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The Struve functions HnðzÞ; n ¼ 0; 1; ::: are approximated in a simple, accurate form that is valid

for all z � 0. The authors previously treated the case n¼ 1 that arises in impedance calculations for

the rigid-piston circular radiator mounted in an infinite planar baffle [Aarts and Janssen, J. Acoust.

Soc. Am. 113, 2635–2637 (2003)]. The more general Struve functions occur when other acoustical

quantities and/or non-rigid pistons are considered. The key step in the paper just cited is to express

H1ðzÞ as ð2=pÞ � J0ðzÞ þ ð2=pÞ IðzÞ, where J0 is the Bessel function of order zero and the first kind

and I(z) is the Fourier cosine transform of ½ð1� tÞ=ð1þ tÞ�1=2; 0 � t � 1. The square-root function

is optimally approximated by a linear function ĉtþ d̂ ; 0 � t � 1, and the resulting approximated

Fourier integral is readily computed explicitly in terms of sin z=z and ð1� cos zÞ=z2. The same

approach has been used by Maurel, Pagneux, Barra, and Lund [Phys. Rev. B 75, 224112 (2007)] to

approximate H0ðzÞ for all z � 0. In the present paper, the square-root function is optimally approxi-

mated by a piecewise linear function consisting of two linear functions supported by ½0; t̂0� and

½t̂0; 1� with t̂0 the optimal take-over point. It is shown that the optimal two-piece linear function is

actually continuous at the take-over point, causing a reduction of the additional complexity in the

resulting approximations of H0 and H1. Furthermore, this allows analytic computation of the opti-

mal two-piece linear function. By using the two-piece instead of the one-piece linear approxima-

tion, the root mean square approximation error is reduced by roughly a factor of 3 while the

maximum approximation error is reduced by a factor of 4.5 for H0 and of 2.6 for H1. Recursion

relations satisfied by Struve functions, initialized with the approximations of H0 and H1, yield

approximations for higher order Struve functions. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4968792]

[JFL] Pages: 4154–4160

I. INTRODUCTION

Struve functions are used in various disciplines of the

applied sciences, such as optics, fluid dynamics, acoustics,

and aerodynamics; see, Ref. 1, Sec. 11.12 on p. 298 for a

listing of applications. In Ref. 2, Sec. I, the role of the Struve

function H1 in the computation of the impedance for the

rigid-piston circular radiator mounted in an infinite baffle is

reviewed. Struve functions Hn of order n 6¼ 1 occur in a

number of cases where acoustical quantities for piston radia-

tion are computed analytically. In Ref. 3, Secs. IV.B–IV.C,

Greenspan expresses the impedance for certain low-order

non-rigid piston radiators in terms of H0; H1, and H2, and a

similar thing is done in Ref. 3, Secs. V.B–V.C for the power

output. The developments in Ref. 3 have been continued in

Ref. 4 by Aarts and Janssen where Struve-type functions

occur in a general setting for the calculation of impedance,

power output, and the edge pressure.

In Ref. 2, Sec. II, an approximation of H1ðzÞ has been

developed in terms of the Bessel function J0ðzÞ and

sin z=z; ð1� cos zÞ=z2 that is simple, accurate, and valid for

all z � 0 at the same time. Because of its accuracy and

absence of patchwork for different z-regimes, this approxi-

mation has become quite popular among workers and

teachers in and outside the acoustic community. The approx-

imation in question reads

H1 zð Þ ¼ 2z

p

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

sin zt dt (1a)

¼ 2

p
� J0 zð Þ þ 2

p

ð1

0

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
cos zt dt (1b)

� 2

p
� J0 zð Þ þ 16

p
� 5

� �
sin z

z

þ 12� 36

p

� �
1� cos z

z2
; (1c)

where the two equalities in Eqs. (1a) and (1b) are exact, while

the approximate identity in Eq. (1c) has been obtained by

determining the least-mean-square fit ĉ þ d̂ t of ½ð1� tÞ=
ð1þ tÞ�1=2; 0 � t � 1, and subsequently an explicit computa-

tion of the approximated integral
Ð 1

0
ðĉ þ d̂tÞ cos zt dt. The

squared approximation error in Eq. (1) on ½0;1Þ equals 2:2
� 10�4 while the maximum absolute error equals 0.0049.a)Electronic mail: ronald.m.aarts@philips.com
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The approximation in Eq. (1) is mentioned and used

explicitly in Ref. 5, Eq. (18),6 Eq. (9),7 Eq. (37), 8 Eq. (7),9

Eq. (9),10 Eq. (37), 11 Eq. (4),12 Eq. (A2),13 Eq. (6), 14 Eq.

