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Abstract 

This master thesis describes a research project conducted within the Maintenance Development 

department at NedTrain. A decision support model is developed for determination of inspection 

sequence and number of parts that are going to be inspected at each inspection. For that purpose, 

first the definition of problem is given, and the related literature is presented. Then, the model is 

explained, and solved for the business case. Sensitivity analysis is conducted to verify the model. 

The thesis concludes with a discussion on main findings, limitations and possible future 

extensions.  
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Executive Summary 

This project has been conducted in Maintenance Development department at NedTrain. 

NedTrain is a 100% subsidiary of the NS group and has specialized in rolling stock maintenance, 

servicing, cleaning and overhaul; they maintain railroad passenger cars and locomotives 24/7. 

NedTrain is one of the first class rolling stock maintenance companies in Europe. 

According to Dekker (1996), next to energy cost, maintenance spending is the largest part of the 

operational budget. Hence, the maintenance concept for capital goods has gained more 

importance and among the maintenance concepts, Condition Based Maintenance, which supports 

right-on-time maintenance based on tangible reasons, has become prominent. Condition Based 

Maintenance is based on the following idea; if the deterioration of the system can be directly 

measured and if the system is subject to failure only if it deteriorates beyond a given threshold 

level, then the deterioration level can be monitored and maintenance decisions can be planned 

according to the actual deterioration of the system. As it can be concluded from this idea, 

condition monitoring is the main issue in condition based maintenance. While monitoring the 

condition of an item, it could be possible to detect an incoming failure.  

There are two types of condition monitoring techniques; continuous time condition monitoring 

and discrete time condition monitoring. While in continuous time condition monitoring, the 

condition of the system is recorded continuously, in discrete time condition monitoring 

inspections are performed at previously determined discrete inspection times. Hence, these 

inspection times gain importance for discrete time condition monitoring, since if the intervals 

between inspection times are very small, the system is observed very frequently, on the other 

hand, if the intervals between inspection times are very big, then the system is observed very 

rarely. Hence, finding the proper times for condition monitoring is very important in order to 

make use of the advantages of condition monitoring and condition based maintenance. 

The other issue about condition monitoring is that; it can be performed to one part as well as a 

group of identical parts. If the latter one is the case, then monitoring operation may be performed 

to every part, or alternatively a sample may be chosen to represent the population and monitoring 

operation may be executed to this sample only.  
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NedTrain is executing condition monitoring operations to oil in gearboxes. They are taking oil 

samples from each gearbox (mostly) every 3 months. It is believed that sampling every 3 months 

is too frequent and for the gearboxes that belong to the same type of train a sample which 

represents the whole population can be found in order to gain some idea about the system.  

Hence, the objective of this thesis is understanding and modeling the degradation process, 

finding the new optimum inspection times and number of parts to inspect. 

The main research question for the given problem will be; 

How does the degradation process behave? 

What are the optimal inspection times and sample size that gives the minimum maintenance cost 

for condition monitoring process? 

In order to answer the first research question, data analysis is performed. In the given business 

case, the selected control parameters to monitor are the amount of polluting materials in oil. In 

order to monitor the condition of the oil, at each inspection time oil samples are taken from each 

gearbox and the amount of iron, copper, lead, tin, nickel, chrome, aluminum, and silicon are 

measured. These materials accumulate in the oil as time passes, and this accumulation process is 

analyzed. Linear relation, which means that the amount of contaminating material in oil is 

increased linearly with time, are found to be the better one to represent the process.  

Then, in order to answer the second research question, a literature survey is conducted, and the 

idea developed by Chelbi et al. (1999) is found to be useful for the given case. The optimum 

inspection sequence, the one which minimizes the expected total cost (sum of inspection cost, 

failure replacement cost and preventive replacement cost), is found by using the idea suggested 

by Chelbi et al. (1999) and some changes are made to represent the given situation. If different 

cost parameters are used, then different inspections sequences are obtained.  

        ,         ,          

The optimum inspection sequences are given below; 
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Inspection Times 

1 2 3 4 5 6 7 8 

760 805 834 855 871 885 896 906 

The result of this analysis is that, if the failure replacement cost is high, then inspections are done 

at earlier times.  

Then, in order to determine the required sample size for each inspection, a model is developed, 

and by minimizing the total monitoring cost the optimum numbers of parts that should be 

inspected is calculated. This total monitoring cost has two components; inspection cost (which 

equals to unit inspection cost times number of parts inspected), and uncertainty cost. While doing 

estimation for a population by using information gained from a sample, this estimation will have 

a confidence interval. The length of this interval shows the power of the estimation and 

represents how certain one is about the population. If one wants to be surer about the population, 

he should have a narrow interval, and then he should assign a high cost for the length of the 

interval. However, if he tolerates some uncertainty, he may have wide interval, and assign a low 

cost. If the desire for certainty increases, then more parts have to be inspection, in order to 

provide more information about the population. The results are given below;  

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 118 135 230 276 298 332 352 384 

Interval Cost 1000 1500 2000 2500 3000 3500 4000 4500 

The result support the theoretical idea, in order to be obtain more information about the 

population, more parts have be inspected.  

A user interface is developed in MATLAB to support NedTrain to use the output of the proposed 

prediction model. Sensitivity analysis and possible future extensions are represented.   
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1. Introduction 

1.0 Introduction 

The availability and reliability have been important issues for manufacturing companies and 

service organizations. As a result the maintenance concepts for capital goods have gained more 

importance. Condition based maintenance (CBM) has become famous since it is a proactive 

maintenance strategy and eliminates over maintenance cost. The main issue related to CBM is 

the condition monitoring. The purpose of condition monitoring is to collect data to make it 

possible to detect incoming failure of equipment. Hence, the time point when the data is 

collected gains importance in view of the fact that while too late monitoring can be useless since 

the equipment can fail before the monitoring operation, too early monitoring will result in vague 

prediction of incoming failure. In addition to safety issues, condition monitoring operations have 

a monetary value. If the system is monitored very frequently, it may provide good information 

about the system but this will cause a high monitoring cost, on the other hand doing less frequent 

monitoring operations can decrease the monitoring cost but one will have limited information 

about the system. Moreover, if the condition monitoring operations are executed on a population 

of identical parts not on a single part, then the sample size that represent the population will be 

important since more parts will provide better information related to the population and cause a 

high monitoring cost, on the other hand monitoring the condition of less parts will decreases the 

cost but result in uncertainty associated with the condition of population. Hence, this master 

thesis aims to develop a model which determines optimum condition monitoring times and 

sample size for this operation. 

This chapter gives an introduction to this Master thesis. It starts with a description of NedTrain 

in Section 1.1; describing its business structure, the maintenance operations conducted, services 

provided and different kinds of service locations. Then, in Section 1.2, the problem definition is 

given; general idea about condition monitoring, condition monitoring problem, objective, 

research questions, research scope and research methodology are explained. In Section 1.3, the 

business case is explained. Finally, the outline of this Master thesis report is presented in Section 

1.4. 
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1.1 Company Information 

1.1.1 Company Description 

NS is the biggest Dutch railway operator, welcoming over a million people into its trains every 

year and NedTrain is a subsidiary of NS Group. NS is a state-owned holding company that 

consists of three branches; the passenger transportation branch, the stations development and 

exploitation branch and the infrastructure branch. Figure 1 shows an overview of the 

organization. 

 

 

 

 

 

 

 

 

Figure 1: Organizational chart of NS Group 

Strukton is a big railway contractor, operating not only in The Netherlands but also in many 

other European countries. NS Poort runs the exploitation of the train stations and NS Reizigers 

and NS HiSpeed run the exploitation of the trains.  

NedTrain “has specialized in rolling stock maintenance, servicing, cleaning and overhaul, they 

maintain railroad passenger cars and locomotives 24/7” (www.nedtrain.nl). Although NedTrain 

is founded officially in the early 90s, its origin extends to 19
th
 century when the first railroad in 

the Netherlands was founded. In 1938, NS was founded by the merger of the two largest Dutch 

railway companies; in the early 90s, NS has been privatized and NedTrain has been separated 

within NS as the company responsible for the maintenance operations of the rolling stock in the 
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Netherlands. Currently, NedTrain is one of the first class rolling stock maintenance companies in 

Europe. Some key figures about NedTrain are: 

- Number of full time employees: 3400 

- Turnover: €475 million/year 

- Kilometric performance: 15500 million/year 

- Installed base: >2850 coaches (>250000 seats) 

The organization of NedTrain is given in Figure 2. 

 

 

 

 

 

 

 

 

Figure 2: Organization of NedTrain 

1.1.2 Current Maintenance Operations 

There are three different types of maintenance with respect to parts in NedTrain; 

- Used based maintenance: In this type of maintenance activity, a part is replaced after it is 

used for a specific time period or distance. This type of maintenance is planned 

preventive maintenance. 

- Condition based maintenance: This type of maintenance activity is preventive 

maintenance with planned inspection and condition replacement, in which a part is 

replaced after its performance falls below a specific level. 
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- Failure based maintenance: These are unplanned corrective maintenance activities, in 

which part is replaced or repaired when it breaks down.  

1.1.3 Services and Different Kind of Service Locations 

NedTrain is responsible for maintaining, cleaning and revision of rolling stocks. These activities 

are performed in three different service locations; service depot, maintenance depot and 

refurbishment and overhaul depot. There are five types of services provided by Nedtrain such as; 

- First line service: It is performed on daily basis; rolling stocks are inspected, repaired and 

cleaned. This is done in one of the service depots. All these locations where all rolling 

stock stays overnight if it is not in maintenance or used in the night shift. During the 

night, the rolling stock is cleaned and some small tests are done to check for failure in the 

system. Small repairs are done in the service depot during the same night. If during the 

checks problems are detected that are too complicated for the service depot to handle, the 

rolling stock will be scheduled to visit the maintenance depot. 

- Short cyclical periodic maintenance: It is carried out after certain mileage or period of 

time. During this action, the focus is on checking and cleaning the components. These 

inspections ensure the safety, quality and reliability of the rolling stock in the line. This 

service is performed in maintenance depots. There are four different MD located across 

the Netherlands and different types of rolling stock are repaired in different locations of 

the MDs. All types of rolling stock are only sent to one, mostly two different locations of 

the MDs. 

- Long term maintenance: During this service, interior upgrades, major alterations to train 

sets and overhauling or replacement of worn parts are executed. This is service is 

performed in the refurbishment and overhaul workshop. There are two ROWs in the 

Netherlands, one in Haarlem and one in Tilburg.  

- Failures: If there is failure during the usage of the rolling stock, before acting to it, the 

criticality of the part is considered. If it is a critical part, then rolling stock is sent to a 

repair facility and replaced, however if it is a noncritical part, the replacement is done 

during the next scheduled short cyclical periodic maintenance. 

- Damage repair: When a rolling stock is damaged after an accident, NedTrain inspects it 

and estimates repair costs and then decides whether to repair or discard it.   
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A schematic representation of the maintenance structure is given in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic representation of maintenance process 

1.2 Problem Definition 

1.2.1 General Idea About Condition Monitoring 

Even though, in early 1900s, the maintenance activities were thought to be just some necessary 

problems to be overcome, these days they are integral part of the business process and they 

create additional values. According to Dekker (1996), next to energy cost, maintenance spending 

can be the largest part of the operational budget. Hence these activities have to be planned 

properly considering both economical and safety issues. For this reason the interest is switched 

from corrective maintenance to preventive maintenance. Condition based maintenance, which is 

a preventive maintenance method, is highly used in industry. The main idea behind the condition 

based maintenance is that; if the deterioration of the system or a control parameter that is 
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strongly correlated with the state of the system can be directly measured and if the system is 

subject to failure only if it deteriorates beyond a given threshold level, then the deterioration 

level or the control parameter can be monitored and maintenance decisions can be planned 

according to the actual deterioration of the system. Thus, condition monitoring is the main issue 

in condition based maintenance. The purpose of monitoring the condition of an item is to collect 

data to make it possible to detect incoming failure. There are two types of condition monitoring; 

continuous time condition monitoring and discrete time condition monitoring. In continuous time 

condition monitoring, the condition of the system is recorded continuously with the use of 

sensors, on the other hand in discrete time condition monitoring inspection times should be 

determined in advance and condition of the system is measured at these specific inspection 

times. Continuous time condition monitoring gives a better understanding of the system, but it 

may not be applicable to every system and it is highly costly. On the contrary, discrete time 

condition monitoring is cheaper compared to continuous time condition monitoring, but it 

collects information only at discrete times, hence it is limited representing the system.  

In order to capture the condition of the system accurately using discrete time condition 

monitoring, the inspection times have to be established very carefully since they are the specific 

time points that the condition of the system can only be observed. If the intervals between 

inspection times are very small, the system is observed very frequently, in fact the discrete time 

condition monitoring action in this case may approximate to continuous time condition 

monitoring. However, as mentioned before, this may bring very high monitoring cost and also it 

may not be very suitable to disturb the process very frequently to monitor the condition. On the 

other hand, if the intervals between inspection times are very big, the system is observed very 

rarely. Thus, little information is obtained related to the condition of the system, and the failure 

will be unexpected in this case. This situation is contradicting with the general idea of preventive 

maintenance, and can cause problems related to safety issues.  Hence, finding the proper times 

for condition monitoring is very important in order to make use of the advantages of condition 

monitoring and condition based maintenance.  

The condition monitoring operation can be executed for a population of identical parts as well as 

it is executed for a single part. For instance, a company may have hundreds of identical machines 

and it may want to monitor the condition of all machines. In this case, monitoring operation may 
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be performed for every part, or alternatively a sample may be chosen to represent the population 

and monitoring operation may be executed for this sample only, then the conclusion will be 

applicable to the whole population. There are some issues which have to be considered in this 

case; monitoring every specific machine will give perfect information about the whole 

population, but it may cause very high monitoring cost since the same monitoring operation is 

executed hundreds of times, alternatively observing only a sample can decrease the monitoring 

cost but it will bring some uncertainty about the condition of the whole population. Hence, if the 

problem is examining the condition of whole population, correct number of parts that is going to 

be monitored has to be calculated. 

1.2.2 Condition Monitoring Problem 

The issues related to condition monitoring problem are given in Figure 4 and explained 

afterwards. 

Condition Monitoring Problem

Monitoring Policy

Safety

Process

Management

Missing 

knowledge
Inspection 

frequency

Number of parts 

to inspect

Failing to apply 

the inspection 

plan

 

Figure 4: The issues related to condition monitoring 

The issues related to condition monitoring problem are categorized under four groups; process, 

management, monitoring policy and safety. The ‘process’ is related to missing 

understanding/knowledge of the excising system. If there is not enough information or a good 

understanding of the degradation process of the system, it will be difficult to plan the monitoring 

operations properly. The ‘monitoring policy’ is related to the frequency of inspection operations 

and if the problem is related to monitoring the condition of a population the number of parts to 
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inspection. As mentioned before, more frequent inspections will help to monitor the system in a 

better way but cause a high monitoring cost, and similarly monitoring many parts will increase 

the understanding of the system herewith a high cost.  The ‘safety’ issue should always be 

considered in condition monitoring since the failure of a system may result in very serious 

outcomes. Finally, ‘management’ is related to the application of the monitoring plan. The 

inspection plan should be appropriate for the given system and it has to be applied correctly to 

gain the best result.    

