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Abstract

To evaluate the quality of a treemap algorithm, two quality metrics should be considered.
The first quality metric is the aspect ratio of the treemaps generated by the algorithm. The
aspect ratio determines how accurate the areas of the rectangles in the treemap can be
interpreted by the user. The second quality metric, which is the main focus of this thesis,
is the stability score. The stability score indicates how hard it is to track rectangles when
the treemap has changed. The aim of this thesis is twofold. The first aim is to evaluate
how the stability score can be objectively determined. The second aim is to develop a
treemap algorithm that is able to generate treemap that have both low stability scores and
low aspect ratios.

To objectively determine stability score we first evaluated the existing definitions of sta-
bility. We noticed that none of the current definitions take the structures in the treemap
into account. We then developed a new definition for the stability score, that does take
these structure into account. The new definition is based on the change in the relative
positions of the rectangles with regard to each other.

To develop new treemap algorithms that are able to generate treemaps that have both a
low stability score and a good aspect ratio, we introduced the concept of local moves.
Local moves manipulate an existing layout in such a way that the resulting layout only
differs slightly compared to the original layout. Using a sequence of local moves, it is
moreover possible to manipulate the layout such that it is possible to reach any layout
from any layout. We developed two new treemap algorithms using these local moves.

The newly developed algorithm are the first treemap algorithm that can generate non-
sliceable treemaps. In terms of the stability score, the newly developed algorithm out-
perform all current practical treemap algorithms on both artificial and real world dataset.
Moreover the newly developed algorithms perform well on the aspect ratio quality meas-
ure as well.

ii Stability of treemap algorithms
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Chapter 1

Introduction

As data becomes more readily available it is important to be able to extract the information
contained in the data. One common way to analyze the data is by making a visualization
of it to give insight into the data in an intuitive way. One of the most common types of
visualization is the pie chart. The pie chart is mostly used to display the relative distribu-
tion of the items. An example of a pie chart is shown in Figure 1.1. In Figure 1.1 we see
the distributions of the audience ratings of the top 10 Dutch tv channels in 2005 [19].

Pie charts are reasonable visualizations for comparing percentages of a small number
of items to each other. However, when the number of items that need to be compared
increases it becomes ever more difficult to distinguish the different slices from each other,
and it becomes nearly impossible to determine the areas of the slices. If we want to split
the data for each tv channel further into the audience ratings of the individual programs
of the channels, a large number of additional items need to be visualized. To visualize a
large number of items we can use a treemap.

A treemap is a visualization method where a rectangle is partitioned into a number of sub-

26% 

17% 
9% 7% 6% 

5% 
4% 4% 
4% 

19% 

Ned1 RTL4

SBS6 Ned2

Ned3 RTL7

Net5 RTL5

Veronica Overige zenders

Figure 1.1: A pie chart displaying the distribution of audience ratings of the top 10 Dutch

tv channels in 2005.
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Figure 1.2: A treemap with low aspect ratios displaying the distribution of audience rat-

ings of the top 10 Dutch tv channels in 2005.

rectangles. Each subrectangle represents an item in the data. The area of a subrectangle
represents the value of the item. Additionally, each subrectangle can again be recursively
partitioned to visualize hierarchical data. In this thesis we will however restrict ourselves
to single-level treemaps, that is treemaps without hierarchical data.

The quality of a treemap can be determined using the maximum aspect ratio of the rect-
angles in the treemap. Extreme aspect ratios should be avoided as the accuracy of determ-
ining the area of a rectangle is decreased when the aspect ratio is high as was shown by
Kong, Heer and Agrawala [12]. The maximal aspect ratio should thus be kept low such
that the areas can be accurately compared.

An example of a treemap visualization where the maximal aspect ratio is low is shown
in Figure 1.2. The areas in this treemap encode the audience ratings of the top 10 Dutch
tv channels in 2005. As all the aspect ratios are low, it is not too hard to determine the
relative sizes of the areas.

When the aspect ratios become larger, as is shown in Figure 1.3, it becomes hard to de-
termine the relative sizes of the areas. For example, we look at the rectangles "Ned3" and
"RTL7" in Figure 1.3. It is almost impossible to tell which one of the two rectangles is
larger in Figure 1.3 while in Figure 1.2 this was not a problem.

A large amount of data available is furthermore time dependent. Therefore, it is often
required to be able to analyze the changes in the data over time as well. One can use
treemaps for this kind of analysis as well by generating a treemap for each timestep. The
analysis can then be performed by comparing the treemaps with each other.

To be able to compare two treemaps we ideally want the structure of the treemaps to
be roughly the same. If the structure is roughly equal then we can more easily find a
rectangle in both treemaps as it is in the same place in both treemaps. To determine how
hard it is to keep track of rectangles from the previous treemap to the current treemap a
second quality metric is required which we will denote as the stability score. The lower
the stability score, the easier it is to keep track of the rectangles and the more stable the

2 Stability of treemap algorithms
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Figure 1.3: A treemap with a high aspect ratios displaying the distribution of audience

ratings of the top 10 Dutch tv channels in 2005.

treemap is. Ideally, we would want to be able to easily keep track of all the rectangles such
that the analysis becomes easier. The stability score should thus be as low as possible.

An example of the difference between a treemap with a high stability score and a low
stability score is shown in Figure 1.4. In Figure 1.4 the audience ratings of the top 10 Dutch
tv channels in 2005 and 2015 are visualized. In Figure 1.4b the structure of the treemap
has changed while in Figure 1.4c the structure of the treemap is mostly maintained. It is
a lot harder to keep track of the rectangles from Figure 1.4a towards Figure 1.4b than it is
from Figure 1.4a towards Figure 1.4c.

To determine the stability score, a number of measures currently exist. However, non
of these measures covers all the aspects of stability as is described in detail in Section 2.
The most crucial aspect that the current definitions are missing is that they only consider
rectangles individually. They do not account for the change in the structure of groups of
rectangles in the treemap. In Section 2 we will develop a new stability measure that takes
this change of structure into account.

All current treemap algorithms generate a completely new treemap for each step. It how-
ever seems to make sense to modify the previous treemap to improve the aspect ratio
while maintaining the stability score, instead of generating an entirely new treemap. By
using the previous treemap as a basis for the new treemap one can control how stable the
resulting treemap is by controlling how much one modifies the treemap. It thus allows
one to balance the stability and the aspect ratio in a controlled way. A method to modify
an existing treemap and two treemap algorithms which use this method are presented in
Section 3.

Stability of treemap algorithms 3
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Figure 1.4: A treemap displaying the distribution of the top 10 Dutch tv channels of 2005,

and a stable and an unstable treemap displaying the distribution for 2015.
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1.1. RELATED LITERATURE

1.1 Related literature

Treemap algorithms have been around since 1991 after the introduction of them by Schnei-
derman in the form of the Slice and Dice algorithm [17]. The Slice and Dice algorithm
however suffered from rectangles with a high aspect ratio. In response to this problem
the Squarified treemap [5] was developed by Bruls, Huizing and Van Wijk which minim-
izes the aspect ratio using a heuristic approach. To give guarantees on the aspect ratio the
Approximation algorithm [15] was developed by Nagamochi and Abe. Finally De Berg,
Speckmann and Van Der Weele proved that obtaining the optimal maximum aspect ratio
for rectangular treemaps is strongly NP-complete [7].

After the development of the Squarified treemap algorithm, which is able to generate
treemaps with low aspect ratios, the research shifted. The focus was now not only on the
aspect ratio, but also on the stability of the treemaps.

A first definition for the stability score was given by Schneiderman and Wattenberg which
is the layout distance change function score [18]. The layout distance change function
score measures how much each rectangles moves. A number of complementary functions
to determine the stability score were developed as well. The variance distance change
function [20] which measures the variance of the changes in distance was developed by
Tak and Cockburn. A second variant that Tak and Cockburn introduced was the locational
drift measure [20] which measures the stability over a larger period of time. Additionally
a definition for the stability score for non-rectangular treemaps was proposed by Hahn,
et al. which measures the distance using the centroids of shapes as the basis [11].

Schneiderman and Wattenberg also introduced the ordered treemaps alorithms [18]. In
an ordered treemap, rectangles that are near each other in the input are placed near each
other in the treemap. This reduces the instability over time.

A number of ordered treemaps were then developed, namely the Pivot-by-(Middle, Size
and Split-Size) algorithms [18] by Schneiderman and Wattenberg, the Strip algorithm [2]
by Bederson, Schneiderman and Wattenberg, the Split algorithm [8] by Engdahl, the Spiral
algorithm [21] by Tu and Shen and the Hilbert and Moore algorithms [20] by Tak and
Cockburn.

To measure the success of maintaining the underlying order, Bederson, et al. introduced
the readability metric [2]. The readability metric measures how often the motion of the
readers eye changes direction as the treemap is scanned in order. Tu and Shen additionally
introduced the continuity metric [21] which measures how often the next item in the order
is not the neighbor of the current item. Both these metrics attempt to quantify how easy
it is to visually scan a layout to find a particular item in an ordered treemap.

Generating non-rectangular treemaps instead of rectangular treemaps was researched as
well. Example of non-rectangular treemaps are the vornoi treemaps [1] as presented by
Balzer, Deussen en Lewerentz, the orthoconvex and L-shaped treemaps [7] by De Berg, et
al. and the Jigsaw treemap [22] as presented by Wattenberg.

Stability of treemap algorithms 5



CHAPTER 1. INTRODUCTION

Visual enhancements of treemaps have been researched as well. Examples of these are
the 3-dimensional treemaps [4] by Bladh, Carr and Scholl, the animation of 3-dimensional
treemaps [3] by Bladh, Carr and Kljun, the Cascaded treemaps [13] by Lu and Fogarty and
finally the Cushion treemaps [5] by Bruls et al.

An independent line of research focused to find the number of equivalence classes of lay-
outs for a given number of rectangles and on methods to enumerate these equivalence
classes. Two layouts are equivalent if each rectangle in both layouts has the same adja-
cencies with the other rectangles in the layout.

Yao, et al. described the twin binary tree sequence [23] which can be used to represent
an equivalence class of a layout. Young, Chu and Shen further expanded on the twin
binary tree sequence by presenting a method to transform any layout to any other layout
given that the labeling of the rectangles does not matter [24]. The twin binary sequence
structure is explained in detail in Section 1.2.3. Using the twin binary tree sequence the
exact number of sliceable and non-sliceable treemaps were found by Yao et al. [23]. The
amount of sliceable treemaps equals the Baxter number [6] as presented by Chung, et al.
The amount of non-sliceable treemaps equals the Schröder number [10] as presented by
Erdélyi and Etherington. Sliceable and non-sliceable treemaps are explained in detail in
Section 1.2.2.

1.2 Preliminaries

1.2.1 Rectangular treemaps

To define the treemapping problem we will let R0 denote the input rectangle and we let
R denote the set of input rectangles where each rectangle r ∈ R has a non negative size
s(r).
Without loss of generality we will assume that the sizes of the rectangle are normalized,
that is:

∑
r∈R

s(r) = area(R0)

The treemapping problem can then formally be defined as follows:

Definition 1. The treemapping problem takes as input the input rectangle R0, a set of rectangle

R where each rectangle r ∈ R has a non negative size s(r).

As an output it produces a layout L, which is a partitioning of R0 using the rectangles in R.

It should hold that in the layout L each rectangle r ∈ R is positioned such that width(r) ∗
height(r) = s(r).

We denote the left x-coordinate of a rectangle r as x(r), the top y-coordinate as y(r), the

6 Stability of treemap algorithms



1.2. PRELIMINARIES

width as w(r), the height as h(r), the (x, y) position of the center of the rectangle as c(r),
the area as area(r) and the aspect ratio as a(r) = min

(
w(r)
h(r) , h(r)

w(r)

)
. Furthermore we will let

ri uniquely denote a rectangle in R for all 1 ≤ i ≤ |R|. Finally we let amax(L) denote the
maximum aspect ratio in the layout.

To be able to handle changes in the data over time, all functions will additionally have a
dependency on t. Finally the stability score between the layout generated for time t and
the layout generated for time t + 1 can then be defined as S(L(t), L(t + 1)).

1.2.2 Types of rectangular treemaps

Rectangular treemaps can be divided into two types of treemaps based on the maximal
line segments present in the layout L of the treemap. A line segment is formed by consec-
utive edges of the rectangles in the layout L. A segment is maximal if it is not contained
in any other line segment. An example of such a maximal segment is shown in Figure 1.5.

B
A

C
D

E

Figure 1.5: The red and blue line segments together form a maximal segment.

We denote the set of all maximal segments in a layout L asMS(L). We furthermore let
msi ∈ MS(L) uniquely denote a maximal segment for all 1 ≤ i ≤ |MS(L)|. If a maximal
segment ms is part of the input rectangle R0 we will denote it as a boundary maximal
segment. If ms is not part of the input rectangle R0 we will denote it as an inner maximal
segment.

We identify one degenerate case which occurs when two maximal segments intersect each
other. When this occurs, we split one of the two maximal segments into two separate
maximal segments that meet at the intersection point as is shown in Figure 1.6. For the
remainder of this thesis we will assume that every degenerate case has been handled in
this way.

We furthermore observe that a rectangular layout with n rectangular regions has n + 3
maximal segments. Moreover, 4 of these maximal segments are boundary maximal seg-
ments and n − 1 maximal segments are inner maximal segments when there are no de-
generate cases.

Finally, we define a rectangle r to be left adjacent to a maximal segment ms if the left edge
of r is part of ms, top adjacent if the top edge of r is part of ms, right adjacent is the right
edge is part of ms and bottom adjacent if the bottom edge is part of ms.

Stability of treemap algorithms 7
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D

B

C

A

D

B

C

A

Figure 1.6: The red and blue maximal segments intersect each other which results in a

degenerate case. This is handled by splitting the red maximal segment into

two separate maximal segments.

Sliceable rectangular treemaps

Sliceable treemaps have a layout where we can recursively slice the treemap into two parts
by slicing over a single maximal segment at a time. An example of a sliceable treemap and
how it is sliced is shown in Figure 1.7.

B
A

C

D

E
B

A
C

D

E

B
A

C

E

B
A

C

B

C

Figure 1.7: An example of how to slice a sliceable treemap. The red maximal segment

indicate the maximal segment which is used to slice the treemap in two parts.

As a consequence of a layout being sliceable it holds that all the rectangles in the treemap
must be grounded rectangles. A rectangle r in a layout L is ground if at least one of its
sides is a maximal segment. That is, there exists a maximal segment ms such that r is
the only rectangle adjacent to one side of this maximal segment. The existence of such a
maximal segment is proven in Appendix A.

For sliceable rectangular treemaps we can give a tight lower bound on the maximum

aspect ratio, which equals
√

s(B)
s(A)

where A is the rectangle with the smallest size and B is
the rectangle with the second smallest size as is proven in Appendix B.

Non-sliceable rectangular treemaps

In contrast to sliceable rectangular treemaps, non-sliceable treemaps can not always be
sliced into two parts over a single maximal segment. An example of such a treemap is
given in Figure 1.8.

For non-sliceable treemaps it also does not need to hold that all the rectangles in the tree-
map are grounded. In Figure 1.8 rectangle E is not grounded. However, it is possible

8 Stability of treemap algorithms
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B
A

C
D

E

Figure 1.8: An example of an non-sliceable treemap. There exists no maximal segment

which slices the treemap into two parts.

B
A

C
D

EF

Figure 1.9: An example of a non-sliceable treemap consisting of only grounded rectangles.

that in an non-sliceable treemap all rectangles are grounded as is shown in Figure 1.9.
As non-sliceable treemaps do not have to consist of only grounded rectangles, the lower

bound on the maximum aspect ratio of
√

s(B)
s(A)

for sliceable treemaps does not hold. As is
shown in Appendix B, non-sliceable treemaps can obtain maximal aspect ratios signific-
antly smaller than this lower bound.

1.2.3 Twin binary sequence

Twin binary sequences [23] can be used to represent treemaps as shown by Yao, et al.
We first explain what a twin binary tree is and afterwards we will explain how the twin
binary sequences relates to the twin binary tree.

Two binary trees t1 and t2 are twin binary if and only if they contain the same set of nodes,
and it holds that the labeling Θ(t1) equals the inverse of the labeling Θ(t2). The labeling
Θ(t) of a binary tree t is defines as follows:

Initially let Θ(t) equal the empty sequence. We visit the nodes of the tree t using an in-
order traversal and whenever we visit a node with no left child, we add a 0 bit to Θ(t).
Whenever we visit a node with no right child, we add a 1 bit to Θ(t). Finally the first 0
and the last 1 will be omitted.

