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In order to estimate the effectiveness of protective safety measurements in motor vehi- 
cles, the TNO Crash Safety Centre in Delft introduced the combined finite element & 
multibody program MADYMO. With this program it is possible to simulate crashes and 
therefore avoid expensive crash tests. The coupling of this program with an optimization 
tool can aid in the search for the most optimal design. Therefore TNO introduced also 
the optimization program MADYMIZER. 

MADYMIZER makes use of mid-range optimization techniques. The midrange op- 
timization consists of sequential linear approximations. These approximations of the 
optimization problem are valid in a subregion of the total design space. The size and 
position of these sequential subregions is determined with a so called movelimit strategy. 
First problem occur when the design variable cannot be continuously varied because it 
possesses only discrete values. For optimization problems with a large number of design 
variables, the choice of a proper startpoint is the second problem. Both problems had 
to be solved. 

A modified mid-range optimization method is developed, capable of solving discrete 
variables. Modifications had to be made on the subregion design, movelimit strategy 
and the convergence criteria. For the startpoint problem a global optimization method 
is developed. This uses a linear approximation in the whole design space to determine 
a suitable startpoint for the mid-range method. 

Both methods were implemented in Fortran and combined with MADYMIZER source 
code. Besides changes in the optimization algorithm, also the pre- & post processing had 
to be changed. After this the methods were tested with several simple tests. Finally 
a full scale frontal impact simulation was optimized in which the objective function 
consisted of a combination of three injury criteria. The design variables described the 
loading behavior of a belt under high tensiie stress. This resuiieci in an improved design. 

The modified mid-range method performed well, performance was equal to the normal 
mid-range method. For the global method it is recommended to extend the implemented 
approximation technique to create a parameter study tool which not only searches for 
the optimum but also gives information about reliability of the approximated model and 
of the influence and sensitivity for each design variable. 
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Chapter 1 

Introduction 

1.1 Crash-Safety Research 

Safety has become a major issue for the automotive industry in the last few decades. 
After recognition that traffic accidents were a major cause for death and injuries, the 
government started imposing crash worthiness requirements for motor vehicles (belts, 
standardized crash tests). Since then the demand for safer vehicles has only increased 
by heavier requirements from governments and consumers organizations and the new 
role of car safety as a marketing instrument. This has lead to an increase in research 
upon car safety. 

In the past testing of safety devices depended only on physical crash tests. This requires 
laboratory facilities, test vehicles, data acquisition equipment etc. All these factors are 
costly therefore mathematical modeling techniques are becoming increasingly important. 
These mathematical models are a valuable tool to estimate the effectiveness of safety 
devices like airbags and belts. They can also contribute to the understanding of the 
behavior of complex mechanical systems like human bodies and motor vehicles in crash 
situations. Nevertheless physical tests will remain necessary for providing 'real' data 
and for validating the rritithematica! mod&. 

The TNO Crash-Safety Research Centre in the Netherlands developed the simulation 
program MADYMO (MAthematical Dynamical Models). MADYMO makes use of 
multibody techniques (for simulating the motion of systems of rigid bodies connected 
by kinematic joints) and finite element techniques (for simulating structural behavior). 
Both mathematical techniques can be combined in one mathematical model. It also 
features various restraint systems like airbags and seat belts. With MADYMO it is 
possible to evaluate the effect of modifications to the standard design to determine a 
better solution. Several Injury Criteria are therefore used, such as the Head Injury 
Criteria (HIC) and 3 ms acceleration criteria (3MS) (appendix E). This search for 
a better solution is in practice mainly based on a trial and error process, where the 

1 
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designer will modify the design variables, run MADYMO, analyze the results and redo 
the whole process over and over again. This is a time consuming process, and generally 
takes many runs to investigate which design variable modifications will give the best 
results. Application of optimization techniques automates this trial and error process. 

