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Chapter 1

Introduction and Background

Nowadays reaserchers from many areas of applied sciences are increasingly confronted with study designs

that involve structures of correlated data, such as multivariate observations, clustered data, longitudinal

data and repeated measurements. In particular, longitudinal data arise in situations when repeated

measures or multiple observations are made on the same unit over time [1].

The presence of repeated measurements, in longitudinal data, implies that the observations from the

same subject are likely to be correlated. This requires the development of some statistical methods that

take into account the correlation among measurements on the same unit. In 1918 Sir R. Fisher was one

of the �rst to address this matter in his work, studying the correlations of trait values between relatives

[2] and outlining the general method for the analysis of variance (ANOVA) or variance component (VC)

models. It was further developed in his work in 1925 [3]. In such a model, a speci�c factor whose levels

are thought to be samples from some populations of levels are treated as random e�ects. For this reason,

they are represented by (unobserved) random variables. Thereafter the VC models have been studied

abundantly, since they mirror interpretable notions, such as the Intraclass Correlation Coe�cient (ICC).

The key idea behind the ICC is to quantify whether the measurements on the same unit tend to be more

alike than the observations from di�erent units. For this reason, it is used to �measure� the closeness

of di�erent observations. The ICC is usually calculated as the the ratio of di�erent sums of variance

components [4, 5]. We consider the ICC as a quantity to assess sources of variability.

Linear Mixed Models (LMMs) provide a very general and �exible approach to the analysis of longitudinal

data, because they allow a wide selection of correlation patterns (and variance-covariance structures) to

be explicitly modeled. They were �rst proposed by Laird and Ware [6] in 1982 and since then, they have

been widely used in many areas such as psychology [7], sociology [8], biology [9] and medicine [10]. The

term �linear� comes from the fact that such models are linear in the parameters, whereas the adjective

�mixed� implies that the covariates may involve a mix of �xed and random e�ects. The �xed e�ects

address the in�uence of certain levels of one particular factor that can be set by the experimenter. Both

�xed and random e�ects can be continuous or categorical variables [11, 12].

A challenging problem in �tting LMMs is the distribution of the residuals. The traditional model assumes

that they are normally distributed with zero mean and a constant variance across the units. In some cases,

this hypothesis appears not to be accurate, and gaining information about the intra-(within-) individual
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CHAPTER 1. INTRODUCTION AND BACKGROUND 6

variability becomes at least as important as pooling information about the �xed and the random e�ects.

There exists an extensive literature dealing with heterogeneous variances [13], showing that this feature

is encoutered in many areas of applied statistics such as statistical process controls, quality control,

quantitative genetics and animal biology. For this reason, several authors proposed methods to deal

with variance heterogeneity in the past years. Wright et al. [14] built a random variance model for

the detection of di�erences in gene expression in microarray experiments. Foulley et al. [15], Chinchilli

et al. [16] and Lin et al. [17] proposed an extension of the LMMs using a Bayesian approach. In

particular, they assumed the residual (intra-subject) variances to be inverse Gamma distributed. Foulley

et al. [15] simply considered a non-informative prior for the residual variances whereas Chinchilli et al.

[16] introduced the random intra-individual variability as a reason of the marginal t-distribution for the

residuals. However, the proposed LMM didn't include any covariates in the model but only a random

intercept. Lin et al. [17] extended the two previous studies explicitly assuming that the mean of the

inverse Gamma distribution is related to a linear function of the covariates at subject-level. In 2001

Pinheiro et al. [18] proposed a robust hierarchical LMM in which the random e�ects and the residuals

have multivariate joint t-distributions. However, they limited the covariance structure for the residuals

to be diagonal and heteroskedastic (also known as �UN(1)� in the statistical softwares [19]). With this

in mind, we expand the heterogeneous structure for the residual variance component, inspired by a real

study-case (the Night to Night dataset).

One standard method for the parameter estimation in LMMs both for variance components of random

e�ects and for �xed e�ects is maximum likelihood (ML). In general, ML estimation is a method of

obtaining estimates of unknown parameters by optimizing a likelihood function. To apply ML estimation,

we �rst need to construct the likelihood as a function of the parameters of the model, based on the

distributional assumptions. Casella & Berger in [20] provided an extensive discussion of ML estimation.

In the context of the LMM, we construct the likelihood function of the �xed and random e�ects. Although

it is often possible to �nd the estimates of �xed and random e�ects simultaneously, the computations

can be cumbersome and a closed form expression for the estimates does not always exist. A number of

methods is available for maximizing this likelihood directly [21], or via approximations [15, 16, 22, 23, 24,

25]. The authors in [18] considered a Bayesian hierarchical model and studied the maximum likelihood

(ML) estimation of the parameters for the LMM with hetherogeneous residual variances. They applied

three di�erent EM-type algorithms, distiguishing between di�erent assumptions on the observed and the

random e�ects. Although all the proposed methods performed well in estimating the parameters, the

authors indicated that both the theoretical derivation and the numerical computations were burdensome

and time-demanding. Furthermore, they required speci�c limitations for the structure and dimension

of residual covariance matrix and used speci�c restrictions on the parameters of the inverse Gamma

distribution.

We believe that some of these limitations can be overcome and that the LMM model with random

intra-subject variability can be further broadened. We provide more �exibility in the choice of residual

correlation structures, and we extend the distributional assumption of the residual variance to a gener-

alized inverse Gamma. Besides introducing a new degree of freedom, we do not require the shape and

rate parameters to be equal to each other (as was commonly assumed in the literature [16, 18]). To

estimate the parameters, we adopt a one step approach in the optimization procedure which is more

direct than the two steps approach implemented in the EM algorithm. Two numerical procedures are
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being considered. Our method still relies on ML estimation, but it avoids the di�cult derivations about

the posterior distributions of the unobserved data required by the EM algorithm: it's able to provide the

parameter estimates by simply using the information on the marginal distribution of the outcomes. We

also show that our method is �exible to handle high numbers of repeated measurements (16 repeated)

whereas the foregoing studies considered only a small numbers of (� 4) of repeated measurements [18].

We study our method through simulation studies and illustrate it on a real case study.

Outline

The thesis is organized as follows: in Chapter 2 we present our motivating example, the study design and

the variables of interest for our analysis. Chapter 3 describes the steps we followed to build our model

with heterogeneous intra-subject variances, the estimation techniques and illustrates the simulation study

we considered to validate our estimation method. Chapter 4 collects all the results of the simulations and

the case study. Finally the conclusions and suggestions for further research are presented in Chapter 5.



Chapter 2

Motivating Example: the Night to

Night Dataset

Modern medicine recognizes the high importance of sleep quality and its link to health problems such as

diabetes, cardiovascular diseases and obesity [26]. Because of its high relevance for health monitoring,

sleep stage classication from cardiorespiratory signals has attracted increasing attention in the last years

especially for the high relevance in the diagnostic process. To this respect, many experiments were set up

for example to investigate daily associations and intra-individual variability between sleep and negative

a�ect, taken as response variable [27]. Mezick et al. [28] studied the intra-individual variability in sleep

duration with respect to psychosocial and physiological indices of stress, whereas Knutson et al. [29] and

van Hilten et al. [30] focused on the evaluation of the intra-individual daily and yearly variability in

sleep characteristics among middle aged adults. Lemola et al. [31] and Akerstedt et al. [32] considered

the day-to-day variability in sleep duration related to sleep quality and well-being. A further study

was proposed by Klerman et al. [33] for accessing the inter-individual (between-subject) variability in

sleep need and vulnerability to sleep loss. Recently, an interesting analysis was proposed by Leufkens

et al. [34] where the authors investigated the e�ects of the intra- and inter-individual variability in

the cardiorespiratory activity during sleep. They constructed a LMM with a set of baseline covariates

(gender, age and body mass index) and time of the night as �xed e�ects and three random e�ects, such

as a subject speci�c random intercept, detecting the between-subject variability, a random slope and

residual term, quantifying the within-subject variability in physiology and time, respectively. Inspired by

this work, we aim at discovering to which extent di�erences in cardiac activity during sleep are a�ected

by between- and within-subject variability. We will consider the ICC [4, 5] as a quantity to assess the

sources of variability. Furthermore, since no special attention has been paid by the authors in [34] to the

correlation structure of the longitudinal setting and heterogeneity in the intra-individual variability, it is

our concern to get a deeper insight into this.

8



CHAPTER 2. MOTIVATING EXAMPLE: THE NIGHT TO NIGHT DATASET 9

2.1 Data Description

The Night to Night (N2N) dataset consists of 50 healthy participants recruited by an external agency,

25 males and 25 females aged 40-65 years old. This age range was purposely set because it is assumed

to be associated with people with a stable routine and sleep rhythm. These subjects were screened in

advance not to su�er from neurological, cardiovascular, psychiatric and endocrinological disorders, as well

as sleep apnea, restless legs syndromes and insomnias. People taking sleep medications, antidepressants

or cardiovascular medications were also exluded as well as people with history or habituation of drugs

or excessive alcohol. The selection criteria continued with no pregnant women, caretakers of babies or

young children, shift workers and people having crossed more than two time zones in the last two months.

The study duration was 16 days of which 2 weeks of home monitoring and two additional nights in a

�sleep lab/hotel� for extra obtrusive measurements [35, 36]. The participants completed sleep and wake

diaries that consisted of many subquestionnaires [37, 38], �lled in every morning within one hour after

the �nal awakening and every evening before going to bed. From this amount of information several sleep

and mood features were completed, such as the Satisfaction with Life Scale (SWLS) [39], the Perceived

Stress Scale (PSS) [40], the Munich Chronotype score (MCS) [41] and the Warwick-Edinburgh mental

well-being scale (WEMWBS) [42].

2.2 Data Preparation and Methods

In our study, we take into consideration the cardiovascular signal from the electrocardiogram (ECG).

From this signal, many cardiac features were computed both in the time and frequency domains [43]. For

each cardiac feature, the mean and the standard deviation per night were computed. For the purpose

of this thesis, we consider only the mean heart rate (mean HR) per night, but the study could be easily

reproduced using other features listed in [34, 43]. Eight out of the 50 participants were excluded from

the analysis because of various reasons (e.g. withdrawal of the study, non-reliability of the signals).

Among the remaining, 23 were females. The standard LMM can be used to describe the inter- and intra-

subject e�ects in connection with the e�ects of some baseline covariates, such as age and gender. LMM

is expressed as:

Yi = Xi� +Ziui + ei (2.2.1)

where Yi is an m-dimensional vector of observed responses for subject i = 1; :::; n, Xi and Zi are two
known m� q and m� r design matrices corresponding to the q-dimensional �xed e�ects vector � and the

r-dimensional random e�ects vector ui, respectively, and ei is an m-dimensional vector of residuals. The

ui's are assumed to be independent with distribution N(0;	) and the ei's are independent identically
distributed with distribution N(0;�), such that ui and ei are independent. The m � m covariance

matrix � may be unstructured or stuctured, for example diagonal [44], autoregressive (AR) or with a

Toeplitz structure [45]. It is our concern to choose the best feasible correlation structure for the model

and for the nature of the experiment.