A twin binary sequence is compromised of 4 parts: tbs = (π, α, β, β′) which can be
mapped one-to-one to a pair of twin binary trees (t1, t2) as is shown by Young et al. [24]
The mapping from the twin binary sequence tbs = (π, α, β, β′) to the pair of twin binary
trees (t1, t2) is as follows: π equals the labels of the nodes of the twin binary tree when
the nodes are visited in-order. α equals the labeling Θ(t1) of t1. β is a sequence of n bits,
where the i’th bit is 0 if the node with label πi if a left child in t1 or if it is the root of t1,
and 1 if it is a right child in t1. β′ is a sequence of n bits, where the i’th bit is 0 if the node

Stability of treemap algorithms 9
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B
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(a) A layout L.
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t1 t2

π = {D,E,A,C,B}
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1

E

D B

A

C

11

0

0
α = {0,1,1,0}
β = {1,1,0,0,0}
β′ = {1,1,0,0,0}

(b) A pair of twin binary trees (t1, t2) and their asso-

ciated twin binary sequence tbs = (π, α, β, β′).

Figure 1.10: A layout L and the corresponding pair of twin binary trees and the corres-

ponding twin binary sequence.

with label πi if a left child in t2 or if it is the root of t1, and 1 if it is a right child in t2.

A pair of twin binary trees (t1, t2) on its turn has a one-to-one mapping to an equivalence
class of a layout L as is shown by Yao et al. [23] This mapping is as follows: If the left-
top corner of a rectangle x is adjacent to the right-top corner of a rectangle y, then y is a
left child of x in t1. If the right-bottom corner of a rectangle x is adjacent to the right-top
corner of a rectangle y, then y is a right child of x in t1. If the left-top corner of a rectangle
x is adjacent to the left-bottom corner of a rectangle y, then y is a left child of y in t2. If the
right-bottom corner of a rectangle x is adjacent to the left-bottom corner of a rectangle y,
then y is a right child of y in t2.

An example of a twin binary sequence, its related pair of twin binary trees, and its related
layout is shown in Figure 1.10.

As a twin binary sequence tbs has a one-to-one mapping with an equivalence class of a
layout L, it is possible to construct a layout L from a given twin binary sequence tbs as is
shown by Young et al. [24]

1.2.4 Order equivalence graph

In order to develop a stable treemap algorithm we will use the notion of order equival-
ence layouts. The notion of order equivalence were introduced by Eppstein, et al. [9] To
determine whether two layouts L, L′ are order equivalent we compare their order equi-
valence graph. The order equivalence graph is defined as follows:

10 Stability of treemap algorithms
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Definition 2. The order equivalence graph OEG(L) of a layout L is a directed acyclic multigraph

that has a vertex per maximal segment ms, an edge from the segment on the left boundary of each

rectangle r ∈ R to the segment on the right boundary of the same rectangle r, and an edge from

the segment on the bottom boundary of each rectangle r ∈ R to the segment on the top boundary

of the same rectangle r.

An order equivalence graph thus consists of a partial order on the vertical maximal seg-
ments and a partial order on the horizontal maximal segments. An example of two lay-
outs that are not equivalent to each other, but which are order equivalent to each other is
shown in Figure 1.11.

B
A

D

C

E

(a) Layout L with the order equivalence

graph OEG(L) overlaid on it.

B
A

D

C

E

(b) Layout L’ with the order equivalence

graph OEG(L′) overlaid on it.

Figure 1.11: Two non-identical layouts L and L′ which have the same order equivalence

graph: OEG(L) = OEG(L′). The red arrows show the horizontal partial

order and the blue arrows show the vertical partial order.

Eppstein et al. [9] proved that given a layout L and a size function s, we can calculate the
positions of the rectangles of L such that the size function s is realized and the resulting
treemap has a layout L′ that is order equivalent to L.

Given a layout L we will determine the positions of the rectangles to realize the size func-
tion s by using the hill climbing algorithm as was described by Eppstein et al. [9] The
algorithm works as follows:

To correct the sizes of the rectangles without change the order equivalence graph of the
layout L, we incrementally move the inner maximal segments in L. In each step we cal-
culate how far we must move each maximal segment ms ∈ MS(L) by solving the matrix
equation SR ∗ X = Y for X.

SR encodes for each inner maximal segment ms how much a shift of 1 in the x/y of the
position of ms will change the areas of the rectangles in the graph. If ms is horizontal,
then the shift will be on the y-coordinate of ms. If ms is vertical the shift will be on the
x-coordinate of ms. The boundary maximal segments are not considered as these cannot
be moved. The rectangles will be represented as rows and the maximal segments will be
represented as columns resulting in a |R| by |R| − 1 matrix as there are |R| rectangles
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and |R − 1| inner maximal segments. One additional zero column is added to the end to
make the matrix a square matrix.

Y will encode for each rectangle in the layout L′ the number its size is off from the size it
should have according to s. The rectangles will be represented as rows resulting in a |R|
by 1 vector.

Finally X will encode how much we must shift the maximal segments to result in a state
where all rectangles have a size difference of 0 with s. As the problem is bilinear, simply
shifting the maximal segments according to X will not solve the problem exactly. Shifting
horizontal maximal segments will affect how much vertical maximal segments are adja-
cent to the rectangles and the other way around. We therefore first scale the vector X by a
scalar value ε < 1 before shifting the maximal segments according to X. After shifting the
maximal segments according to X we will update the position of the rectangles adjacent
to the maximal segments. For each rectangle r we will set its position to be equal to the
rectangle formed by the 4 maximal segments this rectangle is adjacent to. This results in
the update layout L′.

After shifting the maximal segments we will check if the resulting layout is still valid and
whether L′ is closer to s than L. A layout is valid if none of the rectangles in the layout
are overlapping each other. When a maximal segment is shifted too far, it can occur that
a maximal segment ms1 that should be to the left of the maximal segment ms2 is now to
the right of ms2. When this happens rectangles that are left adjacent to ms2 will overlap
rectangles that are right adjacent to ms2 and left adjacent to ms1 as the positions of the
rectangles are determined through the positions of the maximal segments. An example of
this is shown in Figure 1.12.

ms1 ms2

A
B

ms2 ms1
B
A

Figure 1.12: ms1 is shifted too far to the right. This results in an invalid layout as both

rectangles A and B are then positioned to the top-rights of ms2 which makes

them overlap each other.

If the resulting layout is not valid, or the sizes of the rectangles in L are closer to s than the
sizes of the rectangles in L′, then we have shifted the maximal segments too much. We
will then retry shifting the segments with a smaller ε in the next iteration. Otherwise L′ is
a valid layout and closer to L. We will then increase ε slightly to speed up the shifting and
use layout L′ as our new base layout. We will keep shifting the maximal segments using
these steps, until the rectangles in L′ all have sizes within a factor c to the size function s.

Alternatively it can occur that we do not have a layout L, but only have an order equival-
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ence graph G. In this case we first generate an initial layout L from the order equivalence
graph G by transforming the order equivalence graph into a twin binary sequence T.
From the twin binary sequence T we can then generate a layout L using the algorithm as
presented by Young, et al. [24]

1.3 Results and organization

In this thesis we are going to consider two problems.

The first problem that we are going to consider is developing a measure that determines
the stability score between two layouts. In Section 2 we will go through the current defin-
itions of stability and show that they fail to consider structures of rectangles within the
treemap. We will describe a new measure of stability that is based on the relative positions
of the rectangles with regard to one other that does cover these structures.

The second problem that we are going to consider is developing a treemap generation
method that uses an existing treemap as a basis instead of regenerating the entire treemap.

In Section 3 we will present the concept of local moves which are moves on the treemap
that change the treemap by a limited amount at a time. We will furthermore present
two algorithms that use these local moves. The first algorithm uses only the local moves
themselves to maintain the aspect ratios. The second algorithm will first divide the input
into groups of a certain size to create a hierarchical structure. To modify the treemap it
will use a combination of the approximation algorithm as presented by Nagamochi and
Abe [15], and local moves on the rectangles within these groups to maintain the aspect
ratios.

Both these algorithms are additionally capable of producing non-sliceable treemaps
alongside with sliceable treemaps which no treemap algorithm was capable of.

To evaluate the two new treemap algorithms we will perform experiments to determine
their performance in terms of aspect ratio and stability score in Section 4. From these
experiments we can conclude that the new treemap algorithms achieve a very low sta-
bility score and a very low aspect ratio. Moreover, they outperform all current existing
algorithms in obtaining a balance between the stability and the aspect ratio.
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Stability

In order to develop a new definition of stability we first look at the factors that contribute
to the stability. We then evaluate the current definitions of stability and show why they
are lacking as a definition of stability. Finally, we present a new definition of stability that
covers the weaknesses of the existing definitions of stability.

2.1 Contribution factors of stability

The stability can be intuitively defined as how hard it is to keep track of the rectangles in
the treemap. We believe that there are a number of factors that contribute to whether a
layout is stable given another layout.

The first factor that contributes to the stability is the change in spatial positions of the
rectangles between the current layout and the previous layout. If a rectangle jumps in
spatial position, it is no longer in the position expected. The user must then search for
this rectangle again. The more the spatial position of a rectangle changes, the harder it is
to find this specific rectangle again.

The second factor that contributes to the stability is the change in the shapes of the rect-
angles. If the shape of a rectangle changes from a square to a thin and long rectangle in
the new layout, it becomes harder to track this rectangle due to the visual inconsistency.
Similarly, if the area of a rectangle changes from a large area to a small area, it becomes
harder to track the rectangle as well.

The third and final factor that contributes to the stability is the change of group struc-
tures in the treemap. Group structures in a treemap are groups of rectangles which are
positioned according to a pattern. If these patterns are maintained in the new layout it
becomes easier to track the rectangles. Instead of tracking a specific rectangle r1, the user
now only needs to track a group structure to which the rectangle r1 belongs to know the

Stability of treemap algorithms 15



CHAPTER 2. STABILITY

A

B

C

G

A
C

G

B
D

E
F

FE

D

Figure 2.1: The group structure is unchanged while the spatial position and the form have

changed a lot.

general location of the rectangle r1. As the group structures consist of several rectangles
it is far easier to track the group structures than the rectangle itself. An example of this
is shown in Figure 2.1. In Figure 2.1 the form and the spatial positions of the rectangles
have changed quite a lot, but the group structures are still intact. Examples of these group
structures in Figure 2.1 are that rectangles C,D,E,F,G are between rectangle A and B, Rect-
angle E and D are to the left of F, Rectangle E is above rectangle D, etc. Even though
the shape and the spatial positions have changed quite a lot, it is still easy to track the
rectangles in the treemap.

It thus seems that the change of the group structures is an important contributor to the sta-
bility of the layout. As long as the group structure stays intact, the impact of the change in
shape and/or spatial position on the perceived stability seems to be relatively low. How-
ever, to determine exactly how much impact each factor has on the perceived stability a
user experiment would be required which is outside the scope of this thesis.

2.2 Current definitions

There is currently one major definition of stability for rectangular treemaps, namely the
layout distance change function [2] as presented by Bederson et al. The layout distance
change function essentially measures the average distance between each pair of corres-
ponding rectangles in two different layouts L(t), L(t′).

2.2.1 Layout distance change function

The layout distance change function is defined as follows: Consider two layouts at two
consecutive points in time L(t) and L(t′). Let X be the set of rectangle in (R(t) ∩ R(t′)),
i.e. the set of rectangles present in both layouts. Furthermore, let d(R1, R2) denote the
Euclidean distance between the two rectangles r1, r2:

d(r1, r2) =
√
(x(r1)− x(r2))2 + (y(r1)− y(r2))2 + (w(r1)− w(r2))2 + (h(r1)− h(r2))2
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A B
C

D
E

F

A B C

F

t = 1 t = 2

ED

LayoutDistanceChange(L(1),L(2)) = 9

(a) A small change in the layout.

A B C

D E F

A B C

D

E F

t = 1 t = 2
LayoutDistanceChange(L(1), L(2)) = 40

(b) A larger change in the layout.

Figure 2.2: The score of the layout distance change function of a small and a large change

in the layout.

The layout distance change function can then be written down as:

LayoutDistanceChange(L(t), L(t + 1)) =
1
|X| ∑

r∈X
d(L(t, r), L(t + 1, r))

As an example we take the layouts as shown in Figure 2.2. In this figure two different
changes to the layout are considered. In Figure 2.2a the layout changes slightly and has a
stability score of 9. In Figure 2.2b there is a large change to the layout as rectangles D and
E are now vertically stacked instead of horizontally. This results in a stability score of 40
which is indeed a higher stability score.

The layout distance change score thus seems to cover the notion of stability to some de-
gree.

Shortcomings in the definition

The layout distance change function score has a number of shortcomings which make it
unable to serve as a complete definition of stability.
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The first major problem with the definition is that it mixes the dimensions of the area and
spatial positioning incorrectly. Due to this mixing of dimensions, it matters whether a
rectangle is increasing its height to the top or the bottom and its width to the left or the
right for the stability score. Increasing the width to the left changes both the x-coordinate
and the width while increasing the width to the right only change the width of the rect-
angle.

An example of why this is problematic is shown in Figure 2.3. In Figure 2.3a rectangle A
is above rectangles B,C and D and the height of A is decreased which results in a stability
score of

√
(52) + 3

√
52 + 52 ≈ 26.2. In Figure 2.3b rectangle A is below rectangles B,C

and D and the height of A is decreased which results in a stability score of 3
√
(52) +√

52 + 52 ≈ 22.1. Figure 2.3a and Figure 2.3b are mirrored which intuitively means that
the stability score should be equal in these two cases. Due to both the height and the y-
coordinate being inside the root this is however not the case. The layout distance change
function is thus not able to accurately reflect changes in position and shape in a conclusive
way, as the score depends on the orientation of the rectangles.

A

B C D

A

B C D

(a) Rectangle A is above rectangles

B,C and D. The height of A is de-

creased

B C D
B C D

A A
(b) Rectangle A is below rectangles

B,C and D. The height of A is de-

creased

Figure 2.3: Figure 2.3a and Figure 2.3b are mirrored but differ in the layout distance

change function score.

The second major problem is that the groups of rectangles within the treemap are not
considered in the layout distance change function. If a group of rectangles moves in its
entirety, the layout distance score will penalize the distance moved for each rectangle
separately while disregarding the group structure in the treemap. An example of this is
given in Figure 2.4a.

In Figure 2.4a the sizes of rectangles A and B have been swapped, while the rectangles
maintain the relative positions with regard to each other. As a result of this, all rectangles
between A and B have a large change in their spatial position. The layout distance score
penalizes every one of these position changes, which results in a relatively high stability
score of ≈ 37.1. The resulting layout is however in fact quite stable. The relative posi-
tions between the rectangles did not change by much and the group structures within the
treemap stayed intact as well.

In the layout shown in Figure 2.4b the relative positions of the groups are no longer intact.
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However, starting from the same layout as in Figure 2.4a, the resulting layout has a sta-
bility score of ≈ 34.4 which is lower than the layout shown in Figure 2.4a. It should thus
hold that the layout shown in Figure 2.4b is more stable but this does not appear to be true
at all. This occurs due to the fact that the layout distance change function does not con-
sider the adjacency or the more generalized relative positions. It thus has no possibility
to consider group structures for the stability score.

A

B

D
C

G

E

A

D
C

G

E

F

F

B

(a) Rectangles A and B swap sizes.

The rectangles stay the same rel-

ative position.

A

B

D
C

G

E
F

A

B

F D

E

G

E
C

(b) Rectangles A and B swap sizes

.The relative positions are no

longer intact.

Figure 2.4: Figure 2.4a has a lower stability score then Figure 2.4b but appears to be far

less stable.

Finally the layout distance change function has a minor problem, namely that the stability
score is not normalized. A value of 90 can indicate both a high or a low stability depend-
ing on how large the initial rectangle is and how much rectangles there are in the treemap.
Using the stability score given by the layout distance change function is therefore mostly
useful to compare the stability score of two different possible layouts L′, L′′ from an ori-
ginal layout L. Using it to determine the stability score of a change from L to L′ by itself
becomes quite a lot harder. This problem can however easily be solved by normalizing
the scores using the length of the diagonal of the input rectangle of the treemap.

2.2.2 Variants of the layout distance change function

Aside from the layout distance change function score there are three variants for the lay-
out distance change function. The first variant is the variance of distance change func-
tion [20] as presented by Tak and Cockburn. The second variant is the centroid position-
ing measure [11] as presented by Hahn, et al. The third and final variant is the locational
drift measure [20] as presented by Tak and Cockburn.
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Variance of distance change

The variance distance change function complements the layout distance change function
by considering the variance of the layout distance change function.