(7),15 Eq. (25), 16 Eq. (1.82) on p. 28,17 Appendix C.2,18 Eq.

(7),19 between Eqs. (25) and (26), and it is mentioned in

passing in Ref. 4, below Eq. (29),20 below Eq. (3),21 and

above Eq. (10.52) on p. 464.

As mentioned, the Struve function H1ðzÞ occurs in the

analytical expression for the piston mechanical radiation

impedance in the case of a rigid-piston radiator mounted in

an infinite baffle, see Ref. 2 and Ref. 22, Sec. 5–4, pp.

221–225. In the same context, the pressure at the edge of the

radiator is given by

pedge

q0cVs
¼ 1

2
1� J0 2kað Þ þ iH0 2kað Þ½ �; (2)

where q0 is the density of the medium, c is the speed of

sound, k ¼ x=c is the wave number with x the radial fre-

quency of the vibrating piston, and Vs is the velocity of the

piston, see Ref. 4, Sec. III and Ref. 23, pp. 163–164. Note

the occurrence of the Struve function H0ðzÞ in Eq. (2).

In Ref. 17, Appendix C.2, there was derived, using the

method of Ref. 2, Sec. II, the approximation

H0 zð Þ ¼ 2z

p

ð1

0

sin ztffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt (3a)

¼ J1 zð Þ þ 2

p

ð1

0

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
sin zt dt (3b)

�J1 zð Þ þ 7� 20

p

� �
1� cos z

z

þ 36

p
� 12

� �
sin z� z cos z

z2
: (3c)

The maximum absolute error of this approximation equals

0.0056. Having the approximations (1) and (3) available for

H1ðzÞ and H0ðzÞ, one can approximate Struve functions

HnðzÞ of order n ¼ 2; 3; ::: by using the recursive formula,

see Ref. 1, 11.4.23 on p. 292,

Hnþ1 zð Þ ¼ �Hn�1 zð Þ þ 2n

z
Hn zð Þ þ

1

2
z

� �n

ffiffiffi
p
p

C nþ 3

2

� � ;
n ¼ 1; 2; :::; (4)

initialized by the approximations in Eqs. (1) and (3).

Due to error propagation in the recursion (4), it is desir-

able to aim at high-accuracy approximations of H0 and H1.

Increasing accuracy of the approximations is also beneficial

for the investigations in Ref. 19, where considerable

computer-time savings are reported when the approximation

is used extensively, in Ref. 24, where [see above Eq. (6)] the

approximation is used in the codes, and in Ref. 11, where the

approximation in Eq. (1) is even declared to be an exact

identity. It should be observed that infinite series expressions

with excellent convergence behaviour exist for all HnðzÞ.
For instance, see Ref. 1, 11.4.21 on p. 292,

H0 zð Þ ¼
4

p

X1
k¼0

J2kþ1 zð Þ
2k þ 1

: (5)

Since JlðzÞ decays for fixed z very rapidly in l from l ¼ jzj
onwards, it would be sufficient to include in the series in

Eq. (5) all terms k with 2k þ 1 � 3
2
jzj þ 5, say, to have an

excellent approximation to H0ðzÞ. However, in this way,

the truncation index becomes dependent on z, while the

approximations in Eqs. (1) and (3) have the appealing fea-

ture to have a fixed, and low, number of terms. The (known)

result (5) is rediscovered in Ref. 8, Eq. (10).

In this paper, we improve the approximations in Eqs. (1)

and (3) by amplifying the approach used in Ref. 2, Sec. 2.