Hence, in order to solve the condition monitoring problem and find the optimum monitoring 

policy, one has to consider the four issues stated above. First, the system should be analyzed and 

understood properly. Then the optimum inspection policy should be found which represents the 

optimum inspection times and number of parts to inspect. Finally, these operations have to be 

done considering both the safety and management issues.  

1.2.3 Objective 

The objective of this thesis is that; understanding and modeling the degradation process, finding 

the new optimum inspection times and number of parts to inspect. 

1.2.4 Research Questions 

The main research question for the given problem will be; 

How does the degradation process behave? 

What are the optimal inspection times and sample size that gives the minimum maintenance cost 

(which is sum of inspection cost, preventive maintenance cost and failure cost) for condition 

monitoring process? 

The decision variables will be sample size and inspection times, the parameters (i.e. related cost 

values, threshold values related to component’s condition level) will be given. 

1.2.5 Research Scope 

The main research question for the project is finding the correct inspection times and 

corresponding sample sizes so that the information gained by inspection can be used to 
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understand the condition of the part and then maintenance decision related to entire population 

can be made. The model generated to solve the given problem will be a general model, it may be 

applicable to any system if the deterioration of the system or a control parameter that is strongly 

correlated with the state of the system can be directly measured and if the system is subject to 

failure only if it deteriorates beyond a given threshold level. Application of the model will be 

done for gearbox oil sampling for NedTrain and results will be given in Chapter 5.  

1.2.6 Research Methodology 

This Master of Science project on maintenance management is a Business Problem Solving 

(BPS) project that aims finding the optimal time and sample size for each inspection operation 

while minimizing the average total cost. Van Aken et al. (2007) indicate that “Problem solving 

projects aim at the design of a sound solution and at the realization of performance improvement 

through planned change.” Moreover, they claim that a business problem solving project has to 

satisfy the following criteria; 

Performance focused: the main of the project should be to improve the actual performance 

Design oriented: the project steps are controlled by a project plan 

Theory-based: theories from the existing literature should be contextualized for the problem, 

analysis and design activities should be realized 

Client centered: the requirements of the company should be identified and taken into account 

Justified: the solution should be executed to just justify its convenience 

A framework is provided in Figure 5 below, in order to conduct a BPS. 
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Figure 5: Research design  

As can be seen in the Figure 5, there are mainly two cycles: a reflective cycle and a regulative 

cycle. The regulative cycle is the inner circle element of the reflective cycle. It is the classic 

problem-solving cycle as indicated by Van Strien (1997).  

In this study, the first step is defining the problem, which is, ‘How to minimize the inspection 

and maintenance costs while keeping the system in a specified condition?’. The second step, 

analysis and diagnosis, constitutes the analytical part of the project. At this step, the detailed 

analysis of the maintenance actions and strategies of NedTrain is conducted. During the third 

step, the solution for the problem is designed. A systematic review of the literature should result 

in a range of solution concepts to solve the business problem in the ideal scenario. Among the 

alternative solutions found in the literature, an appropriate one can be chosen and a variant of it 

can be adapted to the specific problem. The intervention step refers to a change part, in which the 

redesign is realized through changes in organizational roles and routines, plus the possible 

implementation of new tools or information systems. In the last step of regulative cycle, the 

client organization learns to operate within the new system and with the new instruments, and 

learns to realize the intended performance improvement. After intervention, the next step is to 

plan a formal evaluation in order to assess whether the intended improvement is achieved or not.   
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The project will focus on the design part of the regulative cycle, which consists of the first three 

steps of the cycle.   

1.3 Business Case 

Railway wheels sit on the rails and the shape and location of wheels and rails on straight track 

can be seen in Figure 6 below. 

 

Figure 6: The shape and location of wheels 

A pair of train wheels is rigidly fixed to an axle to form a wheelset.  Normally, two wheelsets are 

mounted in a bogie.  Most bogies have rigid frames as shown below. 



12 
 

 

Figure 7: A standard rigid bogie on curved track 

The bogie comes in many shapes and sizes. An example is shown in Figure 8, which is a modern 

design as the motor bogie of an electric locomotive.  Here it has to carry the motors, brakes and 

suspension systems all within a tight envelope.   

 

Figure 8: A photograph of a bogie 

With all other parts, bogie contains the gearbox which is a device that varies the gear ratio 

between the engine and the road wheels so that the appropriate level of power can be applied to 
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the wheels. It contains the pinion and gearwheel which connects the drive from the armature to 

the axle. Figure 9 represents a gearbox 

 

Figure 9: Shape of a gearbox 

The efficiency of a gearbox is affected by friction, which can increase the wearing process and 

cause overheating and premature failure of the gearbox. In order to reduce this friction, usually a 

fluid is used which can keep two solid parts in the gearbox from touching to each other. In 

addition to reducing the friction, this lubricant can be used as an indicator of the condition of the 

gearbox. In order to apply preventive maintenance to a gearbox, the condition of the lubricant 

can be measured and depending on the results a maintenance strategy can be developed. 

Moreover, gearbox life is often much better when it is kept clean and well-lubricated.  

The current situation in NedTrain for gearbox oil condition monitoring is as follows; 

- The company, NedTrain, is taking oil samples from each gearbox (mostly) every 3 

months.  

- These samples are sent to another company, DeltaRail, for the analysis.  

- DeltaRail is doing the experiments and analysis, and then if the oil is contaminated with 

metal particles or include too much water, they advice NedTrain to change the oil in the 

gearbox. 

-  Then, when NedTrain has got the advice from DeltaRail, they do not change the oil 

immediately, they wait for the next oil sampling/inspection time (which is usually 3 



14 
 

months) and then when the train comes to the maintenance depot for the next time, they 

change the oil.  

It is believed that sampling every 3 months is too frequent and for the gearboxes that belong to 

the same type of train there is no need to analyze all gearboxes, a sample which represents the 

whole population can be found in order to gain some idea about the system.  

The problem can be stated as follows; 

The reliability of the rolling stocks and safety of the passengers are the first concern of 

NedTrain. By doing inspections, information related to the health of the system can be obtained. 

The more the inspection is done, the much the information is gained. However, this brings the 

high inspection cost herewith. On the other hand, decreasing the number of inspections will 

definitely decrease the inspection cost but the inspection may be done too late and immediate 

replacement can be required for the system and this will disturb the production plan in the 

maintenance depot terribly or even in the worst case an accident may happen. In addition to the 

frequency of inspection, the number of components that are inspected is also important for 

NedTrain. With the assumption that all components in the system behave in the same way and 

their conditions are always equal to each other, the information gained from sample inspection is 

used for deciding for the whole population. Hence, bigger sample size will represent the 

population in a better way, but it will increase the inspection cost. Then, there should be a trade-

off between the inspection cost and rolling stock reliability and whole system smoothness. The 

optimal inspection times and sample size for each inspection have to be determined. 

1.4 Report Outline 

The rest of the report is organized as follows; in Chapter 2, literature about maintenance 

operations, condition based maintenance, condition monitoring and inspection planning is 

clarified. In Chapter 3, description of the model used to solve the problem is presented. In 

Chapter 4, the way how the historical data analyzed and the result of this analysis is represented. 

In Chapter 5, the results of the business case are given which is conducted by using the model 

given in Chapter 3. Finally, in Chapter 6, conclusion and recommendation are presented. 
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2. Literature Review 

This Chapter gives the literature related to the given problem. It starts with the general 

information about maintenance in Section 2.1. Then in Section 2.2 condition based maintenance 

is explained. In Section 2.3 information about condition monitoring is represented. Finally, in 

Section 2.4 the literature about inspection planning is given. 

2.1 General Information About Maintenance 

Maintenance, repair and operations is defined by European Federation of Natural Maintenance 

Societies as follows; "All actions which have the objective of retaining or restoring an item in or 

to a state in which it can perform its required function. The actions include the combination of all 

technical and corresponding administrative, managerial, and supervision actions.” According to 

Parida et al. (2006), in early 1900s, maintenance activities were necessary evil, there was no way 

to gain value from them. Between 1950 and 2000, maintenance was important support function; 

it can be planned and controlled. Then, in these days it is integral part of the business process, it 

creates additional value. In other words, as it is stated by Wang et al. (2007), for the first 

generation of maintenance activities the idea was ‘fix it when it broke’. Then, with the invention 

of computers the idea shifted to ‘scheduling and planning maintenance activities’ for the second 

generation. Finally, in the third generation the ideas like ‘condition monitoring, design for 

reliability and maintainability, failure modes and effect analyses are generated.  

According to Dekker (1996), next to energy cost, maintenance spending can be the largest part of 

the operational budget. Zhao et al. (2010) state that the annual cost of maintenance goes up to 

15% for manufacturing companies, 20%–30% for chemical industries, and 40% for iron and 

steel industries. Moreover, Bengtsson (2007) states that as much as one third of the total 

maintenance cost is spent unnecessarily because of circumstances such as bad planning, overtime 

costs, poor usage of work order systems and limited or misuse of preventive maintenance. 

Therefore, importance of maintenance increases significantly and there is a continuous search for 

a better maintenance policy which provides economic efficiency with higher system reliability, 

availability and safety.  



16 
 

Maintenance models may be divided into two distinct categories; corrective maintenance and 

preventive maintenance.  

Maintenance

Preventive 

Maintenace

Corrective 

Maintenece

Time-

Based

Condition

-Based
 

Figure 10: Maintenance Techniques 

Corrective maintenance, which is similar to repair work, is undertaken after a breakdown or 

when obvious failure has been occurred. In Bengtsson (2007), corrective maintenance is defined 

as: “maintenance carried out after fault recognition and intended to put an item into a state in 

which it can perform a required function”. On the other hand, preventive maintenance is defined 

as: “Maintenance carried out at predetermined intervals or according to prescribed criteria and 

intended to reduce the probability of failure or the degradation of the functioning of an item.” 

Moreover, preventive maintenance is divided into two types, time based maintenance 

(predetermined maintenance) and condition based maintenance. Time based maintenance is 

scheduled and planned without the occurrence of any monitoring activities and this scheduling 

can be based on the number of hours in use, the number of times an item has been used, the 

number of kilometers the items has been used, and so on. It is best suited to an item that has a 

visible age or wear-out characteristic and where maintenance tasks can be made at a time that for 

sure will prevent a failure from occurring. Unlike time based maintenance, condition based 

maintenance, does not utilize predetermined intervals and schedules. Instead, it monitors the 

condition of items in order to decide on a dynamic preventive schedule.  



17 
 

According to Wang et al. (2007), corrective maintenance is considered as a feasible strategy in 

the cases where profit margins are large. For the first category of preventive maintenance, which 

is time based maintenance, it is often difficult to define the most effective maintenance intervals 

because of lacking sufficient historical data. In many cases when time based maintenance 

strategies are used, most machines are maintained with a significant amount of useful life 

remaining. This often leads to unnecessary maintenance, even deterioration of machines if 

incorrect maintenance is implemented. In the second category of preventive maintenance, which 

is condition based maintenance, limitations and deficiency in data coverage and quality reduce 

the effectiveness and accuracy of the strategy. 

A major challenge nowadays for maintenance department is not only to know the new techniques 

can do, but also to choose the proper one for their organizations. According to Wang et al. (2007) 

the selection of maintenance strategies is a typical multiple criteria decision-making (MCDM) 

problem. Several MCDM methods have been developed, such as the weighted-sum model 

(WSM), the weighted-product model (WPM), the TOPSIS method and the AHP. The AHP is 

one of the most popular MCDM methods.  

2.2 Condition Based Maintenance 

Condition based maintenance (CBM) is defined by Bengtsson (2007) as “preventive 

maintenance based on performance and/or parameter monitoring and the subsequent actions.” It 

is a maintenance type that utilizes on-condition tasks in order to monitor the condition of the 

system over time and usage. This is done in order to give input to decide maintenance actions 

dynamically. According to Chen et al. (2001), for CBM the action taken after each inspection is 

dependent on the state of the system. It could be no action, or minimal maintenance to recover 

the system to the previous stage of degradation or major maintenance to bring the system to as 

good as new state. According to Bengtsson (2007), condition based maintenance is performed to 

serve the following two purposes; 

1) to determine if a problem exists in the monitored item, how serious it is, and how long 

the item can be run before failure  
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2) to detect and identify specific components in the items that are degrading and diagnose 

the problem. 

Bengtsson (2007) states that the need for condition based maintenance was revealed as early as 

in the 1960s through a study performed during the development of the preventive maintenance 

program for the Boeing 747. The study’s purpose was to determine the failure characteristics of 

aircraft components. It was found that a relatively small part of all components (11%) had clear 

ageing characteristics, which enables a schedule overhaul (that is predetermined maintenance). 

The rest of the components (89%) did not show such ageing characteristics (that is, they were 

more or less random failures) and consequently not applicable to schedule overhauls. Page 

(2002) presents similar conditional-probability curves within the manufacturing industry. He 

states that only 30% of all components have clear ageing characteristics, and that this percentage 

decreases as complexity and technology increases. Evidently, the ageing feature of a component 

is not the best approach, and in some applications not even possible, when planning appropriate 

maintenance schedules. This fact introduces condition based maintenance and condition 

monitoring as one solution to the issue. 

Then, according to Grall et al. (2002), if the deterioration of the system or a control parameter 

strongly correlated with the state of the system can be directly measured (through vibration 

analysis, cumulative wear monitoring, corrosion/erosion level etc.) and if the system is subject to 

failure only if it deteriorates beyond a given threshold level, it is more appropriate to base the 

maintenance decision on the actual deterioration state of the system rather than on its age. This 

leads to the choice of a CBM policy. It is also proved that CBM policy minimizes the cost of 

maintenance, improve operational safety and reduce the quantity and severity of in-service 

system failure. 

According to Neves et al. (2011) in order to apply condition based maintenance, first of all the 

parameters which are going to be monitored have to be selected. Then the inspection dates has to 

be decided, these dates can be either fixed or they can be state dependent. Finally, the warning 

limit (critical threshold) has to be established.  
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2.3 Condition Monitoring 

According to Bengtsson (2007) condition monitoring is the main issue in CBM. The interval for 

condition monitoring can be either continuous or periodic. The purpose of monitoring the 

condition of an item is to collect data to make it possible to detect incipient failure. With this 

information, maintenance tasks can be planned at a proper time. Another purpose of condition 

monitoring is to increase the knowledge of failure cause and effect and deterioration pattern. 

Tsang (1995) states that condition monitoring tries to serve for the following purposes; 

determine if a problem exists in equipment, how serious the problem is, and how long the 

equipment can run before failure. Condition monitoring techniques can be classified according to 

the type of symptoms they are designed to detect: a) dynamic effects such as vibrations and noise 

levels, particle released into the environment, chemicals released into the environment, b) 

physical effects such as cracks, fractures, wear and deformation, temperature rise in the 

equipment, electrical effects such as resistance, conductivity, dielectric strength etc. Moreover, it 

is stated in Christer et al. (1995) that it is convenient to classify information gained from 

condition monitoring into two classes, namely direct information and indirect information. In 

direct information, by condition monitoring the variable which directly determines 

condition/failure of component is observed and direct information is gained; for instance the 

thickness of a brake pad or the wear in a bearing. Indirect information provides information 

which is influenced by the component condition, but is not a direct measure of the failure 

process; for example an oil analysis or a vibration frequency analysis. Even if the method is 

different in both cases, the point of concern is to predict the conditional failure time distribution 

as input to modeling maintenance practice.   