VarianceO f DistanceChange(L(t), L(t + 1))) = Var(∑
r∈X

d(L(t, r), L(t + 1, r)))

Using the variance distance change function one can identify whether the score from the
layout distance change function is the result of a large number of average movements or
a small number of large movements.

While allowing more information to be conveyed through the stability score, the variance
of distance change function however still does not address the problem that groups are
not considered in the stability score. Both a large number of average movements and a
small number of large movements can have a large impact on the group structures within
the treemap. We thus still cannot identify whether the group structures remained intact
or not.

The variance of distance change function moreover does not solve the problem of mixing
of dimensions and the normalization problem as it still uses the layout distance change
function as a basis.

Centroid positioning

The centroid positioning variant was presented by Hahn, et al. [11] and uses only the
change in position of the centroid of a shape to determine the stability.

centroidStability(L(t), L(t + 1)) = ∑
r∈X

d(c(L(t, r)), c(L(t + 1, r))))

While the centroid positioning score mixes the dimensions in a different way than the lay-
out distance change function, it is still problematic. When the rectangle becomes equally
smaller to the left and to the right the position of the centroid does not change while the
rectangle did change. The rectangle would then be seen as completely stable while in
practice it can change quite a lot. The change of the shape of the rectangle is thus not
reflected in the stability score. An example of this is shown in Figure 2.5. In Figure 2.5a
rectangle D and C are both stretched downwards which keeps the centroid of rectangle B
unchanged. This results in a centroid positioning stability score of 4. In Figure 2.5b only
rectangle D is stretched downwards. The centroid of rectangle B now does change. This
results in a centroid positioning stability score of 4.5. Intuitively Figure 2.5b is more stable
as Figure 2.5a as there are less changes to the treemap. However, the centroid positioning
stability score of Figure 2.5a is lower than the centroid positioning score of Figure 2.5b
which contradicts our intuition.

20 Stability of treemap algorithms



2.2. CURRENT DEFINITIONS

The centroid positioning score thus still suffers from the problem that is mixes the dimen-
sions incorrectly. Moreover, it still does not encode the group structures in any way, and
therefore it still suffers from the same problems as the layout distance change function.

B

D CA
D C

A

B

(a) Rectangles D and C are both

stretched downward. The

centroid of rectangle B is

unchanged.

B

D CA

B
D

CA

(b) Rectangles D is stretched down-

ward. The centroid of rectangle B

has changed.

Figure 2.5: Figure 2.5a has a lower centroid positioning stability score than Figure 2.5b but

is less stable.

Locational drift

The mean locational drift stability measure enhances the layout distance change function
by no longer considering the stability within a single time iteration, but considering the
stability over a larger period of time. It measures the average distance that each rectangle
r is away from the center of gravity of rectangle r over the past y iterations. The center
of gravity is defined as the average c(r) position over the past y iterations. The locational
drift stability measure can then formally be defined as:

locationalDri f t(t) =
1
|R| ∑

r∈R

1
y

y

∑
j=1
||c(L(t− j, r)), COG(L, r)||

COG =
1
y

y

∑
k=1

c(L(t− k, r))

The locational drift measure thus additionally attempts to capture the stability over a
larger period of time. However, as it uses the centroid of the rectangle to determine the
distance, it suffers from the same problems as the centroid positioning stability measure.
Moreover, it still does not encode the group structures in any way.

Another minor problem is that the locational drift measure as presented does not work
when the period of time becomes extremely large. If the period of time becomes too large
a rectangle might drift very slowly to another position. However, as the center of gravity
is calculated over all iterations, it will on average have a large distance. This problem can
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however be solved by calculating the center of gravity for a limited time period instead
of over the entire time span.

For the locational drift measure a user study has been performed by Tak and Cock-
burn [20]. In this study, users which were highly familiar with treemaps were tasked to
select a particular rectangle in the treemap. After each selection the layout was updated
and the selection times were measured. The user study found a significant difference in
selection times between a layout with a low locational drift and a random layout. This in-
dicates that the drift over time of a rectangle should be taken into account for a complete
definition of the perceived stability.

2.3 A new definition of stability

To better cover the notion of group structures in the layout with regard to the stability, we
are going to develop a new stability measure. At the core of the measure we are going
to use the relative positions of the rectangles with regard to the other rectangles in the
layout. The more stable the relative positions of the rectangles are, the more stable the
resulting stability score will be. By using the relative positions of rectangles with regard
to one another, we are able to cover the notion of group structures. If group structures stay
intact, then the relative positions of the rectangles within this group will stay roughly the
same. The stability score will thus be higher than when the group structure would be
destroyed as in this case the relative positions would be changed as well.

To determine the relative position of a rectangle B with regard to a rectangle A, we are
going to consider in what general direction rectangle B is in with regard to rectangle A.
To this end, we will divide the space around rectangle A in 8 sections S = {s1, s2, ..., s8}.
Section s1 will represent the East, section s2 the NorthEast, etc. as is shown in Figure 2.6.

A East

NorthEastNorthNorthWest

West

SouthWest South SouthEast

s1

s2s3s4

s5

s6 s7 s8

Figure 2.6: The area around rectangle A is divided into 8 sections.

To determine the stability of the relative position between rectangles A and B in layouts
L(t) and L(t + 1), we are going to calculate to what degree rectangle B stays in the same
sections of rectangle A. We want to avoid large changes in the stability score when minor
changes in the structure of the treemap occur. Therefore, we cannot simply use a binary
score to determine the degree for whether it stays in the same section to determine the
stability score. If we did use such a binary score we could for example have the follow-
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ing problem. Consider that rectangle B is for 10% in section East and for 90% in section
SouthEast in layout L(t) with regard to rectangle A. In layout L(t + 1) it has moved just
far enough to be 100% in section SouthEast. Graphically this is shown in Figure 2.7. This
would mean that when using a binary score, the resulting stability score would be high.
However, the actual change in the structure is small and the stability score should thus be
low.

A B BA

Figure 2.7: 10% of the area of rectangle B was in the NorthEast section of rectangle A.

After a slight downwards movement 100% of the area of rectangle B is in the

East section of rectangle A.

To prevent this problem we are going to use the change in percentage that a rectangle is
in each section. Let rectangle B be for 10% in the East section of rectangle A and for 90%
in the Southeast section of rectangle A in layout L(t). Furthermore let rectangle B be for
100% in the SouthEast section of rectangle A in layout L(t + 1). The stability score will be
equal to 0.1 as 10% of the area of the rectangle changed section.

We will denote the percentage that the rectangle L(t,B) is in section si ∈ S(ri) of the
rectangle L(t,A) by percentage(A, B, L, si) for all 1 ≤ i ≤ 8. We can then define the relative
stability score between the two rectangles as follows:

Srelative(A, B, L, L′) =
1
2

8

∑
i=1
|percentage(A, B, L, si)− percentage(A, B, L′, si)|

It then remains to calculate the overall relative stability score. As rectangles that are not
in both layout L(t) and L(t + 1) do not have a relative position with regard to each other,
we will not consider these explicitly in the overall stability score. They are however con-
sidered implicitly, as the insertion and deletion of a rectangle will usually have an impact
on the relative position of the rectangles that are present. To calculate the overall stability
score we will use the average relative stability score for all combinations of rectangles A
and B that are in both layouts:

Srelative(L(t), L(t + 1)) =
1

|R|(|R| − 1) ∑
r,r′∈(R(t)∩R(t+1))∧r 6=r′

Srelative(r, r′, L(t), L(t + 1))

An example of the result of the application of this score is given in Figure 2.8. When
calculating the stability score for Figure 2.8a using the relative stability score we obtain
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a stability score of ≈ 0.136. When calculating the stability score for Figure 2.8b using
the relative stability score we obtain a stability score of ≈ 0.247. The relative stability
score of Figure 2.8b is thus significantly higher than the stability score of Figure 2.8a.
This corresponds with the change in group structures in these two figures. The group
structures in Figure 2.8a has changed significantly more than in Figure 2.8b.
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(a) A small change occured in the

group structure. The relative sta-

bility score is 0.136.
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(b) A larger change occured in the

group structure. The relative sta-

bility score is 0.247.

Figure 2.8: Figure 2.8a is more stable than Figure 2.8b and has a lower relative stability

score.

The new definition thus seems to achieve our goal of accounting for the group structures
within the treemap. The new definition however does not take the form or the spatial
position explicitly into account. To solve this one would require a mix of several stability
measures that individually measure the change in form, the change in spatial position and
the change in group structures. Each measure would then be assigned a weight factor to
determine the influence of this factor. This weight factor should be determined through an
user study. Determining these weight factors is however outside the scope of this thesis.
For the remainder of this thesis we will therefore assume the relative stability score reflects
the perceived stability adequately.
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Stable algorithm

To develop a treemap algorithm that can balance the stability score and the aspect ratios,
we use the concept of local moves which will be presented in Section 3.1. We use these
local moves in two new treemap algorithms. The first algorithm will be presented in Sec-
tion 3.2 and is an incremental algorithm that works purely using local moves after the
initial generation of the treemap. The second algorithm will be presented in Section 3.3
and is a hierarchical incremental algorithm that works using a combination of the approx-
imation algorithm by Nagamochi and Abe [15] and local moves.

3.1 Local Moves

To develop our new algorithms we are going to use the concept of local moves. Local
moves are manipulations of the layout that change the order equivalence graph of the
layout only in a local section.

The idea to use local moves came from the twin binary sequence as presented by Young,
et al. [24] They presented a method to traverse from any layout to any other layout given
that the labeling of the rectangles did not matter. However, for our purposes the labeling
of the rectangles does matter and we thus need to develop a new method.

The reason that we are going to manipulate the order equivalence graph using small
changes in our algorithm is threefold. The first part of the reason is that it seems to hold
that for small changes in the sizes of the rectangles, the relative position stability score is
nearly equal to 0 when the order equivalence graph of the layout does not change. This
assumption is validated in Section 4.1.1.

An example of this is shown in Figure 3.1. In Figure 3.1 a small change in the sizes of
the rectangles occurs, while the order equivalence graph stays the same. The resulting
structure of the treemap is almost identical to the original structure. More specifically, the
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relative positions between the rectangles are almost identical which results in a low sta-
bility score. It seems that the order equivalence graph thus encodes the relative position
up to a certain degree.

A

D E

B

C
A

D E

B

C

Figure 3.1: A number of small changes in the sizes occur, but the order equivalence graph

does not change.

The second part of the reason is that we can manipulate the orderequivalence graph by
a small amount at a time using local moves while being able to regenerate a valid layout
after each step. These local moves furthermore do not have a large impact on the stability
score. The validity of this statement is validated in Section 4.1.2. As the local moves have a
limited impact on the stability, the local moves can be used as a tool to balance the stability
with the aspect ratio. The more moves we are allowed to make, the more the aspect ratio
will be able to approach the optimal at the cost of stability.

The third and final part of this reason is that we can reach all possible layouts using local
moves as is shown in Section 3.1.2. We thus do not discard any possible layout. Spe-
cifically, it allows us to consider non-sliceable layouts in addition to sliceable layouts.
Non-sliceable layouts have as the advantage that they have better lower bounds on the
optimal maximum aspect ratio, as is shown in Appendix B.

3.1.1 Types of local moves

We will consider three local moves for our algorithm. The stretch move, the flip move and
the edge flip move. The stretch move and the flip move are sufficient to reach all possible
layouts as we prove in Section 3.1.2. The edge flip move is additionally considered, as it
allows us to find non-sliceable layouts faster.

The stretch move

The stretch move stretches a rectangle A over a rectangle B. Let ms be a maximal seg-
ment and let A and B be two rectangles adjacent to one of the endpoints of this segment.
Without loss of generality we assume that ms is a vertical maximal segment. If rectangles
A and B do not have the same height we can apply a stretch move. Let rectangle A denote
the rectangle with the smallest height and without loss of generality assume that rectangle
A is to the left of ms.

26 Stability of treemap algorithms



3.1. LOCAL MOVES

To apply the stretch move we then stretch rectangle A over rectangle B as is graphically
displayed in Figure 3.2. After applying the stretch move we update the layout using the
algorithm presented in Section 1.2.4 to make sure the areas of all the rectangles have the
correct size again.

A
B

A

B

ms ms

Figure 3.2: A stretch move is applied on the maximal segment ms to stretch rectangle A

over rectangle B.

Flip move

The flip move flips rectangle A and rectangle B from being horizontally adjacent to ver-
tically adjacent and vice verse. Let ms be a one-sided maximal segments with exactly
two rectangles adjacent to it. Let A and B be the two rectangles adjacent to the maximal
segment ms. Note that in this case. rectangles A and B together form a rectangle as well.
Without loss of generality we assume that ms is a vertical maximal segment and that rect-
angle A is to the left of ms.

To apply the flip move we then place rectangle A below rectangle B in the rectangle
formed by the rectangles A and B which is graphically displayed in Figure 3.3. In con-
trast to the flip move it is not required to recalculate the layout, as the flip move does not
change the areas of any rectangles in the layout.

A B
B
A

ms

Figure 3.3: A flip move is applied on the maximal segment ms to flip rectangles A and B.

Edge flip move

The edge flip move flips the direction of an edge split. An edge flip can be performed
when two maximal segments ms2, ms3 have an endpoint on both sides of ms1. Moreover
these endpoints should not be at the endpoints of ms1. The edge flip move then merges
the maximal segments ms2 and ms3 into one maximal segment, and breaks ms1 into two
maximal segments. This is graphically shown in Figure 3.4.
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A

B C

D A

B C

D

ms2

ms3

ms1

ms4

ms5
ms6

Figure 3.4: An edge flip move is applied on the maximal segment ms to flip rectangles A

and B.

After the merging and the splitting of the maximal segments, the adjacencies of the max-
imal segments to the rectangles can be uniquely determined. This allows us to update
the order equivalence graph, which in turn can be used to regenerate the layout such that
each rectangle has the correct area using the algorithm presented in Section 1.2.4.

As was mentioned before this move is used to be able to find non-sliceable layouts faster.
In Figure 3.5 an example of the edge flip move being faster than the stretch and flip moves
is shown. Using only the stretch and flip moves means that we require at least 4 moves to
be able to go from the original layout to the non-sliceable layout as is shown in Figure 3.5a.
However, using the edge flip move this is possible using a single move as is shown in
Figure 3.5b.

A A A

AA

B B B

BB

C C C

C
C

D D D

DD

E E E

EE

F F F

FF

(a) The fastest sequence of moves to go to a non-sliceable

layout without edge flip moves.

AB
CD

E
F

AB
C

D

E F

(b) The fastest sequence of moves to

go to a non-sliceable layout with

edge flips moves.

Figure 3.5: A comparison between the number of moves required to from a specific slice-

able layout to a windmill layout with and without edge flips.
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3.1.2 All rectangular layouts are reachable using local moves

We will now prove that we can reach all possible layouts using a series of flip and stretch
moves.

Theorem 1. Using only stretch and flip moves it holds that for any two layouts L , L′ consisting

of the same set of rectangle R there exists a sequence S of stretch and flip moves such that G is

transformed into G′.

We will prove Theorem 1 using three lemmas.

The first lemma used states that we can reach a stack layout from any layout L.

Lemma 2. From any layout L we can reach a vertical stack layout L using only Flip and Stretch

moves.

The second lemma used states that we can turn a stack layout into a sorted stack layout.

Lemma 3. From a vertical stack layout L we can reach a sorted vertical stack layout L′ using only

flip moves.

The third lemma used states that it is possible to invert all the moves. That is, for each
move x there exists a series of moves Y such that performing the moves in Y after per-
forming move x on any layout L results in the same layout L. We will denote the inverse
of a move x as x−1.

Lemma 4. The Flip move and the Stretch move are invertible.

If these three lemmas are all valid, then we can proof Theorem 1 as follows:

Let S1 denote the sequence of local moves to go from the layout L to the stack layout.
Let S2 denote the sequence of local moves to go from the stack layout to the sorted stack
layout. Let S3 denote the sequence of local moves to go from the layout L′ to the sorted
stack layout.

The sequences S1, S2, S3 must all exist due to the Lemma 2 and Lemma 3. As it is
possible to invert a move due to Lemma 4, it is also possible to invert a sequence. Let
S3 = (move1..., movei, ..., moven) be a sequence that must be inverted. Let S−1

3 denote the
inverted sequence which is constructed by inverting the order and inverting all the moves
of the sequence S3. For S−1

3 to be the inverse of S3, it must hold that S3 followed by S4

must be equivalent to not performing a move at all:

S3; S−1
3 = (move1, ..., movei, ..., moven); (move−1

n , ..., move−1
i , ..., move−1

1 ) = ∅

Thus S−1
3 is indeed the inverted sequence of S3. S−1

3 thus contains the sequence to go from
the sorted stack layout to the layout L′.
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To transform L into L′ we perform the moves in the sequence S = S1; S2; S−1
3 which trans-

form the layout L in succession to a stack layout, the sorted stack layout, and the layout
L′.