Instead of a linear approximation ĉ þ d̂t to the function

½ð1� tÞ=ð1þ tÞ�1=2
, we now use an approximation

f̂ ðtÞ ¼ ĉ1 þ d̂1t; 0 � t < t0;

ĉ2 þ d̂2t; t0 < t � 1;

(
(6)

for this square-root function. Here ĉ1 ¼ ĉ1ðt0Þ; d̂1 ¼ d̂1ðt0Þ
and ĉ2 ¼ ĉ2ðt0Þ; d̂2 ¼ d̂2ðt0Þ minimize, for a given t0,

F1 t0 ; c; dð Þ ¼
ðt0

0

����
ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
� cþ dtð Þ

����
2

dt (7)

and

F2 t0 ; c; dð Þ ¼
ð1

t0

����
ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
� cþ dtð Þ

����
2

dt; (8)

respectively, as a function of real c, d. Subsequently, we

minimize the total mean square error

F t0ð Þ ¼
ðt0

0

����
ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
� ĉ1 t0ð Þ � d̂1 t0ð Þ t

����
2

dt

þ
ð1

t0

����
ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
� ĉ2 t0ð Þ � d̂2 t0ð Þ t

����
2

dt (9)

as a function of t0. We have carried out the optimization of

Fðt0Þ numerically, and it turned out, surprisingly, that the

resulting optimal f̂ in Eq. (6) is continuous at t ¼ t̂0, the opti-

mal t0. Hence, we have

ĉ1ðt̂0Þ þ d̂1ðt̂0Þ t̂0 ¼ ĉ2ðt̂0Þ þ d̂2ðt̂0Þ t̂0; (10)

a fact that we have been able to establish mathematically. As

a consequence, the optimal approximation can be computed

completely analytically (except for numerically solving a

simple and explicit equation for t0). Furthermore, the addi-

tional complexity in approximating H1ðzÞ and H0ðzÞ, when

passing from an optimal linear approximation ĉ þ d̂t to the

optimal two-piece linear function f̂ ðtÞ in Eq. (6), is embod-

ied by only one extra term
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2

p
d̂2 t̂0ð Þ � d̂1 t̂0ð Þ
� � 1� cos zt0

z2

and
zt0 � sin zt0

z2

8>>><
>>>:

(11)

for Eqs. (1) and (3), respectively.

In Sec. II we develop the optimal two-piece linear

approximation to ½ð1� tÞ=ð1þ tÞ�1=2; 0 � t � 1, in detail. In

Sec. III we compute the resulting approximations to H1ðzÞ
and H0ðzÞ; z � 0, taking advantage of continuity of the opti-

mal piecewise linear approximations at the take-over point

t̂0. In Sec. IV we give some considerations about approxima-

tion of HnðzÞ; z � 0, for n ¼ 2; 3; :::, and in Sec. V we pre-

sent our conclusions.

II. TWO-PIECE LINEAR APPROXIMATION
OF SQUARE-ROOT FUNCTION

A. Best linear approximation on a single interval

We consider first a general, continuous, real-valued

function f on the interval ½0; 1� that is to be approximated as

a linear combination of two continuous, real-valued func-

tions g and h on a subinterval I of ½0; 1�. For real-valued

functions k and l on I, we have the inner product and inner

product norm

ðk; lÞI ¼
ð

I

kðtÞ lðtÞ dt; kkkI ¼
ð

I

jkðtÞj2 dt

� �1=2

: (12)

When I ¼ ½0; 1�, we delete the subscript I in Eq. (12).