As it is mentioned before maintenance issues are receiving greater attention from researchers and 

engineers due to the fact that equipments are becoming increasingly sophisticated and play a 

growing role in modern industrial life. According to Grall et al. (1997), in order to limit the 

failures, inspections and renewals of critical components should be done regularly. However, 

since both manpower and components are becoming expensive, a trade-off must be found to 

minimize the total cost incurred by inspections, the renewals and the failures of the system. 

Wang (2003) mentions that among the decisions made in relation to condition monitoring, one 

decision is to choose a condition monitoring interval. More frequent monitoring checks cost 
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money, on the other hand a longer monitoring interval may save the monitoring cost but may 

also increase the risk of a failure between the monitoring checks. There is clearly an optimization 

problem to balance the trade-off between more and fewer monitoring checks. 

2.4 Inspection Planning 

Inspection times must be chosen so that undetected failure costs and inspection costs are 

balanced optimally. A common used inspection policy with constant intervals between 

inspections is not optimal relative to a certain cost model; optimum inspection policies have 

decreasing inspection intervals for ageing systems (Leung, 2001).  

Interest in optimal inspection schedules for the maintenance of stochastically failing or 

deteriorating systems originated with the basic model presented by Barlow et al. (1963). They 

developed a simple model capturing the tradeoff involved in the choice of optimum inspection 

schedule, frequent check increases the cost of inspections but decreases the cost of late detection 

of failure. However, it may be difficult to find such optimum policy. To avoid this difficulty, 

Munford and Shahani (1972) suggested a nearly optimal checking interval. They presented the 

nearly optimal inspection policy by assuming that the conditional probability, which is the 

probability of the failure occurrence between successive inspections is constant. Then, this 

method was applied to a case with Weibull distribution in Munford and Shahani (1973). 

Tadikamall (1979) discussed a case with Gamma distribution using the same method. Keller 

(1974) made the problem tractable by supposing that checking is so frequent that it can be 

described by a continuous density n(t) of checks per unit time. Kaio and Osaki (1984) developed 

Keller’s method using the smooth density and obtained the more exact inspection policy. Leung 

(2011) developed four optimum inspection policies using inspection density idea. Nakagawa et 

al. (1980) proposed an approximate calculation of optimal checking procedures which computes 

successive check times backwards supposing that an appropriate check time is previously given 

after a large number of checks.  

 Dieulle et al. (2003) and Dieulle et al. (2001) suggested determining the inter-inspective 

durations by the help of an inspection scheduling function. Wang (2000) developed a model to 

determine the optimal critical level and monitoring interval for the criterion of interest. Random 
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coefficient growth model, which is established by Lu and Meeker (1993), is used to describe the 

deterioration process of the monitored item. A simple model developed by Christer et al. (1995) 

allows the future wear pattern to be dependent upon the history of wear and minimizes the 

expected cost per unit time over the time interval between the current inspection and the next 

inspection. Bérenguer et al. (2003) proposed a multithreshold policy to choose sequentially the 

best maintenance actions and to schedule the future inspections using the online monitoring 

information. Bahoe (2002) developed a periodic inspection strategy for three modes system, 

normal, abnormal and failure. Grall et al. (1997) modeled the problem by a semi-Markov 

decision process which minimizes the long run average cost incurred by inspections, preventive 

maintenance and unexpected failures. Ohnishi et al. (1986) obtained an optimal inspection and 

replacement policy minimizing the expected total discounted cost over infinite horizon for a 

discrete time Markovian deterioration process. Chelbi et al. (1998) presented two inspection 

strategies; the first one was a simple inspection strategy which is an extension of the one 

developed by Munford and Shahani (1972), the second one was a predictive oriented one based 

in the systematic control of the equipment. Chelbi et al. (1999), proposed a mathematical model 

and a numerical algorithm to generate an optimal inspection sequence, which is defined as the 

inspection sequence minimizing the expected total cost per unit time over an infinite span. This 

model was found to represent the situation in NedTrain properly, and the numerical algorithm 

was applicable for a practical case. Detailed information about this model is given in Chapter 3. 
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3. Model Description 

This chapter has two sections. In the first section, the description of the model that can be used to 

determine the inspection times is presented. Then, in the second section, the idea than can be 

used to determine the sample size is given.   

3.1 Inspection Time Determination Model 

Case 1: When failure is not self-announcing 

As mention in Chapter 2, Chelbi et al. (1999) defined the optimal inspection sequence as the one 

minimizing the expected total cost and proposed a mathematical model and a numerical 

algorithm to generate this optimal inspection sequence which is applicable for a practical case.  

The condition of the system is monitored through inspections, at each inspection indirect 

information is obtained by a measure of selected control parameters which are strongly 

correlated with the state of the system which is subject to failure only if it deteriorates beyond a 

given threshold level. Two different threshold levels are defined. The first one is the ‘alarm 

threshold’ which represents that the condition of the equipment is not good enough to work and a 

replacement has to be scheduled, this situation can be seen as a ‘soft failure’ which is not a real 

failure but it is indicates that the equipment is not at a good condition anymore. The second 

threshold level is the ‘failure threshold’ which represents that it is not possible to use the 

equipment anymore; it can be seen as a ‘hard failure’.  

It is assumed that inspections do not affect the physical process of deterioration. If the i
th

 

inspection performed at instant    reveals that the equipment has failed (failure can only captured 

by inspection), then it is immediately replaced by a new identical one. If it has not failed but the 

control parameter is found to have exceeded the alarm threshold level, a preventive replacement 

is scheduled at time     . The time interval H depends on the logistic and any previously 

scheduled inspections within this period H are cancelled. This is shown in below.  
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Figure 11: Control parameter evolution with time 

In order to take into account this physical behavior of the equipment, two probability density 

functions Φ(.) and f(.) are considered.  (.) is associated with a random variable   which 

corresponds to the time at which the alarm threshold is exceeded, whereas f(.) is associated with 

the random variable t which represents the failure time. Their corresponding cumulative 

distribution functions are Φ(.) and F(.). They are assumed to be independent. 

The best inspection strategy is defined as the inspection sequence which minimizes the average 

total cost per time unit over an infinite horizon. The cost is represented as; 
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The expected total cost, E(C), is representes as; 
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The expected number of inspections in one cycle E(I); 

                                                                                      

 

   

                                                                

where h(i) is the probabilty that i inspections are performed before replacement  

                                                               

    

  

  

    

           

For      the formulation is given below as an example; 

                                                                      
  

  

  

 
                      

First term is to indicate that alarm threshold is exceeded at time   which is before the first 

inspection and failure threshold is not exceeded until first inspection. If this is the case, at the 

first inspection this situation will be observed, a replacement will be scheduled at time     , 

and the cycle will end experiencing only one inspection. Second term is to indicate that alarm 

threshold is not exceeded until first inspection and failure is occurred until the second inspection. 

If this is the case, at the first inspection, the equipment will be in a good condition, but it will fail 

before the second inspection, at the second inspection time that situation will be observed but 
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since the equipment is in the failed state, this observation will not be count as an inspection, and 

the cycle will end with only one inspection.  

The probability Pg that the cycle ends with a failure evet; 

                                                               

  

    

  

    

 

 

   

 

First term is to indicate that alarm threshold is not exceed until     , and then second term is to 

indicate that failure will occure between      and   , so at the time    cycle will end with a 

failure, and the last term is to indicate that alarm threshold is exceed at time   which is between 

two consequtive inspections but failure is not observed, so a replacement is scheduled after H 

points of time, then failure is occurred between ith inspection and scheduled replacement time, 

so the cycle will finish with a failure. 

The probability Pp that the cycle ends with preventive replacement; 

                                                                                                                                                           

Finally, the cycle average duration, E(T) can be found considering the two following situations; 

1. Failure occurs within the time interval [0, xi], in which case the cycle average duration would 

be; 

                                                                                       

  

    

 

 

   

                                                          

2. The equipment does not fail within the time interval [0, xi], but the alarm threshold is 

exceeded, replacement is performed at time xi + H. The cycle average duration would be; 

                                                                         

  

    

 

 

   

                                      

 

 



26 
 

Hence, E(T) is given by; 

                                

  

    

                              

  

    

 

 

   

                   

 

A conditional probability is defined such as; 

  

                                                                                               

The expression for   ; 

                                                                            
             

         
                                                        

Given the value of   , one can obtain the inspection times   , using the following recursive 

formula; 

                                                                                                                                      

with             and         ;    being the conditional probability that alarm 

threshold is exceeded before the first inspection. While Munford et al. (1972) proposes to use 

constant    values for computational convenience, Chelbi et al. (1999) suggests using         

since if the inspection action does not affect the failure rate, the reliability of the equipment 

remains a decreasing function. Chelbi et al. (1999) suggest the next expression; 

                                                                                           

 
                                                                       

The inspection sequence can be expressed as a function of a single variable    

                                                                   

 
       

 
                                                      

Then, for a given    value, the inspection times,   ’s, can be found using the formula above, and 

then the corresponding average cost can be calculated. By changing    value, different inpection 
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sequences can be found and average costs related to these sequences can be calculated. The 

inspection sequence which gives the minimum average cost will be the optimal inspection times.   

Some small changes are done in the formulations (Eqs.3.4-Eqs.3.10) compared to the ones 

proposed by Chelbi et al. (1999). In the given business case, there are two thresholds, soft and 

hard failure; if the soft failure threshold is exceeded a preventive replacement is scheduled, and if 

the hard failure threshold is exceeded a failure replacement is executed. In the case Chelbi et al. 

(1999) studied, if the threshold is exceeded, this increases the failure probability but the cycle 

continues until the failure. For instance, the probability h(.) that i inspections are made in the 

cycle is given in Chelbi et al. (1999) as follows; 

                                    

  

 

    

 

 

In this formulation, alarm threshold can exceed at any time between zero till xi+1, but failure is 

waited to end the cycle. In the given business case, if the alarm threshold is exceed, and 

preventive replacement is scheduled and the cycle ends. Then, this is represented in Eq.(3.4).  

Case 2: When failure is self-announcing 

The case represented above is valid for the situations when the failure is not self- announcing and 

the equipment stays in a ‘failed’ state until it is observed by an inspection. While this assumption 

can be valid for some systems, it may not be applicable to others. Thus, an alternative model is 

represented in this section which may be applicable for the systems where the failure is self-

announcing and the equipment is replaced as soon as it fails.  

This alternative model requires some small changes in the formulations which are given in the 

previous section.  The general assumptions made for the previous case are still valid for this one. 

For instance, the condition of the system is monitored through inspections, and like before two 

different threshold levels are defined, one for ‘soft failure’ and one for ‘hard failure’ and finally 

inspections do not affect the physical process of deterioration 

For Case 1, if the i
th

 inspection performed at instant    reveals that the equipment has failed, then 

it is immediately replaced by a new identical one. On the other hand, for Case 2, since the failure 
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is self-announcing the exact moment of the failure will be known and the equipment will be 

replaced at this, it does not have to wait until the i
th
 inspection to reveal this failure. If it has not 

failed but the control parameter is found to have exceeded the alarm threshold level, a preventive 

replacement is scheduled at time     . For Case 1, even if the part experience a failure 

between the time period    and      (the time that it is observed that the control parameter is 

above the threshold and the time a replacement is scheduled, respectively), the replacement 

operation will take place at time     , since it not possible to observe the failure. However, for 

Case 2, a failure which occurs between    and      will be known, and a replacement can be 

done at the failure time which can be earlier than     . Finally, for both cases, if there is not 

any failure occurred, a preventive replacement will be done at time     . The time interval H 

depends on the logistic and any previously scheduled inspections within this period H are 

cancelled.  

The probability density functions will represent the similar idea as in Case 1, Φ(.) is associated 

with a random variable   which corresponds to the time at which the alarm threshold is 

exceeded, whereas f(.) is associated with the random variable t which represented the failure 

time. Their corresponding cumulative distribution functions are Φ(.) and F(.) and they are 

independent. 

The definition of best inspection strategy is the same as Case 1, so the Eq.(3.1) and Eq.(3.2) will 

be valid for Case 2. Moreover, Eq.(3.3) and  Eq.(3.4) are also valid which represents expected 

number of inspections in one cycle and probability of number of inspections are performed 

before the cycle ends respectively.                                 

The probability Pg that the cycle ends with a failure event will be different then the previous 

case; 
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First term is to indicate that alarm threshold is not exceed until     , and then second term is to 

indicate that failure will occure at a time point which is between      and   , so that cycle will 

end with a failure, and the last term is to indicate that alarm threshold is exceed at time   which 

is between two consequtive inspections but failure is not observed, so a replacement is scheduled 

after H points of time, then failure is occurred between ith inspection and scheduled replacement 

time, so the cycle will finish with a failure. The probability Pp that the cycle ends with preventive 

replacement is given Eq.(3.7).  

Finally, the cycle average duration, E(T) can be found considering the three following situations; 

1. Failure occurs within the time interval          , in which case the cycle average duration 

would be; 

                                                                        

       

 

 

 

   

                                      

2. Failure occurs within time interval          , in which case the cycle ends when failure is 

observed; 

                                                                                                  

 

 

  

    

 

   

 

3. The equipment does not fail within the time interval but the alarm threshold is exceeded, 

replacement is performed at time       . The cycle average duration would be; 

                                                                  

  

    

 

 

   

                          

Hence, E(T) is given by; 

                                                                                                                                  

The definition of conditional probability    which represent the conditional probability that the 

alarm threshold is exceed within time interval           is the same and given in Eq.(3.11). Then, 
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for a given    value, the inspection times,   ’s, can be found using Eq.(3.14), and then the 

corresponding average cost can be calculated. By changing    value, different inpection 

sequences can be found and average costs related to these sequences can be calculated. The 

inspection sequence which gives the minimum average cost will be the optimal inspection times.   

3.2 Sample Size Determination 

A population can be defined as including all people or items with the characteristic one wishes to 

understand. Since there is very rarely enough time or money to gather information from 

everyone or everything in a population, the goal becomes finding representative sample of that 

population. Sampling is concerned with the selection of a subset of individuals from within a 

population to estimate characteristics of the whole population. The three main advantages of 

sampling are that the cost is lower, data collection is faster, and since the data set is smaller it is 

possible to ensure homogeneity and improve the accuracy and quality of the data.  

There are different sampling methods. Simple random sampling implies that any particular 

sample of a specified sample size has the same chance of being selected as any other sample of 

the same size. This minimizes bias and simplifies analysis of results. The term sample size 

simply means the number of elements in the sample (Walpole et al., 2002). 

A point estimate of some population parameter   is a single value    of a statistic   . Clearly, it is 

desired that the sampling distribution    to have a mean equal to the parameter estimated. An 

estimator possessing this property is said to be unbiased. Even the most efficient unbiased 

estimator is unlikely to estimate the population parameter exactly. It is true that the accuracy 

increases with large samples, but there is still no reason why a point estimate from a given 

sample is expected to be exactly equal to the population parameter it is supposed to estimate. 

There are many situations in which it is preferable to determine an interval within which it is 

expected to find the value of the parameter. Such interval is called an interval estimate (Walpole 

et al., 2002). 