Severai optimization methods have been appiied for MHDXîvlO crash worthiness simuia- 
tions. Bosio and Lupker [2] (1991) applied a Tachugi experimental design In a MADYMO 
2D occupant driver simulation to study the influence of seat belt and airbag configura- 
tion upon the HIC. Several design variables, for example seat stiffness and airbag vent 
diameter were used to describe the configuration. After a first screening test to select 
the most influential seat belt and airbag design variables, a linear approximation model 
including interaction terms was built. This approximation was used to determine the 
optimal values for the design variables. Klink [10](1991) used design of experiments and 
regression techniques to construct response surface models (both linear and quadratic). 
A child seat was optimized for a frontal impact situation. With the aid of the computer 
program CADE (Computer Aided Design of Experiments), developed by Schoofs and 
Nachtegaal [12](1990), a test set of MADYMO analyses was formed. A multi-criteria 
function was defined to apply several neck-injury parameters at the same time. Because 
application of experimental design and regression techniques needs a lot of knowledge 
on these fields from the user of MADYMO, search went on for a more automated pro- 
cess. This resulted in application of mid-range approximations. De Jager [9]( 1993) 
compared three different mid-range approximation methods, namely the algorithm de- 
veloped by Nelder & Mead (1964)) the Toropov (1989) mid-range multipoint approxi- 
mation method and the Vanderplaats (1979) mid-range singlepoint path. The methods 
were implemented in a Matlab program which started the MADYMO runs. Problems 
which could be solved analytical were used to test the implemented methods as well 
as crash worthiness design problems, among which was the child seat problem designed 
by Klink. Vanderplaats method was found to perform best. Further research was done 
by Adriaens [1](1995), which compared a modified method of Toropov developed by 
Etman [4] (1996) with the Vanderplaats method. Finally this modified multipoint path 
method was implemented by Adriaens in an optimization tool for use with MACYMO. 
After further development by Tsiandikos [16](1996), van Slagmaat and Dekker of the 
TNO Crash-Safety Research Institute the first version of MADYMIZER (MADYMO 
optiMIZER) was released. Since then it has been applied extensively by the MADYMO 
users. To extend the field of application of MADYMIZER further research was required. 
This Master’s thesis reports this research. 

1.2 Optimization Techniques 

The general optimization problem is formulated as: 
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Find the set of n design variables x E IRn, that will minimize' the objective function: 

subject to constraints: 

within the design space: 

h =  I, ... ,m 

In most crash simulations the mathematical relationship between objective function 
and design variables is not known explicitly but is computed with multibody and/or 
finite elements techniques. In crash worthiness optimization commonly used objective 
functions are injury criteria, like the HIC and the 3MS. The behavior of injury criteria 
as function of design variables is often not smooth. This can be due to the critical 
impact situation as well as to numerical inaccuracies. Commonly used constraints are 
bounds on stresses, displacements and accelerations. The design variables are related to 
the restraint systems, like the airbag vent diameter and seat stiffness used by Bosio and 
Lupker [2]. The use of MADYMO is not restricted to crash simulations as also other 
mechanical systems can be modeled with the multibody and finite elements techniques, 
for example truss constructions. 

1.2.1 Classification of Optimization Methods 

Optimization methods can be classified into (figure 1.1): 

0 Mathematical programming algorithms; these apply straightforward mathemat- 
ical techniques. Techniques for finding the optimum of linear and higher order 
problems for both active and non-active constraints are developed. For example 
the simplex method can be applied to find an optimum of a linear objective func- 
tion subject to a set of linear constraints (in literature often referred as "linear 
programming problem"). Discussion of all these mathematical methods is be- 
yond the scope of this thesis. For an overview over these techniques the reader 
is referred to Chapters 2-5 of %lements of Structural Optimization: Haflca and 
Gürdal [6]. These methods can only be applied efficiently when the mathematical 
relation between design variables and both objective and constraint function(s) 

'If the optimum is the maximum instead of the minimum, the objective function can simply be 
multiplied by -1. 
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Optimization Methods 

objective function known explicitly 
& not too complex to handle ? 