We will now proof that the three involved lemmas are indeed valid.

Reaching the vertical stack layout

To prove Lemma 2 we need to show that is it possible to reach the stack layout from any
layout L. We define a vertical stack layout as a layout L that has does not contain any inner
vertical maximal segment. An example of such a layout is shown in Figure 3.6. Thus to
transform layout L into a stack layout, we only need to make sure that we have removed
all inner vertical maximal segments.

A

D

C
B

Figure 3.6: An example of an unsorted vertical stack layout.

We will pick an inner vertical maximal segment ms and we will iteratively remove adja-
cent rectangles from ms, until ms has exactly two rectangles adjacent to it. Let A denote
the rectangle adjacent to the left top of ms and let B denote the rectangle adjacent to the
right top of ms. To remove a rectangle from ms we have two cases:

Case 1: The height of rectangle B is unequal to the height of rectangle A. Without loss
of generality we will assume that rectangle A has a greater height then rectangle B. In
this case we use a stretch move to stretch rectangle B over rectangle A as is shown in
Figure 3.7a. Rectangle B is then no longer adjacent to ms and we have not introduced a
new maximal vertical segment.

Case 2: Rectangle A is equal in height to rectangle B. In this case we use a flip move to
flip rectangles A and B as is shown in Figure 3.7b. Rectangles A and B are then no longer
adjacent to ms and we have not introduced a new maximal vertical segment.

As an inner maximal segment must have a rectangle on both sides of the segment at the
endpoint of the segment, one of these two cases must always hold. Moreover, as we
remove at least one adjacent rectangle from ms in each case, it holds that eventually ms
will have exactly 2 rectangles adjacent to it.

When ms only has 2 adjacent rectangles, we will remove the maximal segment ms com-
pletely by performing a flip move on the two remaining rectangles as is shown in Fig-
ure 3.8. We have thus removed a vertical maximal segment without introducing any new
vertical segments. The total number of vertical maximal segments is thus reduced by 1.
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A
B

ms ms

A
B

(a) Rectangle B is stretched

over rectangle A.

A B
B
A

ms ms
(b) Rectangle A and B are

flipped using a flip move.

Figure 3.7: The two cases for removing a rectangle from ms. The dotted lines represent

the other rectangles that might be adjacent to ms.

A B
B
A

ms

Figure 3.8: Rectangles A and B are flipped using a flip move. ms is now removed.

By repeatedly using removing a vertical maximal segment using this procedure, we can
remove all inner vertical maximal segments from L to reach a vertical stack layout. There-
fore Lemma 2 holds.

Reaching the sorted vertical stack layout

To prove Lemma 3 we need to show that is it possible to reach the sorted vertical stack
layout from any vertical stack layout L.

To transform the vertical stack layout L into the sorted vertical stack layout, we will use
BubbleSort on the vertical stack layout. To be able to use BubbleSort on the vertical stack
layout, we have to be able to swap two adjacent elements. Two adjacent rectangles A and
B in a stack layout can be swapped by applying two flip moves on rectangles A and B as
is shown in Figure 3.9. We can thus use BubbleSort to reach the vertical stack layout and
Lemma 2 holds.

A
B

A B
B
A

Figure 3.9: A and B are swapped using flip moves.
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Inverting the moves

To prove Lemma 4 we need to show that is it possible to invert the Flip move and the
Stretch move.

We can invert a flip move on rectangles A and B by performing three flips moves on
rectangles A and B as is shown in Figure 3.10a.

We can invert a stretch move from rectangle A over rectangle B by performing a stretch
move from rectangle B over rectangle A as is shown in Figure 3.10b.

A
B

A B

B
A

AB

(a) Inverting the flip move.

A
B

A
B

A
B

(b) Inverting the stretch move.

Figure 3.10: Inversions of the flip move and the stretch move.

As we can invert both the flip move and the stretch move Lemma 4 thus holds.

3.2 Incremental moves algorithm

The incremental moves algorithm starts by generating an initial treemap using the ap-
proximation algorithm by Nagamochi and Abe [15]. After the generation of the initial
treemap, we will only use local moves to change the treemap in all following iterations.

For every iteration we are going to use a bounded breadth first search approach to find
the layout that has the best maximal aspect ratio within k local moves. To find all possible
layouts L′ reachable from a layout L using local moves we are going to go over each
inner maximal segment ms ∈ MS(L). For each of these maximal segments we can either
perform a flip move, or we can perform two stretch moves. If ms is horizontal we can
perform a stretch move on the left endpoint of ms and a stretch move on the right endpoint
of ms. If ms is vertical we can perform a stretch move on the top endpoint of ms and a
stretch move on the bottom endpoint of ms. If edge flips are additionally considered then
for each maximal segment, we additionally have the possibility to perform two edge flip
moves on the endpoints of the maximal segments.

After the first iteration we will no longer consider all inner maximal segments ms ∈
MS(L). Instead we will restrict ourselves to the maximal segments ms that are in the
neighborhoodN of the local move that was performed. iteration. The neighborhoodN is
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defined as the maximal segments ms ∈ MS(L) for which the adjacency to the rectangles
inR(t) has changed. By restricting ourselves to this neighborhood we drastically reduces
the total search space which allows us to handle larger amount of rectangles. Moreover,
we still consider all maximal segments that are close to the rectangle that we are optimiz-
ing, as these are the most promising candidates to improve the aspect ratio.

Restricting ourselves to considering only the neighborhood has the negative consequence
that for larger layouts, we can only optimize the aspect ratios of a few rectangles. To
make sure that we can optimize multiple rectangles with a large aspect ratio in a single
timestep, we repeat the above procedure x times.

The depth of the breadth first search in the algorithm is bounded for two reasons. The
first reason is that by bounding the depth, we restrict the amount that we will change
the structure of the treemap. As there are few changes the resulting stability score will
also be low. The second reason it that going through the entire search space is practically
impossible. If there are 10 rectangles in the layout, the complete search space already
equals ≈ 1.09 ∗ 1020 nodes. Therefore, we need to keep the search space limited out of
necessity.

3.2.1 Approximation algorithm

The approximation algorithm that we will be using to generate the initial treemap is the
approximation algorithm as presented by Nagamochi and Abe [15]. It works by sorting
the input from low to high and recursively dividing the sorted list into two groups of
roughly the same size.

The algorithm is guaranteed to give a treemap which has a maximal aspect ratio of at
most a(R0), 3, 1 + maxi=1,...,|R(t)|

s(ri+1)
s(ri)

where ri+1 ≥ ri. It thus bounds the maximal aspect
ratio by the aspect ratio of the input rectangle, a constant value of 3 and the maximum
ratio between the sizes of two consequential rectangles in the size-sorted list of rectangles.

The approximation algorithm on itself is very unstable as the input needs to be sorted,
and furthermore it determines the orientation of the split based on the orientation of the
previous recursion.

Requiring the input to be sorted has the effect that a minor change in size can drastically
influence the layout. After sorting a rectangle might now be in the leftmost part of the
treemap instead of the rightmost part. Deciding the orientation of a slice based on the
best aspect ratio has the effect that a minor change in the size can flip the orientation at
every level. This can result in a very different treemap. These two problems together
make sure that we can have a completely different treemap, even if there are only small
changes in the sizes.

However, it is quite suitable for use as an initial algorithm as it is the only algorithm
which guarantees an upper bound on the maximal aspect ratio. The aspect ratio of the
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initial treemap is thus always bounded. For most practical applications the aspect ratio of
the input rectangle is low. This leaves only the distribution of the size of the rectangles as a
potential problem. We have assumed that this will not be a problem, but if the distribution
has a very high variance, a different algorithm might be better suited to generate the initial
treemap.

3.2.2 Handling deletions and additions

In order for our algorithm to be usable in practice, it should also be able to handle inser-
tions and deletions in the data.

Handling deletions

Let L be the current layout, and let L′ be the layout that we need to generate. To handle
the deletions of rectangles that are present in layout L but not in L′, we will delete them
one by one from the layout L before generating the layout for L′.

Let rectangle A denote a rectangle we are going to delete from the layout L. If rectangle
A is a grounded rectangle in L, then by Lemma 5 we know that there exists a one-sided
maximal segment ms in layout L(t) such that A is the only rectangle adjacent to one side
of ms. To remove rectangle A from L we are going to stretch all rectangles on the other
side of ms over rectangle A. This removes rectangle A from the layout. This is graphically
shown in Figure 3.11.

A
C B

C B

Figure 3.11: Deleting a grounded rectangle A from a layout.

If rectangle A is not a grounded rectangle in L, then we cannot simply delete it using
these stretch moves. Removing rectangle A directly would leave a hole in the layout as is
shown in Figure 3.12 which we are not able to fill directly using stretch moves.

B

E C

D
A

F G

HI

B

E C

D

F G

HI

Figure 3.12: Deleting a rectangle A that is not grounded leaves a hole which cannot be

directly filled with stretch moves.
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To be able to remove rectangle A we are going to transform the layout L such that rect-
angle A becomes a grounded rectangle. To do this we are going to repeatedly apply stretch
moves to rectangle A before deleting it. There are two cases to consider for this:

The first case is that at least one side s of rectangle A is adjacent to exactly one rectangle
which we will denote as rectangle B. As rectangle A is not a grounded rectangle, it holds
that the side s is at the endpoint of a maximal segment ms by Lemma 7. Moreover, it
must hold the rectangle A is longer alongside ms than rectangle B. If this was not the case
then rectangle A would either be a grounded rectangle or there would be more than one
rectangle adjacent to A on this side. It must thus be possible to stretch rectangle A over
rectangle B. The result of this is shown in Figure 3.13.

BE

C
D

A
E

C
D

A

B

Figure 3.13: Rectangle A is stretched over rectangle B in an non-sliceable layout.

The second case is that no side s of rectangle A is adjacent to exactly one rectangle. We then
pick a maximal segment ms for which it holds that rectangle A is adjacent to it. It must
then hold that there exists a rectangle B adjacent to ms which we can stretch over rectangle
A. We repeatedly find such a rectangle B and stretch it over rectangle A until there is only
one rectangle adjacent to rectangle A over this maximal segment. We will then follow the
procedure for the first case. This result of this process is shown in Figure 3.14.
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D
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F G B
E C

D

AF G

Figure 3.14: Rectangles B and F are stretched over rectangle A. Afterwards rectangle A is

stretch over rectangle G.

We can thus always stretch rectangle A of the maximal segment ms. By repeatedly per-
forming this in one direction, rectangle A will eventually become a grounded rectangle.
Either a side of s will become one-sided with A on the one-sided side, or it will become
adjacent to the boundary rectangle. If rectangle A is adjacent to the boundary, rectangle
A must be a grounded rectangle as well by Lemma 6. After transforming rectangle A to a
grounded rectangle we delete rectangle A using the process for grounded rectangle which
is explained above.

Alternatively, the second case can also be handled using a single edge flip move. We pick
any maximal segment ms1 that A is adjacent to. Without loss of generality we assume
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that ms1 is to the bottom of rectangle A. As rectangle A is not a grounded rectangle and
rectangle A is not adjacent to exactly one rectangle on any side, it holds that ms1 must
have at least two rectangles adjacent to either side.

Let C denote the rectangle adjacent to rectangle A and adjacent to ms1 on the same side
as A. Without loss of generality we assume that C is to the right of A. Let ms2 denote the
maximal segment between rectangles A and C.

As rectangles A and C are both adjacent to ms1, ms2 has an endpoint on ms1 and this
endpoint is not on one of the endpoints of ms1. As ms1 has at least two rectangles on
the other side which we will denote as F and G, there must exist a maximal segment ms3

such that an edge flip can be performed using the maximal segments ms1, ms2 and ms3.
Without loss of generality we assume that rectangle F lies to the left of ms2 and rectangle G
lies to the right of ms2. By performing this edge flip, rectangle A will become a grounded
rectangle as is shown in Figure 3.15.
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D
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ms2

ms1

ms3

Figure 3.15: An edge flip is performed with maximal segments ms1, ms2 and ms3. Rect-

angle A then becomes a grounded rectangle.

Handling additions

Let L be current layout and let L′ be the layout that we need to generate. To handle the
additions of the rectangles that are present in layout L but not in L′ we will add them after
the generation of the layout L′ without the additional rectangles.

To add rectangle A to the layout L′, we are going to split an existing rectangle B into rect-
angle A and rectangle B as is shown in Figure 3.16. We will then recalculate the positions
of the rectangles in the layout using the algorithm as explained in Section 1.2.4.

To decide which rectangle we are going to use as rectangle B, we are going to consider
all rectangles present in the layout. We will pick the rectangle which results in the best
possible maximal aspect ratio after inserting rectangle A in the layout.

B B A

Figure 3.16: Rectangle B is split into rectangles B and A to insert rectangle A in the layout.
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3.3 Hierarchical incremental moves algorithm

The main downside of the incremental moves algorithm is that the depth of the search
is limited by the size of the search space. The hierarchical incremental moves algorithms
aims to remedy this by transforming the single-level treemap into a hierarchical structure.
The amount of children for each node in this structure will be limited. Because the number
of children will be limited, it is possible to search through a larger number of moves for
every node in the structure which increases the speed drastically. However, it loses the
power of allowing all possible layouts as the rectangles are now put into a hierarchy.

The algorithm works as follows:

We will start the algorithm by generating a hierarchical structure from the rectangles in
the treemap. The rectangles are presented by leafs and groups of rectangle are represented
by internal nodes. Each internal node will have a size equal to the sum of the sizes of its
children.

Using this structure we will generate the initial treemap. Starting from the root and re-
cursing downwards, we will generate a local layout for each internal node using the ap-
proximation algorithm as explained in Section 3.2.1. We will use the size of the children
as the size of the rectangles, and the rectangle associated to this internal node as the input
rectangle for the layout. As we are recursing downwards each internal node will have a
rectangle associated to it from the approximation algorithm in the parent node. For the
root node the input rectangle R0 will be used.

After the initial generation, we will attempt to maintain the maximal aspect ratios in the
treemap at each time step. If the aspect ratio of a rectangle A crosses a threshold c1 we
will attempt to fix the aspect ratio. We will find the first group ancestor g of rectangle A,
for which it holds that we can improve the aspect ratio of its children to less than c2 using
a combination of local moves and the approximation algorithm. We will regenerate the
layout for g and recurse downwards in its children. For each child c where at least one of
the rectangles has an aspect ratio larger than c2, we will try to improve the layout using a
combination of local moves and the approximation algorithm.

We will now explain each step of the algorithm in detail.

3.3.1 Generating the initial treemap

To generate the initial treemap, we start by generating the hierarchical group structure.

Generating the hierarchical group structure

We will start by putting all the rectangles ri ∈ R(t) into a leaf group and collect all these
leaf groups into a set of groups X . We let the group that only contains the rectangle ri be
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denoted by g(ri). c(g) will denote the direct children of a group g. C(g) will denote all
the descendants of a group g and R(g) will denote the input rectangle of group g.

We are now iteratively going to join together the groups in X to create groups containing
at most k items. We will do this as follows:

We will start by determining how many groups we require such that no group has more
than k elements:

z =

⌈ |X |
k

⌉
Let Y(j) denote the new group that will be create where 1 ≤ j ≤ z. We are then going to
distribute each group in X to one on the group Y(j) using a greedy algorithm to balance
the sizes of the groups.

To do this we are going to sort X based on the size of the groups. Let X (i) denote the i’th
largest group in X . We will then iterate over i from 1 to |X |, and add X (i) to the parent
group Y(j) where j follows the sequence {1, 2, ..., z− 1, z, z, z− 1, ..., 2, 1, 1, 2, ...}.
After we have added all the groups g ∈ X to parent groups p ∈ Y , we will let X = Y and
divide X into groups again. We will repeat doing this until there is only one group left in
X which will be the root group.

Generating the initial treemap from the group structure

After the group structure is generated we will generate the initial treemap recursively
using the approximation algorithm. We do this as follows:

As an input we have a set of rectanglesR, the input rectangle R0 and the maximal amount
of children per group k. Let g denote the root of the structure, and set the input rectangle
of this group R(g) to R0. We will then calculate the layout L′ for the children of this graph
using the approximation algorithm with input rectangle R(g) and using c(g) as the list of
rectangles. For each of the children c ∈ c(g) we will then set R(c) equal to the rectangle
L′(c). We will then recurse into the children.