We �tted the model in (2.2.1) using the MIXED procedure of SAS/STAT® software, considering 2

covariates for the vector �, i.e. gender and age, and a random intercept for ui, with an AR(1) correlation

structure for the matrix � of the residuals. Nonetheless, the normality assumptions seem to be rejected
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for the residuals in our case study. The Q-Q plot in Figure 2.2.1 shows evident deviations from normality

(solid straight line) in the tails.

Figure 2.2.1: Conditional studentized residuals for HR mean.

Additionally, a visualization of the mean HR pro�les for each subject suggests a considerable within-

subject variance heterogeneity, i.e. some subjects have a constant behaviour across the repeated mea-

surements, whereas some participants have a signi�cant variability across the observed nights. Figure

2.2.2 shows this heterogeneity among three participants: subject 4 (blue solid line) has a higher mean

value for HR mean and an associated higher variability across the repeated measurements whereas sub-

ject 16 (red dot-dashed line) has a lower mean value for mean HR and a smaller variability. Interestingly,

subject 29 (green dashed line) shows a low mean for HR but has an unexpected peak in a speci�c mea-

surement. Finally, �gure 2.2.3 visualizes the mean HR for each participant across the di�erent nights

with a boxplot.

Figure 2.2.2: HR mean value for Subject 4, 16 and 29 across the 16 nights.

To sum up, modelling the heterogeneity in the residuals appears necessary for developing a better under-

standing of the autonomic activity during night. To support our intuitive conclusion, we performed the
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Figure 2.2.3: Boxplot of HR mean per subject.

Levene's test [46] on the subject-speci�c sample variances �̂2
i (see APPENDIX A for the test statistics

and the code). Table 2.2.1 summarizes the results of the test: the p-value is strictly below the threshold

value of � = 0:05 showing that there is enough evidence to reject the null hypothesis of homogeneity of

the residual variances.

Source DF Sum of Squares Mean Squares F value Pr>F
Subject 41 787.5 19.2085 2.55 <.0001
Error 549 4128.6 7.5202 - -

Table 2.2.1: Summary of the Levene's test for the heterogeneity of the intra-subject variances.

Consequently, we investigate the distribution of the observed intra-individual variability with log-normal

and inverse Gamma distributions. Both the log-normal and the inverse Gamma distribution could not be

rejected (see APPENDIX B for the details). In order to be consistent with the literature, we will work

under the assumption that the residual variances have an inverse Gamma distribution.



Chapter 3

Methods Description

Inspired by the work of Pinheiro et al. [18], in this chapter we extend the standard LMM to explicitly

model heterogeneous residual variances. We consider a subject-speci�c latent variable to model the

intra-individual variability. In particular, we assume the intra-individual variability to be a random

sample from a generalized inverse Gamma (GIG). From the conditional distribution of the observations,

given the latent variable, we derive a closed form expression for the marginal distribution. Using this

mathematical framework, we describe a speci�c formulation of the intra-class correlation coe�cient (ICC).

Then we introduce a likelihood-based estimation method for our model and show how the procedure can

be implemented in R. Finally we present a simulation study to discuss the validity of the estimation

procedure for our model.

3.1 A Random Variance Model

The statistical model of interest is de�ned as follows: assume variable Yij expresses the value of HR mean

for subject i = 1; 2; :::; n at night j = 1; 2; :::;m: Similar to (2.2.1) our LMM is given by:

Yi = Xi� +Ziui + ei (3.1.1)

where Yi = (Yi1; Yi2; :::; Yim)T ,Xi and Zi are matrices of known covariates with the corresponding vector
of �xed e�ects � and random e�ects ui. Furthermore, let:

(ui; eij)T jvi � N

 "
0
0

#

;

"
�2(vi) 0

0 v�pi

#!

where vi = 1=�2
i be generalized Gamma distributed, with �2

i representing the unknown intra-individual

variability of subject i across the di�erent nights. The generalized Gamma density (GG) for a given

random variable vi is de�ned as:

f(vij�; �; p) = p��p
vp��1
i
�(�)

exp f� (�vi)
pg (3.1.2)

12
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with vi > 0; � > 0; � > 0 and p > 0. In this analysis we consinder only a random intercept for

subjects, i.e. the variable ui represents changes in the mean level between subjects. We also assume

that there exists a linear relationship between the inter- and intra-subject variance components, that is

the variance of ui given vi, �2(vi), yields �=vpi [47], with � 2 R. Speci�cally, the parameter � is the

ratio of the between-subject and within-subject variance components. In addition, the distribution of

Yi = (Yi1; Yi2; :::; Yim)T2 Rm given ui and vi is m-variate normal with mean !i and covariance matrix

�i given by

!i =

0

BBBB@

�+ ui
�+ ui
:::

�+ ui

1

CCCCA
;�i = �2p

i R = �2p
i

0

BBBBB@

1 �1;2 � � � �1;m

�2;1 1
. . .

...
...

. . .
. . . �m�1;m

�m;1 � � � �m;m�1 1

1

CCCCCA
(3.1.3)

with � = Xi� an unknown constant mean and R an unknown m � m correlation matrix. There-

fore, we obtain the conditional density function of Yi given vi as an m-variate normal with mean

� = (�; �; :::; �)T 2 Rm and variance-covariance matrix �2p
i 
, with 
 given by 
 = �Jm;m +R where

Jm;m is a matrix with only ones [48]. In summary, the conditional density of Yi is given by

f(Yijvi) =
1

(2�)
m
2 j (�2

i )p 
j 12
exp

�
�

1
2

(Yi � �)T
�
�2p
i 


��1
(Yi � �)

�
(3.1.4)

=
v
mp

2
i

(2�)
m
2 j
j 12

exp
�
�
vpi
2

(Yi � �)T 
�1 (Y i � �)
�
:

The marginal density of the Y i can be obtained by integrating out the random term vi from the joint

distribution of f(Y i; vi), equal to the product of (3.1.4) and (3.1.2) (see APPENDIX E for the details of

the derivation)

f(Yi) =
R v

pm
2

i

(2�)
m
2 j
j

1
2
exp

n
� v

p
i
2 (Y i � �)T 
�1 (Yi � �)

o
p��p v

p��1
i
�(�) exp f� (�vi)

pg dvi

= �(�+m
2 )

(2��p)
m
2 j
j

1
2 �(�)

(1 + 1
2�p (Yi � �)T 
�1 (Yi � �))�(�+m

2 )

= �(�+m
2 )

(2�)
m
2 j�p
j

1
2 �(�)

(1 + 1
2 (Yi � �)T (�p
)�1 (Yi � �))�(�+m

2 ):

(3.1.5)

We can rewrite the density in (3.1.5) as

f(Y i) =
�(�+ m

2 )

(2��)
m
2 je
j 12 �(�)

(1 +
1

2�
(Yi � �)T e


�1
(Yi � �))�(�+m

2 ) (3.1.6)

with e
 = �p
� 
 = �p

� (�Jm;m +R). Hence, the density in (3.1.6) is always t-distributed with 2� degrees

of freedom. Indeed, a multivariate t-distribution is in general of the form [49, 50]

t�(x; ~�;� ) =
� (�+k

2 )
� (�2 )

1

(��)
k
2

1
j� j 12

�
1 +

1
�

(x� ~�)T ��1 (x� ~�)
�� �+k

2

with k the dimension and � the degrees of freedom.
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3.1.1 Identi�ability

A closer look at the expression in (3.1.6) shows that the structure of the matrix e
 is not in all cases

identi�able. Identi�ability is de�ned as follows. Given a set of parameters � 2 � for a given model

indexed by �, say f�, we say that the model is identi�able when we can �nd a one-to-one transformation

that maps the vector � to f�. Thus, f�1 = f�2 implies �1 = �2: Firstly, the rate of the generalized

Gamma distribution can not be estimated separately from the shape parameter p, in the expression �p

in e
. Thus, we can only estimate ~� = �p. For a reason of convenience, we will choose p = 1.

Additionally, we notice that the factor � or �=� is a scaling factor that is compensated by the matrix 
.

Therefore, this also leads to a parameter identi�ability problem. Identi�ability is guarateed by requiring

� = ��; where � is considered known. In literature, the assumption of � = 1 was frequently made [16, 18].

However, in practice we would like to be able to estimate � instead of making strong assumptions. This

puts restrictions on the choices of R. Indeed, we see that the structure of the correlation matrix R cannot

be selected freely. Considering two dimensions (m = 2), with � = (�; �; �) and f� = �(�Jm;m +R), the
residuals eij 's must be independent to obtain identi�ability, i.e. R = I. Any correlation structure for R
is not identi�able. To show this, let two sets of parameters �1 and �2 be given, the equation f�1 = f�2

leads to the following system of two equations

8
<

:
�1(1 + �1) = �2(1 + �2)

�1(�1 + �1) = �2(�2 + �2):

These equations do not lead to �1 = �2: For instance, �1 = (2; 0; 0:5) and �2 = (1; 1; 0) satisfy f�1 = f�2 :
We now show that, when the number of repeated measurements is m = 3, some correlation structures

provide identi�ability issues, such as the TOEPLITZ structure for R. The equation f�1 = f�2 , with

�i = (�i; �i; �i1; �i2) the parameters when R is of the Toeplitz structure, ends up in the following system:

8
>>><

>>>:

�1(1 + �1) = �2(1 + �2)

�1(�11 + �1) = �2(�21 + �2)

�1(�12 + �1) = �2(�22 + �2):

As a consequence, we obtain a system of 3 equations with 4 unknowns, which has not a unique solution.

Other simpler correlation structure for R are identi�able. For example, the �rst-order autoregressive

structure (AR(1)) is identi�able for m = 3. The set of equations for f�1 = f�2 with �i = (�i; �i; �i), is
given by 8

>>><

>>>:

�1(1 + �1) = �2(1 + �2)

�1(�1 + �1) = �2(�2 + �2)

�1(�2
1 + �1) = �2(�2

2 + �2):

Solving this system of 3 equations with 3 unknown parameters results in

8
>>><

>>>:

�2 = [�1(1� �2) + �1 � �2]=(1� �1)

�2 = �1(1� �1)=(1� �2)

0 = �2
2 � �2(1� �1) + �1:
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Similarly, for higher dimensions of repeated measurements (m � 4), the AR(1) is also identi�able since

the equations of the 3 dimensions are included in higher dimensions and these guarantee that f�1 6= f�2

when �1 6= �2. Correlation structures that have a number of parameters that is less than or equal to

the dimension of the correlation matrix are potentially identi�able. It can be demonstrated that the

autoregressive moving average model (ARMA), the spatial Gaussian (SP(GAUSS)), the spatial linear

(SP(LIN)) and the spatial power (SP(POWER)) are identi�able for four or more (m � 4) repeated

measurements in our model.