A mathematical 

1 

I approximation1 1 concepts J 

I I 
programming I I 
algorithms 

Figure 1.1: classification of optimization methods 

is known explicitly. Consequently these techniques are only applicable in crash 
worthiness optimization, if valid mathematical approximations for these functions 
are available. 

o Approximation concepts; these are used to generate an approximate problem for- 
mulation. The mathematical programming algorithms techniques can be applied 
to optimize this problem formulation. An overview of approximation concepts has 
been written by R. Haftka [5].  

Approximation concepts can be subdivided into: 

1. Local approximations are valid in the vicinity of the point at which they are 
generated. Mostly local approximations are used to generate an approximate 
problem formulation around a presumed optimum. From this formulation, a 
new optimum will be found. Around this optimum a new local approximate 
problem formulation is generated. This cycle repeats until no significant 
improvement occurs (convergence). Also local approximations can be applied 
for indication of the sensitivity (influence) of the objective and constraint 
function(s) in the resulting optimum for each design variable. Using this 
sensitivity information, the size of the active set of design variables or the 
constraint can be reduced. Local approximation requires at least function 
values and their first order derivatives with respect to the design variables. 
MADYMO is not able to produce the gradient information in a cheap way. 
Local approximations are not very reliable if the objective function is not 
smooth and/or contains lots of local minima. 

2. Global approximations (applied by Klink [lo], Bosio & Lupker [2]) are valid 
in the whole design space. These are used to provide the user with informa- 
tion of the global behavior of the optimization problem. The approximation 
is obtained through fitting a mathematical function (often a polynomial) 
through a number of sample points. For choosing the position of these sam- 
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ple points, global approximation methods often make use of the ’theory of 
experimental design and regression models’. This theory was originally meant 
for use in physical tests, see also chapter 14 of ’Design and Analysis of EZ- 
periments’ [li]. Global approximations are very usable when the objective 
function contains !oca;! minima and GCS seeks to linu the g!oh2l cptimcm. 

3. Mid-range approximation methods (applied by de Jager [9] and Adriaens [I]) 
is an attempt to use local function approximations with a wider range of 
applicability. Two different approaches can be discerned: 

(a) Mid-range single point approximation path. Local methods discards data 
used in previous local approximations. In the single point path this data 
is used to enlarge the subregion of the design space in which the ap- 
proximation is valid. It is called single point approximation path be- 
cause in every optimization cycle only one analysis is performed. Most 
of these methods require function values and first order derivatives to 
construct the approximations. Vanderplaats [9] method uses only func- 
tion values, therefore it can be used for crash worthiness optimization. 
Vanderplaats gradually constructs a second order polynomial including 
interaction terms. When all analyses needed to built this polynomial are 
available, the new analyses are used in a weighted least square fit. 

(b) Mid-range multipoint approximation path is comparable to global ap- 
proximation. The difference is that the approximation is only valid in a 
subregion of the whole design space. Therefore model functions can re- 
main simple, often linear functions are applied. Consequently the number 
of design points to analyze in the subregion will be small. The optimum 
in this subregion is obtained through this approximate problem formu- 
lation by applying mathematical programming algorithms. Around this 
optimum a new subregion can be built. This process converges if no sig- 
nificant improvement in successive design occurs. This method is capable 
of dealing with ’noisy’ objective and/or constraint function(s). The es- 
timation of the optimum is often better than an optimum obtained with 
global approximation methods. If the objective functions has however lo- 

starting point is therefore essential to avoid convergence in local minima. 
The user of the method is responsible for the choice of the starting points 
and needs therefore some understanding of the global behavior of objec- 
tive function. Examples of mid-range approximations are the Nelder 
& Mead, the Toropov and the Vanderplaats method (described by de 
Jager [9]). MADYMIZER uses a mid-range multipoint approximation 
method, more detail is declared in section 1.4. 

