€U:Q

Ve:xeU:Q)=FV(Q)\ {z}
) =FV(Q)\ {z}

In a similar way we define bound variables:

Definition 2.2.4 (Bound variables)
Function BV that calculates all bound variables in some first-order logic
formula is defined recursively as follows:

e BV(t)=10

2.2. DEFINITIONS 7

» BV(-Q) = BV(Q)
e BV (Vz :: Q) = BV(Q) U {xz}
Q) = BV(Q) U {z}

Now we can introduce ground terms.

(

e BV(QAR)=BV(QV R)=BV(Q= R)=BV(Q)UBV(R)
(
(

e BV (dx

Definition 2.2.5 (Ground term)
A term t is ground iff FV (t) = 0.

In chapter 5 ordered constraints are introduced as a means to solve rigid E-
unification problems. For this purpose an ordering > on terms is introduced.
This ordering has to have the following property to ensure completeness of
the solving procedure, as stated in [Com90]:

The ordering is total on ground terms, i.e. for all ground terms s,¢ and u
ordering > has the following properties:

e s=1tAt>s=s=t (antisymmetry)

o s> tAt>=u= s> u (transitivity)

o s~ tVtr s (totality)

An ordering that adheres to this condition is the lexicographical path order-
ing (LPO). Let > denote some precedence ordering on F.

The operator >-z7;O denotes the lexicographical path ordering (LPO) gener-
ated by >, which is used to solve rigid E-unification problems. Since the
same ordering and precedence function is used throughout this thesis, the
LPO operator is simplified to >=. LPO is defined in [Com90] as follows,
where s =t s>=tVs=t.

Definition 2.2.6 (Lexicographic path ordering)
Let s = f(s1,...,8,) and t = g(t1,...,ty) be two terms. Then s > t, if and
only if one of the following holds:

1. (Fi:1<i<m:s; = t)

2. f=rFgand (Vj:1<j<m:s>t;)

3. f=g, (s1,...,80) > (t1,...,tm) and (Vj: 1 < j <m:s > ;)

8 CHAPTER 2. PRELIMINARIES

where (S1,...,8n) > (t1,...,ty) ifand only if (37 : 1 < j<mn:(Vi:1<
’L'Sj:SiEti/\Sthj)).

If two terms s and ¢ are not comparable using LPO we denote this as s « t.
For instance assume s = f(x) and t = f(y), then we do not know if s > ¢,
t >~ sort=s, since s and t are not ground and > is only total on ground
terms.

2.2.1 Skolem Negation Normal Form

In the method used to solve rigid E-unification problems that is described
in chapter 5, formulas need to be in skolem negation normal form. Since
Cocktail allows arbitrary formulas in first-order logic, an algorithm is needed
to translate such an arbitrary first-order logic formula into skolem negation
normal form. This section defines skolem negation normal form and de-
scribes how to perform translations from arbitrary first-order logic formulas
to an equivalent first-order logic formula in skolem negation normal form.

Definition 2.2.7 (negation normal form)

A formula P is in negation normal form iff negations occur only in front of
atomic subformulas of P, and P contains only the connectives V and N and
predicates V, and exists.

A set of rules to translate a formula in first-order logic to an equivalent for-
mula in negation normal form is listed in [NWO01] and presented in table 2.1.

-(AV B) — -AN-B
—(A A B) — -~AV-B
-—A — A
A= B — (mAV B)
“(Vx:xeU:A) — (@x:xzelU:-A4)
“(Fx:xe€U:A) — (Vx:xzeU:-A)

Table 2.1: Translation to negation normal form

After the original formula P is translated to an equivalent formula P’ in
negation normal form, skolemization is used to translate P’ to skolem nega-
tion normal form.

Skolemization is the process of removing existential quantifiers in a formula
and replacing the variables bound by the removed quantifiers with functions

2.2. DEFINITIONS 9

that represent the originally bound variables. Such functions are called
skolem functions. It is important that such a function preserves the context
in which the variable it represents exists. For example, after removing the
existential quantifier in the formula (Vz :2 € U : (3y:y € U : P(x)V P(y)))
the resulting formula would be (Vz : x € U : P(z) vV P(f(x))), in which f
is the skolem function representing bound variable y. The argument of f
indicates that y depends on x in the original formula.

A function to skolemize a first-order logic formula is suggested in [Fra00]
and is defined recursively in table 2.2. Note that since the input formula is
in negation normal form, no rules for translating implications and negated
terms are needed in the definition.

skol(A) = A for atomic A
skol(—A) = -A for atomic A
skol(A N B) = skol(A) A skol(B)
skol(AV B) = skol(A) V skol(B)
skol(Vx:xeU:A) = (Vo : 2z € U : skol(A))
skol(Fx :x €U :A) = skol(Alx:= f(x1,...,2,)]) where skolem function f

is fresh with arity n, and
FV@Exz : z € U : A) =
{1131, ce ,l‘n}.

Table 2.2: Skolemization

Definition 2.2.8 (Skolem negation normal form)

A formula P is in skolem negation normal form, if P is in negation normal
form and P only contains universal quantifiers (i.e. existential quantifiers
are replaced by skolem functions).

Chapter 3

Project context

This chapter discusses the context in which the project is placed. First we
briefly introduce Cocktail. Then its automated theorem prover is discussed.

3.1 Cocktail

This section provides some general information about Cocktail. Cocktail was
designed and developed by Michael Franssen as a PhD project at Eindhoven
University of Technology. Documentation of the tool and its design can be
found in [Fra00].

Cocktail is a software tool intended to offer assistance to the process of de-
riving a program from its specification, using the Hoare/Dijkstra method
described in chapter 1. It contains an interactive theorem prover, which
allows users to interactively construct proofs for theorems, as well as an
automated theorem prover to automatically construct proofs. Cocktail uses
first-order logic to express theorems, program specifications, etc.

The tool is based upon three important concepts: a pure type system (PTS)
that corresponds to first-order logic, an automated theorem prover (ATP)
and a Hoare logic. For this project, only the ATP of Cocktail is of interest.
The ATP currently used in Cocktail is described in the next section.

3.2 Tableau method

The ATP integrated in Cocktail is based on the semantic tableaux method.
This section describes semantic tableaux and how they can be used to con-

11

12 CHAPTER 3. PROJECT CONTEXT

. 1 1 _‘_\P
special rule 7
PAQ ~(P=Q) ~(PVQ)
o rule — - 77 T
P,Q P,-Q —P,-Q
~(PAQ) P=Q) PVQ
g rule —_— =
~P[=Q ~PlQ PlQ
~dx:zecU:P Ve:xecU:P
v rule
—dx:xe€U:P,-Plx:=t] Vr:xeU: P Plx:=t
Jx:xecU: P ~Vz:xecU:P
0 rule _—
Plz := q] =Pz := af

Table 3.1: Tableau-expansion rules, taken from [Fra00]. « represents a fresh variable
of type U. t represents an arbitrary term of type U.

struct proofs.

Let I be a first-order logic proposition (e.g. I' =49 A...Ayp—1). I is called
the context. Now, suppose we want to prove that some first-order logic for-
mula P is true in a given context I, i.e. we want to prove that I' = P is a
tautology.

The basic idea of the tableau method is to try to show that the negation
of the proposition that is to be proved (e.g. —(I' = P)) never holds, by
constructing a tableau.

A tableau is a tree structure in which each node is labelled. Each label is
a set of formulas. This tableau is expanded using tableau-expansion rules
listed in table 3.1.

Construction of such a tableau is described in [Fra00] as follows:

1. Start with a single node, labelled with {—=P}, where P is the formula
to be proved.

2. Select a leaf from the partially constructed tree. Select from the corre-
sponding label L a formula X to which one of the rules from figure 3.1

3.2. TABLEAU METHOD 13

can be applied. Extend the leaf with a number of nodes equal to the
number of conclusions of the rule. Conclusions are separated by a ‘|’
and can contain several formulas separated by a ‘,’. A successor node
is labelled with (L \ {X}) UY, where Y is the conclusion for which
the successor was created. There exists a model for at least one of the
successor nodes if and only if there exists a model for the parent node.

3. Repeat step 2 until:

(a) Every leaf either contains the special predicate symbol L or it
contains both an X and —X for some formula X. X may be
different for every leaf. Such a leaf is called closed. If all leaves
of a tableau are closed, the tableau itself is also called closed.

(b) There exists a non-closed leaf which contains only literals different
from L. Such a leaf actually provides an interpretation, and hence
a model, in which the original formula P does not hold, hence the
tableau provides a counterexample.

If all leafs of the tableau are closed, we can conclude that the formula stored
in the root can never hold, and thus, that the formula that was to be proved
is a tautology. It can also happen that no more rules can be applied to any
leaf in the tableau, while not all leafs are closed. In that case, it is shown
that the formula in the root is true for at least one instantiation. This
means that the original formula is not a tautology, and the formulas on the
non-closed leaf(s) provide(s) a counter-example.

3.21 Closing a leaf of the tableau

As discussed above, leafs of the tableau can be closed if its label contains two
contradicting formulas. So a very important aspect of the tableau method
is to identify such contradictions.