3.2 Consequences of the Random Variance Model

3.2.1 Correlation Analysis

As discussed in the introduction, the ICC assesses the �rating reliability� by comparing the variability of

di�erent �ratings� of the same subject to the total variation across all �ratings� and all subjects. Therefore,

to �nd an expression form for the intra-class correlation, we use the correlation formula between two

di�erent measurements on the same individual. Denoting Yij and Yil two di�erent observations for

subject i, then
Corr (Yij ; Yil) = Cov (Yij ; Yil) =

q
V ar (Yij)V ar (Yil): (3.2.1)

To compute the numerator in (3.2.1) we condition on vi, getting

Cov (Yij ; Yil) = E [Cov (Yij ; Yil) jvi] + Cov (E [Yij jvi] ; E [Yiljvi]) : (3.2.2)

The second term on the right-hand side is zero since the expected value E[Yij jvi] = �. The �rst term of

the right-hand side is actually the (j; l) element of the covariance matrix 
 of the multivariate normal

distribution in (3.1.4), that is

Cov (Yij ; Yil) jvi =

8
<

:
1=vpi + �2(vi) j = l

�jl=vpi + �2(vi) otherwise:
(3.2.3)

Taking expections in (3.2.3)

Cov (Yij ; Yil) =

8
<

:
E[1=vpi ] + E[�2(vi)] j = l

�jlE[1=vpi ] + E[�2(vi)] otherwise:
(3.2.4)

Assuming a linear relationship between the two variance components, i.e. �2(vi) = �=vpi we obtain the

general explicit formula for (3.2.1) given by

Corr (Yij ; Yil) =
E[1=vpi ](�jl + �)
E[1=vpi ](1 + �)

: (3.2.5)

Under the assumption that vi has a generalized gamma distribution, the expected value E[1=vpi ] is equal
to �=(�� 1). This mean that the ICC becomes
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Corr (Yij ; Yil) =
�=(�� 1)(�jl + �)
�=(�� 1)(1 + �)

showing that (3.2.5) is parameter free.

3.2.2 The Intra-Individual Sample Variances

In practice, the intra-individual sample variances �̂2
i are studied to identi�y heterogeneity issues and to

determine a possible distribution for the heterogeneity. It is our interest to investigate the relationship

between �2
i and its sample estimate �̂2

i . The following holds true:

�̂2
i =

1
m� 1

mX

j=1

(Yij � �Yi:)2 =
1

m� 1

mX

j=1

(eij � �ei:)2 = �2p
i [

1
m� 1

mX

j=1

(�ij � ��i:)2] � �2p
i Wi (3.2.6)

with �i= (�i1; �i2; :::; �im) � N(0;R), withR as in (3.1.3). Under our model assumption, theW1;W2; :::;Wn

are i.i.d., which implies that heterogeneity in the sample variances �̂2
i can indeed be studied with Lev-

ene's test. Investigating the distribution of �2p
i is less trivial with �̂2

i . Wi follows a chi-square distribution

when the correlation matrix R is an identity matrix. The product of a chi-square and generalized inverse

Gamma is probably not a generalized inverse Gamma in general. The distribution becomes even more

complicated whenR is not the identity matrix, but it has an AR(1) structure, since the distribution ofWi

is not chi-square anymore. However, with a reparameterization, the chi-square density can be expressed

a Gamma density. Thus, reformulated in a di�erent way, we want to see under which restrictions on the

R matrix, the product in (3.2.6) can still be considered inverse Gamma distributed.

3.2.3 A t-distribution for the random e�ects

The GG distribution that we assume for the intra-individual variances has important consequences on the

distribution of the random e�ects considered in model (3.1.1). In our model, the latent variables ui and vi
depend on each other, but they are uncorrelated (E[uivi] = 0). The assumption that uijvi � N(0; �=vpi )
makes the random e�ects ui t-distributed when vi is generalized Gamma distributed. Following the same

proof that we used to get a close form expression for the density of the Y i's (in APPENDIX E), we show

that the random e�ect ui has a scaled t-distribution with 2� degrees of freedom and scale parameter
p
�=(��p).

3.3 Estimation of Parameters

Many of the known methods based on ML estimation for LMMs assume that all the random components

are normally distributed. Additionally, existing estimation procedures that deal with multivariate t-
distributions (see for example [51]) do not allow to freely model the parameters of the Gamma distribution

[52]. To overcome these issues we develop a direct numerical estimation approach in R by minimizing

the negative of the logarithm of the likelihood function. The likelihood is given by
Qn
i=1 f(Yi) because of
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independence assumptions, with Yi de�ned in (3.1.5), but we applied a reparametrization of the matrix
e
, i.e.

e
 =


�

=

0

BBBBB@

�2 + �2 �2
1;2 + �2 � � � �2

1;m + �2

�2
2;1 + �2 �2 + �2 . . .

...
...

. . .
. . . �2

m�1;m + �2

�2
m;1 + �2 � � � �2

m;m�1 + �2 �2 + �2

1

CCCCCA
(3.3.1)

with � = �
� , the expected intra-subject variability, �2 = 1

� , �
2 = �

� and �2
r;s = �jr�sj�2. The numerical

approach uses a constrained optimization algorithm implemented in the �nloptr� software package [53] of

R (version 3.0.2). It provides a useful interface for a number of di�erent nonlinear optimization problems.

We consider two non gradient-based local search methods that perform the optimization using quadratic

approximations of the objective function, namely BOBYQA [54] and a modi�ed version of NEWUOA,

that permits e�cient handling of bound constraints, NEWUOA_BOUND [55, 56, 57]. This choice is

motivated by the complexity of the computation of the �rst and second derivatives of the logarithm

of the likelihood function. Theoretically they do exist, but their computations can be cumbersome.

According to the literature [54], the two algorithms are equally valuable and the selection of the preferred

algorithm often depends on the speci�c case study. The performances of the two methods are compared

by simulating a scenario that resembles our study case. The details of the algorithm as well as the

implementation in R are given in APPENDIX F.

For the estimation purpose, we assume an AR(1) correlation structure for the R matrix and a GIG with

shape parameter p = 1 for the intra-individual variability, as discussed in Section 3.1.1. The optimization

procedure requires initial values. We choose the moment estimate for the shape parameter � of the inverse

Gamma distribution, the sample estimates for the variance components and the common Gaussian LMM

for the �xed e�ects, i.e. without the assumption of heterogeneity in the residual variances. The ICC

presented in Section 3.2.1 are evaluated by substituting the ML estimates in formula (3.2.5), using the

parameter relationships described in (3.3.1)

Bootstrap con�dence intervals are a valid approach for calculating the standard errors of the estimates (see

APPENDIX G for the algorithm). We independently sample with replacement 1000 bootstrap samples

from the data, each one with dimension equal to our original dataset and then analyze them. The sample

standard deviation of the �boostrap estimates� is our approximate standard error. Theoretical results

prove that this standard error asymptotically approaches the theoretical standard error of the statistic

under study [58].

3.4 Simulation Study

We conduct a simulation study in order to investigate the performance of our model and method of

estimation. For each subject in our dataset, we generate three random variables from model (3.1.1),

with p = 1: an inverse Gamma random variable for the within-subject variances, with parameter � =
f1:5; 5; 7:5; 15; 25g; a Bernoulli random variable with parameter 0.54, representing gender, and a uniform

random variable in [�1; 1]; representing the standardized age of the participant. The distributions of
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gender and age were visually checked using two heuristics Q-Q plots. We set the vector � in the equation

(3.1.1) equal to [62:795; 2:5; 0:5], indicating the e�ect on the response variable of the intercept, age and

gender respectively. For the identi�ability issues discussed in Section 3.1.1, we �x the inverse of the

expected residual variances to be 15, i.e. � = 15�. Given the generated random variables, we simulate a

normal distribution for the random e�ect and a multivariate Gaussian with an AR(1) covariance structure

for the residuals, with the following parameters: � = f0:25; 2g and � = f0:25; 0:75g. We generate the HR

mean values for each subject by means of the equation (3.1.1). We repeat this procedure 1000 times to

obtain the same number of simulated datasets. We also study the e�ect of varying the sample size by

simulating 50 and 250 participants measured at 16 times. In total we simulated 40 di�erent scenarios as

summarized in Table 3.4.1.

For each simulation setting, we take the mean square error (MSE) and the relative bias as measures of the

quality of the parameters estimates. Additionally, we perform a Levene's test on within-subject variances

to test the heterogeneity of the simulated data. For the datasets that show heterogeneity, we further

check the distribution of the within-subject sample variances. The R code for the simulation study is

given in APPENDIX H.
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Setting # Subjects � � �

1 50 � = 1:5 � = 0:25 � = 0:25
2 50 � = 1:5 � = 0:25 � = 0:75
3 50 � = 1:5 � = 2 � = 0:25
4 50 � = 1:5 � = 2 � = 0:75
5 50 � = 5 � = 0:25 � = 0:25
6 50 � = 5 � = 0:25 � = 0:75
7 50 � = 5 � = 2 � = 0:25
8 50 � = 5 � = 2 � = 0:75
9 50 � = 7:5 � = 0:25 � = 0:25
10 50 � = 7:5 � = 0:25 � = 0:75
11 50 � = 7:5 � = 2 � = 0:25
12 50 � = 7:5 � = 2 � = 0:75
13 50 � = 15 � = 0:25 � = 0:25
14 50 � = 15 � = 0:25 � = 0:75
15 50 � = 15 � = 2 � = 0:25
16 50 � = 15 � = 2 � = 0:75
17 50 � = 25 � = 0:25 � = 0:25
18 50 � = 25 � = 0:25 � = 0:75
19 50 � = 25 � = 2 � = 0:25
20 50 � = 25 � = 2 � = 0:75
21 250 � = 1:5 � = 0:25 � = 0:25
22 250 � = 1:5 � = 0:25 � = 0:75
23 250 � = 1:5 � = 2 � = 0:25
24 250 � = 1:5 � = 2 � = 0:75
25 250 � = 5 � = 0:25 � = 0:25
26 250 � = 5 � = 0:25 � = 0:75
27 250 � = 5 � = 2 � = 0:25
28 250 � = 5 � = 2 � = 0:75
29 250 � = 7:5 � = 0:25 � = 0:25
30 250 � = 7:5 � = 0:25 � = 0:75
31 250 � = 7:5 � = 2 � = 0:25
32 250 � = 7:5 � = 2 � = 0:75
33 250 � = 15 � = 0:25 � = 0:25
34 250 � = 15 � = 0:25 � = 0:75
35 250 � = 15 � = 2 � = 0:25
36 250 � = 15 � = 2 � = 0:75
37 250 � = 25 � = 0:25 � = 0:25
38 250 � = 25 � = 0:25 � = 0:75
39 250 � = 25 � = 2 � = 0:25
40 250 � = 25 � = 2 � = 0:75

Table 3.4.1: Simulation Setting.