When the recursion is finished all the groups will have a rectangle associated to them. To
generate the initial treemap we will finally go through all the rectangles ri ∈ R and set
L(0, ri) = R(g(ri)).

3.3.2 Maintaining the treemap

For the consecutive iterations we will not regenerate the treemap from scratch as all cur-
rent treemap algorithms do, but we will instead use the existing treemap as a basis.

We will first update all the sizes of the rectangle r ∈ R in the treemap and update the
layout using the algorithm presented in Section 1.2.4. We will then update the associated
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rectangles R(g) for each group g by letting R(g) be the enclosing rectangle of all leaf
descendants of g.

After the group structure is updated we will attempt to fix the aspect ratios in the treemap.
Let c1 be a constant indicating the maximum aspect ratio the children of a group are
allowed to have before we are going to attempt to fix it. Let c2 ≤ c1 denote the maximum
aspect ratio the children of a group are allowed to have after improving it. c2 is lower
than c1 to make sure that we only perform changes that improve the aspect ratio enough
in order to keep the stability score as low as possible.

As we are working with a hierarchical structure it is not always possible to improve the
aspect ratios directly at a group. Moreover, changing the layout at a parent group changes
the aspect ratios of all descendant groups. We will therefore identify the highest level of
groups which we need to change to improve the aspect ratio.

We start by identifying which leaf groups have a bad aspect ratio. Let X denote the set of
leaf groups g for which the aspect ratio a(g) is larger than c1.

We then check how far upwards we must go into the group structure before we can im-
prove the aspect ratio of the groups g ∈ X.

For each parent group p = p(g) of the groups g ∈ X we will check if the aspect ratios of
its children are above c1 and whether it is possible to improve the aspect ratios to below
c2. To determine whether it can be improved enough we will first check if we can improve
the aspect ratios enough using only local moves as this is the most stable option. If this is
not possible we will first calculate a new layout using the approximation algorithm and
afterwards use local moves to improve the layout.

The improvement using only local moves will be done in a similar way as was done for
the incremental algorithm presented in Section 3.2. he only change will be that we will
stop the search as soon as we found a layout where the aspect ratio of all rectangles is
below c2. If the aspect ratios were bad enough and we can improve them enough we will
add p to the set Y . If the aspect ratio were bad but we could not improve them enough
we will recurse in the parent of p to find a group where the aspect ratios are bad and we
can improve it enough.

We have now identified the highest level nodes that we need to change to improve the
aspect ratios. However, as the group structure is a tree structure and we want to change
the layout of each group at most once, a number of groups should be removed as these
will be changed higher in the tree. We therefore remove all groups g from Y for which it
holds that an ancestor of g is in Y .

Finally we can update the layout of the groups. Starting from the groups in Y and recurs-
ing downwards we will check if the aspect ratios of its children are below c1 and whether
we can improve it to below c2. If this is the case then we will perform the improvement.
The layout L(t + 1) can now be generating by using the positions of the groups g(r) asso-
ciated to the rectangles r ∈ R(t + 1).
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3.3.3 Handling deletions and additions

For this algorithm we have to be able to handle deletions and additions in the data as well.
Additions and deletions will be handled in a similar way as they are handled in the incre-
mental moves algorithm presented in Section 3.2. There are however three differences.

The first difference is that when removing a rectangle r we only need to consider the
layout of the first ancestor p of g(m) that has more than 1 child instead of the entire
layout. Considering the entire layout is not needed as we know that the children of p are
enclosed by a rectangle. We thus only need to consider the rectangles in p for the series of
stretch moves that might need to be performed to make r an grounded rectangle.

The second difference is that when removing and adding a rectangle we need to update
the group structure as well. How we are updating the group structure will be explained
below.

Finally, when adding a rectangle r we can no longer choose from all possible rectangles
where to insert it. Instead we are restricted to the rectangles inside the parent p of the
group g(r) that r is added to.

Handling deletions

When a rectangle r gets deleted from the input data it changes the size of every group
it is contained in. We will go through all ancestors p of g(r) and update the sizes of the
groups. If p contains g(r) as a direct child, we will remove g(r) from the children. If g(r)
was the only child of p, we will delete p in its entirety.

Handling additions

To handle the additions we are going to use the concept of the first level groups. The first
level groups are defined as the parent of the leaf groups.

When a rectangle r get added to the treemap we have to determine in which first level
group we will add the rectangle. We will not insert rectangles at a ancestor p of a first
level group. If we would do this, then p would have one child consisting of a single
rectangle, and at least one child that consists of multiple rectangles. If we assume that
the sizes of the rectangles fluctuate around a common mean, then this would mean that
group consisting of a single rectangle is almost always significantly smaller than the rest
of the groups. This discrepancy in sizes makes it hard to obtain low aspect ratios.

Moreover, the most volatile changes in the group structure will happen at the lower levels
of the group structure. In the higher levels a group gconsists of a larger amount of rect-
angles. A low size in a child of g can be balanced out by a high value in a child g. This
makes sure that in the higher levels, the value will be closer to the mean. In the bottom
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levels there is less chance for this averaging to occur and these levels will thus be more
volatile.

To make sure that this averaging occurs as much as possible, we attempt to keep the
number of rectangles in the bottom levels balanced. When adding a rectangle r we will
thus try to add it in such a way that the groups become balanced.

We first find the smallest first level group g which has less than k items in it. If such a
group g exists then we will add the group g(r) as a child to the group g. If no such group
g exists, then all first level groups have exactly g children in them. For each of the first
level groups g we will then add another level as follows:

Given is a first level group g. For each of the children c ∈ c(g) of g we will replace the
child c with a new group g′ which has exactly one child which equals c. After adding a
level to each of the first level groups we will then again find the smallest first level group
g which has less than k items in it. This group must now exist and we will add the group
g(r) as a child to the group g.
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Experimental evaluation

In this section we are going to investigate two problems through experimental results.
The first problem is how the local moves correspond to the relative stability score. In
Section 3.1 we had assumed that the order equivalence graph encode the relative position
of the rectangles up to a certain degree. In Section 4.1.1 we will determine if this is indeed
the case. Moreover, we had additionally assumed that performing a local moves has a
limited impact on the relative stability score. In Section 4.1.2 we will determine if this is
indeed the case.

The second problem is to determine how the newly developed algorithms perform in
comparison to the existing algorithms. In Section 4.2 we will determine this through
experiments on both artificially generated and real data.

4.1 Correspondence of local moves with stability

To determine how the local moves correspond with the stability we are going to perform
two experiments. The first experiment will determine the relation between order equival-
ence of two layouts and the relative stability score. In particular we will test whether it is
true that when two layouts are order equivalent and the change in sizes in the rectangles
is small, the relative stability score is low. The second experiment will determine the av-
erage impact of each local move on the relative stability score. It will test the assumption
that since the local moves only change the order equivalence graph of a layout slightly,
the relative stability score will be low as well.
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4.1.1 Order equivalence and stability

We will now determine the relation between order equivalence of two layouts and the
relative stability score.

To perform the experiment we will first generate the initial entry of the dataset we will
generate between 5 and 25 rectangles. The size of these rectangles will be distributed
according to an uniform distribution in the interval [1, 100]. After the initial entry, we will
incrementally change the sizes of the rectangles in the treemap. We will change the size of
a rectangle r randomly by a real number between −x and x for each timestep. The values
of x that will be considered are 5, 10, 25, 50 and 100. The size of the rectangle r will remain
restricted between 1 and 100.

We will then generate the initial treemap using the Approximation algorithm [15] as
presented by Nagamochi and Abe which is explained in detail in Section 3.2.1. We will
change the sizes of the rectangles a 100 times. After changing the sizes we will update the
treemap with the new sizes using the algorithm presented in Section 1.2.4. We will then
calculate the relative stability score. Finally, after calculating the relative stability score we
will perform the local move that results in the treemap with the minimal maximum aspect
ratio to generate a new treemap. This makes sure that we encounter a larger variety of
different treemap. We will repeat this experiment a 100 times to make sure that the results
are not influenced significantly be randomness.

The results of this experiment are graphically displayed in Figure 4.1. As can be seen
the relative stability score are quite low. Even when the values can change by 100 which
means that the values are completely randomized in each step the score is still below 0.2
as long as the order equivalence graph stays the same. It thus seems to hold that when two
layouts are order equivalent, the relative stability score is low. The smaller the changes in
the sizes of the rectangles are, the lower the resulting relative stability scores will be.
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Figure 4.1: The average relative stability scores when the sizes of the rectangles change

while the layouts remain order equivalent.
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4.1.2 Local moves and stability

To determine the average impact of each local move on the relative stability score we are
going to use a similar setup as the previous experiment. However, before performing the
local move to update the treemap, we will calculate the stability score for each possible
move that can be performed on the layout. We will aggregate the stability scores by move
types such that the average impact of each type of local move becomes clear.

The results of this experiment are graphically displayed in Figure 4.2. The change in the
relative stability score seems to be quite low if only a single local move is performed. The
average impact of each type of local move is thus very low and the local moves indeed
change the relative stability score by only a very limited amount.
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Figure 4.2: The average relative stability scores when a local move is performed for each

type of local move.
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4.2 Performance of treemap algorithms

To evaluate the new treemap algorithms we are going to benchmark it on a number of
datasets against the existing treemap algorithms. We are going to benchmark them in
terms of the maximum aspect ratio, the average aspect ratio, the relative stability score
and the layout distance change function score. The data used to benchmark the al-
gorithms will be both artificially generated datasets and real datasets. Using artificial
datasets we can generate a large amount of data to compare the different algorithms, and
we can determine advantages and disadvantages of the different algorithms. The real
datasets give additional insight on practical problems that may occur with algorithms
and give examples of how the algorithms perform in practice.

4.2.1 Artificial datasets

We will generate the artificial datasets using a basic set of rules. For each experiment we
will change a single variable to see what the influence on the resulting treemaps are. The
basic set of rules is as follows:

To generate the initial entry of the dataset we will generate between 5 and 25 rectangles.
The size of these rectangles will be distributed according to an uniform distribution in
the interval [1, 100]. After the initial entry, we will incrementally change the sizes of the
rectangles in the treemap. We will change the size of a rectangle r randomly by a real
number between −5 and 5 for each timestep. The size of the rectangle r will remain
restricted between 1 and 100.

The experiments that we will be running modify the basic set of rules as follows:

1. No modification, we will use the basic set of rules as a baseline experiment. We will
use the baseline experiment to compare with the rest of the experiments.

2. To test the influence of the number of rectangles on the algorithms, we will change
the maximum number of rectangles that can be in the treemap from 25 to 50.

3. To test the influence of the size of the rectangles on the algorithms, we will change
the maximum sizes of the rectangles from 100 to 1000.

4. To test the influence of the stability of the sizes of the rectangles, we will change the
amount the sizes of the rectangles can decrease and increase from -5 and 5 to -25 and
25.

5. To test the influence of additions and removals of rectangles in the treemap, we will
randomly add and remove rectangles from the treemap. For each rectangle r in the
layout L(t), there is a 10% chance that it will be removed from the layout in L(t+ 1).
We will furthermore add up to 25− |R(t)| new rectangles r′ to the layout L(t + 1).
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Each of these rectangles r′ has a chance of 10% that it will be added to the treemap.
The initial size of these rectangles will be according to a uniform distribution in the
interval [1, 100].

6. To test the influence of the distribution of the sizes of the rectangles on the al-
gorithms, we will change the distribution used. Instead of generating the initial
entry using a uniform distribution we will generate the initial entry to a log-normal
distribution. Furthermore the size of each rectangles r in L(t) will be changed at
each step by multiplying the current size s(r) by a factor ex. x is randomly drawn
from a normal distribution with mean 0 and standard deviation 0.05. This method
has been used before to evaluate the performance of treemap algorithms over time
by Bederson et al. [2] and simulates a log-normal random walk. Moreover, the log-
normal distribution is a heavy-tailed distribution that is common in naturally oc-
curring positive-valued data [16]. It should thus be a good indicator of the overall
quality of each treemap algorithms.

We will run each experiment 100 times for 100 iterations per algorithm to minimize the
effect of randomness.

4.2.2 Real datasets

In addition to the generated datasets we will use two real world datasets. For both data-
sets we will use the complete dataset available which means that insertions and deletions
will occur in both datasets. We will collect data on the average aspect ratio, the maximal
aspect ratio, the layout distance change function score and the newly developed relative
stability score.

The first real world dataset shows the popularity of first names for newborns in the Neth-
erlands per year from 1993 until 2014. The data is trimmed to show only the 100 most
popular male and female names per year and is obtained from the Meertens Instituut
KNAW [14]. The data consists of a total of 451 unique names which appear in the data
between 1993 and 2014.

The second real world dataset shows the audience rating per channel on the dutch tele-
vision per year from 2004 until 2015. The data is obtained from the annual reports of
Stichting Kijkonderzoek [19]. The data consists of 45 unique television channels that have
appeared between 2004 and 2015 on the Dutch television.

4.2.3 Algorithms considered

We will now evaluate the performance of both the existing and the newly developed al-
gorithms per experiment. For the newly developed algorithms we will consider a number
of different combinations of variables.
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For both the purely incremental algorithm and the hierarchical algorithm we will evaluate
what the best depth for the breadth first search of local moves is. Furthermore we will
determine whether edge flip moves have added value or if stretch and flip moves are
sufficient. For the hierarchical algorithm we will furthermore determine the influence of
the maximum amount of items per group.

The naming scheme to determine which combinations of parameters is currently used is
as follows:

For the hierarchical incremental treemap algorithm the naming scheme will be
"H(F)G[X]M[k]". The H means that the treemap is generated using the hierarchical in-
cremental treemap algorithm. If an F is present then flip moves are considered as well.
G[X] stands for the maximal amount of items that can be in a group where X denotes the
amount. M[k] denotes the maximal depth considered in the breadth first search when
optimizing the layout where k denotes the depth.

For the purely incremental treemap algorithm the abbreviation scheme will be "I(F)M[k]".
The I means that the treemap is generated using the purely incremental treemap al-
gorithm. If an F is present then flip moves are considered as well. M[k] denotes the
maximal depth considered in the breadth first search when optimizing the layout where
k denotes the depth.

The full list of algorithms that we are going to evaluate is as follows:

Slice and Dice The Slice and Dice treemap algorithm [17] as presented by Schneiderman.

Pivot-by-Middle The Pivot-by-Middle treemap algorithm [2] as presented by Bederson
et al.

Pivot-by-Size The Pivot-by-Size treemap algorithm [2] as presented by Bederson et al.

Pivot-by-Split The Pivot-by-Split treemap algorithm [2] as presented by Bederson et al.

Squarified The squarfied treemap algorithm [5] as presented by Bruls et al. Additionally
a lookahead function is implemented which is similair to the lookahead for the Strip
treemap as presented by Bederson et al. [2]. This look-ahead function makes sure
that the aspect ratio of the last row of the Squarified algorithm is optimized as well.

Strip The Strip treemap algorithm [2] as presented by Bederson et al.

Spiral The Spiral treemap algorithm [21] as presented by Tu and Shen.

Approximation The Approximation treemap algorithm [15] as presented by Nagamochi
and Abe.

Moore The Moore treemap algorithm [20] as presented by Tak and Cockburn.

Hilbert The Hilbert treemap algorithm [20] as presented by Tak and Cockburn.
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HG7M4 The hierarchical incremental treemap algorithm. The groups contain at most
7 items and we go at most 4 local moves deep in the breadth first search when
optimizing the layout.

HG7M5 The hierarchical incremental treemap algorithm. The groups contain at most
7 items and we go at most 5 local moves deep in the breadth first search when
optimizing the layout.

HG11M4 The hierarchical incremental treemap algorithm. The groups contain at most
11 items and we go at most 4 local moves deep in the breadth first search when
optimizing the layout.

HG11M5 The hierarchical incremental treemap algorithm. The groups contain at most
11 items and we go at most 5 local moves deep in the breadth first search when
optimizing the layout.

HFG7M4 The hierarchical incremental treemap algorithm. The groups contain at most
7 items and we go at most 4 local moves deep in the breadth first search when
optimizing the layout. In addition to Flip and Stretch move we will also consider
edge flip moves.

HFG7M5 The hierarchical incremental treemap algorithm. The groups contain at most
7 items and we go at most 5 local moves deep in the breadth first search when
optimizing the layout. In addition to Flip and Stretch move we will also consider
edge flip moves.

HFG11M4 The hierarchical incremental treemap algorithm. The groups contain at most
11 items and we go at most 4 local moves deep in the breadth first search when
optimizing the layout. In addition to Flip and Stretch move we will also consider
edge flip moves.