It follows from elementary linear algebra for functions

on an interval that the minimum of

kf � ðcgþ dhÞk2
I (13)

over all c and d is assumed for

c ¼ ĉ ¼ zv� yw

xz� y2
; d ¼ d̂ ¼ �yvþ xw

xz� y2
; (14)

where

x ¼ xI ¼ ðg; gÞI; y ¼ yI ¼ ðg; hÞI; z ¼ zI ¼ ðh; hÞI;
(15)

and

v ¼ vI ¼ ðf ; gÞI; w ¼ wI ¼ ðf ; hÞI: (16)

Moreover,

ðf � ðĉgþ d̂hÞ; gÞI ¼ 0 ¼ ðf � ðĉgþ d̂hÞ; hÞI; (17)

and the minimal mean square error is given by

kf � ðĉgþ d̂hÞk2
I ¼ kfk

2
I � kĉgþ d̂hk2

I

¼ kfk2
I � ðĉvþ d̂wÞ: (18)

B. Best approximation by two-component function

We next let 0 � t0 � 1, and we assume that we have

continuous functions g1 and h1 on ½0; t0� and g2 and h2 on

½t0; 1�. We define ĉ1ðt0Þ; d̂1ðt0Þ and ĉ2ðt0Þ; d̂2ðt0Þ as the coef-

ficients c1, d1 and c2, d2 for which

kf � ðc1g1þ d1h1Þk2
I¼½0;t0� and kf �ðc2g2þ d2h2Þk2

I¼½t0;1�

(19)

are minimal, respectively, with minimal values

F1ðt0Þ ¼
ðt0

0

jf ðtÞ � ĉ1ðt0Þ g1ðtÞ � d̂1ðt0Þ h1ðtÞj2 dt (20)

and

F2ðt0Þ ¼
ð1

t0

jf ðtÞ � ĉ2ðt0Þg2ðtÞ � d̂2ðt0Þh2ðtÞj2 dt; (21)

respectively. We intend to minimize

Fðt0Þ ¼ F1ðt0Þ þ F2ðt0Þ (22)

over t0 2 ½0; 1�. It is shown in the Appendix (prime denoting

differentiation with respect to t0) that

F0ðt0Þ ¼ jf ðt0Þ � ĉ1ðt0Þ g1ðt0Þ � d̂1ðt0Þ h1ðt0Þj2

�jf ðt0Þ � ĉ2ðt0Þ g2ðt0Þ � d̂2ðt0Þ h2ðt0Þj2: (23)

Hence, at any stationary point t0 of F, we have

jf ðt0Þ � ĉ1ðt0Þ g1ðt0Þ � d̂1ðt0Þ h1ðt0Þj

¼ jf ðt0Þ � ĉ2ðt0Þ g2ðt0Þ � d̂2ðt0Þ h2ðt0Þj : (24)

In particular, when both quantities between the modulus

signs in Eq. (24) have the same sign, we have

ĉ1ðt0Þg1ðt0Þþ d̂1ðt0Þh1ðt0Þ¼ ĉ2ðt0Þg2ðt0Þþ d̂2ðt0Þh2ðt0Þ:
(25)

That is, under this same-sign condition, the two-component

function

f̂ ðtÞ ¼ ĉ1ðt0Þ g2ðtÞ þ d̂1ðt0Þ h1ðtÞ; 0 � t < t0;
ĉ2ðt0Þ g2ðtÞ þ d̂2ðt0Þ h2ðtÞ; t0 < t � 1;

�
(26)

is continuous at any stationary point t0 of f where the same-

sign condition is valid.

C. Specialization

We consider now the case (see Fig. 1) that

f tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
; 0 � t � 1;

g1 tð Þ ¼ 1; h1 tð Þ ¼ t; 0 � t � t0;

g2 tð Þ ¼ 1; h2 tð Þ ¼ t; t0 � t � 1: (27)
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We have now for Eqs. (15) and (16),

x1 ¼ x1 t0ð Þ ¼ t0; y1 ¼ y1 t0ð Þ ¼
1

2
t20; z1 ¼ z1 t0ð Þ ¼

1

3
t3
0

(28)

and

v1 ¼ v1 t0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

� 2arctan

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r !" #t0

0

; (29)

w1 ¼ w1 t0ð Þ

¼ �1þ 1

2
t

� � ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

þ arctan

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r !" #t0

0

:

(30)

The results (29), (30) can be verified directly by computing

the derivatives of the right-hand sides as ½ð1� tÞ=ð1þ tÞ�1=2

and t ½ð1� tÞ=ð1þ tÞ�1=2
, respectively. We compute from

Eq. (14),

ĉ1 t0ð Þ þ d̂1 t0ð Þ t0 ¼
�2v1 t0ð Þ

t0

þ 6w1 t0ð Þ
t2
0

: (31)