As it is mention in Chapter 1, the condition monitoring operations can be executed for a 

population of identical parts. In this case, monitoring operations may be performed to every part, 

or alternatively, since there is rarely enough time or money for that, a sample may be chosen to 
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represent the population and monitoring operations may be executed for this sample. Monitoring 

every part will provide the perfect information about the population, but it will cause a high 

monitoring cost. On the other hand, observing a sample may decrease the monitoring cost but it 

will cause some uncertainty related to condition of population. Hence, a trade-off between 

sampling cost and uncertainty related to the population condition has to be done.    

If all the parts in a population are not monitored but only a sample is, the uncertainty related to 

that situation can be represented by the confidence interval of parameters estimate. The more 

parts are observed, the better the estimation and the smaller the interval is. However, if fewer 

parts are observed, estimation will be poor and interval will be bigger. In the former case, 

interval will be smaller but the monitoring cost will be higher compared to the latter case where 

the interval is bigger but the monitoring cost is lower. Thus, the trade-off can be done between 

the length of the confidence interval and monitoring cost. 

Confidence interval for  ; 

If    and s are the mean and standard deviation of a random sample from a normal population 

(which is a valid assumption due to Central Limit Theorem), a           confidence interval 

for   is; 

                                                                       

 

  
          

 

  
                                                

where      is the t value with       degrees of freedom (Walpole et al., 2002). 

Then the length of the interval will be; 

                                                                                             

 

  
                                                                 

The monitoring cost will be; 

                                                                                                                                                                       

where c is the inspection cost per one item (the set up is ignored here since the main goal is 

finding sample size, not deciding on whether we should do inspection or not where the setup cost 

may be relevant, but since we are doing inspection anyway, it is irrelevant in this case). 
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Then, total monitoring cost will have two components; the first one is to represent the penalty of 

having a big confidence interval, the second one is to represent the inspection cost. 

                                     

                                                                              

 

  
                                            

where a is the cost associated with the length of the confidence interval (uncertainty cost). 

By increasing the sample size (n), the first term in monitoring cost will decrease since for higher 

sample size values smaller interval lengths will be obtained, but the second term will increase 

since more parts will be inspected. Hence, the sample size which minimizes the monitoring cost 

given above will be optimum sample size.   
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4. Data Analysis 

In this chapter the analysis of historical data is presented. This analysis is done for every train 

type that NedTrain has, and the main goal is to understand the oil contamination process.  

As a starting point, the trains that NedTrain owns were grouped into six categories depending on 

some technological differences; ICM 1-2, ICM 3, SGMM, MDDM, VIRM and VIRM-4. Then, 

the data analysis was done one by one for each train type.  

The data sheet taken from NedTrain contains last two years oil analysis data for each gearbox. 

The information represented in the data sheet includes gearbox code, train type, train number, oil 

sampling date, oil analysis date, amount of iron, copper, lead, tin, chrome, nickel, aluminum and 

silicon and whether oil sample is rejected or not (which is related to oil changing; if the oil 

sample is rejected then the corresponding gearbox has to experience an oil change). 

After extracting the related information for each train type from the main data sheet, the first 

analysis done was about understanding the degradation/metal accumulation process. Metal 

accumulation in the oil is one of the main indicators of oil quality. In order to understand its 

mechanism, a relation has to be found between time passed since the last oil change and the 

amount of metal accumulated in it. In the main data sheet, there was not any information about 

the oil changing time; hence, one has to do some further search to understand the oil 

accumulation mechanism because it is not possible to relate the time and metal amount without 

knowing the starting time. Therefore, as a solution for this situation, it was decided that for 

further analysis the gearboxes which did not have any oil rejection have to be ignored. The 

reason behind this decision is that; if there is not any oil rejection for a gearbox that means that 

this gearbox did not experienced any oil change (at least during the time that has records in the 

main data sheet) and since the last oil changing time was not know, it is not possible to find a 

relation between time and metal accumulation because the starting time/time zero for oil change 

is not known. On the other hand, if a gearbox is experienced an oil rejection, then it is known 

that the oil in this gearbox will be changed and this will be the starting time/time zero for metal 

accumulation, assuming that there is not any metal in time zero, hence the relation between time 

and metal accumulation can be found. For instance, if there is a rejection for oil sample in 27 
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Nov 2010, then it can be assumed that the oil was changed and until the next sampling time, 1 

March 2011, 90 days passed and 20 ppm of iron was accumulated. Thus, a relation can be 

observed between time and metal accumulation. Moreover, in order to find a general relation for 

a specific metal accumulation in a specific train type (e.g. iron accumulation in ICM 1-2) the 

information that comes from whole gearboxes for that train type was combined together. For 

instance, for gearbox 1, it was found that after 93 days and 179 days passed from oil rejection 

185 ppm and 200 ppm of iron was accumulated respectively, for gearbox 2, it was found that 

after 90, 176, and 254 days passed, 160, 230 and 310 ppm of iron was accumulated respectively. 

Then, while finding the general relation for iron accumulation for these two gearboxes, 5 data 

points (coming from gearbox 1 and 2) were used together and then the relation would be valid 

for both gearbox 1 and 2. This is a valid application because the gearboxes for the same train 

type are assumed to be identical, and while using the whole data points, one can have more 

information about the system since there is very limited information on the basis of gearbox. As 

mentioned before, this was done for each train type, the data points for ICM 1-2 can be seen in 

the Appendix A as an example. 

Secondly, after computing the data points for time and metal accumulation from the main data 

set, a statistical analysis was done to find the best fit for these data points and represents metal 

accumulation with respect to time. First of all, an outlier analysis was conducted. Extreme 

events, data entry errors etc. can cause outliers and they can dramatically change the results of 

analysis. Outliers can be univariate, bivariate and multivariate. There are different identification 

methods for each of them. For univariate outliers, one has to determine standardized data. 

Graphical examination can be used to determine bivariate outliers. Finally, for determining 

multivariate outliers, Mahalonobis distance (D
2
) can be used (Hair et al., 2009). For the project, 

SPSS is used to determine univariate and multivariate outliers. In order to determine univariate 

outliers, standardize data is checked. 

  
     

  
 

If sample size is greater than 80, the data points which have z-scores greater than 3 are 

considered to be an outlier. If it is less than 80, z-scores greater than 2.5 are considered to be an 

outlier (Hair et al., 2009). 
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In order to determine multivariate outliers Mahalonobis distance is calculated. It adjusts for both 

variability and correlation between variables. If        , than the corresponding combination 

of data points is assumed to be an outlier (Hair et al., 2009). 

   
 

    
 
           

 

  
  

           
 

  
  

                        

    
  

The univariate and multivariate outliers for ICM 1-2 can be seen in Appendix B as an example. 

These multivariate outlier points are deleted from the whole data set. In addition to this, if there 

are extra univariate outliers for a specific metal type, they are also deleted for further analysis. 

In order to find the best relation between metal accumulation and time, different relations were 

tested; linear, logarithmic, inverse, quadratic, cubic, power, growth, and exponential, using 

SPSS’s Curve Estimation option under Regression tool box. The SPSS output for each train type 

is given in Appendix C, and the results are presented below.  

Linear relations were fit best for each metal type in every train group. In some cases, the R-

squared values were higher for other relations, which can be seen as a better fit, however these 

relations did not represent the physical behavior properly. For instance, a quadratic relation with 

a high R-squared value which is claiming a decrease in metal accumulation with respect to time 

cannot be a good fit, since it does not represent the physical behavior of the system.  

In the equations, x represents the days passed and y represents ppm of corresponding metal 

accumulated. 

Intercept is set to zero, since it is assumed that there is not any metal particles in the oil when it 

has changed. 

Table 1: Relation between time and metal accumulation for ICM 1-2 

 Equation R-Squared 

Fe              

Cu                

Pb                

Sn                

Cr                

Al                

Si              
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Table 2: Relation between time and metal accumulation for ICM 3 

 Equation R-Squared 

Fe                

Cu               

Pb                

Sn                

Cr                

Al                

Si               

Table 3: Relation between time and metal accumulation for SGMM 

 Equation R-Squared 

Fe                

Cu               

Pb                

Sn                

Cr                

Al                

Si                

Table 4: Relation between time and metal accumulation for MDDM 

 Equation R-Squared 

Fe                

Cu                

Pb              

Sn                 

Cr                

Al                

Si                

Table 5: Relation between time and metal accumulation for VIRM 

 Equation R-Squared 

Fe                

Cu                

Pb                

Cr                

Al                

Si                
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Table 6: Relation between time and metal accumulation for VIRM-4 

 Equation R-Squared 

Fe                

Cu                

Pb                

Cr                

Al                

Si                

After finding the relation between time and metal accumulation for each train category and every 

metal type, the expert suggested that the amount of accumulated metal in the oil may depend on 

the age of gearbox in addition to time passed until the last oil change. The reason behind this 

ideas was that; the metal particles in the oil are coming from some parts of the gearbox (e.g. iron 

may be coming from either closing or bearing, nickel is coming from bearing etc.). Then, if a 

gearbox is new, deterioration of its parts will be low and they will produce fewer amounts of 

metal particles compared to an old gearbox. Hence, even if the same amount of time passed, one 

may expect to observe more metal particles in the oil for an old gearbox.  

In order to include this idea into the analysis, company database was checked to find the relevant 

information. It was found that there is information for only MDDM type of trains, the exact day 

of gearbox’s first usage is recorded. The gearboxes that were bought in the same year were 

grouped together, and their ages were found. There have been five groups; the ones bought in 

year 1996, 1997, 1998, 2000 and 2004. Then, multiple regression analysis is performed 

considering time and age as independent variables and metal accumulation amount as dependent 

variable. The results are shown below, details are given Appendix D. 

In the equations, x represents the days passed, a represents the age of gearbox and y represents 

ppm of corresponding metal accumulated. 

Table 7: Multiple linear regression for metal accumulation for MDDM 

 Equation R-Squared 

Fe                

Cu                      

Pb                      

Si                
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The R-squared values were improved for this multiple regression analysis. Therefore, it may be 

suggested to NedTrain that, keeping records for the age of gearboxes for other types of train may 

be useful for their operations. 
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5. Model Application 

This chapter has three sections. In the first section, the description of the system that represents 

the business case given in the Chapter 1 is presented. Then, in the second section, the results for 

this case are given. Finally, in the last section some sensitivity analysis related to model is 

clarified.  

5.1 System Description 

The model described in Chapter 3 will be used to solve the business case given in Chapter 1.  As 

it was mentioned in Chapter 2, Chelbi et al. (1999) defined the optimal inspection sequence as 

the one that minimizes the expected total cost and proposed a mathematical model and a 

numerical algorithm to generate this optimal inspection sequence which is applicable for a 

practical case. This idea will be applied to NedTrain’s case. 

In the given business case, the system which deteriorates is the oil in gearboxes, and the selected 

control parameters to monitor are the amount of polluting materials in it. In order to monitor the 

condition of the oil, at each inspection time oil samples are taken from each gearbox and the 

amount of iron, copper, lead, tin, nickel, chrome, aluminum, and silicon are measured. These 

materials accumulate in the oil as time passes, and their accumulation processes are analyzed in 

Chapter 4. Linear relations are found to be the better one to represent the process. According to 

Gabraeel et al. (2009), linear degradation model is typically used for modeling degradation 

processes. During this data analysis, it is observed that some of the given control parameters 

(copper, lead, tin, chrome, aluminum and silicon) do not provide useful information about 

deterioration process, their accumulation rates are close to zero. Then, iron is selected as the 

informative one, and used in the further analysis. This idea is commonly used in literature, for 

instance at Bonjevic et al. (2006), measurements for iron, aluminum and magnesium are taken 

but iron is used for analysis since it is the most informative and significant one. If the given 

control parameter accumulates beyond a specified value, then the oil will be useless. Two 

different threshold levels are defined. The first one is the ‘alarm threshold’ which represents that 

the condition of the equipment is not good enough to work and a replacement has to be 
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scheduled, this situation can be seen as a ‘soft failure’ which is not a real failure but it is 

indicates that the equipment is not at a good condition anymore. The second threshold level is 

the ‘failure threshold’ which represents that it is not possible to use the equipment anymore; it 

can be seen as a ‘hard failure’. For the NedTrain’s case, the ‘equipment’ that is going to be 

monitored is the ‘oil in the gearboxes’. It is not possible to talk about a ‘hard failure’ for oil, 

hereby the hard failure concept will have a different meaning; if the oil is contaminated too 

much, it will start to damage the gearboxes, so this situation will be considered as ‘hard failure’. 

The idea about ‘soft failure’ is applicable for NedTrain’s case, if the contamination level is above 

the alarm threshold, then this will means that oil is not good enough to be used anymore, and an 

oil replacement has to be scheduled. It is obvious that the failure events are not self-announcing 

since even if the oil is contaminated too much it is not possible to know that without an 

inspection.  

It is assumed that inspections do not affect the physical process of deterioration and failure can 

only captured by inspection. For NedTrain’s case, oil sampling times are the inspection times 

and inspections are nondestructive since taking oil samples will affect neither the gearbox nor the 

existing oil in it. If the i
th

 inspection performed at instant    reveals that oil is not in a good 

condition and a replacement is necessary, a preventive replacement is scheduled at time     . 

The time interval H depends on the logistic and any previously scheduled inspections within this 

period H are cancelled. NedTrain waits for next visit of the train to the maintenance depots, 

which is usually 3 months later, hence the parameter H in the model can be considered to be 3 

months. 

To represent the physical behavior of the system, two probability density functions Φ(.) and f(.) 

are considered.  (.) is associated with a random variable   which corresponds to the time at 

which the alarm threshold is exceeded, whereas f(.) is associated with the random variable t 

which represented the failure time. Their corresponding cumulative distribution functions are 

Φ(.) and F(.) which are independent. In the given business case, the condition monitoring 

operation related to the oil in all gearboxes for a given type of train is considered. Then, in this 

case, the physical behavior that is going to be considered should represent the whole population. 

The system can be represented as in Figure 12 below; each line is showing the evolution of 

control parameter with time for a specific gearbox.  
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time

Measured value of the 

control parameter

Alarm threshold level

Failure threshold level

X(1) X(2) X(i-1) X(i) X(i+1)

 

Figure 12: Control parameter evolution with time for population 

Then, in order to determine the two probability density functions defined above, maintenance 

policy defined as follows; 

The time when 50% of the population exceeds the alarm threshold will be recorded as the ‘soft 

failure’ time of the population. Similarly, the time when 50% of the population exceeds the 

failure threshold will be recorded as the ‘hard failure’ time of the population.  For instance, if the 

population is formed from 100 parts, and if control parameter of 50 parts is above the alarm 

threshold, then it can be concluded that the population has experienced a ‘soft failure’ and the 

time recorded as soft failure time. The idea is the same for ‘hard failure’.  Then, two probability 

density functions, Φ(.) and f(.), which are explained before, will represent the whole population.  

Then, since the failure is not self-announcing, the ideas and definitions given in Chapter 3 as 

Case 1 are valid for the business cans and the optimum inspection sequence can be calculated by 

using Eqs. (3.1-3.14). 
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5.2 Results for Business Case 

5.2.1 Inspection Times 

The results are given for train type ICM 1-2. For other train types the results are tabulated in 

Appendix E. 

As a starting point, the rate of metal accumulation for oil in each gearbox is found. As it is 

mentioned in Chapter 4, linear relation is the best one to represent the amount of metal in the oil 

which increases with time. Hence, for each gearbox the situation can be represented as follows; 

                                                                                                                                                                 

where y is the amount of metal in oil, x is the time passed until the last oil change and a is the 

slope/metal accumulation rate. The intercept set to zero since at time zero (after the oil change) 

the oil is clean and there is not any metal particles in it. Thus, as a starting point, the a’s are 

found for each gearbox.  