If the label of a leaf contains some formula P and its negation —P, it is
evident that there is a contradiction and the leaf can be closed. However,
first-order logic terms can contain free variables, which can be instantiated.
This means that there might be terms in the label that could close the leaf
if some suitable instantiation of the free variables is found. For example,
it might be the case that the label contains terms Q(z) and, for instance,
—Q(y). In this case, the leaf can be closed if x = y. Finding such a suitable
instantiation is called unification. Unification is defined in [Kni89] as follows:

14 CHAPTER 3. PROJECT CONTEXT

Definition 3.2.1 (Unification)

Two terms s and t are unifiable if there exists a substitution o such that
o(s) = o(t). In such a case, u is called a unifier of s and t, and o(s) is called
a unification of s and t.

Several unifiers may exist for two terms ¢ and s. However, there is always
one unifier o that is more general than any other unifier. This means that
o can be transformed to any other unifier of ¢ and s by applying some
substitutions. o is called the most general unifier of s and ¢. It is defined
in [Kni89] as follows:

Definition 3.2.2 (Most general unifier)
A unifier o of terms s and t is called a most general unifier (MGU) of s and
t, if for any other unifier 0, there is a substitution T such that Too = 6.

When applying a v rule on a formula of the form (Vz : € U : P) or
—(3x : € U : P), some arbitrary term ¢ is introduced and substituted
for x. Which term ¢ leads to a contradiction in as little steps as possible
is not always known at the moment of choosing such term ¢. Therefore, as
described in [Fra00], Cocktail postpones this choice and substitutes a fresh
variable X for x.

Such variables X are called tableau variables. They represent appliances of
the v rule, for which the actual substitutions have not yet been executed.
Like in the case of free variables, unification can be used to find a substitu-
tion for these tableau variables that closes a leaf. For example, if the label
of a leaf contains formulas P(X) and = P(c), substituting ¢ for X leads to a
contradiction.

However, there are restrictions on the terms that are allowed to be substi-
tuted for tableau variables. If some variable o was introduced by a d rule,
this variable may not be substituted for a tableau variable X that was intro-
duced before o. Variable X was introduced instead of an arbitrary term t.
At that moment, variable a did not exist and could not have been selected
as term ¢t. We introduced variable X to postpone the choice of a suitable
term t. Since that choice is made as soon as a term t is substituted for X
in one leaf, t has to be substituted for X in all leafs. This indicates that we
need to create one unifier that closes all leafs.

To ensure that these restrictions are met, a context containing all variables
introduced by v and J rules in the order in which they are introduced is

3.2. TABLEAU METHOD 15

maintained. So when trying to find a suitable term ¢ to substitute for a
variable X, it may not contain variables introduced by ¢ rules that occur
after X in the context.

3.2.2 Properties of the tableau method

The tableau method is complete for first-order logic: for arbitrary tautology
P, a closed tableau exists starting with root node —P. This is proved in
[Smu68]. Another property of semantic tableaux proved in the same work
by Smullyan is soundness: if a closed tableau exists for =P, where P is an
arbitrary first-order logic formula, then P is a tautology.

Unfortunately, completeness of the tableau method does not guarantee that
a tableau can indeed be constructed for each tautology P using the tableau
method, within a reasonable amount of time. Completeness only guarantees
that for a tautology P a tableau exists. It still could take a very long time
to construct the tableau.

The tableau method is (positively) semi-decidable. A fair algorithm that
checks whether a tableau exists for a tautology P will end in a finite amount
of time with a positive answer. However, if P is not a tautology, the al-
gorithm might run forever. For instance, assume that the label of a leaf
contains a universally quantified formula. Applying a v rule to this leaf will
lead to a new leaf, of which the label still contains the universally quantified
formula. So, the v rule can be applied again. This can continue forever.
Note that fairness of the algorithm is an important requirement here: if the
algorithm is not fair, it can apply = rules on the same formula without ever
applying another rule. So, even if P is a tautology, an unfair algorithm
might not give a positive result within a finite amount of time.

Cocktail has a number of options to control the tableau method, which
prevent the algorithm to run too long or to run out of memory. The running
time of the algorithm can be bounded. Also, bounds can be set on the size
of the tableau, i.e. its depth and the number of leafs. So, summarizing the
results discussed above, if some formula P is being proved using the tableau
method, there are three possible outcomes:

1. The algorithm finishes after finding a closed tableau. In this case it
can be concluded that P is a tautology.

2. No more tableau expansion rules are applicable to the tableau con-

16 CHAPTER 3. PROJECT CONTEXT

structed so far and the tableau is not closed. At least one leaf of the
tableau is not closed in this case. This means that P is not a tautology,
and such a non-closed leaf provides a counter-example.

3. The algorithm finishes without finding a closed tableau, nor finding a
counter-example. This happens if one of the bounds is exceeded. If
this happens, nothing can be concluded about P. It might be the case
that the tableau can be closed after performing some more steps, but
since the method is semi-decidable it can also be the case that P is not
a tautology and that the algorithm can keep running forever, without
ever finding a counter-example.

3.2.3 What about equalities?

An equality e = t gives information about terms e and ¢ that could be useful
(or even essential) when constructing a proof, namely that they are equal
and thus that they can be used interchangeably. For example, if f(e) = 0,
we can also conclude that f(¢) = 0. However, this information is discarded
in the standard tableau method. Different from the definition of first-order
logic given in chapter 2, equalities are not part of first-order logic in Cocktail
and are treated as atomic predicates.

Assume that the formula that needs to be proved, or the context, contains
one or more equations. Then such equations are considered to be one atomic
entity in the tableau method. The actual fact that two terms are defined to
be equal is not taken into account.

For example, assume that we need to prove that the following formula is a
tautology, for arbitrary constant terms (i.e. functions with zero arguments)
eand t: e=tANt=0= e =0. We would start a tableau with a root node
labelled with e =t At = 0 A =(e = 0). Using the tableau expansion rules
would lead to the (simplified) tableau depicted in figure 3.1.

Now, this leaf would have to be closed by unifying e and t, leading to e = 0
and —(e = 0). However, since e and t are constants, this is impossible. Uni-
fication algorithms identify the fact that ¢t and e are functions with different
names, which are impossible to unify. So, in order to close the leaf it is
necessary to use the fact that t = 0, because that would allow the transfor-
mation of e =t to e = 0.

3.2. TABLEAU METHOD 17

{e=tAt=0AN=(e=0)}

Figure 3.1: Example of a tableau that can not be closed using standard unification

This example indicates that in order to allow reasoning about equalities,
the standard tableau method is not sufficient: the tableau method is not
complete for first-order logic with equalities.

There are two possible directions to take from here, both of which are de-
scribed in [Bec97]. The first possibility would be to introduce extra tableau-
extension rules to handle equations. Secondly, one could try to use a different
mechanism to close leafs. This mechanism, unlike the standard unification
algorithm, should take the equations into account. We discuss both possi-
bilities next.

Introducing additional tableau-expansion rules

An additional tableau-expansion rule is described in [Bec97]. This rule was
first defined by Fitting and is stated as follows:

t=s,P(t)
pu(P[t" = s])

When applying this rule, the MGU p of ¢ and ¢’ is calculated. If terms ¢
and t' are not unifiable, the rule can not be applied.

eq rule

Since t is equal to s, u(P(t')) may then be replaced by u(P(s)). It is im-
portant that u is applied to all formulas in the branch of ¢ = s and P(t'),
since the application of the rule depends on the instantiation of variables
defined in pu. However, it is not necessary to fully apply u, since univer-
sally quantified variables can be instantiated multiple times, using arbitrary
terms (of the right type). Let U be the set of variables in either ¢t = s or P[t/]
that are universally quantified, or introduced by instantiating a universally
quantified formula.

18 CHAPTER 3. PROJECT CONTEXT

{e=tAt=0N=(e=0)}

X

Figure 3.2: Closed tableau using the eq rule.

Now, lets apply this new eq rule to the tableau in figure 3.1. The eq rule can
be applied on e =t and ¢t = 0. The MGU of ¢ and ¢ is empty, since t = ¢.
So, we can add e = 0 to the leaf, resulting in the closed tableau depicted in
figure 3.2. A closed leaf is indicated by x in the figure.

Reasoning about equalities in a tableau

Another way to use equalities in tableaux is to reason with the equalities
in it, without making changes to the actual tableau construction method.
This means that the example tableau sketched in figure 3.1 should be closed
by using the fact that according to an equality in the label of the leaf e is
equal to t, and thus a contradiction is already present.

To do this, one needs to identify and solve so-called E-unification problems
that are present in leafs of the tableau. By doing this, leafs can be closed.

Adding additional tableau expansion rules as described above will result in
larger tableaux. [Bec97] states that it is impossible to solve even quite small
problems using additional tableau-expansion rules in a somewhat timely
fashion. According to [Bec97], the E-unification method is more efficient,
since it does not increase the size of the tableau (and therefore, does not in-
crease the search space for the problem). Based on these results, we choose
to use E-unification to reason about equalities in the tableau prover of Cock-
tail. E-unification is discussed in more detail in the next chapter.

Chapter 4

Rigid E-Unification

This chapter introduces E-Unification problems and discusses their complex-
ity. Then it is shown how rigid E-unification can be used in combination
with the tableau method to reason about equalities. Actually solving a rigid
E-unification problem is the subject of chapter 5.