Chapter 4

Results

In this chapter we present the results of the analysis of our motivating example. In addition we discuss

the performances of the two optimization techniques mentioned in Chapter 3 on a simulated dataset

which purposely resembles the N2N dataset. We then describe the accuracy of the estimated parameters

in the simulation study. The estimated values are compared with the true ones, used to generate the

datasets in order to check the precision of our estimation procedure.

4.1 Analysis of the Night to Night Dataset

In the N2N dataset all the participants showed at least one missing value in the response variable.

Preliminary to the analysis, an advanced technique for handling missing data is applied because the

estimation technique described in Section 3.3 can not deal with incomplete datasets. Little and Rubin

[59] provided an overview of the methods for the analysis of missing data. Among these, we chose

multiple imputation, with 20 as the number of imputed datasets, and used the predictive mean matching

method to replace the �missingness� in the covariates and in the outcome. Additionally, we considered

information from the baseline covariates, such as SWLS, PSS, WEMBS and MES as auxiliary variables in

the imputation procedure. When the reported value of these variables was out of the reasonable bounds,

they were taken as �missingness�. The multiple imputed data sets are �rst analyzed seperately; the results

are then combined using Rubin's rule [60]. We perfom data imputations with the �mice� package [61, 62]

in R. Three out of the 20 imputed datasets (15%) were not included in the analysis, as they showed high

standard errors of the parameter estimates. Table 4.1.1 gives the estimates for the �xed e�ects and for the

variance components obtained by pooling the results of the remaining 17 datasets. According to Rubin's

rule, �Pooled Estimates� collects the mean of the estimate for each parameter, �S.E.� is the standard

error of the means, computed taking into account the between- and within-imputation variances of the 17

complete-data estimates. The within-subject variances are computed using the bootstrap approach. The

95% con�dence intervals for the parameter estimates are constructed by considering a normal distribution

primarily checked via a Shapiro-Wilk test.

We also compute the rate parameter � of the residual variances, the constant � determining the ratio

between the variance components, and the ICC of the �rst two measurements using the reparametrization

20
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Parameter Pooled Estimate S.E. Lower 95% Limit Upper 95% Limit

� 62.808 1.617 59.638 65.978

Gender 1.735 2.376 -2.923 6.394

Age -0.166 0.973 -2.0728 1.740

�2
1;2 2.695 1.553 -0.350 5.740

�2 28.873 8.368 12.471 45.275

�2 16.376 3.103 10.294 22.345

� 2.535 0.910 0.750 4.320

Table 4.1.1: Means, standard errors and con�dence intervals for the parameters estimate for the case
study.

shown in Section 3.3. The estimate of �2, the between-subject variance component, is 28.873 and the

estimated �2, the within-subject variance, is 16.376. In addition, the estimated rate and shape of �2
i

(� = 2:535 and � = �2� = 41:513) are comparable to their moment estimates as listed in Table B.0.1

(�̂ = 3:145 and �̂ = 44:095). The estimate of the correlation between the �rst two nights is ICC1;2 =
0:698, according to (3.2.5). The AR(1) covariance structure that we assumed for the residuals gives non

negligible correlations between two repeated measurements on the same subject up to the sixth future

day (ICC1;6 = 0:116). The solutions of the �xed e�ects include � = 62:808; the average value of the

mean heart rate per night for the male participants, Gender = 1:735 which represents the di�erence in

the HR mean value between females and males. The model suggests that females have a higher mean

HR value during the night, even if there is no evidence of di�erences between men and women, since 0 is

included in the con�dence interval [-2.923;0.394]. The same holds for the Age e�ect, estimated at �0:166
and whose con�dence interval is [�2:0728; 1:740]. This implies that the impact of this variable on the

mean HR value of the population seems not to be signi�cant.

4.2 Comparison Performance of the Optimization Methods

Table 4.2.1 compares the two bound constrained optimization methods BOBYQA and NEWOUA_BOUND

in a simulated dataset with � = 2:5; � = 1:8 and � = 0:165 and a vector of �xed e�ects � equal to

(62:80; 1:80;�0:1665); similar to our case study. The accuracy measures of the parameters estimates are

similar for the two methods, so they can both be used. However, the NEWOUA_BOUND algorithm is

less time intensive then the other, as it is observed to be 4 times faster than BOBYQA. Thus, we consider

this optimization method for the following investigations.

4.3 Simulation Results

The main scope of this simulation study is to assess the accuracy of the procedure for the estimation of

the parameters of our model. In this chapter, each table contains �Mean Estimate�, �St. Dev.�, �Relative

Bias� and �MSE� for a particular setting of the simulated datasets in Table 3.4.1. The �Mean Estimate�

and �St. Dev.� denote the average and the standard deviation of the parameter estimates from 1000

simulations, respectively. �Relative Bias� expresses the ratio between the bias of the estimate and the true

value in percentage. Finally, �MSE� is the mean of the squared di�erence between between the estimate
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Parameter True Value Mean Estimate Rel. Bias (%) MSE

� 62.80
62.816 0.0257 1.626
62.814 0.0219 1.637

Gender 1.80
1.785 -0.830 2.895
1.791 -0.494 2.923

Age -0.1665
-0.155 -6.917 0.644
-0.169 1.579 0.726

�2
1;2 2.695

2.698 0.111 0.687
2.698 0.111 0.687

�2 29.52
28.238 -4.343 49.929
28.204 -4.458 50.205

�2 16.40
16.550 0.913 3.398
16.551 0.920 3.395

� 2.50
2.690 7.617 0.561
2.690 7.606 0.562

Sim. Time BOBYQA 1h:59:28
Sim. Time NEWOUA 0h:33:01

Table 4.2.1: Comparison Performance of BOBYQA (�rst row for each paramerter) and
NEWOUA_BOUND's algorithms (second row).

Parameter True Value Mean Estimate St. Dev. Relative Bias (%) Empirical MSE

� 62.795 62.796 0.511 0.00219 0.260

Gender 2.500 2.501 0.688 0.0228 0.472

Age 0.500 0.519 0.352 3.725 0.125

�2
1;2 3.750 3.809 0.893 1.583 0.800

�2 3.750 3.517 1.166 -6.215 1.412

�2 15.000 15.204 2.039 1.361 4.186

� 1.500 1.601 0.360 6.717 0.139

Table 4.3.1: Parameter estimates of the model, with simulated values based on the parameters � =
1:5; � = 0:25 and � = 0:25 .

and the true value of the parameters. In Table 4.3.1 we present the results from the simulation setting

with � = 1:5; � = 0:25 and � = 0:25 (setting 1 in Table 3.4.1). From the last two columns, we can see

that our estimation procedure performs very well, with the mean estimates reasonably close to the true

values: the relative bias does not exceed the 6.717% and the MSE is below 4.186. Figure 4.3.1 displays

the stable behaviour of the relative percentage bias (4.3.1a) and the MSE (4.3.1b) across 20 scenarios

with 50 subjects for the overall intercept �. Similarly, the relative bias and the MSE for the e�ect of

gender remains quite low (below 3% and 4 respectively), as it is shown in Figure 4.3.2. The estimation of

the e�ect of age produces slightly biased estimates in scenarios with � = 2 (around 9%), with respect to

the case � = 0:25 (5%) as visualized in Figure 4.3.3a, whereas a MSE under 5 highlights low variability

of the estimates around the mean value (in Figure 4.3.3b).
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(a) (b)

Figure 4.3.1: Relative Bias (a) and MSE (b) for the �xed a�ect of �, for di�erent combinations of values
of �; � and � and for 50 subjects.

(a) (b)

Figure 4.3.2: Relative bias (a) and MSE (b) for the �xed e�ect of Gender, for di�erent combinations of
values of �; � and � and for 50 subjects.
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(a) (b)

Figure 4.3.3: Relative bias (a) and MSE (b) for the �xed e�ect of Age, for di�erent combinations of
values of �; � and � and for 50 subjects.

As far as the variance components are concerned, the covariance term �2
12 presents a relative bias always

below the 3% across the 20 scenarios with 50 subjects (Figure 4.3.4a). For this variable there is no

signi�cant variability of the estimates around the mean value, as it is shown by the MSE in Figure

4.3.4b, although an increased � in the simulation settings causes an increase in the MSE itself. A similar

behaviour is shown in Figure 4.3.4 by the within-subject variance �2 for the same 20 scenarios. The

between-subject-variance �2 is slightly understimated across the di�erent simulations. The relative bias

in Figure 4.3.6a con�rms a small deviation with respect to the true parameter of the simulation, above

all for scenario 12 in Table 3.4.1. The MSE, reported in Figure 4.3.6b, shows a strong dependency on

the parameter � across the simulations. Interestingly, the accuracy measures of the variance components

seem to be positively a�ected by an increased value of the shape parameter �, as it is con�rmed by the

decreasing trend of the MSE and the relative bias in all the �gures.
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(a) (b)

Figure 4.3.4: Relative Bias (a) and MSE (b) for the random e�ect of �2
1;2, for di�erent combinations of

values of �; � and � and for 50 subjects.

(a) (b)

Figure 4.3.5: Relative bias and MSE for the variance component �2, for di�erent combinations of values
of �; � and � and for 50 subjects.
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(a) (b)

Figure 4.3.6: Relative bias and MSE for the variance component �2, for di�erent combinations of values
of �; � and � and for 50 subjects.

Finally, we observe that the shape parameter of the inverse Gamma distribution is progressively overesti-

mated, with a relative bias that increases with the true parameter �, as shown in Figure 4.3.7a. Similarly,
an increased true parameter � is sign of increasing variability in the estimation of the parameter � itself,

as illustrated in Figure 4.3.7b.

(a) (b)

Figure 4.3.7: Relative bias (a) and MSE (b) for the shape parameter �, for di�erent combinations of
values of �; � and � and for 50 subjects.

As expected, increasing the sample size improves the estimates in terms of bias and MSE. In particular,

Figures 4.3.8a and 4.3.8b indicate a signi�cant improvement in the estimation of the parameter �, whose
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(a) (b)

Figure 4.3.8: Relative bias (a) and MSE (b) for the shape parameter �, for di�erent combinations of
values of �; � and � and for 250 subjects.

bias reduces from 83% in scenario 18 in Table 3.4.1 with 50 participants (blue two-dashed line in Figure

4.3.7a), to 11% with 250 participants (red dotted line) in the scenario 38. The same e�ect, to a smaller

extent, holds true for the �xed e�ects and variance components of the simulation.