. .  . .  c d  riiiîiriâ,, then cûnveïgence mâ.~ OCCW in =IE of these ~ I E I = ~ Z L .  A. good 
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Figure 1.2: optimization process 

1.3 MADYMIZER 

MADYMIZER is an optimization tool that automates the design process of model pa- 
rameter studies. It is a mid-range multipoint approximation optimization tool that 
is able to automatically change the MADYMO input file, modify the relevant design 
variables, run the MADYMO simulation, analyze the results and determine the new 
direction of investigation (figure 1.2). 

In the MADYMIZER input file, the design variables, the objective functions and con- 
straint functions must be defined. The objective function can also be obtained by a 
user defined executable. This gives the possibility to use the relative difference between 
experimental data and simulation data as an objective function. In this way the time 
consuming validation process of a simulation can be automated. See also the 'MADYMO 
Utilities Manual' [16]. 

1.4 MADYMIZER Optimization Method 

1.4.1 Mid-Range Approximate Linear Problem 

Several mid-range multipoint approximations have been published. All off them use 
the concept of sequential approximation in a subregion of the design space. Differences 
occur in the experimental designs for the subregions. MADYMIZER applies Toropov's 
suggestion [i, 4, 91 to use a one-factor-at-a-time experimental design (figure 1.3). 
Each design variable zi E z(~,... ,n) is evaluated at two levels: A design variable is varied 
with a difference step forward or backward depending on the search path, while other 
design variables remain at startpoint level. Within the optimization proces all design 
variables are scaled between O and 1. Based upon the objective and constraint function 
values, calculated in the start- & planpoints in the subregion, linear approximations of 
objective functions and constraints are built. The function values of previous cycles are 
discarded. 
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In the pth cycle the following approximate linear problem is applied. Minimize the 
approximate objective function: 

(1.4j 

Subject to the constraints 

( h  = 1,. . . ,m). 

(1.6) 

In the search subregion (figurel.4.1): 

o Subregion lower boundary s( is set by: 

o Subregion upper boundary sr is set by: 

With (see also List of Symbols page ii): 

XE 
XEi 
XPi (P’ 

Dp) E {-1, i} 

si ( P )  

a! extrapolation factor 

startpoint of the subregion in the pth cycle 
startpoint value for design variable xi in the pth cycle 
ith design variable planpoint value in the pth optimization cycle 
search direction for each design variable xi; Search direction -1 or 1 
is a difference step backward and forward respectively 
subregion size for design variable xi in the pth cycle, determined by 
movelimit strategy or initial value if p = i (page li) 
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Figure 1.4: linear approximation within a subregion 

1.4.2 Linear Programming 

A feasible region in the subregion is set by its bounds and the approximate linear 
constraints. The 
approximation model for the objective function is also a linear function. For two design 
variables this objective function can be visualized with a flat surface. 

In the example of figure 1.5 this flat surface is bounded by the subregion lower bounds 
and the 2 constraints. The optimum of a linear problem is therefore positioned in one 
of the corners (extreme points) of the feasible region. 

MADYMIZER applies the simplex method (Haftka and Gürdal[6]), this method searches 
for the optimum by evaluating corner points of the feasible region. By moving along 
the borders of the region in the direction of decreasing objective function, the solution 
is found without having to evaluate all corner points. 

Figure 1.5 illustrates this for a problem with 2 design variables. 