The computation of ĉ2ðt0Þ þ d̂2ðt0Þ t0 can be done similarly,

but is facilitated by considering 1� t0; f ð1� tÞ in the above

while noting thatð1�t0

0

f ð1� tÞ dt ¼ v2ðt0Þ;ð1�t0

0

t f ð1� tÞ dt ¼ v2ðt0Þ � w2ðt0Þ: (32)

It is thus found that

ĉ2 t0ð Þþ d̂2 t0ð Þ t0 ¼
�2v2 t0ð Þ

1� t0

þ 6 v2 t0ð Þ�w2 t0ð Þð Þ
1� t0ð Þ2

: (33)

It has been observed, by numerical inspection of the total

error function F in Eq. (22) for the present case, that the

optimal t0 ¼ t̂0 is to be found in the vicinity of 0.90. In this

range, we have that f ðt0Þ � ĉiðt0Þ � d̂ iðt0Þ t0 is negative for

both i¼ 1 and 2; also see Fig. 2.

Hence, the same-sign condition is satisfied for the sta-

tionary point t̂0 near 0.90, and so t̂0 can be found by solving

Eq. (25) for t0 near 0.90. By Eqs. (31) and (33), this becomes

�2v1 t0ð Þ
t0

þ 6w1 t0ð Þ
t2
0

¼ �2v2 t0ð Þ
1� t0

þ 6 v2 t0ð Þ � w2 t0ð Þð Þ
1� t0ð Þ2

:

(34)

We eliminate v1ðt0Þ and w1ðt0Þ from Eq. (34) by using that

v1 t0ð Þ þ v2 t0ð Þ ¼
ð1

0

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
dt ¼ p

2
� 1; (35)

w1 t0ð Þ þ w2 t0ð Þ ¼
ð1

0

t

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
dt ¼ 1� p

4
: (36)

Furthermore, for v2ðt0Þ and w2ðt0Þ we have the explicit

expressions (29) and (30) with limits t0 and 1 rather than 0

and t0. We then find after some further rearrangement the

equation

6� 3

2
p� p� 2ð Þ t0

� �
1� t0ð Þ2

¼ �6þ 8t0 þ 16t2
0

� �
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t0

1þ t0

r !

þ 6� 12t0 � 2t20
� � ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
0

q
: (37)

It is found numerically that Eq. (37) holds for

t0 ¼ 0; 1; and t̂0 ¼ 0:8830472903…: (38)

At t0 ¼ t̂0, we compute [using Eqs. (14), (29), (30), (35), (36),

(18), and the integral
Ð
ðð1� tÞ=ð1þ tÞÞ dt ¼ 2 lnð1þ tÞ � t]

ĉ1ðt̂0Þ ¼ 0:9846605676…; d̂1ðt̂0Þ ¼ �0:8153693250…;

(39)

ĉ2ðt̂0Þ ¼ 1:7825674761…; d̂2ðt̂0Þ ¼�1:7189527653…;

(40)

with residual mean square errors F1ðt̂0Þ and F2ðt̂0Þ given by

0.000026 and 0.000014, respectively. It is thus seen that the

total residual mean square error Fðt̂0Þ ¼ F1ðt̂0Þ þ F2ðt̂0Þ is

about 4� 10�5, which is a factor 8.5 lower than the residual

mean square error 3:4� 10�4 that was obtained in Ref. 2,

Sec. 2 for the optimal linear function ĉ þ d̂t. The function

½ð1� tÞ=ð1þ tÞ�1=2
with its optimal linear and optimal two-

piece linear approximation is plotted in Fig. 1, and the corre-

sponding approximation errors are plotted in Fig. 2.

With a glance at Fig. 1 and having in mind the accuracy

gains just reported, increased complexity when breaking up

the integration interval in more than two pieces is not likely

FIG. 1. (Color online) The square root function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞ=ð1þ tÞ

p
(solid

bold line) vs t. The optimal linear approximation (solid straight line). The

optimal approximation on the interval ½0; t̂0� (dot-dashed line) and on the

interval ½t̂0; 1� (dashed line). The latter two lines cross at t ¼ t̂0 ¼ 0:883….
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to be compensated by significance of the further improved

accuracy.