4.1 Definition of Rigid E-Unification

Informally, a E-unification problem can be regarded as the question whether
some equality can be logically deduced from a given set of equalities. Sev-
eral classes of E-unification problems exist, following the classes of equalities
defined in chapter 2: universal, rigid and mixed E-unification.

First we introduce the concept of a rigid equation. This definition is taken
from [DV96].

Definition 4.1.1 (Rigid equation)

Let E be a set of equalities {1 = (s1 = t1),...,en = (Sp = tn)}, and let s
and t be terms.

E Fy s =1t is called a rigid equation.

Now E-unification problems can be defined in general.

Definition 4.1.2 (E-unification problem)
A E-unification problem is defined as follows: given some rigid equation
E by s =t, does a substitution 6 exist, such that 0(E) by 0(s) = 6(t)?

If a E-unification problem is solved by some substitution 6, this 6 is called a
solution for the problem. The set of equalities F in the rigid equation of some

19

20 CHAPTER 4. RIGID E-UNIFICATION

E-unification problem determines the type of E-unification problem. If both
bound and free variables occur in the problem, it is a mixed E-unification
problem.

Definition 4.1.3 (Mixed E-unification problem)
If the set E in the rigid equation of some E-unification problem contains
both bound and free variables, it is called a mixed E-unification problem.

Eg E={(Vx:xzecU: f(z)="17),9(y) = c}.
In a similar way, universal and rigid E-unification problems can be defined.

Definition 4.1.4 (Universal E-unification problem)

If the set F in the rigid equation of some E-unification problem contains no
free variables, it is called a universal E-unification problem.

Eg E={(Vx:xzecU: f(z)="T)}.

Definition 4.1.5 (Rigid E-unification problem)
If the set E in the rigid equation of some E-unification problem contains no
bound variables, it is called a rigid E-unification problem.

Eg E={g(y) =c}.

The difference between these three classes of E-unification problems is nicely
stated in [Bec97] and quoted here:

The different versions allow equalities to be used differently in
an equational proof: in the universal case the equalities can be
applied several times with different instantiations for the vari-
ables they contain; in the rigid case they can be applied more
than once but with only one instantiation for each variable; in
the mixed case there are both types of variables.

Apart from the standard (singular) E-unification problems, one can also
combine multiple E-unification problems and try to find one substitution
that solves them all. Such a combined E-unification problem is called a
simultaneous E-unification problem

Definition 4.1.6 (Simultaneous E-unification problem)
Let R be a finite set of E-unification problems. Does a substitution 6 exist,
such that 0 is a solution for each E-unification problem r in R?

We need to solve simultaneous E-unification problems to close all leafs of a
tableau simultaneously.

4.1. DEFINITION OF RIGID E-UNIFICATION 21

41.1 Decidability and complexity

Unfortunately, [Bec97] states that universal E-unification is undecidable.
This means that in general it is not possible to determine whether a so-
lution exists for some universal E-unification problem. As a result of this,
mixed E-unification (which contains universal equalities) is also undecid-
able. Rigid E-unification, however, is decidable. So, given any arbitrary
rigid E-unification problem, it can be determined in a finite amount of time
whether a solution to the problem exists. Unfortunately, simultaneous rigid
E-unification, which is needed for equational tableaux, is undecidable.

An algorithm to find a solution to a rigid E-unification problem is given in
[DV96]. This algorithm is not complete. Thus, it is not guaranteed that the
algorithm finds a solution for any arbitrary solvable rigid E-unification prob-
lem. However, as is proved in [DV96], the algorithm is complete when used
in combination with the tableau method for first-order logic with equality.
This is obviously very nice for our causes, since our aim is to prove formulas
in first-order logic with equality.

Solving a rigid E-unification problem is NP-complete, as is shown in [GSNP88|.
So, naturally, the algorithm described in [DV96] is also NP-complete. If the
context of the E-unification problem (i.e. the set E of equalities of the prob-
lem) consists of merely ground equalities, Shostak’s algorithm can be used
to solve the problem in polynomial time. This algorithm is described in

[Sho84].

4.1.2 Rigid E-unification and the tableau method

This section describes how E-unification problems can be used in combina-
tion with the tableau method in such a way that first-order logic formulas
with equality can be proved using the tableau method. The general idea
is to try to identify E-unification problems in tableau leafs, and close such
leafs by solving the E-unification problems.

As described in chapter 3, some leaf of a tableau can be closed if a contra-
diction is found in its label. For example, let v be some leaf of the tableau.
Suppose (the label of) v contains some inequality s # ¢. Now the equalities
that are in « are used to try to show that s =t can be concluded from this
context, resulting in a contradiction. This is equal to solving a E-unification
problem. The type of E-unification problem that is to be solved depends on

22 CHAPTER 4. RIGID E-UNIFICATION

the type of equalities that are present in the problem.

The set of all E-unification problems in some leaf of a tableau can be defined
as follows (following the definition in [Bec97]).

Definition 4.1.7 (Extracting E-unification problems)
Let E(y) denote the set of all equalities in the label of tableau leaf 7. The
set EP(v) of E-unification problems in -y consists of:

E(v) by s = t, for all inequalities s # t on =y

If one of the E-unification problems in EP() has a solution, leaf v can be
closed using that solution.

As mentioned before, the type of E-unification problems that need to be
solved depends on the type of equalities in the problem. Since universal and
mixed E-unification problems are undecidable, we do not want to take for-
mulas containing bound formulas into account, since it is then not decidable
whether a leaf can be closed. Therefore, only rigid E-unification problems
should be considered, since they are decidable.

As stated before, simultaneous rigid E-unification is needed to close all leafs
simultaneously. We also stated that simultaneous rigid E-unification is un-
decidable. Therefore, to keep the tableau method semi-decidable using rigid
E-unification, we need to close leafs one at a time. Doing this implies that
when a unifier is found that closes a certain leaf, it must be checked whether
this unifier is compatible with all other unifiers that close other leafs.

To ensure this, all equalities that occur in a tableau are considered to be
rigid. [DV96] introduces the calculus BSE, which can be used to solve rigid
E-unification problems. Furthermore, a proof is provided that the tableau
method in combination with rigid E-unification is sound and complete. This
theorem will be formally stated after introducing the calculus BSE in the
next chapter.

Chapter 5

Solving a Rigid E-Unification
problem

This chapter describes a method to solve rigid E-unification problems, along
with some interesting properties.

5.1 Ground problems

First we look at the case in which the rigid E-unification problem that
is to be solved consists of ground equations. In this case, we can use an
efficient algorithm defined by Shostak in [Sho84]. A corrected version of
this algorithm is given in [RSO01].

5.2 Introducing constraints

Generally, a rigid E-unification will contain equations with free variables. In
this case, the algorithm of Shostak can not be used. This section describes
the method to solve an arbitrary rigid E-unification problem, which can be
summarized as follows:

e We rewrite the problem using the calculus BSE. This results in a new
(hopefully more simple) rigid E-unification problem. Each rewrite step
gives rise to a set of ordered constraints. The rewrite step is only valid
if this constraint set is satisfiable. Several steps are taken to check
satisfiability of a constraint set:

23

24 CHAPTER 5. SOLVING A RIGID E-UNIFICATION PROBLEM

1. Using a rewrite system R that preserves satisfiability, the con-
straint set is transformed into a disjunction of solved forms. This
transformation uses properties of LPO to simplify the terms in
the constraint set.

2. For each solved form we construct a set of all possible simple
systems that can be derived from it. Such a simple system defines
an ordering on all subterms in the solved form.

3. We check whether at least one of the simple systems generated
by a solved form is satisfiable. A simple system is satisfiable, if it
is not trivially bottom. If there exists such a simple system, the
original constraint set is satisfiable and the rewrite rule of the
calculus BSE may be applied.

e Repeat the above steps, until the equality resolution rule of the calcu-
lus BS€ is applicable. After applying equality resolution, the resulting
problem is trivial. If no rule of the calculus BSE is applicable, we con-
clude that no solution exists for the problem.

Step 2 of the process of determining satisfiability of a constraint set is im-
plemented using graph structures that represent solved forms. We derive all
simple systems by traversing such a graph. During this traversal we elimi-
nate trivially bottom simple systems on the fly, thus combining step 2 with
step 3. This process is described in more detail in chapter 6.

We will now explain the method in more detail. Constraints are defined in
this section, following the definition given in [DV96]!.

Definition 5.2.1 (Constraint)

Let s and t be terms. A constraint is an expression of the form s = t, or of
the form s > t. The first type is called an equality constraint and the latter
an inequality constraint

A set of constraints is called a constraint set. An important question that
needs to be answered very often in the method for solving rigid E-unification
is whether some constraint set is satisfiable

Tn [DV96] constraints are defined to be a set of expressions of the form s = ¢, or s > ¢.
These expressions are called equality constraints, respectively inequality constraints. Ef-
fectively, this definition defines constraints to be a set of (equality/inequality) constraints.
Because this convention seems to be rather confusing, we use the terminology constraint
set in this thesis to indicate a set of (equality /inequality) constraints

5.3. CALCULUS BS& 25

Definition 5.2.2 (Constraint solution)
A substitution 6 is a solution to some constraint s =t (respectively, s > t),
if (s) and 6(t) are ground and 6(s) = 6(t) (respectively, 0(s) = 6(t).