HFG11M5 The hierarchical incremental treemap algorithm. The groups contain at most
11 items and we go at most 5 local moves deep in the breadth first search when
optimizing the layout. In addition to Flip and Stretch move we will also consider
edge flip moves.

IM3 The purely incremental treemap algorithm. We go at most 3 local moves deep in the
breadth first search when optimizing the layout. This number is lower than that of
the hierarchical as the number of layouts considered per depth is far larger for this
algorithm. Increasing the number of moves would mean that the algorithm takes
too much time. The amount of times that we will repeat the algorithm to optimize
the layout will be equal to 3.

IFM2 The purely incremental treemap algorithm. We go at most 2 local moves deep in
the breadth first search when optimizing the layout. In addition to Flip and Stretch
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move we will also consider edge flip moves. This number is lower than that of
the purely incremental treemap algorithm without moves as considering edge flips
significantly increases the number of layouts considered per depth. Increasing the
number of moves would mean the algorithm takes too much time for any practical
purpose. The amount of times that we will repeat the algorithm to optimize the
layout will be equal to 3.

For each experiment four bar graphs will be shown. These bar charts show the influence
of this experiment on the average aspect ratio, the maximum aspect ratio, the layout dis-
tance change stability score and the relative stability score. For each algorithm two data
entries will be shown. The red bar on the right will show the results from the current
experiment and the blue bar on the left will show the data from the baseline experiment.
The aspect ratio graphs will be cut of at a aspect ratio of 20 to maintain the visibility for
the small aspect ratios as the difference between 3 and 4 is far more important than the
difference between 20 and 30.

Finally two scatter plot will be shown for each experiment that show the performance of
the average aspect ratio and the relative stability score for each algorithm for this exper-
iment. The newly developed algorithms will have a blue marker. The currently existing
algorithms will have a red marker.

On one scatter plot we will show the performance of all algorithms and scale the axes
such that all algorithms are visible. On the other scatter plot we will only show HG11M4
and IM3 from the newly developed algorithms that use local moves. The reason for this is
that plotting of all the variants would make the plot illegible as the algorithms have quite
similar performances. Additionally we will cut off the aspect ratio at 10 here to make sure
we can focus on the most important algorithms. Moreover, the relative stability score will
be cut of at 0.5 for the same reason.

4.2.4 Influence of the number of rectangles

From Figure 4.3 and Figure 4.4 we see that for almost all the existing algorithms the per-
formance in terms of the stability score increase slightly when the number of rectangles
in the treemap increase.

For the newly developed algorithms that utilize local moves the stability score however
decrease when the number of rectangles increases. Furthermore, there does not seem to be
a significant difference in the decrease between the hierarchical algorithm and the purely
incremental algorithm for the stability score.

For the mean average aspect ratios of the rectangles in the treemap, the differences in
values are almost negligible for all algorithms as is shown in Figure 4.6. The exception
to this are the Pivot-by-X algorithms. The Pivot-by-Middle algorithm performs signific-
antly better when the number of rectangles increase, The Pivot-by-Size algorithm has a

50 Stability of treemap algorithms



4.2. PERFORMANCE OF TREEMAP ALGORITHMS

slight increase in performance and the Pivot-by-Split algorithm has a slight decrease in
performance. These three algorithms however still have the highest aspect ratios except
for the Spiral algorithm and the Slice and Dice algorithm.

For the mean maximum aspect ratio it is interesting that the Squarified and the Strip
algorithms perform far worse when the number of rectangles increases as is shown in
Figure 4.5. The Approximation algorithm on the other hand performs significantly better
when the number of rectangles increases and has a extremely low mean maximal aspect
ratio. For the algorithms that use local moves, we notice that the purely incremental al-
gorithms almost double their maximum aspect ratios. This makes sense as we still allow
for the same number of local moves to be performed on a larger number of total rect-
angles. A similar but weaker effect is displayed for most of the hierarchical algorithms.
There is however one notable exception, namely the hierarchical treemap with a group
size of 7 and a maximum of 4 local moves with edge flips. For this algorithm the mean
maximum aspect ratio has almost tripled. It seems that the edge flips in this case were
actually detrimental to the algorithm even though more layouts could be considered com-
pared to the case where no edge flips are present. It thus seems that simply having more
possible layouts to consider does not correspond directly to a lower mean maximum as-
pect ratio, even though it does correspond to a lower maximum aspect ratio for each
timestep.

In Figure 4.7 and Figure 4.8 we see the scatter plots of the relative stability score and the
mean average aspect ratio. It then becomes clear that the hierarchical algorithm is clearly
the best choice for this kind of data. The incremental algorithms performs worse in terms
of both stability and aspect ratio. Hilbert, Moore and Approximation treemaps perform
slightly better in terms of mean average aspect ratio but are far less stable than the hier-
archical algorithm. Moreover, the relative stability of the hierarchical algorithm decreases
when the number of rectangles increases, while for the Hilbert, Moore and Approximation
treemaps it increases. Therefore, the hierarchical algorithm becomes even more suitable
when the amount of data is larger while Hilbert, Moore and Approximation algorithms
only become less suited.
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Figure 4.3: A bar chart showing the change in the mean relative stability score when the

maximum number of rectangles in the treemap is increased from 25 to 50.
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Figure 4.4: A bar chart showing the change in the mean layout distance score when the

maximum number of rectangles in the treemap is increased from 25 to 50.
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Figure 4.5: A bar chart showing the change in the mean maximum aspect ratio when the

maximum number of rectangles in the treemap is increased from 25 to 50.
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Figure 4.6: A bar chart showing the change in the mean average aspect ratio when the

maximum number of rectangles in the treemap is increased from 25 to 50.
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Figure 4.7: A trimmed scatter plot showing the aspect ratio and the relative stability score

for each algorithm when the maximum number of rectangles in the treemap

equals 50.
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Figure 4.8: A complete plot showing the aspect ratio and the relative stability score for

each algorithm when the maximum number of rectangles in the treemap

equals 50.
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4.2.5 Influence of the size of the rectangles

In Figure 4.9 and Figure 4.10 we see that the stability score for almost all algorithms is
improved significantly when the possible range of values is increased from {1− 100} to
{1 − 1000}. While this might seem counter intuitive, we must keep in mind that only
the range of values has increased significantly different. In particular the amount that the
size of a rectangle can change per timestep has not changed. In the baseline experiment
the values can change by 5% of the total range, while the value can now change by only
0.5% of the total range. Therefore, far less drastic changes will occur in the treemap which
is reflected in the data. In particular we notice that the Pivot-By-X algorithms and the
algorithms that use local moves have a near perfect stability score.

As we are working with data generated initially by a uniform distribution, one would
expect that scaling the maximum size of the rectangles would not change the performance
of the algorithms on the average aspect ratio. However, when we look at Figure 4.12 and
Figure 4.11 we see that the average mean aspect ratio and average maximum aspect ratio
are actually reduced for almost all of the algorithms. The reason for this again is due to
how much the values can change per timestep. In the baseline experiment the sizes of
the rectangles fluctuate relatively more around the initial value than in this experiment.
This larger fluctuation means that the sizes of the rectangle are less close to a uniform
distribution on average. The larger the differences between the sizes of the rectangles
the harder it is for the algorithms to generate a treemap with good aspect ratios. If the
sizes follow a uniform distribution these differences are minimized and thus better aspect
ratios will be achieved.

We again notice that the presence of edge flips moves actually increases the mean max-
imum aspect ratio instead of decreasing it as would be expected. It thus seems that the
edge flip moves optimize the maximum aspect ratio in ways that are not necessary, and
are in fact even detrimental to optimizing the mean maximum aspect ratio.

In Figure 4.7 and Figure 4.8 we see the scatter plots of the relative stability score and the
mean average aspect ratio. The performance of most algorithms is quite close to each
other. The hierarchical algorithm performs best on the stability while achieving a low
aspect ratio, but almost all other algorithms perform quite good as well.
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Figure 4.9: A bar chart showing the change in the mean relative stability score when the

maximum size of a rectangle is increased from from 100 to 1000.

Figure 4.10: A bar chart showing the change in the mean layout distance score when the

maximum size of a rectangle is increased from from 100 to 1000.
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Figure 4.11: A bar chart showing the change in the mean maximum aspect ratio when the

maximum size of a rectangle is increased from from 100 to 1000.

Figure 4.12: A bar chart showing the change in the mean average aspect ratio when the

maximum size of a rectangle is increased from from 100 to 1000.
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Figure 4.13: A trimmed scatter plot showing the aspect ratio and the relative stability

score for each algorithm when the maximum size of a rectangle equals 1000.

Figure 4.14: A complete scatter plot showing the aspect ratio and the relative stability

score for each algorithm when the maximum size of a rectangle equals 1000.
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4.2.6 Influence of the stability of the sizes

From Figure 4.15 and Figure 4.16 we see that for all the algorithms the performance in
terms of the stability score is increased by almost a factor 2 when the amount that a rect-
angle can change its size increases from 5 to 25. As almost all algorithms change the layout
to improve the aspect ratio it is to be expected that such large increases occur. Most al-
gorithms have become completely unstable and would be unusable in practice if this data
occurred. If we look at the algorithms that use local moves we notice that all the stability
scores are around 0.2 which is still lower than even the baseline stability scores of most
other algorithms. The Pivot-by-Middle and Strip algorithms still have a reasonable low
stability score even though the score has increase quite a bit compared to the baseline
score.

For the mean average and maximal aspect ratios we see an increase in the values for all
algorithms in Figure 4.17 and Figure 4.18. The reason for this is that initially the sizes
of the rectangles roughly followed a uniform distribution. When increasing the amount
the sizes can change per timestep, the sizes will be less closely distributed from a uniform
distribution than before. This results in large difference between the sizes of the rectangles
which makes it harder to generate treemaps with good aspect ratios.

The algorithms that use local moves seem to only have a minimal increase in the per-
formance on the aspect ratio, which is especially interesting for the purely incremental
algorithms. The incremental algorithms can only make a limited number of changes to
the treemap and intuitively it should thus not be able to handle fast changes in the sizes
of the rectangles. However, this does not seem to be the case. It seems that with a very
limited depth for the breadth first search of local moves, it is already possible to main-
tain a very low mean average and mean maximum aspect ratio. On the other hand the
hierarchical algorithms seem to be unable to perform well on the mean maximum aspect
ratio using a depth of 4 unless they are using edge flip moves as well. The depth for the
breadth first search of local moves thus surprisingly seems to matter more for the hier-
archical algorithms than for the purely incremental algorithms. The reason for this is that
in the hierarchical algorithms the rectangle with the maximal aspect ratio is used in only
a very limited amount of moves due to the compartmentalization. As it is used in a more
limited amount of moves compared to the purely incremental algorithms, more moves are
required before it is optimized compared to the purely incremental algorithm. Increasing
the group size slightly in this case does not completely solve the problem, as there are not
always enough rectangles in the treemap to utilize the increased group size efficiently.

In Figure 4.7 and Figure 4.8 we see the scatter plots of the relative stability score and
the mean average aspect ratio. Most algorithms have either a stability score or a mean
average aspect ratio higher than the cut-off point. Only the Pivot-by-Middle, the Strip
and the algorithms using local moves are still on the plot. It seems that for data where
the sizes of the rectangles change fast, one of the algorithms that uses local moves is the
best algorithm to use. The Split algorithm should be considered as well as it not that far
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behind in terms of performance and it calculates a treemap far faster than the algorithms
that use local moves.

Figure 4.15: A bar chart showing the change in the mean relative stability score when the

change in size per timestep is increased from 5 to 25.

Figure 4.16: A bar chart showing the change in the mean layout distance score when the

change in size per timestep is increased from 5 to 25.
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Figure 4.17: A bar chart showing the change in the mean maximum aspect ratio when the

change in size per timestep is increased from 5 to 25.

Figure 4.18: A bar chart showing the change in the mean average aspect ratio when the

change in size per timestep is increased from 5 to 25.
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Figure 4.19: A trimmed scatter plot showing the aspect ratio and the relative stability

score for each algorithm when the change in size per timestep equals 25.

Figure 4.20: A complete scatter plot showing the aspect ratio and the relative stability

score for each algorithm when the change in size per timestep equals 25.
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4.2.7 Influence of additions and removals

From Figure 4.15 and Figure 4.16 we see that having additions and removals of rectangles
from the treemap decreases the performance of all the algorithms in terms of the stability
score. The performance hit however varies drastically per algorithm. Pivot-by-Middle
and Pivot-by-Split both suffer such an enormous performance hit in terms of stability.
Instead of being nearly the best in terms of stability they are now almost the worst in
stability. Algorithms that were already unstable on the other hand seem to only suffer
a slight decrease in stability performance. For the algorithms that use local moves the
stability score almost doubles but is still almost half of the stability scores of the other
algorithms. These algorithms thus seem to be able to handle appearances and disappear-
ances relatively well in terms of stability.

For the mean average and maximal aspect ratios we see small increases and decreases
for the algorithms that do not use local moves as shown in Figure 4.23 and Figure 4.24.
This is to be expected as these algorithms regenerate the treemap from scratch after every
iteration. For the hierarchical algorithms we however see that there is a jump in the mean
average aspect ratio, and a large peak in the mean maximum aspect ratio for a group
size of 7. In these cases enough rectangles have been deleted from a group in the tree
structure, such that the aspect ratio of the group can no longer be fixed. This shows that
using hierarchical approach has some limits as well. The group size for the hierarchical
approach must be large enough such that it can handle deletions. However, increasing
the group size comes at the cost of increased processing power which depending on the
system and the requirements might not be always feasible.

In Figure 4.7 and Figure 4.8 we see the scatter plots of the relative stability score and the
mean average aspect ratio. Most algorithms have a very large stability stability score apart
from the algorithms that use local moves. These algorithms and in specific the purely
local moves algorithm seem to be a lot more robust in terms of stability to additions and
removals of rectangles to the treemap.
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Figure 4.21: A bar chart showing the change in the mean relative stability score when

rectangles are added and removed from the treemap.

Figure 4.22: A bar chart showing the change in the mean layout distance score when rect-

angles are added and removed from the treemap.
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Figure 4.23: A bar chart showing the change in the mean maximum aspect ratio when

rectangles are added and removed from the treemap.

Figure 4.24: A bar chart showing the change in the mean average aspect ratio when rect-

angles are added and removed from the treemap.
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Figure 4.25: A trimmed scatter plot showing the aspect ratio and the relative stability

score for each algorithm when rectangles are added and removed from the

treemap.

Figure 4.26: A complete scatter plot showing the aspect ratio and the relative stability

score for each algorithm when rectangles are added and removed from the

treemap.
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4.2.8 Influence of the distribution of sizes

From Figure 4.27 and Figure 4.28 we see that having additions and removals of rectangles
from the treemap increases the performance of almost all the algorithms in terms of the
stability score. The reason for this is that using exponential changes in the sizes, the
relative sizes of the rectangles cannot change as much as when absolute changes are used.

An interesting case is the relative small decrease in stability performance of the purely
incremental layout with edge flips. As this algorithm can perform less local moves than
the algorithm with a larger depth and without edge flips, it seems that the edge flips
change the layout more drastically in comparison to the other local moves.

For the mean average aspect ratios and mean maximum aspect ratios quite a lot of inter-
esting changes occur. For the hierarchical algorithms it does not seem to matter whether
the distribution is log-normal or uniform for the aspect ratio. For the purely incremental
algorithms we see an increase in the mean maximum aspect ratio and a slight increase
in the mean average aspect ratio. The algorithms have a bit more trouble optimizing the
maximum aspect ratio when the data is distributed according to a log-normal distribu-
tion. However, for most of the rectangles it will still be able to keep the aspect ratio low.

For the Pivot-by-X algorithms and the Approximation algorithm the performance on the
aspect ratios improve significantly. These algorithms apparently work better under a
heavy-tailed distribution such as the log-normal distribution than under a uniform dis-
tribution. For the Approximation algorithm this is not surprising. The Approximation
algorithm can guarantee an aspect ratio bound depending on the ratio of the sizes of the
rectangles. As in a heavy-tailed distribution the ratios are more evenly spread than in
a uniform distribution it can obtain better aspect ratios. The Pivot-by-X algorithms use
a similar approach as the Approximation algorithm, and the increase in performance is
therefore also most likely from having a more even spread of the ratios.