We conduct a hypothesis test to quantify the heterogeneity of the sample variances, in the simulation

setting 1 of Table 3.4.1. The null hypothesis of variance homogeneity is rejected in more than the 95% of

the 1000 simulated datasets. For the same reasons mentioned in Section 3.2.2, we perform a goodness of �t

test to check whether the intra-individual sample variances can be considered inverse Gamma distributed.

The test does not reject the null hypothesis of inverse Gamma distribution in 74.6% of the simulated

datasets, according to the Anderson-Darling (AD) test, and in the 81% of the datasets for the Cramer-

von-Mises (CvM) test. Interestingly, we found that the heterogeneity of the sample variances decreases

with increasing values of �. Figure 4.3.9 shows this trend by plotting the percentage of datasets (out of

1000) for which the Levene's test on the sample variances gives a p-value below 0.05 (two-dashed green

line in the plot). Figure 4.3.9 also shows the percentage of datasets for which the hypothesis of inverse

Gamma distribution for the intra-individual variances can not be rejected. The dashed red line represents

the p-values obtained from the A-D test, while the solid blue line represents those obtained from the CvM

test. Both show a decreasing trend with respect to the simulated value �. In addition, we note that

the two tests for distribution �tting are also a�ected by the correlation coe�cient. As � increases from

0.25 to 0.75, the probability that both tests will reject the hypothesis of inverse Gamma distribution

increases. This means that increasing � to 0.75 negatively a�ects the chi-square approximation assumed

in (3.2.6). Hence, the sample variances can not be assumed to be distributed according to an inverse

Gamma anymore.

Comparing the ICC across the di�erent simulations, we note that its estimated value remains stable in

the di�erent scenarios we considered, with a relative bias always below the 1% and a MSE under 0.5.
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Figure 4.3.9: Relative number of datasets out of 1000 for which the Levene's test, A-D's test and Cvm's
test give positive results.

Parameter True Value Initial Mean Value Mean Estimate St. Dev. Relative Bias (%) Empirical MSE

� 62.795 62.767 62.808 0.361 0.0205 0.177

Gender 2.500 2.516 2.492 0.700 -0.327 0.940

Age 0.500 0.525 0.514 0.359 2.731 8.453e-06

�2
1;2 3.750 3.098 3.825 0.925 1.992 0.591

�2 3.750 16.884 3.826 5.553 2.012 0.258

�2 15.000 12.531 15.259 2.173 1.728 0.988

� 1.500 1.181 1.601 0.534 6.725 0.256

Table 4.3.2: Sensitivity of the model to the choice of the initial values.

Ultimately, Table 4.3.2 shows how the selection criteria for the choice of the initial values, described in

Chapter 3, guarantees reliable results, in one speci�c simulation setting (scenario 1 in Table 3.4.1). Here,

"Initial Mean Value" refers to the mean of the initial values used in the estimation procedure. According

to our accuracy measures (relative bias and MSE), all the estimates seem reasonably accurate.



Chapter 5

Discussion

In this manuscript, we studied a LMM with heterogeneous intra-individual variances. Motivated by a real

study case, we modelled the heterogeneity by introducing a generalized inverse Gamma distribution for

the residual variances. Under this assumption, we got a closed formula for the marginal distribution of

the observations and for the random e�ects, which turned out to be t-distributed. Other authors already
addressed this problem in the past, especially Chinchilli et al. in 1995 [16] and Pinheiro et al. in 2001

[18]. Their models have been used to benchmark the method proposed in this thesis. In particular, we

broadened the distributional assumptions of the t model for the outcome, showing that the same marginal
results on the distribution of the observations can be obtained without restricting the size of the residual

error, i.e. shape and rate parameter of the Gamma distribution for the residual variances equal to each

other. We overcame this limitation with a simple reparametrization, shown in Section 3.

Moreover, we extended the previous literature on LLM with heterogeneous variances allowing for more

�exible and larger correlation structures in the residuals. We examined a case study with 16 repeated

measurements whereas the foregoing study of Pinheiro et al. [18] considered only a small numbers of (� 4)
repeated measurements for each subject. However, complex covariance structures may cause estimation

problems. Speci�cally, only the covariance structures that have a number of parameters less than or equal

to the dimentions of the matrix are estimable. We showed some examples for which this property holds

and, in particular, we focused on the AR(1) structure for the application to our case study. Nevertheless,

the identi�ability issue between the rate parameter � and the shape p of the GG couldn't be solved. For

this reason, we addressed the case p = 1.

An added value of our work is the procedure for the estimation of the model parameters which resulted to

be more �exible than the ones proposed in the literature. In fact, it is a simple constrained optimization

of the likelihood function. Hence, any expression for the likelihood can be accommodated, as far as we can

describe the marginal likelihood of the outcome explicitly. This resulted in a double advantage, compared

to the E-M algorithm considered in [18]. On the one hand it avoids all the cumbersome computations

of the posterior distributions. On the other hand, it circumvents the slow convergence times that the E

and M steps require, as claimed by the authors of the concurrent algorithm. Besides the E-M algorithm,

other methods exist in the literature for the estimation of the parameters of a multivariate t-distribution.
Among these, in our research we explored the performances of the �dmvt� package in R in connection with

29
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Parameter True Value Mean Estimate St. Dev. Relative Bias (%) Empirical MSE

� 15.000 20.654 12.246 37.696 181.789

log� 2.708 1.701 0.361 40.880 1.355

Table 5.0.1: Parameter estimate of �, for two di�erent optimization procedure in scenario 16 of Table
3.4.1.

the Broyden�Fletcher�Goldfarb�Shanno (BFGS) optimization algorithm [51]. This method of estimation

turned out to be less expensive with respect to the E-M procedure. However, computing a multivariate

t-distribution with an arbitrary correlation matrix is still computationally burdensome and the package

showed big limitations in estimating the degrees of freedom correctly. For this reason, we feel that our

approach outperforms the already existing techniques for estimating a multivariate t-distribution, as it
is con�rmed by the analysis of our motivating example and the simulation study.

The results shown in Section 4 con�rmed the positive feeling on our estimation method. The estimates

of the �xed e�ects turned out to be accurate and with low variability around the mean value. For the

variance components, we noticed a slighly bigger bias with respect to the �xed e�ects. The reason is

the ML estimation procedure that is often criticized for failing to account for the loss in degrees of

freedom resulting from the estimation of the model's �xed e�ects. In the future we may address the

Restricted Maximum Likelihood approach (REML) that is known to produce less biased estimates than

ML in general [8]. We shouldn't be surprised of the relatively high values reached by the MSE for the

variance components in some scenarios. Assuming a normal distribution for the parameter estimates, the

distributions of their mean squares are related to chi-square distributions via a multiplicative factor that

involves the parameter estimates themselves. For this reason, a higher value of the parameter estimates

provokes a higher MSE, i.e. � for �2 and � for �2
1;2. The main problem of our method is shown in the

estimation of the parameter �. Both the relative bias and the MSE present high values in scenarios with

� = 15; 25. Nonetheless, this result is not surprising, since the t�distribution increasingly resembles a

normal distribution for increasing values of � [?] and probably our t-model lacks of precision when the

two distributions are close to each other. On one hand comforting improvements arise when we increase

the sample size of the experiment to 250, underlying that 50 subjects with 16 repeats were not a proper

choice for our situation. On the other hand, a possible solution to reduce the MSE is to perform the

optimization procedure by a reparameterization of � to log�. Big improvements in the accuracy measure

is obtained as shown by Table 5.0.1 for the simulation setting 16 of Table 3.4.1. The relative bias is still

large but is already reduced with a factor of 7.8% compared to the results in Section 4.

We also provided con�dence intervals for the parameter estimates of our case study. In order to obtain

them, we needed to compute the estimated standard errors of the ML estimates. A common approach is

to consider the square roots of the diagonal elements of the inverse of the observed Fisher information

matrix, in other words the square roots of the diagonal elements of the inverse of the Hessian are the

estimated standard errors. Nevertheless, this procedure didn't work in our motivating example, since in

the majority of the cases the inverse of the approximate Hessian matrix was negative de�nite. Hence, we

alternatively addressed the bootstrap approach to obtain valid approximate standard errors.

We believe that our model can be extended further. Among the possible improvements, we could consider

more �exibility in the main diagonal of the residual covariance matrix �i = �2
iR, by introducing constants
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c0is to model speci�c patterns of variability over time. The resulting matrix would be as follows:

�2p
i

0

BBBBB@

c1 �1;2 � � � �1;m

�2;1 c2
. . .

...
...

. . .
. . . �m�1;m

�m;1 � � � �m;m�1 cm

1

CCCCCA
:

This idea is motivated by our case study: it is very likely that the variability of the HR mean values of the

population is di�erent between weekdays and weekends. With a high constant ci, we could model a high

variability in the working days for example, due to stress factors, whereas a low value for ci could be a sign
of a more quite sleep, proper of rest periods like the weekends. Additionally, more precised techniques to

obtain con�dence intervals for the parameter estimates may be addressed, since the �standard� normal

approximation is not always the most accurate choice as discussed by Efron et al. in [58].

A criticism to the procedures that we developed might be concerned with a possible comparison with

the standard LMM. An argument in our favour comes from the work of Pinheiro et al., who claimed big

gains in e�ciency for the multivariate t ML estimates compared to the Gaussian ones. Furthermore our

model with t-distributed outcomes approaches the Gaussian one only when the degrees of freedom tend

to in�nite and only in this case a comparison between the two models could be performed, i.e. considering

a likelihood ratio test. However, in our case, the parameters estimate for high values of �, especially with
small sample size, shows not the best accuracy.
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Appendix A

SAS Code for assessing the

Heterogeneity and Levene's Test

Given n the number of subjects of the study, the test hypothesis is de�ned as:

Ho : �̂2
1 = �̂2

2 = ::: = �̂2
n

Ha : 9(i; j) : �̂2
i 6= �̂2

j ; i 6= j
(A.0.1)

For a given a variable Y (mean HR), the Levene's test statistic is so de�ned:

W =
nm�m
m� 1

Pn
i=1m

�
Y i: � �Y::

�2
Pn
i=1
Pm
j=1

�
Yij � �Yi:

�2 (A.0.2)

where the �Yi: are the group means, �Y:: the overall mean of the Yij , divided into n subgroups with m the

sample size of each subgroup. This test rejects the null hypothesis (A.0.1) with signi�cance level � when

the statistics is equal or larger than the critical value which is calculated using a F distribution with

(n� 1) and (nm� n) degrees of freedom.