Definition 5.2.3 (Constraint set satisfiability)

A substitution 0 is a solution to a constraint set, if it is a solution to each
constraint in the constraint set. A constraint set is satisfiable if it has a
solution.

5.3 Calculus BSE

Now that constraints have been introduced, this section combines a con-
straint set with a rigid E-unification problem and introduces the calculus

BSE.

Definition 5.3.1 (Constraint rigid E-unification problem)

Let R be a rigid E-unification problem E +y s = t, and let C be a con-
straint set. Then a pair consisting of R and C is called a constraint rigid
E-unification problem (denoted as R - C).

The calculus BSE is defined in terms of such constraint rigid E-unification
problems. It takes a constraint rigid E-unification problem and rewrites it
into a new constraint rigid E-unification problem. The following rewrite
rules define the calculus BSE.

Definition 5.3.2 (Calculus BSE)
Left rigid basic superposition:

Eu{l=rsp|=t}tyve-C

(LRBS)
Eu{l=rsrj=t}Fye-CU{l > r,s[p] = t,l =p}
Right rigid basic superposition:
Eu{l=r}ryslp=t-C
RRBS)

EU{l:r}l—vs[r]:t-CU{l>r,s[p]>t,l:p}(

Equality resolution:

Erys=t-C
(ER
Fys=s-CU{s =t}

)

26 CHAPTER 5. SOLVING A RIGID E-UNIFICATION PROBLEM

Several restrictions must be met before these rules may be applied:

1. The constraint set at the conclusion of the rule is satisfiable. This is
necessary to assure correctness of the method, as well as termination
(see [DV96] for a proof).

2. The equation on the right-hand side of the rigid equation at the
premise of the rule is not of form ¢ = ¢, for some term ¢g. This ensures
that the algorithm terminates after equality resolution is applied.

3. Term p is not a variable in both basic superposition rules.

4. s[r] # t in the left basic superposition rule. Applying the left basic
superposition rule with s[r] = ¢t would add no new information to the
context.

5. In both basic superposition rules p # r. Otherwise, if p = r, the
conclusion of a basic superposition rule would be the same as the
premise, since p is replaced by r in either the left-hand or right-hand
side of the rigid equation.

5.4 Constraint Satisfiability

The first condition on the basic superposition rules of the calculus BSE
determines that these rules may only be applied if the constraint at the
conclusion of the rule is satisfiable with respect to the reduction ordering.
Therefore, a method is needed to determine satisfiability of such constraints.

The reduction ordering used is the lexicographic path ordering. Thus, a
procedure is needed to check satisfiability of lexicographic path ordering
constraints. This chapter describes the procedure used, which is based on
[Nie93] and [Com90)].

5.41 Overview of the procedure

A graphical representation of all steps needed to solve a rigid E-unification
problem is given in figure 5.1. Determining satisfiability of a constraint
(indicated by the dotted arrows in the figure) using this procedure involves
three steps. First the constraint is transformed into a disjunction of solved
forms by rewriting the constraint. The terms in each solved form are ordered
in all possible ways to obtain a set of simple systems. Finally, using this set
of simple systems, satisfiability of the original constraint can be determined.

5.4. CONSTRAINT SATISFIABILITY 27

{81 :t17...7Sn:tn}
FvS:t

l ~.----®» Solved Form {-=--------

Calculus BSE; Simple Systems

Satisfiable
Simple Systems

Solution found

Figure 5.1: Overview of solving a rigid E-unification problem.

This section describes these three steps in detail (along with definitions of
the newly introduced concepts).

Solved form transformation

[Com90] describes a set of rewrite rules R that transforms an ordering con-
straint into a corresponding disjunction of solved forms. It is important
to note that these rules preserve satisfiability: an ordering constraint is sat-
isfiable if the disjunction of solved forms (obtained by using R) is satisfiable.

Each of the rules assumes constraints to be in disjunctive normal form, so
after each rule application a normalization is performed. Solved forms are
defined in [Com90] as follows?:

Definition 5.4.1 (Solved Forms)
A solved form is either T, |, or a formula
L= N...NZp=1ty AU > V1IN ... \NUp > Upm,

where
® x1,...,x, are variables occurring only once in the formula,
e for eachi € {1,...,m}, u; or v; is a variable,

2The definition actually does not contain the fact that a solved form might consist of
multiple disjuncts. [Com90] claims in his paper that all normal forms obtained by applying
the rewrite rules R are simple systems. However, normal forms can be found that do not
adhere to the definition of a solved form. After an email correspondence with Comon, it
was concluded that solved forms are actually disjunctions of what is called a solved form
in [Com90].

28 CHAPTER 5. SOLVING A RIGID E-UNIFICATION PROBLEM

e for each index i € {1,...,m}, u; is not a subterm of v; nor v; of u;.

The rules described in [Com90] are listed in table 5.1. However, [Com90)]
is a bit sloppy in the proof of completeness of the reduction rules. Comon
states that R is complete if any normal form for —% is a solved form. But,
using only the rules from R, this is not always true. The derivation stated
in example 1 of [Com90| can not be made using the rules in R, without
adding a subsumption rule to remove disjuncts.

Definition 5.4.2 (Subsumption)
A clause C subsumes clause Cy if every literal in Cy also occurs in Cs.

[JMS04] makes (and proves) the following observation: if clause C; subsumes
clause Co, then C] implies Cs. Hence, the following rule is introduced based
on that observation.

Definition 5.4.3 (Subsumption Rule)
CivCyV...VC, —r Co V...V (C,, if C1 subsumes Cs.

The rule simply removes disjuncts that are redundant for determining sat-
isfiability of the term. Let term T = C; V (5 and assume that clause Cy
subsumes Cs, then — following from the above observation — C; — Cs. As-
sume T is satisfiable and C5 does not hold, then C7 must hold, but this would
imply that Cy holds. So, Co must hold for T' to be satisfiable, regardless of
the value of Cy. Therefore, clause C7 can be discarded.

From solved forms to simple systems

The next step in determining satisfiability of the constraint is to derive
all simple systems from the solved forms of the constraint. [Com90] and
[Nie93] use (slightly) different definitions of simple systems. However, this
slight difference results in an entire extra step that is needed to determine
satisfiability when using the definition of [Com90]. Therefore, the definition
of [Nie93] is used and presented here:

Definition 5.4.4 (Simple System)
A system is a conjunction of equations and inequations. A simple system is
a system I satisfying the following properties:

e There exists a finite set of terms {t1,...,t,} such that
7= /\ ti—1 > t; ort;—1 =1;.
1<i<n

e Every subterm of a term t; is some term t;, with ¢ < j.

5.4. CONSTRAINT SATISFIABILITY 29

Equality Rules

(Dn)
(C1)

(R)

(O1)

for,..oon) = f(ul, ..y Un) 2RVI =UL A ... AUp = Un
f(vly"'7vn):g(u17'~'7Um)_>RJ-? lff#g
r=tANP—pz=tAP{zt}

if z is a variable, ¢ Var(t), P is a conjunction of equations and inequations,

z € Var(P) and, if ¢ is a variable, then ¢t € Var(P).

s=t[s]p —r L, if p#A.

Inequality Rules

(D2)

f(vl,---,vn)>g(ul,...,um) —R
For,...,on) = ur Ao A f(vr, .0, 00) = um,

iff>rg
f(’l)1,...,’l)n) >—g(u1,...,um) —R

v1 > g(ut, ..y Um) V... Vop > g(ut, ..., um),
ifg-r f

foi,..oyvn) = f(ul,...,un) —r
(vi = ut A f(v1,..,v0) = U2 Ao A F(U1, .o 00) = Un)

\V (U1IU1/\U2>—U2/\--~/\f(7)1»-~~771n)>’u")

vV

V. (v =ui1 Ava=u2 A... AVp > Un)

Vv > f(u, .. un) Ve Vg > flur, ..., un)
tslp = s —r T, if p# A.

s> t[s] =r L
s=tNt»=s—pr L

s=tANs>=t—pr L

Table 5.1: Transformation rules to solved form

30 CHAPTER 5. SOLVING A RIGID E-UNIFICATION PROBLEM

The difference between the definitions in both papers is that [Nie93] allows
equations as well as inequations in simple systems, while [Com90] only allows
inequations. Simple systems are written as follows: t1 #to#HtsHts# ... #in,
where # is > or =.

In order to determine satisfiability of a simple system, as described in the
next section, a special element has to be added to each simple system: the
first limit ordinal w.

The first limit ordinal is defined as follows in [Nie93]:

Definition 5.4.5 (First limit ordinal (term))
Let f and 0 be the smallest non-constant and constant function symbols.

e f is unary: w = ¢(0,...,0), where g is the smallest function greater
than f,
e f is not unary: w = f(0,...,0,¢,0), where t is the second smallest

ground term.

Note that a first limit ordinal does not always exist. If the smallest non-
constant function f is unary and there is no other function greater than f,
the first limit ordinal is undefined. If w exists, we can split a simple system
in its natural and non-natural part. The natural part contains all terms
t for which w > ¢, while the non-natural part contains terms ¢ such that
t = w. The natural part is denoted as N.