III. IMPROVED APPROXIMATION OF H0 AND H1

We now compute the approximations of H0ðzÞ and

H1ðzÞ; z � 0, that follow by inserting the optimal two-piece

linear function as an approximation of ½ð1� tÞ=ð1þ tÞ�1=2

into the integrals in the third members in Eqs. (1) and (3).

Thus, we let f̂ ðtÞ as in Eq. (6) with t0 ¼ t̂0 and ĉ1; d̂1; ĉ2; d̂2

given by Eqs. (38)–(40). This f̂ ðtÞ is piecewise linear on

½0; 1� and continuous at t ¼ t̂0. For the integral in Eq. (1) we

get, using partial integration,

ð1

0

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
cos zt dt �

ð1

0

f̂ tð Þcos zt dt

¼ 1

z
f̂ zð Þsin zt

����
1

0

� 1

z

ð1

0

f̂
0

zð Þsin zt dt

¼ ĉ2 þ d̂2

� � sin z

z
� d̂2

1� cos z

z2

þ d̂2 � d̂1

� � 1� cos z t̂0

z2
: (41)

The approximation

H1 zð Þ � 2

p
� J0 zð Þ þ A1

sin z

z
þ B1

1� cos z

z2

þ C1

1� cos z t̂0

z2
(42)

results, where

A1 ¼
2

p
ĉ2 þ d̂2

� �
¼ 0:0404983827…; (43)

B1 ¼ �
2

p
d̂2 ¼ 1:0943193181…; (44)

C1 ¼
2

p
d̂2 � d̂1

� �
¼ �0:5752390840…; (45)

and t̂0 given in Eq. (38). The approximation in Eq. (42) for

H1ðzÞ is of the same form as the one in Eq. (1), except for

the last term.

In a similar fashion, we compute for the integral in Eq. (3),

ð1

0

ffiffiffiffiffiffiffiffiffiffi
1� t

1þ t

r
sin zt dt �

ð1

0

f̂ tð Þsin zt dt

¼ �1

z
ĉ2 þ d̂2

� �
cos z� ĉ1

� �
þ d̂1

sin z t̂0

z2
þ d̂2

sin z� sin z t̂0

z2

¼ ĉ2

1� cos z

z
þ d̂2

sin z� z cos z

z2

þ d̂2 � d̂1

� � z t̂0 � sin z t̂0

z2
; (46)

where in the last step we have used ĉ1 þ d̂1 t̂0 ¼ ĉ2 þ d̂2 t̂0.

There results the approximation

H0 zð Þ � J1 zð Þ þ A0

1� cos z

z
þ B0

sin z� z cos z

z2

þ C0

z t̂0 � sin z t̂0

z2
; (47)

where

A0 ¼
2

p
ĉ2 ¼ 1:134817700…; B0 ¼ �B1 ; C0 ¼ C1;

(48)

with B1, C1 given in Eqs. (44), (45), and t̂0 given in Eq. (38).

In Fig. 3 we show the approximation errors associated

to Eqs. (42) and (47) as a function of z, 0 � z � 60, where

the exact results are obtained by using MATHEMATICA (V.10).

It is seen that the maximal absolute error for approximating

H1ðzÞ is 0.00185 which is about a factor 2.6 lower than the

maximal absolute error 0.00485 that can be obtained from

Fig. 2 in Ref. 2 using the approximation (1). The maximal

absolute approximation error in Fig. 3 is 0.00125 which is

about a factor 4.5 lower than the maximal absolute error

0.00558 that can be obtained from Fig. 16 in Ref. 17.

FIG. 2. (Color online) The approximation errors vs t corresponding to Fig. 1.

The error of the approximation on the interval ½0; t̂0� (dot-dashed line) crosses

the approximation error on the interval ½t̂0; 1� (dashed line) at t ¼ t̂0

¼ 0:883…. The errors at t¼ 1 for the solid line and dashed line are equal to

�0.146018366 and �0.063614711, respectively.