For the given train type, there are 64 data points from different gearboxes, and accumulation 

rates for those 64 gearboxes are found. Then, in order to use in the further analysis, a probability 

distribution is fit to those rates which is           where                     .   

Then, in order to estimate failure times, 100 random numbers are generated using the distribution 

                   which are assumed to be the slopes of Eq.(5.1) for different gearboxes. 

The threshold values have to be assumed in order to estimate the ‘soft’ and ‘hard’ failure times. 

These threshold values are assumed as 500ppm and 800ppm respectively, for iron accumulation. 

When the historical data is analyzed, it is seen that the oil is usually rejected around the given 

values, so they are assumed to be the threshold values. Then, since the contamination occurs in a 

linear manner, the slopes are found and thresholds are set to specific value, failure times can be 

estimated. For each gearbox, if y is set to be the ‘soft failure’ threshold, which is 500ppm, and a 

is the slope represented by random number, then x will be the ‘soft failure’ time, and similarly if 

y is set to be the ‘hard failure’ threshold, which is 800ppm, x will be the ‘hard failure’ time. This 

is repeated for every gearbox, and then soft and hard failure times for 100 gearboxes will be 

estimated. Since the soft and hard failure times of the population are defined as “time when the 

control parameter of 50% of the population exceeds the alarm threshold, and time when the 
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control parameter of 50% of the population exceeds the failure threshold”, then the time when 

the 50 gearboxes exceed the alarm threshold and failure threshold can be found, and these times 

will be the ‘soft failure’ and ‘hard failure’ times of the given population.  

The procedure given above is repeated 30 times and 30 different soft failure and hard failure 

times for given population are found. Then, probability distributions are fit to these failure times 

to represent the probability of soft failure and hard failure with respect to time, and these 

distributions are used in the Eqs.(3.1-3.14). 

Soft failure                   

Hard failure                    

The Weibull distribution usually provides the best fit of life data. This is due in part to the broad 

range of distribution shapes that are included in the Weibull family (Abernethy (2006)).   

After estimating the failure time distributions, Eq.(3.14) can be used to find inspection times. 

                                                            

 
       

 
                                                             

with             and         ;    being the conditional probability that alarm 

threshold is exceeded before the first inspection. For a given    value, the inspection times,   ’s, 

can be found using Eq.(3.13), and then the corresponding average cost can be calculated. By 

changing    value, different inpection sequences can be found by using Eq.(3.14) and average 

costs related to these sequences can be calculated by using Eqs.(3.1-3.10).  

In this business case    is changed from 0.01 to 0.99, and 99 different inspection sequences are 

found. Then, for each sequence the expected number of inspections in one cycle is calculated by 

using Eqs.(3.3,3.4). The probabilities that the cycle ends with a failure replacement and 

preventive replacement are found by using Eq.(3.6) and Eq.(3.7) respectively. Now, the expected 

total cost can be calculated by Eq.(3.2), but the cost of inspection, failure replacement and 

preventive replacement have to be determined. They are assumed to be as follows, respectively; 
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Then, the expected total cost calculated by using Eq.(3.2); 

                                                                                                                                    

Finally, the cycle duration has to be found, which has two components. The first one is 

calculated by using Eq.(3.8) and the second one is calculated by using Eq.(3.9). Then, the 

average cycle duration is given by Eq.(3.10); 

                                 

  

    

                              

  

    

 

 

   

               

Hence, the average total cost per unit time can be estimated by Eq.(3.1) for each inspection 

sequence; 

                                                         
   

         

 
       

    

    
                                       

Then, the one which gives the smallest average total cost will be the optimum inspection 

sequence. The results are found by coding in MATLAB, and the optimum inspections times 

(which are in days) for the given situation above are; 

Inspection Times 

1 2 3 4 5 6 7 8 

760 805 834 855 871 885 896 906 

5.2.2 Sample Size 

As it is mentioned before, monitoring every part will provide the perfect information about the 

population, but it will increase the monitoring cost. On the other hand, observing a sample may 

decrease the monitoring cost but it will cause some uncertainty related to condition of 

population. Hence, a trade-off between sampling cost and uncertainty related to the population 

condition has to be done. For the given business case, the condition of oil in the gearboxes for 
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train type ICM1-2 is monitored. Thus, a sample size for these monitoring operations has to be 

determined. In Chapter 3, it is stated that for finding the optimum sample size a trade-off can be 

done between the length of the confidence interval of mean and the monitoring cost. The interval 

length, inspection cost and total monitoring cost are given as Eq.(3.30), Eq.(3.31) and Eq.(3.32) 

respectively.  

The inspection sequence is determined in the previous section. Then, the sample size for each 

inspection can be estimated by using Eqs.(3.30-3.32). First, the metal amount in the oil is 

estimated for different numbers of samples and the interval length is calculated by Eq.(3.30). 

Then, the inspection cost per one item is assumed to be 200 and uncertainty cost is assumed to be 

1000. Hence, the required sample is found to be 118, which means for the given cost parameters 

taking oil samples from 118 gearbox will represent the population.  

5.3 Sensitivity Analysis 

5.3.1 Effects of Different Cost Parameters to Inspection Sequence 

As it is stated before, the inspection sequence which gives the minimum average cost is the 

optimal inspection times. The average total cost per unit time can be estimated by Eq.(3.1) for 

each inspection sequence; 

                                                         
   

         

 
       

    

    
                                       

where 

                                         

                             

The expected cost has three components; inspection cost, failure replacement cost and preventive 

replacement cost. It is representes as; 

                                                                                                                                        

Then, E(T) is given by; 
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For a given    value, the inspection times,   ’s, can be found using Eq.(3.14), and then the 

corresponding average cost can be calculated. For a given inspection sequence, E(T) will be 

same, on the other hand, changing the cost parameters in Eq.(3.2) can change E(C). Hence, if 

different inspection cost, failure replacement cost and preventive replacement cost are used, 

different optimum inspection times can be obtained.  

There is a trade-off between these cost components. If the failure replacement cost too high, then 

in order to decrease the probability of having a failure, the inspection sequence will start at an 

earlier time and more inspections are executed. On the other hand, if the failure replacement cost 

is not high compared to others, then the inspection operations will be delayed and sequence will 

start at a later time.  

In order to observe this behavior, three different levels are assigned for each cost parameter; low, 

medium and high. Then, the program is run for 27 cases and results are presented and compared 

below. The cost parameters are as follows;  

                                          

                                              

                                           

For the first three cases    and    are set to their low values and    is changed; 

Case 1: (low, low, low) 

Case 2: (low, medium, low) 

Case 3: (low, high, low) 

The optimum inspections are given in Table 8 below; 
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Table 8: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 1 760 805 834 855 871 885 

Case 2 543 639 689 723 748 768 

Case 3 543 639 689 723 748 768 

As it can be seen from the examples above, if the failure replacement cost is high, then 

inspections are done at earlier times, which is something expected. 

For the next three cases    is fixed at its lowest level,    is at medium level and    is changed; 

Case 4: (low, low, medium) 

Case 5: (low, medium, medium) 

Case 6: (low, high, medium) 

The optimum inspections are given in Table 9 below; 

Table 9: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 4 817 859 885 904 919 932 

Case 5 543 639 689 723 748 768 

Case 6 543 639 689 723 748 768 

Similar to previous cases, as the failure replacement cost increases, inspections are performed at 

earlier times in order to prevent a possible failure. Additionally, if one compares Case 1 and Case 

4, then inspections can be performed at later times because at that times failure replacement 

probability is higher than preventive replacement probability and since preventive replacement 

cost is higher than failure replacement cost this is situation is preferable.   

For the next three cases    is fixed at its lowest level,    is at its high level and    is changed; 

Case 7: (low, low, high) 
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Case 8: (low medium, high) 

Case 9: (low, high, high) 

The optimum inspections are given in Table 10 below; 

Table 10: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 7 817 859 885 904 919 932 

Case 8 797 840 867 887 902 915 

Case 9 543 639 689 723 748 768 

Similarly, when the failure replacement cost is high, inspections are performed at earlier times in 

order to prevent a possible failure. Moreover, since the preventive replacement cost is higher 

than the previous cases, inspections are performed at later times since as time passes failure 

replacement probability increases and preventive replacement probability decreases.   

For the next three cases    is fixed at its medium level,    is at low level and    is changed; 

Case 10: (medium, low, low) 

Case 11: (medium, medium, low) 

Case 12: (medium, high, low) 

The optimum inspections are given in Table 11 below; 

Table 11: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 10 751 797 826 847 864 878 

Case 11 747 794 823 844 861 875 

Case 12 743 790 819 841 858 872 
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Similarly, as the failure replacement cost increases, inspections are performed at earlier times. 

Additionally, inspections are performed some days later compared to Case 1 and Case 2 when 

the inspection cost is higher.  

For the next three cases    is fixed at its high level,    is at low level and    is changed; 

Case 13: (high, low, low) 

Case 14: (high, medium, low) 

Case 15: (high, high, low) 

The optimum inspections are given in Table 12 below; 

Table 12: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 13 751 797 826 847 864 878 

Case 14 749 796 825 846 863 877 

Case 15 747 794 823 844 861 875 

When the failure replacement cost increases, inspections are performed at earlier times. 

Additionally, inspections are performed some days later compared to Case 1, Case 2, Case 11 

and Case 12 when the inspection cost is higher. 

For the next three cases    and    are set to their medium levels and    is changed; 

Case 16: (medium, low, medium) 

Case 17: (medium, medium, medium) 

Case 18: (medium, high, medium) 

The optimum inspections are given in Table 13 below; 
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Table 13: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 16 817 859 885 904 919 932 

Case 17 768 813 841 861 877 890 

Case 18 760 805 834 855 871 885 

Inspections are performed at earlier times when the failure replacement cost is high. Moreover, if 

the inspection cost and preventive replacement cost are higher, then inspections are performed at 

some days later compared to Case 1, Case 2 and Case3. 

For the next three cases    is set to its medium level and    is set to its high levels and    is 

changed; 

Case 19: (medium, low, high) 

Case 20: (medium, medium, high) 

Case 21: (medium, high, high) 

The optimum inspections are given in Table 14 below; 

Table 14: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 19 817 859 885 904 919 932 

Case 20 808 851 877 896 911 924 

Case 21 802 845 872 891 906 919 

When the failure replacement cost is high, inspections are performed at earlier times. Moreover, 

when the preventive replacement cost is higher compared to previous cases, then inspections are 

performed at later time because as time passes preventive replacement probability decreases.  

For the next three cases    is set to its high level and    is set to its medium levels and    is 

changed; 

Case 22: (medium, low, high) 
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Case 23: (medium, medium, high) 

Case 24: (medium, high, high) 

The optimum inspections are given in Table 15 below; 

Table 15: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 22 817 859 885 904 919 932 

Case 23 760 805 834 855 871 885 

Case 24 755 801 830 851 868 882 

As expected when the failure replacement cost is high, inspections are performed at earlier times. 

Additionally, increase in preventive replacement cost delays the inspection operations.  

For the next three cases    is set to its high level and    is set to its high levels and    is changed; 

Case 25: (medium, low, high) 

Case 26: (medium, medium, high) 

Case 27: (medium, high, high) 

The optimum inspections are given in Table 16 below; 

Table 16: Inspection times for different cost parameters 

Inspections 

  1 2 3 4 5 6 

Case 25 817 859 885 904 919 932 

Case 26 787 831 858 878 894 907 

Case 27 772 816 844 864 880 893 

Inspections are performed at earlier times if failure replacement cost is high. Moreover, when the 

preventive replacement cost is higher compared to previous cases, then inspections are 

performed at later times. 
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5.3.2 Inspection Sequence for Single Item 

Another issue that affects the inspection times is the soft failure and hard failure probability 

functions. In the business case given above, the inspection times that are considered are for the 

population. The soft failure and hard failure for the population are defined as; if 50% of the 

population is above the alarm threshold, then the soft failure will occur for the population, and 

similarly if 50% of the population is above the failure threshold, then the hard failure will occur 

for the population. Then, while finding the soft failure and hard failure probability functions with 

respect to time, these definitions are considered, and since these population failures usually 

happen at similar times, the variances of these functions are very low. As a result, the inspection 

times are grouped around the expected life time. However, if the ‘equipment’ that is going to be 

considered is a single part not a group of identical parts, then the variability for the failure times 

will be higher and inspections will be done at earlier times. 

In order to test this idea, the failure time distributions are estimated for a single item. First, with 

the help of historical data, the soft failure and hard failure distributions of oil from 63 gearboxes 

are estimated. Then, soft failure and hard failure distributions are fit to these data; 

Soft failure                       

Hard failure                        

The trade-off between the cost components is also applicable for this case. If the failure 

replacement cost too high, then in order to decrease the probability of having a failure, the 

inspection sequence will start at an earlier time and more inspections are executed. On the other 

hand, if the failure replacement cost is not high compared to others, then the inspection 

operations will be delayed and sequence will start at a later time.  

If the cost of inspection, failure replacement and preventive replacement are assumed to be as 

follows;       ,         ,         

The optimum inspections are found by using Eqs.(3.1-3.14) and given below; 

Inspections 

  1 2 3 4 5 6 

Case 1 386 617 876 1178 1534 1955 
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5.3.3 Effects of Different Cost Parameters to Sample Size 

The other point related to the sensitivity analysis is about sample size. It is mentioned before that 

the sample is found by making a trade of between the interval length of mean estimation and 

monitoring cost. So, if these cost factors change, the optimum sample size will also change. For 

instance, if the interval length is wanted to be shorter, then a higher cost for that can be assigned 

and then the optimum sample size will be bigger since if the more samples are observed, the 

more confident about the condition of the population and the shorter the confidence interval.  

In order to observe this idea, the cost related to the interval length is assumed to be at higher 

levels and the inspection cost per unit item is assumed to be 200. For each inspection different 

interval costs are used since for the first inspections it may be tolerable to have a wide interval 

and a smaller interval cost can be used, but when time passes and later inspections are done it 

may be desired to have narrow interval and a higher interval cost can be used. In Table 17, the 

sample size which minimizes the monitoring cost given in Eq.(3.32) for each inspection is given. 

Table 17: Sample size corresponding to inspections 

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 118 135 230 276 298 332 352 384 

Uncertainty Cost 1000 1500 2000 2500 3000 3500 4000 4500 

5.3.4 Effect of Maintenance Policy 

In order to represent the population behavior, a maintenance policy is defined in previous 

section, which is; “the time when 50% of the population exceeds the alarm threshold will be 

recorded as the ‘soft failure’ time of the population. Similarly, the time when 50% of the 

population exceeds the failure threshold will be recorded as the ‘hard failure’ time of the 

population”. Then, soft failure and hard failure probability functions are found using those 

failure times. The percentage used in calculations is a decision parameter, and using different 

percentages will result in different inspection sequences. For instance, if a lower percentage is 

used, then ‘failures’ will occur at earlier times and as a result inspections will be executed at 

earlier time points. In order to test this idea, failure of 10% percent of the parts is used as a 
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failure event of the population. Then, probability distributions are fit to these failure times to 

represent the probability of soft failure and hard failure with respect to time, and these 

distributions are used in the Eqs.(3.1-3.14). 