Now we need to calculate the set of simple systems from a solved form. Let
s be the solved form for which we want to calculate the corresponding set
of simple systems. We take the following steps to build the set of simple
systems SimSys(s) generated by s:

1. Add 0 < w to s, if w exists (otherwise add 0 = 0 to ensure that 0 is a
term in s) and determine the list of all subterms of s, say Sub(s).

2. Let k be the number of elements in Sub(s). Each simple system gener-
ated by s will have length k. We calculate all permutations Perm(s)
of the items in Sub(s).

3. Let p € Perm(s). Now, we can generate a set of candidate simple
systems css(p) from p by inserting relations between its items ¢y, ...,
in all possible ways (e.g. css(p) will contain simple systems t1 > to >

5.4. CONSTRAINT SATISFIABILITY 31

cooy bty =to = ..., t1 = ta = ..., etc.). Hence, we interpret p as
ty #to# ... F# 1, where # is > or =.

4. For each ¢ € css(p), check whether ¢ adheres to the definition of simple
systems (e.g. a term t is greater than all of its proper subterms) and
check whether it adheres to the relations specified in solved form s
(i.e. if t; > t;, or t; = t; in s, then ¢; must also be larger than,
respectively equal to, ¢; in ¢). If ¢ conforms to these conditions, then
c € SimSys(s).

5. Repeat steps 3 and 4 for all p € Perm(s).

Determining satisfiability of simple systems

In [Com90] it is proved that a solved form is satisfiable if and only if at
least one of the simple systems generated from the solved form is satisfiable.
If we combine this result with the fact that the solved form was obtained
from the original constraint using satisfiability preserving rewrite rules, we
can conclude that the original constraint is satisfiable if at least one simple
system is satisfiable.

Since we are working with an ordering that is total on ground terms, each
term has a successor. We define the successor function succ on terms as
follows:

Definition 5.4.6 (Successor)

Let 0 and f be the smallest constant and non-constant function symbols.
Furthermore, let C = {c1,...,c,} be the set of constant function symbols in
F,where cp =5 ... =F c, = 0.

Successor succ(t) of term t is defined as follows:

o succ(cit1) = ¢,

e succ(er) = f(0,...,0),

o ift=f(0,...,0,t') € N, then succ(t) = f(0,...,0,succ(t")),
e in all other cases, succ(t) = f(0,...,0,t).

Using the successor function, terms can be assigned an ordinal number. This
is nicely explained in [Nie93] using the example given below.

32 CHAPTER 5. SOLVING A RIGID E-UNIFICATION PROBLEM

Let F = {f,a,0}, where f is binary and a and 0 constants. Furthermore,
let f>=ra>FrO0.
Then the terms are, in increasing order with relation to >:

Ordinal ‘ 0 ‘
0

As can be seen in this example, our definition of w given earlier actually
defines the term numbered with the ordinal number w. w as an ordinal
number has the following definition:

12 |38 | 4 | 5 | | w |
a | £(0,0) | £(0,a) | £0,£0,0)) | f(0,f(0,a)) | ... | f(a,0) | ...

Term ‘

Definition 5.4.7 (First limit ordinal (ordinal number))
w Is the first ordinal number that is neither 0, nor the successor of another
ordinal number. Le. w is the least upper bound of the natural numbers.

In the rest of this thesis the context will make clear whether we are talking
about w as a term, or as a number.

Terms ¢ in the natural part of a simple system are smaller than w, and thus
they have a corresponding natural value. The natural value of t € N is
denoted by |[t|.

Nieuwenhuis introduces the notion of trivially bottom to determine satisfia-
bility of a simple system in [Nie93].

Definition 5.4.8 (Trivially Bottom)

Let k be max(|K|,1), where |K| denotes the number of constants smaller
than the smallest non-constant function.

A simple system S is trivially bottom if and only if

1. s =t with top(s) # top(t), or

2. f(s1,...,8p) = f(sh,---,8,) and Fi : 1 <i <p:s; # s}, or

3. s =t and t is a proper subterm of s or vice versa, or

4. f(s1,...,8p) =t with top(t) =p fand Pi: 1 <i<p:s; = t, or

5. f(s1,...,8p) > f(s’l,...,sg,) and (s1,...,5p) lex (s’l,...,s;), or

6. w> f(0,...,0,t) and there are strictly more than k operators = be-
tween f(0,...,0,t) and t, or

5.4. CONSTRAINT SATISFIABILITY 33

7. w =t with t in N, and strictly more than |t| operators > between t
and 0, or

8. f(0,...,0,t) = t = w and there is strictly more than one operator >~
between f(0,...,0,t) and t.

If a simple system adheres to — at least — one of the first five items listed in
the definition of trivially bottom, it is unsatisfiable because it directly con-
tradicts the definition of LPO or syntactic equality. The last three items are
a little less obvious. We will shortly explain why these lead to unsatisfiable
simple systems.

First we look at property six. Assume simple system s contains w >
f(0,...,0,t). Following the definition of a simple system, subterm ¢ must
be smaller than f(0,...,0,t). Both f(0,...,0,t) and t are in A/. According
to the definition of the successor function, the successor of ¢ depends on the
structure of ¢. If ¢ is a constant, its successor is the next constant, or the
smallest non-constant function if ¢ is the largest constant. In the worst case,
t equals 0. succ(0) is the first constant greater than 0, if it exists. Similarly,
succ(suce(0)) is the constant thereafter, if it exists. We know that there
are k — 1 constants that are greater than 0, so after applying the succes-
sor function k times, we will arrive at the smallest non-constant function
instantiated with zeroes. So, at most k > operators are allowed between ¢
and f(0,...,0,t).

Next, we discuss item seven. Term t is in the natural part of the simple
system. Its natural value is |¢t|. If there are more than |¢| operators = be-
tween ¢ and 0, say |t| + 1, the natural value of ¢ is |t| + 1 according to the
ordering in the simple system. This can never be correct and thus such a
simple system is unsatisfiable.

Finally, we take a look at property eight. If f(0,...,0,t) & N, it fol-
lows directly from the definition of the successor function that succ(t) =

f(0,...,0,t). So, since there is no term between term ¢ and its successor,
at most one operator > is allowed between ¢ and f(0,...,0,t) in the simple
system.

Now we know when a simple system is trivially bottom. [Nie93] contains
a proof that a simple system S is satisfiable if and only if it is not triv-
ially bottom. So, determining satisfiability of the original constraint is now

34 CHAPTER 5. SOLVING A RIGID E-UNIFICATION PROBLEM

equivalent to checking whether the set of simple systems contains at least
one simple system that is not trivially bottom.

Chapter 6

Implementation

The previous chapter introduced the method used to solve rigid E-unification
problems. This chapter discusses the implementation of this method.

In order to transform arbitrary formulas and terms to skolem negation nor-
mal form, the rewrite rules suggested in chapter 2 have been implemented.
The transformation of a constraint set to its solved form is a straightforward
implementation of the rewrite system R. How our implementation derives
satisfiable simple systems from a solved form is discussed in more detail.

Finally, a short overview of the tool written for this project is given. It
allows a user to define a rigid E-unification problem. Then the tool can
determine whether or not the problem is solvable.

6.1 Simple Systems

In order to calculate all possible simple systems from some solved form and
determine satisfiability of each simple system in an efficient way, a graph
structure is introduced. This graph structure will be based on the solved
form. From this graph structure all simple systems can be determined in
such a way that trivially bottom checks can be performed on the fly. This
way we avoid constructing many simple systems that turn out the be triv-
ially bottom anyway. If a simple system is obtained by the graph traversal
algorithm, the original constraint set was satisfiable, since we have a satis-
fiable simple system.

35

36 CHAPTER 6. IMPLEMENTATION

6.1.1 Using directed acyclic graphs

The graph used is called a simple systems graph and is a directed acyclic
graph (DAG) in which terms are stored in nodes. If there is an edge from
node n to node m, this means that the term stored in n is strictly smaller
than the term stored in m (i.e. m < m). As its name suggests, a DAG
contains no cycles.

Constructing the simple systems graph

The first step in constructing a simple systems graph for a solved form s is
to determine all subterms that occur within s, because each simple system
must contain each of these subterms according to the definition of a simple
system.

Furthermore, in order to determine satisfiability of the simple system it is
necessary to add the first limit ordinal w (and its subterms!) as well as the
smallest constant 0 to the simple system.

As stated above, the graph stores > relations between terms that are forced
by the definition of LPO or by the solved form.

Definition 6.1.1 (Minimal term)
A minimal term t is a term for which the following holds: (Vs:s €T Ns #
t:setVt=<s)

So, a minimal term is either smaller than or incomparable to all other terms.
Several minimal terms can exist, all of which have to be incomparable to
each other.

Ensuring that terms are added in ascending order can be done by sorting the
terms and adding the terms to the graph afterwards in the obtained order, or
by simply determining a minimal term each time a term needs to be inserted.

The insertion of terms in ascending order assures that all terms currently
stored in the simple systems graph when adding some term ¢ are smaller
than or incomparable to ¢.

6.1. SIMPLE SYSTEMS 37

Creation algorithm

Using the observations made, the following algorithm can be used to create
a simple systems graph. It uses a depth-first traversal trying to insert a
node. If for some node n, term t is already appended at a path starting
from n, then ¢t will not be added as a direct son of n. If it was not appended
at a path starting from n, term t was apparently incomparable to all terms
located on paths starting from n. In this case, it is checked whether n < ¢
holds. If this is true, t is added as a direct son of n in a new branch.