1.4.3 Constraint Relaxation 

If the start subregion is completely inside the infeasible region (no design point in this 
subregion of the satisfies all constraints), then constraint relaxation is applied. An ad- 
ditional design variable is added to the objective function and the constraints functions, 
so that always a feasible solution can be found. 
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Figure 1.5: feasible subregion 

Equations 1.4 & 1.5) can be simplified to the following approximate problem formulation 
in the pth cycle: 

n 
F = B~ + gixi 

i 
n 

i 

Adding the constraint relaxation variable leads to: 

With: 

Brelax = 100[max. coefficient found in B or C] 
xrelax 2 0 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

The Brelax is chosen in such a way, that the contribution of the xrelax to the objective 
function is relative large. The optimization cycle will emphasize on reducing xrelax over 
reducing the original p .  The subregion will therefore move towards the feasible region. 
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1.4.4 Approximate Error's 

If the solution has acceptable maximum approximation error and no high constraint 
violation (infeasibility) occurs, then this solution will be the starting point of the next 
cycle. Figwe 1.4.1 shows how an approximatior, error can be obtained ir, every p th 

subregion by comparing the approximate objective and constraint value of the solution 
with corresponding MADYMO analysis. 

The approximate error's are calculated by: 

(1.14) 

(1.16) 

Where zip) is the solution of the pth cycle. 

These errors are indicators for the quality of the approximations. Additionally when 
constraint approximations are more infeasible than the true functional behavior, the 
constraint approximation error's can be discarded. 

1.4.5 Search Direction & Movelimit Strategy 

For the next cycle the search direction D@+l)and the size of the subregion s@+') must 
be determined. The search direction is determined by the position of the approximate 
optimum zip) with respect to the center z$' of the subregion. 

The set of search directions DP'l) for the next cycle is calculated with: 

with za) defined by: 

(1.17) 

(1.18) 
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The size of the next subregion sz!p+') is for every design variable zi determined with 
a movelimit strategy. The movelimit strategy used by MADYMIZER is developed by 
Etman et al.. Figure A.3 on page 61 shows this movelimit strategy. The subregion size 
depends on the maximum approximation errors, constraint violation and convergence 
m.te at the optimum. 

1.4.6 Convergence 

If the approximation error's and constraint violation in a optimum is below certain 
acceptable limits, the optimum is checked for convergence. The relative difference 
with of the previous optimum zp-')) should be less or equal to the objective tolerance 
(default 10%). 

convergence criteria in the pth cycle: 

(PI - z@-l) 
Conv(p) = /m* zp-l) 1 5 Objective Tolerance (10% default) (1.19) 

1.4.7 Noise Influence 

The movelimit strategy is directly influenced by the bandwidth of the noise. Approx- 
imation errors smaller than or equal to the noise variations have to be considered as 
accurate. The approximation accuracy that can be attained is determined by the noise 
amplitude. Therefore with an increasing noise amplitude, the parameters defining the 
movelimits and convergence criteria have to become less strict. Before starting the op- 
timization, one should have an idea of the severity of the discontinuities, thus selecting 
the bandwidth of the approximate error's accordingly. An ill behaving optimization 
process may be an indication to re-tune the parameters. In MADYMIZER this can be 
done by altering the bandwidth of acceptable approximated error's in the input file with 
the keyword BAND (Appendix A.l). 

1.5 Problems 

First thing to do before starting a optimization of any kind is to check whether the 
model describes reality correctly. Also should one be aware of the limitations of the 
applied optimization technique. 

Ill-conditioned optimization problems which contain (numerical) noise or local minima 
will lead to bad performance of the mid-range optimization technique. Besides these 
problem defined difficulties, the mid-range method also has its own limitations: 



1.6. Objective 13 

1. In some design problems, the design parameters are restricted to discrete vari- 
ables. This is often due to standardization of available raw materials and semi 
manufactured products. Using standard products in a design instead of special 
made products is often far more cost efficient. Examples of discrete design vari- 
ables are cross-sectional area’s of trusses, thickness of metal sheet, stiffriess of seat 
beits and inflater diameters of airbags. MADYMIZER is not capable to deal with 
these discrete variables. 