Soft failure                   

Hard failure                   

The cost of inspection, failure replacement and preventive replacement are assumed to be as 

follows, respectively;         ,         ,          and the optimum inspections times 

for the given situation are; 

Inspection Times 

1 2 3 4 5 6 7 8 

397 423 440 452 462 470 477 483 

5.3.5 Validation of Results 

According to Irobi et al.(2004) face validity is one of the most commonly used validation 

technique which is used to know if the logic used in the conceptual model is correct and if the 

input-output relationship is reasonable. This has to do with asking knowledgeable people if the 

system model behavior is reasonable. In this case Bob Huisman, manager maintenance 

development by NedTrain, is asked about it. The procedure that is suggested in this research is 

confirmed by him and said to be useful for the company and will be implemented in the future.  
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6. Conclusion and Recommendations 

In this chapter an overview of the conclusion and recommendations that can be made based on 

the research presented in the previous chapters is given. In the first section the conclusion of the 

research is presented. Then, in the second section some future research options are explained.  

6.1 Conclusion 

This project is held in cooperation with NedTrain Maintenance Development Department and 

aimed at understanding the oil contamination process in gearboxes and determining optimum 

inspection times for oil sampling and required sample size for each inspection. Then, the 

research question is stated as follows; 

How does the contamination process behave? 

What are the optimal inspection times and sample size that gives the minimum maintenance cost 

for condition monitoring process? 

Maintenance cost includes inspection cost, preventive replacement cost and failure replacement 

cost. 

In order to answer the first research question, data analysis is conducted. The historical data 

which belong to six different types of trains are analyzed. In order to monitor the condition of the 

oil, samples are taken from each gearbox and analyzed for the existence and amount of eight 

different materials (i.e. iron, copper, lead, tin, chrome, nickel, aluminum and silicon) in the oil. 

At the end of the analysis, it is found the linear relation is the best fit for the accumulation of 

each material with respect to time in the oil for all train types. The other result of this analysis is 

that, besides iron, all other materials accumulate in a very slow rate, and iron is the informative 

one for further analysis.  

In order to answer the second research question, firstly the existing literature is searched for 

inspection planning models. The model suggested by Chelbi et al.(1999) is found to be suitable 

since a numerical algorithm is used to generate the optimal inspection sequence and it is 

applicable for a practical case. This model is explained in detail in Chapter 3. The optimum 
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inspection sequence is defined as the one which gives the minimum expected total cost. Then, 

using the model presented in Chapter 3, optimum inspection sequence is determined. For the 

other part of the second research question, a model is thought to find the optimum sample size 

for each inspection operation. This model which minimizes total monitoring cost is explained in 

detail in Chapter 3, and by assigning relevant cost parameters, the optimum sample size is 

determined. Thus, the research questions are answered.   

After determining the inspection sequence and sample size for each inspection, a sensitivity 

analysis is conducted. As it is mention before, the optimum inspection sequence is found by 

minimizing the expected total cost, and the cost is composed of inspection cost, preventive 

replacement cost and failure replacement cost. As a result of sensitivity analysis, it is seen that if 

the failure replacement cost is higher compared to other costs, then inspections are executed at 

earlier times. Hence, if failure of the equipment results in a serious problems and failure 

replacement cost is high, then in order to estimate failure before it happens, inspections should 

be done at earlier times. A similar analysis is conducted for sample size determination. If one is 

more sensitive about the precision of the data collected to represent the population, then they 

have to analyze more parts, which means a bigger sample size.  

6.2 Implementation 

In order to answer the research questions given in Chapter 1, a literature survey is conducted and 

the idea proposed by Chelbi et al. (1999) is used in the further analysis. The optimal inspection 

sequence is defined as the one which minimizes the expected total cost and a mathematical 

model and a numerical algorithm to generate this sequence is proposed which is applicable for a 

practical case.  

In addition to the optimum inspection sequence, sample size for each inspection operation is 

determined. NedTrain has six different train types, and oil samples are taken from every gear for 

each train types. With the assumption of identical gearbox for each train type, sample sizes are 

determined to represent the population. Hence, taking oil samples from a part of the population 

will be enough to gain information about the whole group.  
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In order to apply the ideas given in this report at NedTrain, an initialization processes is needed. 

In the current case, the operations are done in the gearbox bases; oil samples are taken from each 

gearbox for condition monitoring operations and the age of the oil is different for every gearbox. 

In order to apply the population idea, first the oil in the all gearboxes has to be changed. Then, 

the condition will be same for each gearbox and the population idea can be used.  

The results are obtained with the help of MATLAB. The formulas and parameters given in 

Chapter 3 are coded and entered to MATLAB and calculations are done for different cases and 

the optimum result is obtained. Moreover, by using GUI option of MATLAB, a user interface is 

designed. It is a decision support tool, and depending on the choice of the train type made by the 

user, it automatically calculates the inspection sequence and sample size. An image of this user 

interface can be seen in Appendix F. In order use this interface, MATLAB software has to be 

installed.   

Finally, the parameters (e.g. failure replacement cost, inspection cost, preventive replacement 

cost, alarm threshold etc.) are fixed values in the program. If a change is needed, this has to done 

in the main code. 

6.3 Recommendations 

In this section some discussions about the research is given and some recommendations for 

future work are presented. 

To begin with, in data analysis part of the project, there is some limitations about the existence of 

data, for instance for MDDM type of train, only sixteen data points are used. The analysis can be 

improved if it is done by using more data. Moreover, as it is mentioned in Chapter 4, when 

multiple regression analysis is conducted, it is seen that the model which represents the metal 

accumulation in oil is improved if additional information about the age of gearbox is added to it. 

Hence, the age of each gearbox can be recorded and used in the analysis to improve the 

understanding related to the contamination process of oil. Moreover, during the data analysis, it 

is observed that even if three months passed from the previous inspection, the parts in oil can 

decrease, which is something not logical. Then, the reason for this is investigated, and expert 

opinion is taken, the reason for this decreases caused by letting the train wait in the maintenance 
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depot too long, so the contaminating parts in oil sink and when the oil samples are taken they 

will contain less parts. Hence, the samples should be taken as soon as possible when the train 

comes to maintenance depot.  

The oil analyses are conducted by DeltaRail. The samples are taken at NedTrain’s maintenance 

depot and sent to DeltaRail. After the analyses are done, DeltaRail informs Nedtrain about the 

conclusion, whether the oil is in a good condition or not. However, in order to apply condit ion 

based maintenance policy efficiently, NedTrain has to have more information about the 

condition of the oil. Knowing whether the condition is good or bad is not enough to do prediction 

for future.  

Condition based maintenance is the new trend in maintenance, and then it should be considered 

to be applied for other parts. First of all, the degradation process of the related equipment has to 

be understood clearly; for instance if the failure rate decreases with time, then CBM may not be 

the proper strategy. The control parameters have to be decided very carefully, it should represent 

the condition of equipment. Then, the monitoring strategy has to be determined; the condition of 

the equipment can be monitored continuously or with discrete time inspections, this depends on 

the importance of the equipment, the cost of monitoring operation and characteristics of the 

equipment. The indicator of the failure has to be identified; there should be some values for each 

control parameters that if they are above these values, it will be a sign for bad condition of the 

equipment. If discrete time condition monitoring is used, then the correct times for monitoring 

operations have to be determined. These monitoring times can either be periodic or not, for 

instance if it is periodic then inspections are done in equidistant times, if it is aperiodic then 

inspections are done at the previously determined times which can be less frequent at the 

beginning of the lifetime of equipment and more frequent towards the expected lifetime. Finally, 

a strategy has to be identified for maintenance actions if a problem is observed related to the 

equipment.  

After the data analysis, amount if iron parts in oil is chosen to be the informative one out of eight 

control parameter to represent the contamination of oil. This way is followed in the research 

because it is a frequently used in literature (Bonjevic et al. (2006)), and the available literature is 

dominated by one parameter models. Thus, for the future work, adding other control parameters 
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to the model can provide a better representation of system and for academics the gap in the 

literature can be closed.  

In order to answer the research questions, literature survey is conducted and the model suggested 

by Chelbi et al. (1999), which is explained in Chapter 3, is used. They developed their model to 

determine the optimum inspection sequence of a single part. However, the research question is 

finding optimum inspection sequence for a group of identical parts. Hence, some changes are 

made to existing model with the extension about optimum sample size for each inspection. Thus, 

this is a contribution to literature. 

While answering the second research question, which is ‘what is the optimal inspection times 

and sample size that gives the minimum maintenance cost for condition monitoring process?’, it 

is divided into two parts. Firstly, the inspection sequence is determined, and then for each 

inspection the number of sample that is going to be inspected is decided. The optimum 

inspection sequence is determined by minimizing the expected total cost. This cost has three 

components and one of these components is the inspection cost. This inspection cost basically 

has two components; set up cost of the inspection process (which is a fixed cost) and total 

inspection cost of each item (which is a variable cost and increases in proportion with sample 

size). In this research, an average cost value is assigned as ‘inspection cost’ in the model without 

considering the effect of sample size and optimum inspection sequence is determined. Then, 

after finding the inspection sequence, the sample size is calculated. As a further research area, 

this two optimization problem can be combined.  An algorithm can be generated as follows; 

Step 1: Assume an average value for inspection cost and determining inspection sequence 

Step 2: Determine the sample size for the inspection sequence found in Step 1 

Step 3: Assign a new value for inspection cost which depends on the sample size found in Step 2 

and solve the model again using this cost parameter and determine the new inspection sequence  

Step 4: Repeat this until it converges to same number 

In this research, the set up cost is ignored in calculations since the inspection times are 

determined before, and the main goal is finding the sample size for that inspection not deciding 

on whether to do inspection or not. However, if the two optimization problem is going to be 
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combined, then the set up cost may be relevant and should not be ignored because at that time 

the decision will be about doing inspection or not at any day.  

For the last part of the research question, which is determining the sample size for each 

inspection, a model is presented in Chapter 3. This model is based on the idea that, if the total 

monitoring cost is minimized, then optimum sample size can be found. While writing the total 

monitoring cost, a cost parameter, a, is defined as the cost related to the interval length of the 

estimated mean of iron accumulation. This represents the wish that one has to have a wide or 

narrow interval for the estimation, which is directly related to how certain one wants to be about 

the population. Hence, it is a very tentative cost. In the further research, a detailed analysis for 

this cost parameter can be conducted.  
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APPENDICES 

Appendix A: Data points computed for ICM 1-2 from main data set 

Table A.1: Time (days) passed and corresponding metal accumulation (ppm) for ICM 1-2 

time(days) FeSNEL XCu XPb XSn XCr XNi XAl XSi 

80 110 25 2 0 1 0 3 10 

83 80 10 5 3 1 0 5 10 

83 60 10 4 2 0 0 0 0 

83 95 10 1 0 0 0 2 35 

83 40 5 1 0 1 0 0 35 

84 85 10 0 0 0 0 0 60 

85 65 15 0 0 1 0 0 5 

85 40 10 0 0 1 0 0 10 

86 65 20 0 0 1 0 0 15 

87 65 20 0 0 1 0 5 2 

87 105 30 3 0 1 0 0 10 

88 90 15 5 1 0 0 1 0 

89 95 15 2 0 1 0 0 30 

90 160 10 3 0 1 0 10 65 

90 105 15 5 0 1 0 10 35 

90 160 15 0 1 1 0 4 45 

90 70 4 1 1 0 0 3 10 

90 265 5 2 0 1 0 2 210 

90 165 5 2 0 1 0 3 20 

91 85 15 3 2 0 0 0 5 

91 105 25 3 1 1 0 1 10 

91 125 35 5 0 1 0 1 20 

91 85 15 3 0 1 0 5 15 

91 215 30 1 0 1 0 0 15 

91 90 15 3 0 0 0 0 10 

91 70 10 2 2 1 0 3 0 

91 115 5 2 4 1 0 10 15 

91 25 5 3 1 0 0 5 5 

91 65 5 0 0 0 0 0 5 

92 85 20 0 2 1 0 0 195 

92 115 15 3 0 1 0 0 20 

92 140 4 0 0 1 0 1 45 
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92 60 4 1 0 1 0 0 20 

93 185 15 2 0 2 0 5 10 

93 195 20 0 1 2 0 4 25 

93 85 10 2 0 1 0 15 30 

93 195 30 1 2 3 0 3 15 

93 50 3 3 0 1 0 0 2 

93 215 4 3 0 1 0 10 20 

93 120 20 3 4 1 0 0 15 

94 20 10 1 0 0 0 3 4 

94 70 10 5 0 1 0 0 50 

95 45 10 1 4 0 0 0 0 

95 95 35 0 0 1 0 0 10 

95 65 5 4 1 0 0 0 20 

96 85 15 5 1 1 0 5 20 

97 110 15 1 0 1 0 3 10 

97 80 35 1 0 1 0 5 3 

98 60 20 1 0 0 0 1 40 

100 25 15 3 0 1 0 0 0 

101 75 15 4 0 0 0 0 15 

103 90 15 5 1 1 0 10 50 

103 90 5 3 2 1 0 3 30 

108 105 20 1 1 1 0 4 20 

123 100 20 0 0 1 0 0 35 

130 55 25 0 0 0 0 5 10 

138 125 35 1 0 1 0 0 65 

139 135 40 0 0 2 0 0 20 

143 100 20 0 0 0 0 10 15 

162 45 10 0 0 0 0 0 5 

164 115 20 0 0 1 0 0 20 

165 100 5 0 0 0 0 0 260 

169 75 10 0 0 1 0 0 10 

169 110 5 0 0 1 0 1 75 

172 80 20 1 0 1 0 0 15 

175 105 15 0 0 1 0 4 30 

176 230 20 0 0 1 0 4 55 

176 75 15 0 0 1 0 1 5 

176 255 20 0 0 1 0 10 20 

178 190 25 0 0 1 0 15 30 

178 130 5 0 4 1 0 0 40 

178 40 5 0 0 0 0 0 3 

179 200 20 0 0 2 0 0 25 
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179 120 15 5 0 1 0 0 3 

180 150 15 1 0 1 0 10 35 

180 105 40 1 0 1 0 10 35 

181 60 20 1 0 1 0 4 30 

181 365 5 5 2 1 0 0 165 

181 55 5 0 0 1 0 0 10 

183 50 10 3 3 0 0 0 4 

183 165 30 2 0 0 0 3 15 

183 245 4 4 0 1 0 0 35 

183 270 20 4 3 1 0 5 50 

184 100 25 0 0 0 0 0 20 

184 125 15 1 1 1 0 0 25 

184 50 15 0 0 0 0 5 10 

184 50 15 4 2 1 0 1 1 

187 80 10 0 0 1 0 0 3 

188 110 20 0 0 1 0 10 30 

189 80 15 0 0 0 0 0 50 

190 130 15 3 0 0 0 0 20 

190 70 15 3 1 0 0 0 0 

190 75 15 2 1 0 0 0 0 

192 40 10 3 0 0 0 0 5 

192 50 15 2 3 0 0 0 5 

192 145 15 0 0 1 0 0 50 

192 50 5 1 2 0 0 0 0 

198 120 15 0 0 1 0 0 3 

198 135 5 0 0 1 0 0 15 

199 75 40 1 0 1 0 0 10 

202 135 10 0 2 1 0 0 35 

202 155 15 1 4 1 0 0 40 

204 235 25 1 1 1 0 3 30 

205 50 15 1 0 1 0 4 10 

211 45 5 1 0 0 0 0 10 

212 20 5 0 0 0 0 2 3 

220 85 20 0 0 1 0 5 5 

226 70 15 1 0 1 0 2 15 

248 120 25 0 0 1 0 65 50 

254 310 20 0 0 1 0 0 40 

254 75 15 0 0 0 0 0 15 

254 315 20 1 1 2 0 4 35 

255 165 20 0 0 1 0 0 20 

263 90 25 0 0 0 0 0 5 
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266 50 15 0 1 0 0 0 15 