Pseudo-code for the algorithm described is given below. Input of the al-
gorithm is a solved form solvedform, output is a simple systems graph
ssg = (V, E). The procedure starts by adding term O to the graph. This
term will be the root node, so it must be strictly smaller than all other
terms.

BUILDSSG(solvedform)
1 V,E < {0},0
2 st «— “all subterms occuring in solvedform and w” \ 0

3 dost#0)—

4 D> insert s in ssg

5 pick s € st,s.t. (Vt:t€st:s<tVsmwt)
6 st «— st \ {s}

7 V—Vu{s}

8 DFSlInsert(s,0,(V,E))

9 od

DFSINSERT(s, n, (V, E))

1 inserted < false
2 ifn<s—
3 foreach w €“sons of n” —
4 inserted «— inserted V DFSInsert(s,w, (V, E))
5 hcaerof
6 if —inserted —
7 E—FEU{n— s}
8 inserted «— true
9 fi
10 fi

11 return inserted

38 CHAPTER 6. IMPLEMENTATION

Using the simple systems graph to obtain all simple systems

Obtaining all simple systems without equalities from a simple systems graph
corresponds to the problem of finding all topological sorts of the graph. A
topological sort of some DAG is defined in [Ste01] as a linear ordering of all
nodes in the DAG, such that if there is an edge from node n to node m, m
appears after n in the ordering.

Knuth has shown in [Knu68] that finding a topological sort for some DAG
can be done in linear time. However, finding all topological sorts is in NP.

The algorithm presented here depends on searching for the set of smallest
terms in the simple systems graph, and using each of these smallest terms
as start symbol of a set of simple systems after removing it from the simple
systems graph. Then the rest of the terms are added recursively. Pseudo-
code for the algorithm described is listed below. Input of the graph is a
simple systems graph G = (V, E). Furthermore, [—* r indicates that there
is a path from node [to node r.

CONSTRUCTORDERINGS(V, E)
1 return ConstructVisit(0,V \ {0}, E)

CONSTRUCTVISIT(t; # ... # tn, V, E)

1 ifV#)—
2 result «— ()
3 min—{veV|VMw:weV:ivwVvww)}
4 foreach m € min —
5 result — result U ConstructVisit(m > t; # ... # tn,
V\ {m}, E)
6 ift, > m¢gF —
7 result «— result U ConstructVisit(m =t; # ... # tp,
V\ {m}, E)
8 fi
9 hcaerof
10 fi

11 else result « {t; # ... # t,}
12 return result

This algorithm will find the set of all simple systems. Afterwards we need
to check whether there is at least one satisfiable simple system in this set.

6.1. SIMPLE SYSTEMS 39

To do so, we need to check whether there is a simple system that is not
trivially bottom.

We make the following observation, in order to eliminate simple systems
that are trivially bottom in a more efficient way. Using our algorithm (i.e.
always inserting the smallest term not yet added), it is impossible to add
a term to a partially constructed simple system that is trivially bottom in
such a way that after insertion the simple system is no longer trivially bot-
tom. Thus, if a partially constructed simple system is trivially bottom it
will never be, nor become, satisfiable.

With this observation, we can make our algorithm much more efficient. Be-
fore adding a term (either as an equality or an inequality) to some partially
constructed simple system, we can check whether the obtained simple sys-
tem is not trivially bottom. If the obtained simple system s is found to be
trivially bottom, we know that any simple system t# ... #s is also trivially
bottom. Therefore, we do not need to consider any extensions of such a
simple system, since it is already trivially bottom. The CONSTRUCTVISIT
algorithm is extended as follows:

CONSTRUCTVISIT(t; # ... # tn, V. F)

1 ifV#AD—
2 result « ()
3 min —{veV|Vw:weV:ivwVv=xuw)}
4 foreach m € min —
) if “m > t; # ... # t, not trivially bottom” —
6 result «— result U ConstructVisit(m > t; # ... # tn,
V\{m},E)
7 fi
8 ift, =m¢&FEAN“m=1t; # ... # t, not trivially bottom” —
9 result < resultU
ConstructVisit(m = t; # ... # tn,
V\ {m}, E)
10 fi
11 hcaerof
12 fi

13 else result — {t; # ... # tn}
14 return result

40 CHAPTER 6. IMPLEMENTATION

Note that this algorithm can be improved further by using the fact that as
soon as one non-trivially bottom simple system is found, the original con-
straint is satisfiable. Thus, if we find one simple system, the algorithm can
stop.

The approach described above depends on checking whether adding some
term ¢ to a simple system leads to a simple system that is trivially bottom.
We recall the definition of trivially bottom and indicate how each point
can be checked. Let a be the term that is added to some simple system

SYs = 8; # ... # Sp.

1. s =t with top(s) # top(t): if a = s; # ... # sp, this can not occur.
Otherwise, if a = s; # ... # s,, we need to determine terms ¢ in
sys defined to be equal to a. a = s; # ... # s, is trivially bottom if
top(a) # top(t') for one such ¢'.

2. f(s1,...,8p) = f(s],...,8,) and (Fi : 1 < i < p:s; # s)) ifa >

S; # ... # s, or a is constant, this can not occur. Otherwise, a =
f(s1,...,5p). We need to check whether there are terms ¢’ in sys, s.t.
a = t'. If such terms t’ exists, a = s; # ... # s, is trivially bottom if
for one of these terms ¢’ = f(s},...,s,) there is an index i, such that

si # s; in the simple system. This can be checked on the fly, because
we know for certain that all arguments of a and ' are already in the
simple system, since they are subterms of a and #'.

3. s =t and t is a proper subterm of s or vice versa: if a is a proper
subterm of any term ¢ € sys, a path a —* ¢ would have been in the
simple systems graph. Thus, by construction this case can not occur.

4. f(s1,...,8p) = t with top(t) =p fand (Fi: 1 <i <p:s >) if
a=s;# ... # sp, or ais not of form f(sq,...,sp), this case is not
applicable. Otherwise, to check whether a = s; # ... # s, is trivially
bottom we need to look at all terms ¢’ € sys, such that a = ¢'. Then
a - s; # ... # s, is trivially bottom, if there exists one such term ¢’
that is smaller than all parameters of a. Again, since all subterms of
a are already in ss, this can be checked on the fly.

5. f(s1,.-,8p) = f(sh,...,8) and (s1,...,8p) ¥4 (s),...,8)): if a =
Si # ... # sp, or a is not of the form f(sy,...,sp), this case is not
applicable. Otherwise, to check whether a > s; # ... # s, is trivially
bottom we need to look at all terms ¢’ € sys, such that a = t' and

6.2. SOLVING TOOL 41

t' = f(s},...,8p). Then a = ss is trivially bottom, if there exists one
such term ¢/, such that (Fj : 1 < j<n:(Vi:1<i<j:s = sh)).
Since all subterms of a are already in ss, this can be checked on the
fly.

6. w > f(0,...,0,t) and there are strictly more than k operators >
between f(0,...,0,t) and t: If a is not of the form f(0,...,0,t),
a=8 # ... # s, or a € N, this case is not applicable. Otherwise,
we can simply count the number of > operators that occur between a
and t. By construction we know for sure that ¢ must be in the graph,
since it is a proper subterm of .

7. w > t with ¢ in A/, and strictly more than || operators > between ¢
and 0: If a = s; # ... # s, or a € N, this case is not applicable.
Otherwise, count the number of > operators that occur between a and
0. If this number exceeds [t|, a > s; # ... # Sy is trivially bottom.

8. f(0,...,0,t) = t > w and there is strictly more than one operator
>~ between f(0,...,0,t) and ¢: If a is not of the form f(0,...,0,t),
a=s; # ... # s, or a € N, this case is not applicable. Otherwise,
we can count the number of > operators that occur between a and t.
We know that t must be in the graph, since it is a proper subterm of
t. If the number exceeds one, a > s; # ... # s, is trivially bottom.

6.2 Solving Tool

A main result of the project is a tool with which users can define and solve
rigid E-unification problems. It is part of the auto package of Cocktail and
written in Java. Therefore, it should be quite straightforward to integrate
the solving method with the tableau method that is currently used in Cock-
tail.

6.2.1 Overview

A screenshot of the tool is depicted in figure 6.1. We will briefly discuss the
fields numbered by 1 through 4 in the screenshot.

1. Here users can define Cocktail terms into the context of Cocktail.
Cocktail needs to know that functions and variables exist, before they
can be used.

42

CHAPTER 6. IMPLEMENTATION

d fib{0) equals 0
¥l
it 1 d (1) sgquats 1
Ecnana =1 ol f[2+) meuints plusibs DY) B0V}
widfa]a]ats plsaC0) eouals X
i e |
el T[St as equally: TOI2) aquals 1
_:Iflntlh =0, b 0h =1, flo2+Y) = plusifin] 1+ Ml 8,
Lsi | | Fhle
i it 2 qar
[1 | |Duratisn: 490 s, 4
ylapeislale]
; ik
_.fj_ljnn--..:.
e B il i 0B I
s b isa
ok g
==
|
LA RE DERE Y|
e WS
I
o ||
T F

Figure 6.1: Screenshot of the tool to solve rigid E-unification problems.