The Spiral, Moore and especially the Hilbert treemaps suffer from a massive performance
hit in terms of aspect ratio when a log-normal distribution is used instead of a uniform
distribution. Using the log-normal random walk, a single rectangle will eventually have
a far greater size than all the other rectangles. These algorithms seem to be unable to
handle this as they want to lay out all the items according to the order in the data. For this
ordering to work the sizes of the rectangles should however not be to far apart, or a small
number of rectangles must share a side with the large rectangle which is not always the
case. This thus results in large increase in the aspect ratios for these algorithms.

In Figure 4.31 and Figure 4.32 we see the scatter plots of the relative stability and the mean
average aspect ratio. For the log-normal distribution a large number of algorithms per-
form quite nicely. Depending on whether stability or the aspect ratio is the most important
either the purely incremental algorithm, the hierarchical algorithm of the Approximation
algorithm is however the best suited for this kind of data. A large amount of algorithms
are however almost as good and should be considered as well.
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Figure 4.27: A bar chart showing the change in the mean relative stability score when the

distribution is changed from a uniform distribution to a log-normal distribu-

tion.

Figure 4.28: A bar chart showing the change in the mean layout distance score when the

distribution is changed from a uniform distribution to a log-normal distribu-

tion.
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Figure 4.29: A bar chart showing the change in the mean maximum aspect ratio when the

distribution is changed from a uniform distribution to a log-normal distribu-

tion.

Figure 4.30: A bar chart showing the change in the mean average aspect ratio when the

distribution is changed from a uniform distribution to a log-normal distribu-

tion.
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Figure 4.31: A trimmed scatter plot showing the aspect ratio and the relative stability

score for each algorithm when the distribution is a log-normal distribution.

Figure 4.32: A complete scatter plot showing the aspect ratio and the relative stability

score for each algorithm when the distribution is a log-normal distribution.
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4.2.9 Popular names

For the popular names data set we have generated a scatter plot showing the trade-off
between the mean average aspect ratio and the relative stability score which is shown
in Figure 4.33 and Figure 4.34. The purely incremental algorithm is not shown as it is
unable to generate a treemap in a reasonable amount of time for this dataset due to the
treemap having 200 rectangles at a time. As is shown most algorithms are able to generate
treemaps with a very low aspect ratio, with the Squarified treemap algorithm achieving
a mean average aspect ratio of almost 1. However, only the hierarchical algorithm is able
to generate stable treemaps. All the current treemap algorithms with the exception of
the Slice and dice algorithm have a relative stability score of almost 0.4 or higher. This is
mostly due to the quantity of rectangles and the high addition and removal rate. The Slice
and Dice algorithm is completely stable but generates treemaps with a far to large aspect
ratio to be practical. The hierarchical algorithm is however able to generate extremely
stable treemaps with a relative stability score of 0.05.

For the popular names dataset the hierarchical algorithm thus performs extremely well
compared to the other algorithms with most of the benefits being in terms of stability.
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Figure 4.33: A trimmed scatter plot showing the aspect ratio and the relative stability

score for each algorithm on the popular names dataset.

Figure 4.34: A complete scatter plot showing the aspect ratio and the relative stability

score for each algorithm on the popular names dataset.
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4.2.10 Audience ratings

For the audience ratings data set we have generated a scatter plot showing the trade-off
between the mean average aspect ratio and the relative stability score which is shown
in Figure 4.35 and Figure 4.36. As the audience ratings data set is significantly smaller
than the popular names data set, we are able to generate a treemap using the purely
incremental algorithm. We have in addition to the hierarchical algorithm with a group
size of 11 and a move depth of 4 also shown the hierarchical algorithm which additionally
uses edge flips as well. The reason for this is that this algorithm performs significantly
better on this dataset.

Similarly to the popular names dataset all existing algorithms are unable to generate tree-
maps with a good performance on the relative stability indicator in the audience ratings
dataset. The hierarchical algorithms and the purely incremental algorithm perform sig-
nificantly better in this respect than the current existing algorithm. The reason that the
existing algorithms perform badly is due to the majority of the rectangles being signi-
ficantly smaller than the average. This majority of the rectangles furthermore have high
fluctuations in their sizes, and furthermore there is a high addition rate which results in
the instability in the existing algorithm.

The Pivot-by-X, the Moore and the hierarchical algorithm with a group size of 11 all have
relatively high aspect ratios compared to the minimal aspect ratios of the other algorithms.
However, the aspect ratios are still not extremely high. These high aspect ratios are due
to these algorithms being unable to handle the large amount of small items well. What
is quite interesting is that the hierarchical algorithm with a group size of 7, a depth of 4
and which uses edge flips performs significantly better than the hierarchical algorithm
with a group size of 11 and a depth of 4. This is mostly due to decrease in the size of the
groups and partially due to the presence of edge flip moves. By having smaller groups
the algorithm is better able handle the large possible differences in sizes as it is easier
to generate non-sliceable layouts. The edge flips additionally help reaching these non-
sliceable layouts faster.

The purely incremental algorithms performs the best out of all algorithms having both
one of the lowest aspect ratios and one of the lowest stability scores. Even though the in-
cremental algorithm can not generate non-sliceable layouts easily, it is still able to handle
the large amount of small items. It is able to handle the large amount of small items since
it can put these together in the layout. This is in contrast to the hierarchical algorithm
where the groups are fixed in the group structure.
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Figure 4.35: A trimmed scatter plot showing the aspect ratio and the relative stability

score for each algorithm on the audience ratings dataset.

Figure 4.36: A complete scatter plot showing the aspect ratio and the relative stability

score for each algorithm on the audience ratings dataset.
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4.2.11 Evaluation of the new algorithms

The hierarchical incremental moves algorithm with a group size of 11 and the incremental
moves algorithm are able to maintain a high relative stability score and a high layout
distance change score for all experiments. Moreover, they are also able to have a low
mean maximal aspect ratio and a mean average aspect ratio. For each experiment these
algorithms were either the best candidate or belonged to the best candidates for the ex-
periment.

In general the performance of the incremental algorithm and the hierarchical algorithm
is almost equal. However, the purely incremental algorithms take a significant amount
of time to calculate a layout once the number of rectangles increases above 25 rectangles.
When the number of rectangles becomes larger than 50 it even becomes completely unus-
able for on-line visualizations. The hierarchical algorithm in contrast does not suffer from
this problem due to the compartmentalization of the rectangles in a hierarchical structure.
The hierarchical algorithm would thus be the preferred algorithm to use until a significant
speed-up can be gained in the purely incremental algorithm.

Increasing the group size of the hierarchical algorithm has a mostly positive effect on the
stability performance of the hierarchical algorithms. Specifically it was able to handle
additions and deletions far better with a larger group size. However, as was shown on
the audience ratings dataset increasing the group size when there are large discrepancies
between the sizes can increase the aspect ratio significantly. Setting the group size cor-
rectly to match the type of data encountered in the dataset visualized is thus important to
generate good treemaps using the hierarchical algorithm. Having a too small group size
can result in large aspect ratios when the addition and deletion rate is high. Having a too
large group size can result in large aspect ratios when there is a large amount of small
data appearing. Moreover, a larger group sizes means that more processing power must
be used. From the experiments a group size of 7 seems to perform quite nicely in most
cases and should suffice as a default value.

The edge flips moves did not seem to have a significant positive effect on the performance
on the stability score and the aspect ratio measures for the hierarchical algorithms. In
fact it has a negative impact on the performance for a number of experiments. For the
incremental algorithms it is be better to be able to traverse a level deeper into to breadth
first search using local moves than to use edge flips. Whether increasing the depth the
algorithm is able to traverse any further has any significant effect remains to be tested.
This is however a very time-consuming process as the incremental algorithm is currently
not fast enough to be able to handle a larger maximum depth.

For the hierarchical algorithm is seems that increasing the maximal depth the algorithm
is able to traverse rarely has a significant positive effect. It thus seems that having a depth
of 4 is already sufficient from group sizes of 7 and 11. If the group sizes are increased
to higher values we expect that the depth should be increased as well to obtain similar
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results, but this has not been tested yet.

4.2.12 Evaluation of the relative stability score

From the results of the experiment one more very interesting observation can be made.
The distribution of relative stability scores for the algorithms is almost always quite sim-
ilar to the distribution of the layout distance change stability scores disregarding scaling.

While the layout distance change function score and the relative stability score calculate
different aspects of the stability score one would expect the scores to differ quite drastic-
ally. However, this does not seem to be the case. This indicates that the relative stability
and the layout distance change function partially encode the same information.

The experiments we performed were however not aimed to determine the relation
between the relative stability score and the layout distance change functions score. We
can therefore not draw any conclusions on the nature of the relation between the two sta-
bility measures from the experiments directly. It would be interesting to determine how
exactly these two stability measures obtain such similar distributions, but due to time
constraints this is not included in this thesis.
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Conclusions

In this thesis we have explored the concept of stability in rectangular treemap algorithms.

In Section 2 we have briefly evaluated a number of contributing factors of stability and
evaluated how the existing definitions of stability take these components into account.
We found that none of the current definitions take the change in group structure in the
treemap into account. In response we have developed a new stability measure using the
relative position of the rectangles in the treemap that does encode the change in group
structures in the treemap.

In Section 3 we have developed the concept of local moves. Local moves can be used to
transform an existing treemap into a different treemap using small incremental changes.
We have proven that using only Flip and Stretch local moves we are able to transform
any treemap into any other treemap. Furthermore, we have used the concept of local
moves to develop two new treemap algorithms. These two new algorithms are the first
treemaps algorithms that are able to generate non-sliceable rectangular treemaps.

In Section 4 we have evaluated the newly developed treemap algorithms. The newly
developed treemap algorithms were able to maintain a low mean average aspect ratio, a
low mean maximum aspect ratio, a low layout distance change functions score and a low
relative stability score. In all experiments the newly developed algorithms were among
the best compared to all current existing rectangular treemap algorithms in terms of both
the mean average aspect ratio and the stability score. Furthermore they were are able to
achieve a good balance between two quality indicators which no other algorithm was able
to do consistently.
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5.1 Open problems

A number of problems remain unsolved in this thesis.

The first open problem is that a user study need to be performed to verify that the change
in group structures and the relative stability are indeed important for the perceived sta-
bility of the treemap.

The second open problem is to determine a complete definition of stability that includes
all contributing factors of stability. When such a definition is developed a conclusive ver-
dict can be given on the stability of each treemap algorithm. Moreover it would become
possible to adapt the search method of the local moves to only consider the moves that
are the most stable. This would result in the algorithm becoming even more stable.

A third open problem is to determine the relationship between the layout distance func-
tion score and the relative stability score. While these two stability measures work using
a completely different basis to determine a stability score, the resulting scores seem to
follow roughly the same distribution. It would be interesting to see exactly why these
two measures give such similar distribution. We believe that this information would help
significantly in setting up a complete definition of stability.

The fourth open problem is to determine an upper bound on the average case maximal
aspect ratio of the hierarchical incremental algorithm. We believe that it should be pos-
sible to give an upper bound on the average maximal aspect ratio given that a distribution
is used that has a finite mean.

Finally it should be investigated whether there exists a strongly polynomial time al-
gorithm to convert a layout to a treemap for which the sizes of the rectangles are correct.
If such an algorithm can be found it will dramatically speed up the newly developed al-
gorithms. This would mean that the algorithms can handle a larger number of rectangles
and can also consider more possible layouts.
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Appendix A

Properties of rectangular layouts

In this appendix we will give a number of proofs that concern the properties of rectangular
layouts.

A.1 Types of rectangular layouts

Rectangular layouts can be divided into two types of layouts which each have their own
properties, namely sliceable layouts and non-sliceable layouts.

A.1.1 Sliceable rectangular layouts

Lemma 5. Let rectangle A denote a rectangle in a sliceable rectangular layout L where the number

of rectangles in L is at least 2. Then there must exist a one-sided inner maximal segment ms such

that rectangle A is the only rectangle adjacent to one side of ms. We denote such a rectangle as a

grounded rectangle.

We prove Lemma 5 lemma by contradiction. Let rectangle A denote a rectangle in the
treemap. We assume that there exists a sliceable rectangular layout L, where there does
not exist an inner maximal segment ms such that rectangle A is the only rectangle adjacent
to one side of ms. In other words, no side of the rectangle associated to rectangle A is in
itself an inner maximal segment.

Rectangle A can then be in six different positions:

Position 1 It is adjacent to exactly zero sides of the bounding box.

Position 2 It is adjacent to exactly one side of the bounding box.
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Position 3 It is adjacent to exactly two opposite sides of the bounding box.

Position 4 It is adjacent to exactly two orthogonal of the bounding box.

Position 5 It is adjacent to exactly three sides of the bounding box.

Position 6 It is adjacent to exactly four sides of the bounding box.

We now derive a contradiction for each of the possible positions of rectangle A.

Position 1:

Let msT be the maximal segment adjacent to rectangle A. Without loss of generality we
assume that rectangle C is above rectangle A. msT cannot be completely contained in the
top segment of rectangle A, as it would otherwise hold that the top segment of rectangle
A is a maximal segment in itself. It must thus hold that msT is either longer to the left,
longer to the right or longer on both sides as the top segment of rectangle A.

We first consider the case that the msT end further to the left and to the right than the top
segment of rectangle A. This results in the layout as shown in Figure A.1.

A

msT

Figure A.1: msT ends further to the left and to the right than the top segment of rectangle

A.

Let msL be the maximal segment adjacent to the left of rectangle A. Let msF be the max-
imal segment adjacent to the right of rectangle A. If msL and/or msR end above msT, then
it would mean that msl and/or msR would intersect the maximal segment msT resulting
in a degenerate case. To solve this degenerate case we would either have to split msT into
multiple maximal segments or we would need to split msL and msR in multiple maximal
segments. If we split msT into multiple segments, then msT would not longer end further
to the left and right than the top segment of rectangle A which results in a contradic-
tion. If we split msL and/or msR in multiple maximal segment msL and/or msR would no
longer end further to the top than the top segment of rectangle A which again results in a
contradiction. Thus msL and msR must both end at msT.

As the left and right segment of rectangle A cannot be maximal segment by themselves,
it must hold that msL and msR end below the left and right segment of rectangle A. This
results in the layout as shown in Figure A.2.
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A

msT

msL msR

Figure A.2: msL and msR end below the left and right side of rectangle A.

Finally let msB be the maximal segment adjacent to the bottom of rectangle A. It msB

ends to the left of msL or to the right of msR we have a degenerate case again. To solve
this degenerate case we would have to split either msL or msR into multiple maximal
segments. If we would split up one of these maximal segments msL and msR, it would
no longer hold that both of these maximal segments end below the left/right segment of
rectangle A which results in a contradiction. Therefore, msB must lie between msl and
msR. This means that msB is completely contained in the bottom segment of rectangle A
which results in a contradiction.

We now consider the case that the maximal segment msT ends further to one side top side
of rectangle A. Without loss of generality we assume that it is ends to the right side of
rectangle A as is shown in Figure A.3.

A

msT

Figure A.3: msT ends further right than the top segment of rectangle A.

Let msR be the maximal segment adjacent to the right of rectangle A. If msR ends above the
top segment of rectangle A, then we again have a degenerate case where we would have to
split either msT or msR into multiple maximal segments. In both cases a contradiction can
be derived using the same reasoning as for the previous cases. msR must thus end below
the bottom segment of rectangle A. This results in the layout as is shown in Figure A.4.
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A

msT
msR

Figure A.4: msR ends below the bottom segment of rectangle A.

Let msB be the maximal segment adjacent to the bottom of rectangle A. If msB ends to
the right of the right segment of rectangle A, we again have a degenerate case where we
would have to split either msR or msB into multiple maximal segments. In both cases
a contradiction can be derived using the same reasoning as for the previous cases. msB

must thus end to the left of the left segment of rectangle A. This results in the layout as is
shown in Figure A.5.

A

msT
msR

msB

Figure A.5: msB ends to the left of the left segment of rectangle A.

Let msL be the maximal segment adjacent to the left of rectangle A. If msL ends below the
bottom segment of rectangle A, we again have a degenerate case where we would have
to split either msB or msL into multiple maximal segments. In both cases a contradiction
can be derived using the same reasoning as for the previous cases. msL must thus end
above the top segment of rectangle A as is shown in Figure A.6. It is not possible to slice
the layout in two over any of the maximal segments msT,msR,msB,msL as long as the other
segments are still present. The resulting layout is therefore a non-sliceable layout. We had
assumed that the resulting layout was sliceable and thus we have derived a contradiction.

As msC can not end further to the right, further to the left, or further on both sides than
the top segment of rectangle A we have derived a contradiction for this position.
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A

Figure A.7: Rectangle A touches the top and bottom side.

A

msT
msR

msB

msL

Figure A.6: msL ends above the top segment of rectangle A.