267 50 15 4 1 1 0 4 0 

268 415 25 2 1 3 1 2 25 

270 55 10 0 0 1 0 5 4 

270 435 5 2 0 2 1 5 195 

274 545 25 2 2 2 0 3 45 

274 190 15 3 1 1 1 4 15 

275 255 25 5 1 1 0 10 90 

275 245 30 2 1 2 0 10 15 

281 360 30 3 0 2 0 5 55 

282 90 15 3 0 0 0 4 10 

282 140 5 3 3 1 1 5 15 

283 145 15 3 0 0 0 4 25 

354 115 20 1 1 0 0 0 10 

359 85 20 0 0 1 0 0 5 

381 115 4 3 1 1 0 10 10 

444 145 20 3 0 2 0 5 10 

466 80 5 1 1 1 0 1 15 

 

Appendix B: Outliers for ICM 1-2 

Table B.1: Multivariate outliers for ICM 1-2 

time(days) FeSNEL XCu XPb XSn XCr XNi XAl XSi 

92 85 20 0 2 1 0 0 195 

165 100 5 0 0 0 0 0 260 

248 120 25 0 0 1 0 65 50 

268 415 25 2 1 3 1 2 25 

270 435 5 2 0 2 1 5 195 

274 545 25 2 2 2 0 3 45 

274 190 15 3 1 1 1 4 15 

282 140 5 3 3 1 1 5 15 

 

Table B.2: Univariate outliers for ICM 1-2 

time XSn XCr Xsi 

178 4     

95 4     

202 4     
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91 4     

93 4 3   

181     165 

90     210 

Appendix C: Relations between time and metal particles 

ICM 1-2 

Iron 

 

Model Description 

Model Name MOD_1 

Dependent Variable 1 fe 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable time 

Constant Not included 

Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:fe 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .652 230.393 1 123 .000 .600   

Logarithmic .735 341.472 1 123 .000 22.814   

Inverse .562 158.093 1 123 .000 12220.773   

Quadratic .728 163.411 2 122 .000 1.081 -.002  

Cubic .733 110.890 3 121 .000 1.369 -.004 4.415E-6 

Power .980 5916.902 1 123 .000 .911   

Growth .813 536.012 1 123 .000 .023   
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Exponential .813 536.012 1 123 .000 .023   

The independent variable is time. 

 

 

Cupper 

 

Model Description 

Model Name MOD_2 

Dependent Variable 1 cu 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable timecu 

Constant Not included 

Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 
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Model Summary and Parameter Estimates 

Dependent Variable:cu 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .646 224.656 1 123 .000 .081   

Logarithmic .770 410.887 1 123 .000 3.151   

Inverse .626 205.507 1 123 .000 1739.789   

Quadratic .756 189.098 2 122 .000 .159 .000  

Cubic .769 134.033 3 121 .000 .220 -.001 9.356E-7 

Power .942 1996.229 1 123 .000 .516   

Growth .782 441.210 1 123 .000 .013   

Exponential .782 441.210 1 123 .000 .013   

The independent variable is timecu. 

 

 

 

Lead 
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Warnings 

The dependent variable (pb) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Description 

Model Name MOD_4 

Dependent Variable 1 pb 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable timepb 

Constant Not included 

Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 

 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .348 65.772 1 123 .000 .007   

Logarithmic .472 110.173 1 123 .000 .312   

Inverse .508 127.249 1 123 .000 199.723   

Quadratic .415 43.213 2 122 .000 .015 -3.183E-5  

Cubic .485 38.000 3 121 .000 .033 .000 2.787E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 
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Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .348 65.772 1 123 .000 .007   

Logarithmic .472 110.173 1 123 .000 .312   

Inverse .508 127.249 1 123 .000 199.723   

Quadratic .415 43.213 2 122 .000 .015 -3.183E-5  

Cubic .485 38.000 3 121 .000 .033 .000 2.787E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 

a. The dependent variable (pb) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

 

Tin 
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Warnings 

The dependent variable (sn) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Description 

Model Name MOD_5 

Dependent Variable 1 sn 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable timesn 

Constant Not included 

Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 

 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .204 30.197 1 118 .000 .002   

Logarithmic .241 37.434 1 118 .000 .087   

Inverse .205 30.427 1 118 .000 49.515   

Quadratic .228 17.249 2 117 .000 .004 -7.393E-6  

Cubic .240 12.215 3 116 .000 .007 -3.274E-5 4.551E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 
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Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .204 30.197 1 118 .000 .002   

Logarithmic .241 37.434 1 118 .000 .087   

Inverse .205 30.427 1 118 .000 49.515   

Quadratic .228 17.249 2 117 .000 .004 -7.393E-6  

Cubic .240 12.215 3 116 .000 .007 -3.274E-5 4.551E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 

a. The dependent variable (sn) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

 

Chrome 

 

Warnings 

The dependent variable (cr) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Description 

Model Name MOD_6 

Dependent Variable 1 cr 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable timecr 

Constant Not included 

Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 

 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:cr 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .556 153.037 1 122 .000 .004   

Logarithmic .651 227.681 1 122 .000 .153   

Inverse .552 150.604 1 122 .000 86.366   

Quadratic .609 94.259 2 121 .000 .007 -1.177E-5  

Cubic .656 76.375 3 120 .000 .013 -6.479E-5 9.539E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timecr. 

a. The dependent variable (cr) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Aluminum 

 

Warnings 

The dependent variable (al) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Description 

Model Name MOD_7 

Dependent Variable 1 al 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable timeal 

Constant Not included 
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Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 

 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:al 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .295 51.577 1 123 .000 .013   

Logarithmic .346 65.105 1 123 .000 .517   

Inverse .297 51.942 1 123 .000 293.113   

Quadratic .324 29.289 2 122 .000 .023 -4.062E-5  

Cubic .340 20.732 3 121 .000 .039 .000 2.507E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timeal. 

a. The dependent variable (al) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Silicon 

 

Warnings 

The dependent variable (si) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Description 

Model Name MOD_8 

Dependent Variable 1 si 

Equation 1 Linear 

2 Logarithmic 

3 Inverse 

4 Quadratic 

5 Cubic 

6 Power
a
 

7 Growth
a
 

8 Exponential
a
 

Independent Variable timesi 

Constant Not included 

Variable Whose Values Label Observations in Plots Unspecified 

Tolerance for Entering Terms in Equations .0001 

a. The model requires all non-missing values to be positive. 

 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:si 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .449 98.795 1 121 .000 .100   

Logarithmic .557 151.887 1 121 .000 3.987   

Inverse .467 105.991 1 121 .000 2240.644   

Quadratic .551 73.698 2 120 .000 .211 .000  

Cubic .564 51.223 3 119 .000 .301 -.001 1.374E-6 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   
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The independent variable is timesi. 

a. The dependent variable (si) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

 

ICM 3 

Iron 

 

Model Summary and Parameter Estimates 

Dependent Variable:fe 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .643 242.622 1 135 .000 .526   

Logarithmic .742 388.450 1 135 .000 18.131   

Inverse .328 66.040 1 135 .000 4736.217   

Quadratic .740 190.859 2 134 .000 1.106 -.003  

Cubic .750 133.178 3 133 .000 1.531 -.007 1.084E-5 

Power .973 4917.955 1 135 .000 .877   

Growth .833 675.297 1 135 .000 .025   

Exponential .833 675.297 1 135 .000 .025   

The independent variable is timefe. 
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Cupper 

 

Model Summary and Parameter Estimates 

Dependent Variable:cu 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .608 209.468 1 135 .000 .070   

Logarithmic .690 300.912 1 135 .000 2.416   

Inverse .291 55.326 1 135 .000 617.108   

Quadratic .688 148.068 2 134 .000 .143 .000  

Cubic .692 99.768 3 133 .000 .180 -.001 9.280E-7 

Power .908 1339.490 1 135 .000 .454   

Growth .788 500.748 1 135 .000 .013   

Exponential .788 500.748 1 135 .000 .013   

The independent variable is timecu. 
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Lead 

 

Warnings 

The dependent variable (pb) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .269 50.134 1 136 .000 .006   

Logarithmic .430 102.474 1 136 .000 .256   

Inverse .359 76.332 1 136 .000 92.213   

Quadratic .453 55.920 2 135 .000 .021 -7.446E-5  

Cubic .517 47.856 3 134 .000 .041 .000 5.079E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 
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Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .269 50.134 1 136 .000 .006   

Logarithmic .430 102.474 1 136 .000 .256   

Inverse .359 76.332 1 136 .000 92.213   

Quadratic .453 55.920 2 135 .000 .021 -7.446E-5  

Cubic .517 47.856 3 134 .000 .041 .000 5.079E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 

a. The dependent variable (pb) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Tin 

 

Warnings 

The dependent variable (sn) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .115 17.403 1 134 .000 .002   

Logarithmic .171 27.654 1 134 .000 .075   

Inverse .093 13.687 1 134 .000 21.804   

Quadratic .181 14.732 2 133 .000 .006 -2.085E-5  

Cubic .199 10.935 3 132 .000 .011 -7.316E-5 1.242E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 

a. The dependent variable (sn) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Chrome 

 

Warnings 

The dependent variable (cr) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:cr 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .551 166.771 1 136 .000 .004   

Logarithmic .603 206.535 1 136 .000 .136   

Inverse .229 40.388 1 136 .000 32.945   

Quadratic .593 98.154 2 135 .000 .007 -1.588E-5  

Cubic .605 68.464 3 134 .000 .011 -5.831E-5 1.010E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timecr. 

a. The dependent variable (cr) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Aluminum 

 

Warnings 

The dependent variable (al) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:al 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .280 52.157 1 134 .000 .012   

Logarithmic .312 60.736 1 134 .000 .410   

Inverse .127 19.426 1 134 .000 102.743   

Quadratic .291 27.318 2 133 .000 .019 -3.425E-5  

Cubic .355 24.170 3 132 .000 .056 .000 9.465E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timeal. 

a. The dependent variable (al) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Silicon 

 

Warnings 

The dependent variable (si) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:si 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .449 110.008 1 135 .000 .120   

Logarithmic .493 131.491 1 135 .000 4.069   

Inverse .185 30.699 1 135 .000 980.595   

Quadratic .498 66.536 2 134 .000 .234 -.001  

Cubic .501 44.444 3 133 .000 .290 -.001 1.441E-6 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesi. 

a. The dependent variable (si) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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MDDM 

Iron 

 

Model Summary and Parameter Estimates 

Dependent Variable:fe 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .549 26.786 1 22 .000 .218   

Logarithmic .742 63.226 1 22 .000 9.791   

Inverse .663 43.221 1 22 .000 5367.500   

Quadratic .715 26.379 2 21 .000 .606 -.002  

Cubic .766 21.818 3 20 .000 1.092 -.006 9.994E-6 

Power .968 660.728 1 22 .000 .746   

Growth .763 70.773 1 22 .000 .017   

Exponential .763 70.773 1 22 .000 .017   

The independent variable is timefe. 
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Cupper 

 

Model Summary and Parameter Estimates 

Dependent Variable:cu 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .574 30.936 1 23 .000 .190   

Logarithmic .703 54.315 1 23 .000 8.116   

Inverse .559 29.159 1 23 .000 4262.715   

Quadratic .665 21.814 2 22 .000 .435 -.001  

Cubic .703 16.578 3 21 .000 .805 -.005 7.512E-6 

Power .961 571.955 1 23 .000 .696   

Growth .778 80.452 1 23 .000 .016   

Exponential .778 80.452 1 23 .000 .016   

The independent variable is timecu. 
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Lead 

 

Warnings 

The dependent variable (pb) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .300 9.859 1 23 .005 .011   

Logarithmic .303 9.992 1 23 .004 .413   

Inverse .173 4.798 1 23 .039 183.542   

Quadratic .308 4.896 2 22 .017 .016 -2.216E-5  

Cubic .310 3.139 3 21 .047 .022 -7.793E-5 1.181E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 

a. The dependent variable (pb) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Tin 

 

Warnings 

The dependent variable (sn) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .071 1.680 1 22 .208 .001   

Logarithmic .142 3.654 1 22 .069 .041   

Inverse .146 3.755 1 22 .066 24.229   

Quadratic .213 2.845 2 21 .081 .004 -1.355E-5  

Cubic .228 1.969 3 20 .151 .007 -3.795E-5 5.187E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 

a. The dependent variable (sn) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Chrome 

 

Warnings 

The dependent variable (cr) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:cr 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .569 30.420 1 23 .000 .004   

Logarithmic .747 67.792 1 23 .000 .164   

Inverse .576 31.240 1 23 .000 84.669   

Quadratic .784 39.949 2 22 .000 .011 -2.907E-5  

Cubic .788 26.096 3 21 .000 .014 -5.257E-5 4.978E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timecr. 

a. The dependent variable (cr) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Aluminum 

 

Warnings 

The dependent variable (al) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:al 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .179 4.806 1 22 .039 .004   

Logarithmic .201 5.542 1 22 .028 .164   

Inverse .137 3.480 1 22 .076 81.226   

Quadratic .198 2.584 2 21 .099 .008 -1.636E-5  

Cubic .198 1.643 3 20 .211 .009 -2.674E-5 2.181E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timeal. 

a. The dependent variable (al) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Silicon 

 

Warnings 

The dependent variable (si) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:si 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .409 15.235 1 22 .001 .031   

Logarithmic .557 27.700 1 22 .000 1.418   

Inverse .530 24.854 1 22 .000 802.525   

Quadratic .518 11.268 2 21 .000 .084 .000  

Cubic .578 9.123 3 20 .001 .172 -.001 1.819E-6 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesi. 

a. The dependent variable (si) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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SGMM 

Iron 

 

Warnings 

The dependent variable (fe) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:fe 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .607 745.506 1 482 .000 .430   

Logarithmic .661 938.647 1 482 .000 14.555   

Inverse .419 348.152 1 482 .000 5581.213   

Quadratic .654 454.414 2 481 .000 .773 -.002  

Cubic .663 314.716 3 480 .000 1.074 -.005 7.409E-6 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timefe. 

a. The dependent variable (fe) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Cupper 

 

Model Summary and Parameter Estimates 

Dependent Variable:cu 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .765 1578.093 1 484 .000 .090   

Logarithmic .860 2977.067 1 484 .000 3.113   

Inverse .565 629.649 1 484 .000 1217.416   

Quadratic .849 1358.152 2 483 .000 .179 .000  

Cubic .860 989.134 3 482 .000 .244 -.001 1.695E-6 

Power .971 15995.661 1 484 .000 .537   

Growth .831 2378.496 1 484 .000 .015   

Exponential .831 2378.496 1 484 .000 .015   

The independent variable is timecu. 