The Levene's test can be easily implemented in SAS with the following code:

PROC GLM DATA=merged ;

CLASS sub j e c t ;

MODEL ecg_hr_mean__MEAN=sub j e c t ;

MEANS sub j e c t / HOVTEST=levene ( type=abs ) welch ;

RUN;
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Appendix B

Distribution �tting analysis

Goodness of �t techniques are methods of examining how well a sample data agrees with a given distribu-

tion. In the general formal setting of hypothesis testing the null hypothesis H0 is that the given random

variable (�2
i ) follows the stated probability law F0(x); the random variable may come from a process

which is under investigation [63]. Thus the focus of this technique is on the measure of agreement of the

sample with the hypothesized distribution.

Graphical methods have a wide appeal in guessing whether a random sample comes from some given

distribution. They include, among the others, Q-Q plots and probability plots. Extensive attention

has been given to the empirical cumulative distribution function (ecdf) as a key tool for the probability

plotting methods. Given a random sample X1; :::; Xn of dimension n drawn from a distribution with

cumulative distribution function (cdf) F , the ecdf Fn is de�ned as:

Fn(x) =
Pn
j=1 1(Xj�x)

n
;�1 < x <1

where 1A is the indicator of the event A. Figure (B.0.1) reports the ecdf of the variable under study, i.e.
the residual sample variances.

The discussion of this section continues by comparing an ecdf with a theoretical cdf. Several distributions

were taken into account such as normal, log-normal, exponential, Gamma, inverse Gamma, Weibull,

uniform and others, but only the inverse Gamma and log-normal Q-Q plots showed an appreciable match

as illustrated in Figure B.0.2.
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Figure B.0.1: Empirical cumulative distribution function of the sample residual variances �̂2
i from the

N2N dataset.

(a) (b)

Figure B.0.2: Gamma (B.0.2a) and log-normal (B.0.2b) Q-Q plots for the within-subject precision (1=�̂2
i )

and the variance of hr mean for each subject from the N2N dataset. No R package can visualize a Q-Q
plot for an inverse Gamma distribution. Gamma and inverse Gamma distribution are related by the
property described in APPENDIX D.

We now evaluate the discrepancy between the empirical distribution function and either a log-normal

or an inverse Gamma cumulative distribution function (both with unknown parameters). The most

well-known and widely used empirical distribution function (edf) statistics are:

� The Cramer-von-Mises (CvM) test statistic:

Cn :=
Z

(Fn(t)� F (t))2 dF (t) (B.0.1)

� The Anderson-Darling (AD) test statistic:

An :=
Z

(Fn(t)� F (t))2

F (t) (1� F (t))
dF (t) (B.0.2)
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To sum up the setting of our test of �t is as follows:

H0: a random sample of dimension n comes from a distribution F (x; �)

where � is a vector of parameters determining the distribution itself. For example, for the two distributions
under examination (inverse Gamma and log-normal) � = (�; �) and � = (�; �2) and is completely

unknown in both cases. In order to know the distribution F (x) and then build the test, the vector � must
be primarily estimated. However, plugging in parameter estimates highly a�ects the distribution of the

statistics and the main consequence of this action is that the distribution under the null hypothesis will be

heavily in�uenced by the type of the chosen estimator. To overcome this issue, we consider the Bootstrap

approach: it consists of plugging in iteratively new estimates for the vector � and, for each estimate,

computing and performing one of the tests discussed. To obtain a p-value, a comparison between the

starting CvM and AD statistics and the modi�ed ones in each iteration is conducted. More speci�cally,

the procedure is the following:

� Estimate the parameters of the hypothesized distribution �̂n from the sample and derive the theo-

retical distribution function F�̂n .

� Construct the ecdf Fn(t). Evaluate the chosen test statistic �(Cn) or �(An).

� Choose a value B large enough (e.g. 5000) and generate B samples of size n (equal to the original

sample size) from F�̂n . For the sake of notation, these samples will be denoted as X�1;j , with j in
1; : : : ; B.

� Construct, for j = 1; ::; B, F�̂�n the theoretical distribution based on the n values by estimating the

new vector ��.

� Construct, for j = 1; ::; B, F̂ �j (t) the empirical distribution function.

� Evaluate �A�n and �C�n .

� The test with signi�cance level � will reject the null hypothesis if: �Cn > �C�B(1��)+1; (respectively
�An > �A�B(1��)+1) where B(1��) + 1 is the order statistic of C�1 ; :::; C�B . Alternatively, the approx-
imate p-value for this test can be computed as #

�
j : �C�j � �Cn;

	
=B and reject Ho if p-value<�.

Before reporting the results obtained from this procedure, it should be noted that the parameters estima-

tion was initially performed using the moment estimation (MM) and then using the maximum likelihood

estimation (MLE). For the inverse Gamma distribution, the MM highly di�ers in its estimates from the

MLE one. The reason is that we implemented a maximum likelihood optimization procedure without

any constraint in the vector of parameters �. This ends up in an optimum for the shape parameter

� that does not allow the distribution to have a �nite second moment. Clearly, for the nature of the

MM, all the moments exist and this explains the two di�erent estimates. Figure B.0.3 and Table B.0.1

report the comparison between the MM (red solid line) and MLE (blue dashed line) estimates for the

inverse Gamma distribution functions. Similarly, Figure B.0.4 and Table B.0.2 provide comparisons for

the log-normal distribution: in this case the two procedures of estimation di�er much less. Finally, B.0.3

collect the results of the Bootstrap approach applied to the CvM and AD test statistics. The p-value is

above 0.05 indicating that there is not enough evidence to reject the null hypothesis of inverse Gamma

and log-normal respectively.
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Method of Estimation � �
MM 3:145 44:0955
MLE 1:546 15:202

Table B.0.1: Comparison between MM and MLE's estimates for �and � for the inverse Gamma distri-
bution.

Figure B.0.3: Comparison between the ecdf and the two theoretical approximation obtained with the
MM and MLE for the inverse Gamma.

Method of Estimation � �
MM 2:709 0:792
MLE 2:643 0:878

Table B.0.2: Comparison between the MM and MLE estimates for � and � for the log-normal distribution.

Figure B.0.4: Comparison between the ecdf and the two theoretical approximations obtained with the
MM and MLE estimates for the log-normal.
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Distribution inverse Gamma log-normal
Method P value Test Statistic P value Test Statistic
CvM 0.623 0.0625 0.783 0.0615
AD 0.581 0.393 0.783 0.395

Table B.0.3: Bootstrap approach with B = 1000 for the two distributions in study. The column �Test
Statistics� collects the mean value of the test statistic obtained for each random sample.
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R codes for the Distribution Fitting

Analysis

C.1 MM and MLE Estimation for the Inverse Gamma

r e qu i r e (MASS)

fgammainv <� f unc t i on (x , a , b){

b^a * x^(�a�1) * exp (�b/x )/ gamma( a ) }

m1<�mean( sigma2 )

std1<�sd ( sigma2 )

var1<�var ( sigma2 )

alpha2<� 2+ ( (m1^2)/( var1 ) )

beta2 <� m1*(1+ ( (m1^2)/( var1 ) ) )

igammafit<� f i t d i s t r ( sigma2 , fgammainv , s t a r t=l i s t ( a=3, b=44) , lower =0.01)

igammaf i t$est imate x1<�seq ( 0 . 01 , 80 , 0 . 01 )

p l o t ( ecd f ( var ) , c o l="green " , main="Empir ica l vs ME and MLE d i s t r i b u t i o n func t i on " ,

xlab='Variance ' , y lab='Cdf ' )

l i n e s ( x1 , pigamma(x1 , alpha2 , beta2 ) , c o l ='blue ' , type=' l ' ,

main=' Inve r s e Gamma Cdf MM vs MLE' )

l i n e s ( x1 , pigamma(x1 , 1 .545828 , 15 .201635) , c o l ='red ' ) l egend ( ' bottomright ' , l t y =1,

c (" Empir ica l " , "MLE" , "MM") , c o l=c ( ' green ' , ' blue ' , ' red ' ) )

C.2 MM and MLE Estimation for the Log-Normal

l i b r a r y (MASS)

var iance<�l og ( ( ( var1 )/ (m1^2))+1)

mu<�l og (m1)�(0.5* var iance )
devstand<�s q r t ( var iance )
lnorm . f i t <� f i t d i s t r ( sigma2 , " lognormal ")
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lnorm . f i t $ e s t ima t e

x<�seq (0 ,80 , 0 . 01 ) p l o t ( ecd f ( var ) , c o l="green " ,

main="Empir ica l vs MM and MLE d i s t r i b u t i o n func t i on " ,

xlab='Variance ' , y lab='Cdf ' )

l i n e s (x , plnorm (x , mu, devstand ) , c o l ='red ' , type=' l ' )

l i n e s (x , plnorm (x , 2 .6429213 , 0 .8780201) , c o l ='blue ' )

l egend ( ' bottomright ' , l t y =1, c (" Empir ica l " , "MLE" , "MM") ,

c o l=c ( ' green ' , ' blue ' , ' red ' ) )

C.3 Bootstrap Method

Given the initial sample data, the algorithm �rst computes a vector � both in the log-normal and in the

inverse Gamma case, in order to derive the theoretical distribution functions. Using the tools contained in

the R package `goftest' the CvM and AD statistics for this hypothesized distribution F (x) were collected.
Then from this distribution the algorithm generates a large number of samples (randomly) with dimension

equal to the initial sample. For each of these samples a new vector � is computed. A new F (x) can be

used to compute new CvM and AD test statistics for that speci�c sample. Finally, as a p-value for

this procedure, we take the number of times the test statistic of the modi�ed sample is greater of the

initial corresponding test statistic, divided by the total number of generated samples. The vector � that
uniquely determines the two distributions can be obtained from this approach by saving at each iteration

the estimated �̂ and then taking the mean of them. Clearly, the value of the mean � depends on the

number of random samples which are generated.

r e qu i r e ( g o f t e s t )

fgammainv <� f unc t i on (x , a , b){

b^a * x^(�a�1) * exp (�b/x )/ gamma( a ) }

igammafit<� f i t d i s t r ( sigma2 , fgammainv , s t a r t=l i s t ( a=3, b=44) , lower =0.01)

alpha<�igammaf i t$est imate [ 1 ]

beta<�igammaf i t$est imate [ 2 ]

ad<�ad . t e s t ( sigma2 , "pigamma" , alpha , beta )

cvm<�cvm . t e s t ( sigma2 , "pigamma" , alpha , beta )