Position 2:

Without loss of generality we assume that rectangle A is adjacent to the top side of the
bounding box. This case is then identical to position 1, where the maximal segment msT

equals the top side of the bounding box. Therefore, this position also leads to a contradic-
tion.

Position 3:

Without loss of generality we assume that rectangle A is adjacent the top and the bottom
side of the bounding box as is shown in Figure A.7. Let msR be adjacent to the right of
rectangle A. As rectangle A touches both the top and the bottom side of the bounding box
it is not possible for msR to end above or below the top/bottom segment of rectangle A.
msR must thus be contained in the right side of rectangle A which gives us a contradiction
for this position.

Position 4:

Without loss of generality we assume that rectangle A is adjacent to the top and right sides
of the bounding box. This case is then identical to position 1, where the maximal segment
msT equals the top side of the bounding box and the maximal segment msR equals the
right side of the bounding box. Therefore, this position also leads to a contradiction.
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Position 5:

Without loss of generality we assume that rectangle A is adjacent to the top, right and
bottom sides of the bounding box. This case is then identical to position 1 where the
maximal segment msT equals the top side of the bounding box, the maximal segment
msR equals the right side of the bounding box and the maximal segment msB equals the
bottom side of the bounding box. Therefore, this position also leads to a contradiction.

Position 6:

If rectangle A touches all four boundaries, it must be the only rectangle in the layout. As
the layout L should have at least 2 rectangle this position leads to a contradiction.

As all of the possible positions of rectangle A lead to a contradiction, we have proven that
Lemma 5 must hold.

A.1.2 non-sliceable rectangular layouts

Lemma 6. Let rectangle A be a rectangle that is not grounded. Rectangle A must then be adjacent

to 4 inner maximal segments.

To prove Lemma 7 we will assume that rectangle A is not adjacent to 4 inner maximal
segments. Rectangle A must then be adjacent to at least one of the boundary segments.
Without loss of generality we assume it rectangle A is adjacent to the left boundary seg-
ment. Let msT be the maximal segment adjacent to the top of rectangle A. Furthermore
let msB be the maximal segment adjacent to the bottom of rectangle A and let msR be the
maximal segment adjacent to the right of rectangle A.

As rectangle A is adjacent to the left boundary and rectangle A is not grounded, it must
hold that both msT and msB end to the right of the top/bottom side of rectangle A. This is
shown in Figure A.8.

A
msT

msB

Figure A.8: rectangle A touches the left boundary and msT and msB both end to the right

of the top/bottom segment of rectangle A.
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As rectangle A is not grounded it must hold that msR ends below the bottom segment
of rectangle A and/or above the top segment of rectangle A. If msR ends above the top
segment of rectangle A an intersection would occur with msT resulting in a degenerate
case. To solve this degenerate case we would either have to split msR into multiple max-
imal segments or we would need to split msT into multiple maximal segments. If we split
msT, then msT would not longer end further to the right than the top segment of rectangle
A which results in a contradiction. If we split msR in multiple maximal segments, then
msR would no longer end above the top segment of rectangle A which again results in a
contradiction. Thus the top of msR must end at msT.

If msR ends below the bottom segment of rectangle A an intersection would occur with
msB resulting in a degenerate case. Using the same reasoning as before this leads to a
contradiction again. Therefore, the bottom of msR must end at msB.

This means that the right side of rectangle A must be a maximal segment and thus rect-
angle A is a one-sided rectangle and we have derived a contradiction proving Lemma 6.

Lemma 7. Let rectangle A be a rectangle that is not grounded. Rectangle A must then be adjacent

to the endpoints of 4 inner maximal segments.

From Lemma 6 we know that rectangle A must be adjacent to 4 inner maximal segments.
We thus only need to prove that rectangle A must be adjacent to the endpoints of these
inner maximal segments.

We assume that rectangle A is not adjacent to at least one endpoint of an inner maximal
segment. Without loss of generality we assume that rectangle A is not adjacent to the
endpoint of the maximal segment msl to the left of rectangle A. Then msL must end below
the bottom segment of rectangle A and above the top segment of rectangle A.

Let msT be the maximal segment that is adjacent to the top of rectangle A. Furthermore
let msB be the maximal segment that is adjacent to the bottom of rectangle A and let msR

be the maximal segment that is adjacent to the right of rectangle A. If msT ends to the
left of the left segment of rectangle A an intersection would occur with msL resulting in a
degenerate case.

To solve this degenerate case we would either have to split msT into multiple maximal
segments or we would need to split msL into multiple maximal segments. If we split
msT, then msT would not longer end further to the left than the left segment of rectangle
A which results us a contradiction. If we split msL in multiple maximal segments, then
msL would no longer end above the top segment of rectangle A which again results in a
contradiction. Thus, as rectangle A is not grounded, msT must end to the right of rectangle
A. Similarly msB must end to the right of rectangle A. The resulting layout is shown in
Figure A.9.
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AmsL

msT

msB

Figure A.9: msL ends above the top segment of rectangle A and below the bottom segment

of rectangle A. msT ends to the right of the top segment of rectangle A and msB

ends to the right of the bottom segment of rectangle A.

As rectangle A is not grounded it must hold that msR ends below the bottom segment
of rectangle A and/or above the top segment of rectangle A. If msR ends above the top
segment of rectangle A an intersection would occur with msT resulting in a degenerate
case. Using the same reasoning as before this leads to a contradiction again. Thus the top
of msR must end at msT.

If msR ends below the bottom segment of rectangle A an intersection would occur with
msB resulting in a degenerate case. Using the same reasoning as before this leads to a
contradiction again. Therefore, the bottom of msR must end at msB.

This means that the right side of rectangle A must be a maximal segment. Rectangle A is
thus a grounded rectangle and we have derived a contradiction proving Lemma 7.
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Appendix B

Lower bounds on minimal maximum

aspect ratio of rectangular layouts

B.1 Aspect ratios of sliceable and non-sliceable rectangular lay-

outs

This appendix serves the purpose of proving that for sliceable layout the optimal aspect

ratio can be tightly lower bounded. The lower bound equals
√

s(B)
s(A)

where rectangle A is
the rectangle with the smallest size and rectangle B is the rectangle with the second smal-
lest size. Moreover we will prove that non-sliceable layouts can obtain better maximal
aspect ratios than this lower bound.

B.1.1 Lower bound on the aspect ratio of sliceable rectangular layouts

We will use Lemma 5 to lower bound the optimal maximal aspect ratio. Let rectangle A
be the rectangle with the smallest weight in a sliceable rectangular layout L. Then let B be
a rectangle that is adjacent to rectangle A over a maximal segment ms, such that rectangle
A is the only rectangle on one side of ms. The existence of such a rectangle B follows from
Lemma 5. Without loss of generality we assume that rectangle B is adjacent to the left side
of rectangle A. The right side of rectangle B is thus completely contained in the left side
of rectangle A. It then holds that h(B) ≤ h(A). As s(B) ≥ s(A) we furthermore know that
w(B) ≥ w(A).

We now prove a lowerbound on the optimal maximal aspect ratio by distinguishing four
possible cases:
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Case 1: h(A) > w(A) ∧ h(B) > w(B)

Case 2: h(A) > w(A) ∧ h(B) ≤ w(B)

Case 3: h(A) ≤ w(A) ∧ h(B) > w(B)

Case 4: h(A) ≤ w(A) ∧ h(B) ≤ w(B)

Case 1

In case 1 it holds that h(A) > w(A) ∧ h(B) > w(B) which is depicted in Figure B.1.

A B

Figure B.1: h(A) > w(A) ∧ h(B) > w(B)

As h(A) > w(A) and h(B) > w(B) the aspect ratios of rectangles A and B are respect-
ively h(A)

w(A)
and h(B)

w(B) . A lower bound on the optimal aspect ratio can thus be given as:

max
(

h(A)
w(A)

, h(B)
w(B)

)
. As h(B) ≤ h(A) and w(B) ≥ w(A) it holds that h(A)

w(A)
is always larger

than h(B)
w(B) . We can thus rewrite this bound to h(A)

w(A)
. We now rewrite this lower bound in

terms of s(A) and s(B).

h(A)

w(A)
≥ h(B)

w(A)

=
s(B) ∗ h(A)

s(A) ∗ w(B)

≥ s(B) ∗
√

s(A)

s(A) ∗
√

s(B)

=

√
s(B)
s(A)

We thus have a lower bound on the minimal maximum aspect ratio of
√

s(B)
s(A)

for this case.

Case 2

In case 2 it holds that h(A) > w(A) ∧ h(B) ≤ w(B).
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As h(B) ≤ w(B), the aspect ratio of rectangle B is minimized if h(B) = h(A) regardless of
the choice of w(A) and w(B) which is depicted in Figure B.2. We will therefore assume
that h(B) = h(A) for the remainder of this case.

A B

Figure B.2: h(A) = h(B) > w(A) ∧ h(B) ≤ w(B)

We define x to be equal to s(B)
s(A)

. We now rewrite w(B) in terms of x and w(A).

s(B) = x ∗ s(A) =⇒ w(B) ∗ h(B) = x ∗ w(A) ∗ h(A)

=⇒ w(B) ∗ h(B) = x ∗ w(A) ∗ h(B)

=⇒ w(B) = x ∗ w(A)

The aspect ratios of rectangles A and B can now be represented as h(A)
w(A)

and w(A)∗x
h(A)

re-
spectively. The maximum aspect ratio of rectangles A and B can never be lower than the
average aspect ratio of rectangles A and B. Therefore, the average aspect ratio of rectangles
A and B is also a lower bound on the minimal maximum aspect ratio:

avg =

h(A)
w(A)

+ w(A)∗x
h(A)

2

We will now find the value of w(A) that minimizes the average. The value of h(A) will
follow from the choice of w(A). We will find this value by computing the partial derivat-
ive of avg with regard to w(A), and computing when this partial derivative equals 0.

∂

∂w(A)

 h(A)
w(A)

+ w(A)∗x
h(A)

2

 = 0 =⇒ x
2h(A)

− h(A)

2w(A)2 = 0

=⇒ x
2h(A)

=
h(A)

2w(A)2

=⇒ w(A)2 =
h(A)2

x

=⇒ w(A) =
h(A)√

x
∨ w(A) = −h(A)√

x

=⇒ w(A) =
h(A)√

x
(h(A), x and w(A) are all positive).
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Filling in the found value of w(A) then gives the lower bound on the minimal maximum
aspect ratio:

avg =

h(A)
w(A)

+ w(A)∗x
h(A)

2

=

h(A)
h(A)√

x

+

h(A)√
x ∗ x

h(A)

2

=

√
x +
√

x
2

=
√

x

=

√
s(B)
s(A)

Case 3

In case 3 it holds that h(A) ≤ w(A) and h(B) > w(B). Furthermore it holds that h(B) ≤
h(A) ≤ √s(A) ≤ √s(B). However, as h(B) > w(B), it must hold that h(B) >

√
s(B) giving

rise to a contradiction. Therefore, this case is not possible.

Case 4

In case 4 it holds that h(A) ≤ w(A) ∧ h(B) ≤ w(B) which is depicted in Figure B.3.

A B

Figure B.3: h(A) ≤ w(A) ∧ h(B) ≤ w(B)

As h(A) ≤ w(A) and h(B) ≤ w(B) the aspect ratios of rectangles A and B are respect-
ively w(A)

h(A)
and w(B)

h(B) . A lower bound on the optimal aspect ratio can thus be given as

max
(

w(A)
h(A)

, w(B)
h(B)

)
. As h(A) ≥ h(B) and w(A) ≤ w(B), it holds that w(B)

h(B) is always larger

than w(A)
h(A)

. We can thus rewrite the bound to w(B)
h(B) . We now rewrite this lower bound in

terms of s(A) and s(B):
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w(B)
h(B)

≥ w(B)
h(A)

=
s(B)w(A)

s(A)h(B)

≥ s(B)
√

s(A)

s(A)
√

s(B)

=

√
s(B)
s(A)

Lower bound

Combining the lower bounds found in the case distinction we obtain a lower bound for
any sliceable rectangular layout L that contains more than 1 rectangle:

min

(√
s(B)
s(A)

,

√
s(B)
s(A)

,

√
s(B)
s(A)

)
=

√
s(B)
s(A)

A is here the rectangle with the smallest size and B is the rectangle with the second smal-
lest size.

B.1.2 The lower bound is tight

We proof that this lower bound is tight using the layout shown in Figure B.4. In Figure B.4
rectangles B, C, D, E all have a size of 8 while rectangle A has a size of ε. ε will be picked

such that the aspect ratio equals
√

s(B)
s(A)

.

The width and height of the bounding box both equal
√

32 + ε. The width of rectangle A
must then be equal to 8+ε√

32+ε
in the layout. The height of rectangle A then becomes ε

√
32+ε

8+ε .

The aspect ratio of rectangle A then becomes the maximum of
8+ε√
32+ε

ε
√

32+ε
8+ε

= (8+ε)2

ε(32+ε)
and

ε
√

32+ε
8+ε
8+ε√
32+ε

= ε(32+ε)
(8+ε)2 . We now pick ε such that

√
8
ε = (8+ε)2

ε(32+ε)
:
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√
8
ε
=

(8 + ε)2

ε(32 + ε)
=⇒

ε(32 + ε)

√
8
ε
= (8 + ε)2 =⇒

(32 + ε)2
√

2√
1
ε

= (8 + ε)2 =⇒

2
√

2ε + 64
√

2 = (8 + ε)2

√
1
ε

=⇒

2
√

2ε + 64
√

2 = (64 + 16ε + ε2)

√
1
ε

=⇒

(2
√

2ε + 64
√

2)2 =
(64 + 16ε + ε2)2

ε
=⇒

ε(2
√

2ε + 64
√

2)2 = (64 + 16ε + ε2)2 =⇒
8ε3 + 512ε2 + 8192ε = ε4 + 32ε3 + 384ε2 + 2048ε + 4096 =⇒

ε4 + 24ε3 − 128ε2 − 6144ε + 4096 = 0 =⇒

which is a quadratic equation in standard form. The real solutions to this equation are:

ε = −6 + 6
√

5− 2
√

6
√

5− 2 ≈ 0.659

ε = 2(−3 + 3
√

5 +
√

6
√

5− 2 ≈ 14.174

As the size of rectangle A needed to be smaller than the size of rectangle B we pick ε to

be equal to −6 + 6
√

5− 2
√

6
√

5− 2. As the aspect ratio of rectangle A equals
√

s(B)
s(A)

the
lower bound is tight.

Calculating the aspect ratio gives us a bound of approximately 3.48.

B.1.3 non-sliceable layouts can outperform optimal sliceable layouts

The lower bound of
√

s(B)
s(A)

does not hold for non-sliceable layouts. Using the same rect-
angle weights as in Figure B.4 we can give an non-sliceable layout that achieves an aspect
ratio that is smaller than 3.47. This layout is shown in Figure B.5 where rectangle A is now
not a grounded rectangle. The aspect ratio here is bounded by y

x which equals:
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A

C D E
ε

8 8 8 8
Bx

y

u = 8+ε√
32+ε

v = 8√
32+ε

x = 8
√

32+ε
8+ε

y = ε
√

32+ε
8+ε

u v v v√
32 + ε

√
32 + ε

Figure B.4: Rectangle A has a size of ε, which gives a tight lower bound on the aspect ratio

for ε = −6 + 6
√

5− 2
√

6
√

5− 2.

y
x
=

1
2

(√
32 + ε +

√
ε
)

1
2 (
√

32 + ε−√ε)
=

√
32 + ε +

√
ε√

32 + ε−√ε
=

(32 + ε + 2
√

ε
√

32 + ε + ε)

32 + ε− ε
=

(32 + 2ε + 2
√

32ε + ε2)

32
=

(16 + ε +
√

32ε + ε2)

16
=

1 +
ε

16
+

√
32ε + ε2

16

Filling in ε = −6+ 6
√
(5)− 2

√
(6
√
(5)− 2) gives us an aspect ratio of 1+ ε

16 +
√

32ε+ε2

16 <

1.3311. This is smaller than the the lower bound of ≈ 3.48 for the sliceable layout. There-

fore, the lower bound of
√

s(B)
s(A)

does not hold for non-sliceable layouts. Non-sliceable
layouts can thus outperform sliceable layouts.
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8
8

x

√
ε

√
εA

B
C

D
E

x = 1
2 (
√

32 + ε−√ε)

y = 1
2 (
√

32 + ε +
√

ε)

x

x
x

y

y

y

y

√
32 + ε

Figure B.5: The aspect ratio is bounded by
1
2 (
√

32+ε+
√

ε)
1
2 (
√

32+ε−√ε)
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