 

Lead 

 

Warnings 

The dependent variable (pb) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .317 225.481 1 486 .000 .007   

Logarithmic .467 426.315 1 486 .000 .283   

Inverse .490 466.630 1 486 .000 139.769   

Quadratic .450 198.687 2 485 .000 .020 -6.495E-5  

Cubic .511 168.393 3 484 .000 .039 .000 4.421E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 

a. The dependent variable (pb) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Tin 

 

Warnings 

The dependent variable (sn) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .105 56.865 1 484 .000 .001   

Logarithmic .149 84.878 1 484 .000 .048   

Inverse .151 85.849 1 484 .000 23.129   

Quadratic .143 40.386 2 483 .000 .003 -1.036E-5  

Cubic .155 29.364 3 482 .000 .006 -3.479E-5 5.696E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 

a. The dependent variable (sn) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Chrome 

 

Warnings 

The dependent variable (cr) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Summary and Parameter Estimates 

Dependent Variable:cr 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .496 473.881 1 481 .000 .004   

Logarithmic .587 682.795 1 481 .000 .153   

Inverse .431 364.473 1 481 .000 63.047   

Quadratic .568 316.147 2 480 .000 .009 -2.313E-5  

Cubic .588 227.862 3 479 .000 .014 -7.495E-5 1.209E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timecr. 

a. The dependent variable (cr) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

 

Aluminum 
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Warnings 

The dependent variable (al) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:al 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .301 208.419 1 485 .000 .017   

Logarithmic .333 241.908 1 485 .000 .590   

Inverse .230 145.177 1 485 .000 236.772   

Quadratic .325 116.407 2 484 .000 .031 -6.837E-5  

Cubic .330 79.171 3 483 .000 .044 .000 3.099E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timeal. 

a. The dependent variable (al) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Silicon 

 

Warnings 

The dependent variable (si) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:si 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .433 368.913 1 483 .000 .098   

Logarithmic .430 364.878 1 483 .000 3.171   

Inverse .240 152.235 1 483 .000 1139.243   

Quadratic .446 194.290 2 482 .000 .147 .000  

Cubic .446 129.261 3 481 .000 .145 .000 -4.818E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesi. 

a. The dependent variable (si) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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VIRM 

Iron 

 

Model Summary and Parameter Estimates 

Dependent Variable:fe 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .596 144.424 1 98 .000 .253   

Logarithmic .707 236.221 1 98 .000 11.632   

Inverse .354 53.777 1 98 .000 3785.096   

Quadratic .668 97.573 2 97 .000 .504 -.001  

Cubic .696 73.104 3 96 .000 .833 -.004 4.649E-6 

Power .961 2417.487 1 98 .000 .758   

Growth .745 286.487 1 98 .000 .016   

Exponential .745 286.487 1 98 .000 .016   

The independent variable is timefe. 

 

Cupper 

 

Model Summary and Parameter Estimates 

Dependent Variable:cu 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 
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Linear .674 202.222 1 98 .000 .042   

Logarithmic .831 482.658 1 98 .000 1.957   

Inverse .391 62.905 1 98 .000 616.941   

Quadratic .791 183.519 2 97 .000 .091 .000  

Cubic .819 144.808 3 96 .000 .143 -.001 7.277E-7 

Power .950 1871.928 1 98 .000 .430   

Growth .755 301.684 1 98 .000 .009   

Exponential .755 301.684 1 98 .000 .009   

The independent variable is timecu. 

 

Lead 

 

Warnings 

The dependent variable (pb) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .211 25.907 1 97 .000 .003   
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Logarithmic .291 39.885 1 97 .000 .134   

Inverse .160 18.411 1 97 .000 45.496   

Quadratic .298 20.386 2 96 .000 .008 -1.676E-5  

Cubic .304 13.853 3 95 .000 .010 -3.935E-5 3.954E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 

a. The dependent variable (pb) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Tin 

 

Warnings 

The dependent variable (sn) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation Model Summary Parameter Estimates 
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R Square F df1 df2 Sig. b1 b2 b3 

Linear .087 9.238 1 97 .003 .000   

Logarithmic .115 12.625 1 97 .001 .022   

Inverse .035 3.517 1 97 .064 5.618   

Quadratic .141 7.883 2 96 .001 .001 -3.470E-6  

Cubic .143 5.302 3 95 .002 .001 2.185E-7 -6.460E-9 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 

a. The dependent variable (sn) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Chrome 

 

Warnings 

The dependent variable (cr) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 
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Dependent Variable:cr 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .432 73.703 1 97 .000 .002   

Logarithmic .582 134.999 1 97 .000 .119   

Inverse .506 99.262 1 97 .000 66.969   

Quadratic .523 52.536 2 96 .000 .006 -1.075E-5  

Cubic .591 45.806 3 95 .000 .011 -5.816E-5 8.297E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timecr. 

a. The dependent variable (cr) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Aluminum 

 

Warnings 

The dependent variable (al) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Summary and Parameter Estimates 

Dependent Variable:al 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .175 20.778 1 98 .000 .006   

Logarithmic .217 27.115 1 98 .000 .304   

Inverse .108 11.907 1 98 .001 98.628   

Quadratic .199 12.080 2 97 .000 .013 -2.327E-5  

Cubic .223 9.170 3 96 .000 .028 .000 2.016E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timeal. 

a. The dependent variable (al) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Silicon 

 

Warnings 

The dependent variable (si) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 
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Model Summary and Parameter Estimates 

Dependent Variable:si 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .277 37.455 1 98 .000 .067   

Logarithmic .353 53.433 1 98 .000 3.188   

Inverse .186 22.372 1 98 .000 1063.483   

Quadratic .319 22.723 2 97 .000 .142 .000  

Cubic .365 18.370 3 96 .000 .306 -.002 2.321E-6 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesi. 

a. The dependent variable (si) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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VIRM-4 

Iron 

 

Model Summary and Parameter Estimates 

Dependent Variable:fe 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .422 17.523 1 24 .000 .123   

Logarithmic .619 38.943 1 24 .000 7.188   

Inverse .655 45.513 1 24 .000 5626.534   

Quadratic .568 15.099 2 23 .000 .370 -.001  

Cubic .635 12.768 3 22 .000 .748 -.004 4.800E-6 

Power .929 312.336 1 24 .000 .635   

Growth .715 60.284 1 24 .000 .012   

Exponential .715 60.284 1 24 .000 .012   

The independent variable is timefe. 

 

Cupper 

 

Model Summary and Parameter Estimates 

Dependent Variable:cu 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .605 38.265 1 25 .000 .035   
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Logarithmic .788 92.922 1 25 .000 1.921   

Inverse .640 44.510 1 25 .000 1330.038   

Quadratic .758 37.581 2 24 .000 .095 .000  

Cubic .801 30.880 3 23 .000 .167 -.001 9.262E-7 

Power .905 237.450 1 25 .000 .406   

Growth .737 70.032 1 25 .000 .008   

Exponential .737 70.032 1 25 .000 .008   

The independent variable is timecu. 

 

Lead 

 

Warnings 

The dependent variable (pb) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:pb 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .206 6.478 1 25 .017 .002   

Logarithmic .392 16.101 1 25 .000 .159   
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Inverse .475 22.645 1 25 .000 134.213   

Quadratic .489 11.500 2 24 .000 .012 -2.886E-5  

Cubic .513 8.073 3 23 .001 .018 -7.673E-5 8.016E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timepb. 

a. The dependent variable (pb) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Tin 

 

Warnings 

The dependent variable (sn) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:sn 

Equation Model Summary Parameter Estimates 
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R Square F df1 df2 Sig. b1 b2 b3 

Linear .021 .491 1 23 .491 .000   

Logarithmic .085 2.144 1 23 .157 .028   

Inverse .233 6.971 1 23 .015 34.180   

Quadratic .114 1.417 2 22 .264 .002 -6.114E-6  

Cubic .197 1.715 3 21 .195 .007 -3.870E-5 5.472E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesn. 

a. The dependent variable (sn) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Chrome 

 

Warnings 

The dependent variable (cr) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 
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Dependent Variable:cr 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .385 15.669 1 25 .001 .002   

Logarithmic .499 24.915 1 25 .000 .108   

Inverse .400 16.637 1 25 .000 74.010   

Quadratic .498 11.890 2 24 .000 .006 -1.093E-5  

Cubic .500 7.675 3 23 .001 .007 -2.041E-5 1.588E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timecr. 

a. The dependent variable (cr) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 

 

 

Aluminum 
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Warnings 

The dependent variable (al) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:al 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .114 2.953 1 23 .099 .001   

Logarithmic .123 3.236 1 23 .085 .040   

Inverse .046 1.113 1 23 .302 20.877   

Quadratic .162 2.120 2 22 .144 .003 -5.326E-6  

Cubic .225 2.030 3 21 .140 -.002 3.155E-5 -6.092E-8 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timeal. 

a. The dependent variable (al) contains non-positive values. The minimum value is .00. Log transform cannot be applied. 

The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Silicon 

 

Warnings 

The dependent variable (si) contains non-positive values. The minimum value is .000. 

Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and 

Logistic models cannot be calculated for this variable. 

 

 

Model Summary and Parameter Estimates 

Dependent Variable:si 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. b1 b2 b3 

Linear .488 22.907 1 24 .000 .024   

Logarithmic .619 38.956 1 24 .000 1.280   

Inverse .483 22.450 1 24 .000 892.717   

Quadratic .615 18.385 2 23 .000 .064 .000  

Cubic .616 11.788 3 22 .000 .074 .000 1.218E-7 

Power
a
 . . . . . .   

Growth
a
 . . . . . .   

Exponential
a
 . . . . . .   

The independent variable is timesi. 

a. The dependent variable (si) contains non-positive values. The minimum value is .00. Log transform cannot be 

applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be calculated for this variable. 
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Appendix D: Multiple Regression Analysis for MDDM 

Iron 
 

Model Summary 

Model R R Squareb 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .856a .733 .709 33.99056 

a. Predictors: agemddm, timemddm 

b. For regression through the origin (the no-intercept model), R Square 

measures the proportion of the variability in the dependent variable about the 

origin explained by regression. This CANNOT be compared to R Square for 

models which include an intercept. 

 

 

 

ANOVA
c,d 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 69807.117 2 34903.559 30.210 .000a 

Residual 25417.883 22 1155.358   

Total 95225.000b 24    

a. Predictors: agemddm, timemddm 

b. This total sum of squares is not corrected for the constant because the constant is zero for regression 

through the origin. 

c. Dependent Variable: femddm 

d. Linear Regression through the Origin 

 

 

 

Coefficients
a,b 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 timemddm -.012 .073 -.038 -.169 .868 

agemddm 4.254 1.076 .889 3.955 .001 

a. Dependent Variable: femddm 

b. Linear Regression through the Origin 
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Cupper 

 

Model Summary 

Model R R Squareb 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .848a .719 .693 27.10497 

a. Predictors: agemddm, timemddm 

b. For regression through the origin (the no-intercept model), R Square 

measures the proportion of the variability in the dependent variable about the 

origin explained by regression. This CANNOT be compared to R Square for 

models which include an intercept. 

 

 

 

ANOVA
c,d 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 41287.048 2 20643.524 28.099 .000a 

Residual 16162.952 22 734.680   

Total 57450.000b 24    

a. Predictors: agemddm, timemddm 

b. This total sum of squares is not corrected for the constant because the constant is zero for regression 

through the origin. 

c. Dependent Variable: cumddm 

d. Linear Regression through the Origin 

 

 

 

Coefficients
a,b 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 timemddm .020 .058 .080 .345 .733 

agemddm 2.889 .858 .777 3.368 .003 

a. Dependent Variable: cumddm 

b. Linear Regression through the Origin 
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Lead 

 

Model Summary 

Model R R Squareb 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .571a .326 .265 3.25046 

a. Predictors: agemddm, timemddm 

b. For regression through the origin (the no-intercept model), R Square 

measures the proportion of the variability in the dependent variable about the 

origin explained by regression. This CANNOT be compared to R Square for 

models which include an intercept. 

 

 

 

ANOVA
c,d 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 112.560 2 56.280 5.327 .013a 

Residual 232.440 22 10.565   

Total 345.000b 24    

a. Predictors: agemddm, timemddm 

b. This total sum of squares is not corrected for the constant because the constant is zero for regression 

through the origin. 

c. Dependent Variable: pbmddm 

d. Linear Regression through the Origin 

 

 

 

Coefficients
a,b 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 timemddm .005 .007 .260 .727 .475 

agemddm .095 .103 .330 .925 .365 

a. Dependent Variable: pbmddm 

b. Linear Regression through the Origin 
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Silicon 

 

Model Summary 

Model R R Squareb 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .749a .561 .521 8.16397 

a. Predictors: agemddm, timemddm 

b. For regression through the origin (the no-intercept model), R Square 

measures the proportion of the variability in the dependent variable about the 

origin explained by regression. This CANNOT be compared to R Square for 

models which include an intercept. 

 

 

 

ANOVA
c,d 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1870.692 2 935.346 14.034 .000a 

Residual 1466.308 22 66.650   

Total 3337.000b 24    

a. Predictors: agemddm, timemddm 

b. This total sum of squares is not corrected for the constant because the constant is zero for regression 

through the origin. 

c. Dependent Variable: simddm 

d. Linear Regression through the Origin 

 

 

 

Coefficients
a,b 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 timemddm -.008 .017 -.131 -.455 .654 

agemddm .771 .258 .860 2.983 .007 

a. Dependent Variable: simddm 

b. Linear Regression through the Origin 
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Appendix E: Inspection Sequences for Train Types 

ICM 3 

Soft failure                   

Hard failure                    

Cost parameters;         ,         ,          

Inspection Times 

1 2 3 4 5 6 7 8 

890 951 990 1018 1040 1059 1075 1089 

 

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 166 241 241 252 252 461 461 461 

Uncertainty Cost 1000 1500 2000 2500 3000 3500 4000 4500 

MDDM 

Soft failure                    

Hard failure                    

Cost parameters;         ,          ,          

 

 

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 226 255 255 414 414 414 414 599 

Uncertainty Cost 1000 1500 2000 2500 3000 3500 4000 4500 

SGGM 

Soft failure                    

Inspection Times 

1 2 3 4 5 6 7 8 

1220 1303 1355 1393 1423 1448 1470 1489 
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Hard failure                    

Cost parameters;         ,         ,          

Inspection Times 

1 2 3 4 5 6 7 8 

1081 1145 1186 1216 1239 1258 1275 1289 

 

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 216 267 316 316 338 348 478 478 

Uncertainty Cost 1000 1500 2000 2500 3000 3500 4000 4500 

 

VIRM 

Soft failure                    

Hard failure                    

Cost parameters;         ,          ,          

Inspection Times 

1 2 3 4 5 6 7 8 

1327 1415 1470 1511 1543 1570 1593 1613 

 

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 244 312 317 394 460 467 483 483 

Uncertainty Cost 1000 1500 2000 2500 3000 3500 4000 4500 

 

VIRM-4 

Soft failure                   
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Hard failure                    

Cost parameters;         ,          ,          

Inspection Times 

1 2 3 4 5 6 7 8 

1307 1694 1911 2064 2182 2278 2359 2429 

 

Inspections 

  1 2 3 4 5 6 7 8 

Sample Size 106 156 156 252 252 252 986 986 

Uncertainty Cost 1000 1500 2000 2500 3000 3500 4000 4500 

 

Appendix F: User Interface 

 

 