An<�a d $ s t a t i s t i c
Cn<�c vm$s t a t i s t i c

B<� 50000

An1<�rep (0 ,B)
Cn1<�rep (0 ,B)
a1<�rep (0 ,B)
b1<�rep (0 ,B)
f o r ( i in 1 :B){

sample<�rigamma (42 , alpha , beta )

igammafit<� f i t d i s t r ( sample , fgammainv , s t a r t=l i s t ( a=1, b=20) , lower =0.01)

a1 [ i ]<� igammaf i t$est imate [ 1 ]
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b1 [ i ]<� igammaf i t$est imate [ 2 ]

ad1<�ad . t e s t ( sample , "pigamma" , a1 [ i ] , b1 [ i ] )

cvm1<�cvm . t e s t ( sample , "pigamma" , a1 [ i ] , b1 [ i ] )

An1 [ i ]<� a d 1 $ s t a t i s t i c
Cn1 [ i ]<� cvm1$ s t a t i s t i c

}

An1_p<�sum(An1>An)/B

Cn1_p<�sum(Cn1>Cn)/B

An1_p

Cn1_p

Alpha<�mean( a1 )

Beta<�mean(b1 )



Appendix D

Generalized Gamma and Inverse

Gamma

Given a random variable X; X is distributed according to a generalized Gamma distribution (GG) with

parameters (p; �; �) if its density can be written as:

fX = p
x�p�1

�(�)
�pexp f� (�x)pg (D.0.1)

where �(�) is the Gamma function, p and � are shape parameters, and � the rate parameter. This

family of distributions is really �exible and it includes several well-known distributions such as the

exponential (� = � = 1), Gamma (p = 1) and Weibull (� = 1) distribution. A log-normal distribution

can be obtained as limiting distibution when � ! 1 [64]. An important property of the generalized

Gamma distributions is that they are closed under power transformations, that is if X � GG(p; �; �)
then Y = Xs � GG(ps ; �; �

s). In particular for p = s you get the standard Gamma distribution. For

matter of completeness, we provide also the power moments for this distributions:

E[Xs] = ps
�(�+ �s)

�(�)

In particular E[X] = p�(�+�)
�(�) and V ar(X) = p2 �(�+2�)

�(�) �
�
p�(�+�)

�(�)

�2
.

For the generalized inverse Gamma distributions (GIG), we adopt the notation of [65] that de�nes a

random variable Z as a generalized inverse Gamma with parameters (p; �; �) when its density function

is:

fZ = p
z�p��1

�(�)
�pexp

�
�
�
�
z

�p�
(D.0.2)

The GIG family presents an analogue property of power closure as the one cited for the GG family. The

j-th moment of a GIG distribution is de�ned as:
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E[zj ] =
�j��(��( jp );k)

��(�;k) ; for ( jp ) > �

where �(�; k) is the incomplete generalized Gamma function de�ned as ��(�; k) =
R1

0 x��1(x+k)��e�xdx.
Using this expression the mean and the variance of the distribution are easily derived:

E[vi] =
p��(�� 1

p ; k)
��(�; k)

V ar(vi) =
p2

� 2
�(�; k)

�
��(��

2
p
; k)��(�; k)� � 2

�(��
1
p
; k)
�

In the following, we show that the reciprocal of a GG(p; �; �) is GIG(p; �; �). Let X � GG(p; �; �),
consider Y = g(X) = 1

X . Then ,

fY (y) = fX(g�1(y))j
d
dy
g�1(y)j = p

( 1
y )�p�1

�(�)
�pexp

�
�
�
�(

1
y

)
�p�

j �
1
y2 j = p

y��p�1

�(�)
�pexp

�
�
�
�
y

�p�

which is exaclty the density in (D.0.2).
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Derivation of the t-distributions

We can obtain the marginal distribution of the Y i by integrating out the random term vi from the joint

density f (yi; vi) in (3.1.4):

f(Yi) =
R1

0 f (Y i; vi) dvi
d=
R
f (Y ijvi) f (vi) dvi

=
R1

0
1

(2�)
m
2 j(�2

i )
p
j

1
2
exp

�
� 1

2 (Yi � �)T
�
�2p
i 


��1
(Yi � �)

�
� ��p

� (�)v
���1
i exp

n
� �
vi

o
dvi

=
R1

0
v
pm

2
i

(2�)
m
2 j
j

1
2
exp

n
�v

p
i
2 (Yi � �)T 
�1 (Yi � �)

o
� ��p

� (�)v
���1
i exp

n
� �
vi

o
dvi:

Here we used the property that det(vi
) = vmi det(
), where m is the dimension of the square matrix 

and vi is a constant. Calling (Yi � �)T 
�1 (Yi � �) = �2 and rearraging the terms: the density of Yi
becomes equal to

fY i =
Z 1

0
p
��pv�p+

m
2 �1

i

(2�)
m
2 j
j 12

exp
�
�vpi

�
�p +

1
2
�2
��

dvi:

If we introduce the notation �0 = � + m
2 and �0 =(�p + 1

2�
2)

1
p and multyply and divide our expression

with � (�0) and �0(�
0) we get

fY i =
Z 1

0
p

��p

(2�)
m
2 j
j 12

vp(�+m
2 )�1

i exp
�
�vpi

�
�p +

1
2
�2
��

� (�+ m
2 )

� (�+ m
2 )

�
�2

2 + �p
��+m

2

�
�2

2 + �p
��+m

2
dvi:

Rearranging the terms again, we observe that the integral is proportional to density function of a new

inverse Gamma with parameters (�0; �0) in its whole domain, which is 1 by de�nition

f(Yi) = � (�+m
2 )

� (�)
1

(2�)
m
2

��p

j
j
1
2

�
�2

2 + �p
����m2

= � (�+m
2 )

� (�)
1

(2�)
m
2

1
j
j

1
2
��

pm
2

�
�2

2�p + 1
����m2

= � (�+m
2 )

� (�)
1

(2��p)
m
2

1
j
j

1
2

�
�2

2�p + 1
����m2

:

(E.0.1)

Comparing (E.0.1) with the de�nition of the multivariate t�distribution given in [49] we see that Yi �

48
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tm(
; 2�). A similar proof applies for the random e�ect ui's that turns out to be non-standardized

centered univariate t-distributed with 2� degrees of freedom and additional scaling parameter
p
�=(��p).
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R code for the Estimation Procedure

r e qu i r e (mvtnorm)

r equ i r e ( corpcor )

r e qu i r e ( n l op t r )

n . data<�1000
n . sub<�250
alpha . 0 <�7.5
mu.0 <� 62 .795

ar <� 0 .75

k . 0 <� 2

s i g <� 15

p<�0.54
w<� k .0* s i g

beta.0<� s i g * alpha . 0

time . point<�16
ro2<�c ( ar , ar ^2 , ar ^3 , ar ^4 , ar ^5 , ar ^6 , ar ^7 , ar ^8 , ar ^9 ,

ar ^10 , ar ^11 , ar ^12 , ar ^13 , ar ^14 , ar ^15)

ro . in2<�c ( ro2 , ro2 [ 1 : 1 4 ] , ro2 [ 1 : 1 3 ] , ro2 [ 1 : 1 2 ] , ro2 [ 1 : 1 1 ] ,

ro2 [ 1 : 1 0 ] , ro2 [ 1 : 9 ] , ro2 [ 1 : 8 ] , ro2 [ 1 : 7 ] , ro2 [ 1 : 6 ] ,

ro2 [ 1 : 5 ] , ro2 [ 1 : 4 ] , ro2 [ 1 : 3 ] , ro2 [ 1 : 2 ] , ro2 [ 1 ] )

R2<�diag ( rep (1 , 16 ) )
R2 [ lower . t r i (R2 , diag=FALSE)]<� ro . in2
R2 <� t (R2) R2<� R2 + t (R2) � diag ( diag (R2) )

i f ( i s . p o s i t i v e . d e f i n i t e (R2)==FALSE){

R2<�make . p o s i t i v e . d e f i n i t e (R2) }

i n i t i a l <�c ( ar * s ig , w, s i g )

i n i t i a l 2 <�c ( i n i t i a l , 62 .795 , alpha . 0 , 2 . 5 , 0 . 5 )
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c o r r e l 2 .AR<� f unc t i on ( c o e f f i c i e n t s ){

s i g . square<�c o e f f i c i e n t s [ 3 ]
pro<�c o e f f i c i e n t s [ 1 ] / c o e f f i c i e n t s [ 3 ]

w<�c o e f f i c i e n t s [ 2 ]
pro<�c ( pro , pro ^2 , pro ^3 , pro ^4 , pro ^5 , pro ^6 , pro ^7 , pro ^8 ,

pro ^9 , pro ^10 , pro ^11 , pro ^12 , pro ^13 , pro ^14 , pro ^15)

diagonal<�rep (1 , 16 )
Sigma<�diag ( d iagona l )
elements<�c ( pro , pro [ 1 : 1 4 ] , pro [ 1 : 1 3 ] , pro [ 1 : 1 2 ] , pro [ 1 : 1 1 ] , pro [ 1 : 1 0 ] ,

pro [ 1 : 9 ] , pro [ 1 : 8 ] , pro [ 1 : 7 ] , pro [ 1 : 6 ] , pro [ 1 : 5 ] , pro [ 1 : 4 ] ,

pro [ 1 : 3 ] , pro [ 1 : 2 ] , pro [ 1 ] )

Sigma [ lower . t r i ( Sigma , diag=FALSE)]<� e lements

Sigma<� t ( Sigma )

Sigma<� Sigma + t ( Sigma ) � diag ( diag ( Sigma ) )