FIG. 3. (Color online) The error in the approximation vs z of H0ðzÞ (solid

curve), by Eq. (47), and H1ðzÞ (dashed curve), by Eq. (42).
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IV. APPROXIMATION OF HnðzÞ; n52; 3; :::

There are a number of conceivable approaches to

approximate HnðzÞ; n ¼ 2; 3;…. We apply the approxima-

tions (42) and (47) for H1ðzÞ and H0ðzÞ to approximate

Struve functions HnðzÞ of order n ¼ 2; 3;… by using the

recursive formula (4). As an example we compute H2ðzÞ and

H3ðzÞ by this method and we show the result in Fig. 4.

V. CONCLUSIONS

Simple and effective approximations of the Struve func-

tions H0 and H1 for all values of z have been developed

using only a limited number of elementary functions. Using

these approximations and a recursion formula, approxima-

tions for general order Hn can be computed. The obtained

approximations have a higher accuracy than the one obtained

in Ref. 17 for H0 and the one obtained in Ref. 2 for H1; the

root mean square approximation error is reduced by roughly

a factor of 3 and the maximum approximation error is

reduced by a factor of 4.5 for H0 and of 2.6 for H1, while the

new approximations have each only one extra term. It does

not require patchwork formulas, since it is accurate for the

whole range of the independent variable z. The approxima-

tions can be used in various fields, with its most prominent

engineering application in electroacoustics. The approxi-

mated H1 of Ref. 2 has been used in computer codes, see

Refs. 19, 24. The improved approximations are envisaged to

extend the application range of methods and codes that

require many evaluations of Struve functions at many points.

APPENDIX: PROOF OF EQ. (23)

We have from basic calculus the formula

d

dt0

ðt0

0

G t ; t0ð Þ dt

	 

¼ G t0 ; t0ð Þ þ

ðt0

0

@G

@t0

t ; t0ð Þ dt

(A1)

when Gðt ; t0Þ is continuous in t and continuously differen-

tiable in t0. Using this with

Gðt ; t0Þ ¼ ðf ðtÞ � ĉ1ðt0Þ g1ðtÞ � d̂1ðt0Þ h1ðtÞÞ2; (A2)

so that

@G

@t0

t ; t0ð Þ ¼ �2ðf tð Þ � ĉ1 t0ð Þ g1 tð Þ � d̂1 t0ð Þ h1 tÞð Þ

� ðĉ01 t0ð Þ g1 tð Þ þ d̂
0
1 t0ð Þ h1 tð ÞÞ; (A3)

and noting that ĉ01ðt0Þ g1ðtÞ þ d̂
0
1ðt0Þ h1ðtÞ is a linear combi-

nation of g1 and h1 on I ¼ ½0; t0�, it follows from Eq. (17)

that ðt0

0

@G

@t0

t ; t0ð Þ dt ¼ 0 : (A4)

Hence, see Eq. (20),

F01 t0ð Þ¼
d

dt0

ðt0

0

G t; t0ð Þdt

	 

¼G t0 ; t0ð Þ¼jf t0ð Þ� ĉ1 t0ð Þg1 t0ð Þ� d̂1 t0ð Þh1 t0ð Þj2 :

(A5)

Similarly, see Eq. (21),

F02ðt0Þ ¼ �jf ðt0Þ � ĉ2ðt0Þ g2ðt0Þ � d̂2ðt0Þ h2ðt0Þj2;
(A6)

and the proof of Eq. (23) is complete.
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silencer by solving Helmholtz equation using finite elements method,”

presented at Forum Acusticum 2005, Budapest.
19W. P. Rdzanek, W. J. Rdzanek, and D. Pieczonka, “The acoustic

impedance of a vibrating annular piston located on a flat rigid baffle

around a semi-infinite circular rigid cylinder,” Arch. Acoust. 37,

411–422 (2012).
20I. Djurek, D. Djurek, and A. Peto�sić, “Stochastic solutions of Navier-
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