2. A signal can contain local minima. Applying mid-range optimization method may 
lead to one of the local minima. It is possible to avoid a local minima by choosing a 
good starting point, positioned near the global minimum. If the objective function 
is dependent on many (more than 2) design variables, choosing a good starting 
point requires a lot of understanding of the behavior of the objective function. The 
strategy users normally apply for choice of a starting point is to try different points 
in the designs pace. This works if there are only a few (one or two) design variables. 
In case of many design variables it takes a lot of trial & error MADYMIZER runs, 
before a good estimation of the global minimum is reached. 

1.6 Objective 

In order of priority 

1. An optimization method for MADYMIZER capable of dealing with discrete opti- 
mization problems should be developed. The following specifications for a discrete 
optimization method can be defined: 

o The implemented method should be robust and stable. This requires that 
the optimization should not be effected much by (numerical) noise, choice of 
start point and local minima. 

o Preferably should the discrete optimization method be implemented within 
the existing MADYMIZER mid-range optimization technique. The principles 
of aübïegions, movelimit strategy and search direction works weii in crash- 
worthiness simulations. 

o The method must be capable of solving continuous, discrete and mixed (both 
discrete and continuous variables) optimization problems. 

o The discrete optimization method should not only find the optimum but 
also provide the user with relevant information. Therefore the optimization 
method should, if possible, analyze the objective function and constraint 
function values in datapoints along the optimization search path. 

o The discrete optimization method should not use a lot more MADYMO simu- 
lations to determine the optimum compared with optimizing a continuous 
problem. 
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o The modified MADYMIZER must be compatible with existing MADYMI- 
ZER input-files. 

2. A method which avoids local minima and reduces the number of needed opti- 
mization cycles in the mid range method by providing a good startpoint, for the 
optimization. The following specifications for such a method can be defined: 

o The method requires a minimum of MADYMO analysis. The number of 
analysis is preferably not larger than the resulting reduction of analysis in 
the midrange method. 

o The method must be capable to deal with noise. 
o The method gives a optimum near the ’real’ optimum. 
o The algorithm is a automatic process, it requires no Ldtailed knowledge of 

the implemented algorithm neither of the optimization problem behavior. 

1.7 Outline 

o Chapter 2 describes the development of a optimization tool for discrete variables 
which uses a sequential linear programming algorithm. 

o Chapter 3 gives an overview over global approximation techniques. A global 
method suitable for finding a appropriate startpoint using as less MADYMO cal- 
culation as possible should be find. 

o Chapter 4 describes the implementation and the tests to analyze the applicability 
of the implemented methods as well as to test and debug the implementation. 

o Chapter 5 gives the discussion over the results, conclusions and recommendations. 



Chapter 2 

Discrete Optimization 

Applying discrete design variables makes the design space discontinuous. Not every 
point in the continuous design space bounded by the upper and lower values of the 
design variables (x) < xk 5 XE) is therefore a valid value for the design variables. In 
this chapter the word datapoint will be used for a set of discrete design variable values. 

The use of discrete variables in MADYMO is restricted to optimize values of a simulation 
parameter (stiffnesses, lengths). MADYMIZER is not able to change the simulation 
model itself. Therefore the number of certain elements in a model cannot be used as a 
discrete variable. This is only possible with an additional program which performs these 
model changes. This program is then called by MADYMIZER instead of the default 
MADYMO analysis. 

The following notation will be used for the design variables: 

x E IRn 

XC 

Xd 
Xt ith continuous design variable 
( i = l ,  . . .  ,e) c < n  
xi d 
( i = 1 ,  . . .  , d )  d < n  

set of n design variables 

set of the continuous design variable 
set of the discrete design variable 

x = {XC, xd} 

ith discrete design variable 

n = c + d  

A approach to solve a discrete design problem is to assume the discrete design variables 
to be continuous, solve this continuous optimization problem and round-off the contin- 
uous optimum values of the discrete variables towards the nearest acceptable discrete 
values. This can give a good optimization however the following limitations occur for 
the application of this method: i 
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