2. This field shows the context of the rigid E-unification problem. New

equalities can be added by using the input fields below it. The input
fields were already present in Cocktail and provide parsing of entered
formulas. If they are not correct, or terms in the formula are not
defined in the context of Cocktail, a parser error will be returned.

. These input fields can be used to define the goal of the rigid E-
unification problem.

. Output of the tool, showing what the user has done. Also, after the
user presses the 'Rigid E-Unification Oplossen’ button (translation:
Solve the rigid E-unification problem), the result will be shown in this
field (i.e. true or false). Furthermore, in the standard output stream
the derivation is shown for a solvable problem (i.e. which calculus
rules were applied).

Chapter 7

Results

This chapter gives an overview of the achieved results of the masters project.
Furthermore, some suggestions are provided with regard to future work.

7.1 Project overview

The project consisted of a lot of research. We first had to read and try to
understand papers concerning rigid E-unification. Soon a very promising
paper [DV96] was found. However, it soon became clear that the real prob-
lem behind solving rigid E-unification problems is to check satisfiability of a
constraint set. Therefore, research was performed on checking satisfiability
of ordered constraints.

Next to this research, we needed to actually implement an algorithm to solve
a rigid E-unification problem. This was completely done in the context of
Cocktail, to make sure that it should be not too difficult to incorporate the
algorithm in Cocktail later on. The implementation consists of about 4500
lines of code, including comments. A very simple test application has been
written, in which a rigid E-unification problem can be defined, as well as
solved.

Cocktail will become a more useful tool if it is able to automatically construct
a proof using equations. Most interesting theorems that need to be proved
when deriving a program from its specification depend on such reasoning.
The work done in this project can serve as the basis for this extension of
Cocktail.

43

44 CHAPTER 7. RESULTS

7.2 Future work

There still is a lot of work that should be done. We give some suggestions
for such work.

e First of all, actually incorporate the rigid E-unification algorithm in
Cocktail’s tableau prover. It should be fairly easy to do so, since
the implementation made for this project is completely based on the
Cocktail code.

e In chapter 3 another method is suggested to reason with equations in
a tableau prover: add additional tableau-expansion rules. It might be
very interesting to also implement this suggestion. Then this approach
can be compared with rigid E-unification. Lots of automated theorem
provers exist and usually each one uses one particular approach, for
example the tableau method using syntactical unification. Comparing
such different approaches is always a bit biased, since one tool might
be implemented more efficient than some other tool. Cocktail con-
tains different automated theorem proving approaches. Because each
approach uses the same framework (i.e. Cocktail) the approaches can
be compared more realistically.

e Cocktails ATP, once extended with rigid E-unification, can be com-
pared to other theorem provers that allow reasoning about equations.
Examples of such theorem provers are PrInS (see [Gie02])! and Spass
(see [Inf07]). As noted above, such comparisons will always be biased,
because these theorem provers use a framework different than that of
Cocktail.

e The implementation of the rigid E-unification solver is very slow. It
would be well worth the effort to find out whether the algorithm can
be implemented more efficiently. However, it must be kept in mind
that solving rigid E-unification problems is in NP.

e Cocktail allows users to keep a context containing definitions, theo-
rems, lemmas, etc. This context is needed to automatically find proofs
for theorems. However, the running time of the rigid E-unification
solving algorithm grows exponentially with the size of the problem
context. Therefore, it would be very nice if only those items from

If someone succeeds in actually running PrInS, I would be more than interested in
this astonishing accomplishment.

7.2. FUTURE WORK 45

the context of Cocktail are placed in the context of rigid E-unification
problems, that are needed to solve the problem. A possible approach
to this would be to only include formulas from the context of Cocktail
that contain at least one subterm of the righthand-side of the rigid E-
unification problem that is to be solved. These formulas will then form
the context of the rigid E-unification problem. This will probably lead
to a small context for the rigid E-unification problem. If no solution
is found for the problem, the context can be extended. If no solution
is found after IV extensions of the context, for some predefined N, we
conclude that the problem has no solution. This conclusion might be
false, effectively leaving open a leaf that could have been closed if we
would have taken more of the context into account. However, as de-
scribed in chapter 3, Cocktail currently also uses bounds on the size
of the tableau and the running time of the algorithm. This N would
thus be nothing more than just another bound.

e A very nice property of Cocktail is that its proofs can be translated to
A-terms in AP—. See [Fra00] for more information about A-terms and
the translation. Using such A-terms, correctness of the proof can be
checked. Unfortunately, when adding rigid E-unification to the tableau
prover, this translation will no longer be possible. This is due to the
fact that terms are transformed to skolem negation normal form. After
replacing an existential quantifier with a skolem function, information
is lost about the original formula. In general, it seems to be impossible
to generate the original formula from its skolemized form. However, a
study could be performed that confirms this theory, or contradicts it
leading to a revised translation scheme.

Appendix A
Proving fib(2) = 1

This appendix is added to illustrate the tableaux method extended with
rigid E-unification.
Everything is denoted in the terminology of Cocktail. For instance, the nat-

ural numbers are defined by 0 and a successor function s. For example, in
Cocktail 1 is defined as s(0).

First, we define a plus operator p over the natural numbers.
Definition A.0.1 (Plus)
(Vz:x € N:p(z,0) =)
(Ve:z e N: (Vy:y € Nip(z,s(y)) = s(p(z,y))))
Let fib denote the Fibonacci function. fib can be defined as follows:
Definition A.0.2 (Fibonacci)
fib(0) =0
fib(s(0)) = s(0)
(Va:iweN: fib(s(s(x))) = p(fib(s(x)), fib(x))
Now, given these definitions, we are going to prove fib(s(s(0)) = s(0).

We start off by creating a tableau root with the following label:

I'= {(Vz:2eN:p(z,0)=ux),
(Vx:zeN: Vy:yeN:p(x,s(y)) = s(p(z,y)))),
fib(0) =0,
fib(s(0)) = s(0),
(Va2 € N: fib(s(s(z))) = p(fib(s(z)), fib(x)),
fib(s(s(0)) # s(0)}

47

48 APPENDIX A. PROVING FIB(2) = 1

The label I' contains the formulas in the definitions of p and fib, as well as
the negation of the formula that we want to prove.

The only tableau expansion rule that is applicable on the root node is the §
rule. There are several universally quantified formulas. We apply the § rule
several times to obtain the equalities needed to prove the theorem. After
doing so, the tableau depicted in figure A.1 is obtained.

r
ru{p(X,0) =X}
$DU{p(X,0) = X, fib{s(s(X"))) = p(fib(s(X")), Fib(X")}

Figure A.1: Tableau obtained after applying the ¢ rule two times

The tableau only has one leaf. If we are able to close this leaf, the proof
is complete. We will try to close the leaf by using rigid E-unification. To
do so, we check whether the label of the leaf contains an inequality. Such
an inequality does indeed exist: fib(s(s(0))) # s(0). The negation of this
formula will serve as the right-hand side of a rigid E-unification problem.
The context of the problem consists of all equalities in the label of the leaf.
Thus, we identify the following rigid E-unification problem:

{ p(X,0) = X, fib(0) = 0, fib(s(0)) = s(0),
fib(s(s(X"))) = p(fib(s(X")), fib(X")) } F fib(s(s(0))) = s(0)

If this problem has a solution, the leaf can be closed, since a contradiction
in the label is then found. We try to solve this rigid E-unification problem
using the BSE-calculus.

We start with an empty constraint set. We try to apply the Irbs-rule, with
L: fib(0), r: 0, s:p(fib(s(X")), fib(X")), t = fib(s(s(X")) and p : fib(X").
This step is shown below. Term [is indicated by a single line, while term p
is indicated with a double line.

49

{p(X,0) = X, fib(0) =0,
fib(s(0)) = 5(0), fib(s(s(X"))) = p(fib(s(X")), fib(X"))}
- fib(s(s(0))) = (0)-(7)
{p(X,0) = X, fib(0) =
fib(s(0)) = 5(0), fib(s(s(X"))) = (fzb((X)), 0)}
= fib(s(s(0))) = 5(0)-
{£ib(0) = 0, p(fib(s(X")), fib(X")) = f@b(S(S(X”))), fib(0) = fib(X")}

We have to check whether the constraint set obtained by applying this
rewrite step is satisfiable, since that is a condition that has to be met before
the rule can be applied. We will only show this satisfiability check for this
rewrite step, since showing it for all steps would require far too much space.

The first step in checking satisfiability of a constraint set is to rewrite it
to its solved form using the transformation rules shown in table 5.1. The
constraint set contains three elements for which we show the transformation
result!:

1. fib(0) = 0 225 T

p(fib(s(X")), fib(X")) = fib(s(s(X")) Z2x
p(fib(s(X")), fib(X")) = s(s(X"))

3. fib(0) = fib(X") 2hr 0= X"

After performing these transformations and combining the results we obtain
formula

p(fib(s(X")), Fib(X")) = s(s(X")) A O = X",

On this formula transformation rule R can be applied, after which we obtain
the following solved form: p(fib(s(0)), fib(0)) = s(s(0)) A0 = X".

