Visual comfort of luminescent solar concentrators in offices

Citation for published version (APA):

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Poster

Visual comfort of Luminescent Solar Concentrators in Offices

F. M. Vossen¹ & M.P.J. Aarts¹

¹ Eindhoven University of Technology, Department of the Built Environment, Building Lighting, Eindhoven, the Netherlands

Introduction

The need for energy conservation in buildings has spurred innovations in (window) technologies. One of these innovative technologies is the Luminescent Solar Concentrator (LSC). The LSC is a device, employing a polymeric of glass waveguide and luminescent molecules to generate electricity from sunlight when attached to a photovoltaic cell. Such a device has the potential to find extended use in an area traditionally difficult for effective use of regular photovoltaic panels: the built environment.

However, a major issue in the use of LSC as a window technology is the color of the dye on the glass essential for the energy performance of the device. The colored glass alters the daylight penetrating into the room in terms of wavelength, distribution and luminous flux. All this affects the perception and quality of a space and therefore the acceptance of the user.

The objective of this research is to find the optimum percentage of LSC in terms of energy efficiency related to the preference and acceptance of the user. A sub question is whether the tolerance of people towards colored glazing changes when they are aware of the fact that the colored glass is part of a sustainable device.

Methods

Furnished scale models (1:6) of a day lit office room are made and evaluated (Figure 1), using different percentages of colored glass in the transparent façade (Dubois et al., 2007). For this evaluation, 40 test subjects in the age between 21 and 28 are asked to complete questionnaires. The subjective responses are analyzed statistically with SPSS statistics. Different light measurements are done to assess the illuminance, luminance and spectral irradiance inside and outside the scale model and to link the subjective ratings to objective light values.

Results

The pilot studies demonstrate that in general the visual impression is scored increasingly positive in linear proportion as the percentage of colored glass decreases. Surprisingly, people valued the transparent façade with 25% of colored glazing as more comfortable than a fully transparent façade (0% of colored glazing). When people are informed about the energetic aspect, 1/3 accepts a higher percentage of colored glass in the transparent façade than without knowing.

The full experiment is planned in September and October 2014. Results will be presented in December at the Eindhoven University of Technology.

Reference