Now that we have calculated the solved form of the constraint set, we need
to calculate all simple systems that are not trivially bottom. Each simple
system must contain first limit ordinal w, as well as the smallest term |0].
Term |0] is newly introduced and defined to be strictly smaller than all other
terms, since our problem already contains regular term 0. In this case, the
smallest function according to the precedence ordering is s. This is a unary
function, so according to the definition of w we get w = fib(|0]).

1.7::p>-_7:fib>-_7:8>—]:0

(LRBS)

50 APPENDIX A. PROVING FIB(2) = 1

To obtain all simple systems that are not trivially bottom we construct the
simple systems graph. First of all, we calculate the set of all subterms con-
tained in the solved form, w and |0]:

{ [0}, 0, X", 5(0), s(s(0)), fib(0), fib(s(0)), fib(|0]), p(fib(s(0)), fib(0)) }

Using the algorithm described in chapter 6, the graph depicted below is ob-
tained.

X//
0|
0= 5(0) = s5(s(0)) = fib(|0[) = fib(0) — fib(s(0)) > p(fib(s(0)), fib(0))

The next step is to derive all simple systems from this graph that are not
trivially bottom. As soon as one such simple system exists, the original
constraint set is satisfiable. In this case almost the entire ordering is fixed
by the simple systems graph. Only variable X" has to be added in an ap-
propriate position. We will suffice by showing that at least one satisfiable
simple system exists:

p(fib(s(0)), fib(0)) = fib(s(0) > fib(0) > fib(|0]) > s(s(0)) = s(0) = X" =0 > |0

Now we can conclude that the constraint set is satisfiable. So, the Irbs rule
can be applied. Each rule of the BSE calculus expands the constraint set.
For this example, we will transform the constraint set to its solved form
before applying the next rule. This simplifies the constraint sets of which
satisfiability needs to checked. We will now show the complete derivation.
The interested reader may verify satisfiability of each rewrite step.

First we apply the Irbs-rule to rewrite fib(X") to 0. It is clear that in order
to do so, X” has to be equal to 0. The Irbs-rule is applied with the following
parameters:

L: fib(0), r: 0, s: p(fib(s(X")), fib(X")), t : fib(s(s(X")) and p : fib(X")

o1

Fib(s(0) = s(0). Fibs(s0X") = pFb(s(X"). FiB(X"))
- fib(s(5(0))) = 5(0) -0 —_—
{p(X,0) = X, fib(0) =0,
Fib(5(0)) = 5(0), Fibls(s(X") = p(Jib(s(X")),0)}
- Fib(s(s(0))) = 5(0)
{p(Fib(s(0). £b(0)) = s(s(0)), X" =0}

Now we can apply the Irbs-rule again, to transform fib(s(X")) to s(0). The
following parameters are used:

1: fib(s(0)), r:s(0), s : p(fib(s(X")),0),t: fib(s(s(X")) and p : fib(s(X"))

{ p(X,0) = X, fib(0)
fib(s(0)) = s(0), fib(s(s(X")))
= fib(s(s(0))) = s(0)-
{p(fib(s(0)), fib(0)) > s(s(0)
{p(X,0) =X, fib(
fib(s(0)) = 5(0), fib(s(s(X"))) = p(s(0),0)} F fib(s(s(0))
{p(fib(s(0)), £ib(0)) > s(s(0)), p(fib(

Using the Irbs-rule, we now transform p(s(0),0) to X. The following para-

meters are used:
l:p(X,0), r: X, s:p(s(0),0), t: fib(s(s(X")) and p : p(s(0),0)

fib(s(0)) 5(0), f@b((s (X';))) = p(5(0),0)} Fflb(S(S())) = 5(0)-
ib(s(0)),0) > s(s(0)), 0= X"}
(0) fib(s(s(X"))) = X}

(LRBS)

8(8(0)),29(8(0)70) - 5(s(0)),

Now the context contains fib(s(s(X")) = X, while the right-hand side of

52 APPENDIX A. PROVING FIB(2) = 1

the rigid E-unification problem is fib(s(s(0))) = s(0). So, we use the rrbs-
rule to unify fib(s(s(X"))) with fib(s(s(0))), transforming fib(s(s(0))) to
X. The rrbs-rule is applied with the following parameters:

L: fib(s(s(X"))), r: X, s: fib(s(s(0))), t : s(0) and p : fib(s(s(0)))

{p(X,0) =X, p(X",Y'") = P(Y',X"), fib(0) = 0,
fib(s(0)) = 5(0), fib(s(s(X"))) = X} I fib(s(s(0))) = s(0)-
(((

s)
{p(fib(0), fib(s(0))) = s(s(0)), p(0, fib(s(0))) = s(s(0)),p(s(0),0) = s(s(0)),
X" =0,X = 5(0)}

(P(X.0) = X, p(X.¥") = P(Y', X, fib(0) =0, (rens)
Fib(s(0)) = s(0), fib(s(s(X"))) = X} F X = s(0)
((Fb(0), Fib(s(0))) = s(s(0)). p(0, fib(s(0))) > 5(5(0)).p(s(0),0) = s(5(0)),

fib(s(s(0))) = s(0), X" = 0, X = 5(0)}

Finally, we can apply equality resolution. The constraint set does not change
by applying this rule, since it already contains constraint X = s(0). The
following parameters are used:

s: X and ¢t : s(0).

{p(X,0) = X, p(X",Y') = P(Y', X'), fib(0) =
fib(s(0)) = 5(0), fib(s(s(X"))) =X} FX= ()
{p(fib(0), fib(s(0))) = s(s(0)), p(0, fib(s(0))) = s(s(0)), p(s(0),0) > s(s(0)),
fib(s(s(0))) = s(0), X" =0,X = s(0)} (5R)
FX=X.
[(Fib(0), £ib(s(0))) = 5(s(0)), p(0, fib(5(0)) (5(0),0) = 5(5(0)),

)
Fib(s(s(0))) = 5(0), X" = 0, X =

Since X = X is a tautology, we are done. We have successfully used the BSE-
calculus to show that given context I' it can be derived that fib(s(s(0))) =
5(0). Since the label of the (only) leaf of our tableau contains fib(s(s(0))) #
5(0), we have found a contradiction. Thus, the leaf can be closed, concluding
our proof.

Bibliography

[Bec97]

[Com90]

[DV96]

[Fra00]

[Gie02]

[GSNPsS]

[HROO]

[Inf07]

[TMS04]

[Kal90]

Bernhard Beckert. Semantic tableaux with equality. Journal of
Logic and Computation, 7(1):39-58, 1997.

Hubert Comon. Solving symbolic ordering constraints. Inter-
national Journal of Foundations of Computer Science, 1(4):387—
412, 1990.

Anatoli Degtyarev and Andrei Voronkov. What you always
wanted to know about rigid e-unification. In Logics in Artifi-
ctal Intelligence, pages 50—69, 1996.

M.G.J. Franssen. Cocktail: A Tool for Deriving Correct Pro-
grams. PhD thesis, Eindhoven University of Technology, 2000.

Martin Giese. Proof search without backtracking for free variable
tableauzr. PhD thesis, Universitat Karlsruhe, 2002.

Jean H. Gallier, Wayne Snyder, Paliath Narendran, and David A.
Plaisted. Rigid e-unification is np-complete. In LICS, pages 218—
227. IEEE Computer Society, 1988.

Michael R. A. Huth and Mark D. Ryan. Logic in Computer
Science: Modelling and Reasoning about Systems. Cambridge
University Press, Cambridge, England, 2000.

Max-Planck-Institut Informatik. Spass theorem prover, 2007.

Jan Otop Jerzy Marcinkowski and Grzegorz Stelmaszek. On a
semantic subsumption test, 2004.

Anne Kaldewaij. Programming: the derivation of algorithms.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

53

54

[Kni89)]

[Knu68]

[Nie93]

[NWO1]

[RSO1]

[Sho84]

[Smu68]

[Ste01]

BIBLIOGRAPHY

Kevin Knight. Unification: A multidisciplinary survey. ACM
Computing Surveys, 21(1):93-124, 1989.

Donald E. Knuth. Fundamental Algorithms. Addison-Wesley,
1968.

Robert Nieuwenhuis. Simple LPO constraint solving methods.
Information Processing Letters, 47(2):65-69, 1993.

Andreas Nonnengart and Christoph Weidenbach. Computing
small clause normal forms. In Handbook of Automated Reasoning,
pages 335-367. 2001.

Harald Ruef and Natarajan Shankar. Deconstructing shostak.
In LICS °01: Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, page 19, Washington, DC, USA,
2001. IEEE Computer Society.

Robert E. Shostak. Deciding combinations of theories. J. ACM,
31(1):1-12, 1984.

Raymond M. Smullyan. First-Order Logic. Ergebnisse Der Math-
ematik und Irher Grenzgebiete, Band 43. Springer-Verlag, 1968.

Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clif-
ford Stein. Intro-duction to Algorithms, second edition. The MIT
Press and McGraw-Hill, 2001.

	Abstract
	Contents
	Chapter 1 Introduction
	Chapter 2 Preliminaries
	Chapter 3 Project context
	Chapter 4 Rigid E-Unification
	Chapter 5 Solving a Rigid E-Unificationproblem
	Chapter 6 Implementation
	Chapter 7 Results
	Appendix A Proving fib(2) = 1
	Bibliography