Sigma<� Sigma* s i g . square

Omega<� Sigma + w*matrix ( rep (1 , 256 ) , nrow=16, nco l=16)

re turn (Omega) }

l o g l i k e l i h oodnew . 2 .AR<� f unc t i on ( parameters ){

c o e f f <� parameters [ 1 ]

w<� parameters [ 2 ]

s i g<� parameters [ 3 ]

mu<�parameters [ 4 ]

alpha<�parameters [ 5 ]

gender<� parameters [ 6 ]

age0<� parameters [ 7 ]

l o g l i k <�0
omega<� c o r r e l 2 .AR( c ( c o e f f , w, s i g ) )

i f ( i s . p o s i t i v e . d e f i n i t e ( omega)==FALSE){

omega<�make . p o s i t i v e . d e f i n i t e ( omega , 1e�010) }

cova r i a t e s <�rbind (mu, gender , age0 )

f o r ( i in 1 : n . sub ){

des ign<�cbind ( rep (1 , time . po int ) , rep (y [ i , 1 7 ] , time . po int ) , rep (y [ i , 1 8 ] , time . po int ) )

dens i ty . mult<� lgamma( alpha +(0.5* time . po int ))�lgamma( alpha)�
( 0 . 5* time . po int * l og (2* alpha * pi ))�
( 0 . 5* l og ( det ( omega)))�( alpha+0.5* time . po int )*

l og (1+1/(2* alpha )*

( t ( y [ i , 1 : 16 ] � ( des ign%*%cova r i a t e s )))%*%so l v e (omega , to l1e �20)%*%
(y [ i , 1 : 16 ] � ( des ign%*%cova r i a t e s ) ) )

l o g l i k <� l o g l i k + dens i ty . mult }

dens i ty<� (� l o g l i k )

re turn ( dens i ty ) }
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lb<� c(� In f , 0 , 0 , 0 ,0 , �In f , �I n f )
ub<� c ( Inf , In f , In f , In f , In f , In f , I n f )

opts <� l i s t ( " a lgor i thm" = "NLOPT_LN_NEWUOA_BOUND" , " x to l_re l " = 1 .0 e�3,
"maxeval" = 2500 , p r i n t_ l ev e l = 2)

r e s <� n lopt r ( x0=i n i t i a l 2 , eval_f=l og l i k e l i h oodnew . 2 .AR, lb=lb , ub=ub , opts=opts )
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R Code for the Multiple Imputation

and Bootstrap

G.1 Multiple Imputation Analysis

r e qu i r e (mvtnorm)

r equ i r e ( corpcor )

r e qu i r e ( n l op t r )

r e qu i r e ( mice )

prova<�read . csv ("C:/ Users /prova . csv " , sep=" ,")

summary( prova )

prova [ prova==�999] <� NA

prova<� prova [ �c (11 , 12 , 13 , 19 ) ]

summary( prova )

prova_wide <� reshape ( prova , t imevar = "day " , idvar =

c (" sub j e c t " , "Age" , " sex " ,"PSQI" ,

" SWLS_satis fact ion_with_li fe_scale " ,

"PSS_perceived_stress__last_month " ,

"WEMWBS_mental_health" ,

"BPS" , "MEQ__early_rising_or_not " ,

"Aggregated_VAS_Score " ,

"Aggregated_WASO_Score" ,

"Aggregated_TST_Score " ,

"Aggregated_SE_Score ") ,

d i r e c t i o n = "wide ")

imp0<�mice ( as . matrix ( prova_wide ) , maxit=0)

predM<�imp0$predictorMatr ix predM [ , " sub j e c t " ] <� 0

meth<�c ("" ,"" ,"" ,"" ,"pmm" ,"pmm" ,"pmm" ,"" ,"pmm" ,"" ,"" ,"" ,"" ,
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"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,

"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm" ,"pmm")

imp <� mice ( prova_wide , m=20, maxit = 10 , Methods=meth ,

pred i c to rMatr ix=predM , p r i n t=FALSE, seed=19236300 )

imputdata<� as . data . frame ( cbind ( rep (1 , 42 ) ,

c ( 1 : 4 2 ) , complete ( imp , ac t i on = 1 , i n c lude = FALSE) ) )

colnames ( imputdata )[1]<� "imp"

colnames ( imputdata )[2]<� " id "

f o r ( i in 2 : 20 ){

dataset<�cbind ( rep ( i , 4 2 ) , c ( 1 : 4 2 ) , complete ( imp , ac t i on = i , i n c lude = FALSE) )

colnames ( datase t )[1]<� "imp"

colnames ( datase t )[2]<� " id "

imputdata <� rbind ( imputdata , datase t )}

wr i t e . t ab l e ( imputdata , " imputdata . txt " , sep="\t ")

imputdata2<�imputdata [�c ( 6 : 1 5 ) ]
f o r ( i in 1 : 20 ){

imputdata2 [(1+42*( i �1)) : (42* i ) ,4]<�( imputdata2 [(1+42*( i �1)) : (42* i ) , 4]�
mean( imputdata2 [(1+42*( i �1)) : (42* i ) , 4 ] ) ) /

sd ( imputdata2 [(1+42*( i �1)) : (42* i ) , 4 ] ) }

alpha . 0 <�1.5
mu.0 <� 62 .795

ar <� 0 .25

k . 0 <� 2

s i g <� 15

w<� k .0* s i g

beta.0<� s i g * alpha . 0

i n i t i a l <�c ( ar * s ig , w, s i g )

i n i t i a l 2 <�c ( i n i t i a l , 62 .795 , alpha . 0 , 0 . 5 , 2 . 5 )

n . data<�20
n . sub<�42
time . point<�16
y<� imputdata2 [ (1+42* (1 �1) ) : (42*1) , ]
data<�y
y<�data [ , c ( 6 : 2 1 , 4 , 5 ) ]

lb<� c(� In f , 0 , 0 , 0 ,0 , �In f , �I n f )
ub<� c ( Inf , In f , In f , In f , In f , In f , I n f )

opts <� l i s t ( " a lgor i thm" = "NLOPT_LN_NEWUOA_BOUND" ,

" x to l_re l " = 1 .0 e�3, "maxeval" = 2500 ,

p r i n t_ l ev e l = 2)
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r e s u l t s <�matrix (NA, nrow=n . data , nco l=( l ength ( i n i t i a l 2 )+1))

f o r (p in 1 : n . data ){

data<� imputdata2 [(1+42*( i �1)) : (42* i ) , ]
y<�data [ , c ( 6 : 2 1 , 4 , 5 ) ]

p r i n t (p)

p r i n t ( l o g l i k e l i h oodnew . 2 .AR( i n i t i a l 2 ) )

r e s <� n lopt r ( x0=i n i t i a l 2 , eval_f=l og l i k e l i h oodnew . 2 .AR,

lb=lb , ub=ub , opts=opts )

r e s u l t s [ p,]<�c (p , r e s $ s o l u t i o n ) }

G.2 Bootstrap Method

imputdata <� read . del im ("C:/ Users / imputdata . txt ")

imputdata<�imputdata [�c ( 6 : 1 5 ) ]
f o r ( i in 1 : 20 ){

imputdata [(1+42*( i �1)) : (42* i ) ,4]<�( imputdata [(1+42*( i �1)) : (42* i ) , 4 ]

�mean( imputdata [(1+42*( i �1)) : (42* i ) , 4 ] ) ) /
sd ( imputdata [(1+42*( i �1)) : (42* i ) , 4 ] ) }

m<� 20

n . boot<�1000

s e t . seed (17000067)

Bootstrap <� as . data . frame ( t ( rep ( 0 , 2 2 ) ) )

colnames ( Bootstrap)<�c ("n . boot " , colnames ( imputdata ) )

f o r ( j in 1 :m){

comp_data<�imputdata [ imputdata$imp == j , ]

f o r ( i in 1 : n . boot ){

new . id <�sample ( c ( 1 : dim(comp_data ) [ 1 ] ) , s i z e= dim(comp_data ) [ 1 ] , r ep l a c e=TRUE)

boot . data <� cbind ( rep ( i , dim(comp_data ) [ 1 ] ) , comp_data [ new . id , ]

)

colnames ( boot . data)<�c ("n . boot " , colnames ( comp_data ) )

Bootstrap <� rbind ( Bootstrap , boot . data )

p r i n t ( c ( j , i ) ) } }

wr i t e . t ab l e ( Bootstrap , "C: / CodesBootstrapdatanew2 . txt " , sep="\t ")

boots <� m*n . boot

alpha . 0 <�1.5
mu.0 <� 62 .795

ar <� 0 .25

k . 0 <� 2

s i g <� 15

w<� k .0* s i g

beta.0<� s i g * alpha . 0
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i n i t i a l <�c ( ar * s ig , w, s i g )

i n i t i a l 2 <�c ( i n i t i a l , 62 .795 , alpha . 0 , 0 . 5 , 2 . 5 )

n . data<�20
n . sub<�42
time . point<�16
Boot <� subset ( Bootstrap , s e l e c t=c ("ecg_hr_mean__MEAN.1" , "ecg_hr_mean__MEAN.2" ,

"ecg_hr_mean__MEAN.3" , "ecg_hr_mean__MEAN.4" ,

"ecg_hr_mean__MEAN.5" , "ecg_hr_mean__MEAN.6" ,

"ecg_hr_mean__MEAN.7" , "ecg_hr_mean__MEAN.8" ,

"ecg_hr_mean__MEAN.9" , "ecg_hr_mean__MEAN.10" ,

"ecg_hr_mean__MEAN.11" , "ecg_hr_mean__MEAN.12" ,

"ecg_hr_mean__MEAN.13" , "ecg_hr_mean__MEAN.14" ,

"ecg_hr_mean__MEAN.15" , "ecg_hr_mean__MEAN.16" ,"Age" , " sex ") )

Boot<�Boot[�c ( 1 ) , ]
("C: / Case_Study_results . Rda")

r e s u l t s s t a r t i ng <�r e s u l t s
s e t . seed (6626798)

f o r ( i in 1 :m){

imp<� Boot [(1+42000*( i �1)) : (42000* i ) , ]
s t a r t <� s t a r t i n g [ i , ]

i n i t i a l <� c ( s t a r t [ 2 ] , s t a r t [ 3 ] , s t a r t [ 4 ] )

i n i t i a l 2 <� c ( i n i t i a l , s t a r t [ 5 ] , s t a r t [ 6 ] , s t a r t [ 7 ] , s t a r t [ 8 ] )

f o r ( j in 1 : n . boot ){

y<� imp [(1+42*( j �1)) : (42* j ) , ]
p r i n t ( l o g l i k e l i h oodnew . 2 .AR( i n i t i a l 2 ) )

r e s <� n lopt r ( x0=i n i t i a l 2 , eval_f=log l i k e l i h oodnew . 2 .AR, lb=lb ,

ub=ub , opts=opts )

r e s . new<� rbind ( c ( i , j , r e s $ s o l u t i on , r e s $ s t a t u s ) )

p r i n t ( r e s . new) } }
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R Code for the Simulation

s e t . seed ( 6626798)

data<� l i s t ( )
f o r ( i in 1 : n . data ){

i n i t <�rep (0 , n . sub *( time . po int +2))

y<�matrix ( i n i t , nrow=n . sub , nco l=time . po int+2, byrow=TRUE)

gamma. i<�0
Sigma.0<�0
u . i<�0
f o r ( j in 1 : n . sub ){

sex<�rbinom (1 ,1 , p )

age<�r un i f (1 , 41 ,65 )
agestd<� ( age �53)/6.928203
gamma. i<� rgamma(1 , alpha . 0 , beta . 0 )

v . i<� 1/gamma. i

Sigma.0<� v . i * R2

e . i<� rmvnorm(1 , mean=rep (0 , time . po int ) , sigma=Sigma . 0 )

u . i<� rnorm (1 ,0 , s q r t ( k . 0* v . i ) )

f o r ( k in 1 : time . po int ){

y [ j , k]<� mu.0 + (2 . 5* sex ) + (0 . 5* agestd ) + u . i + e . i [ k ]

}

y [ j ,17]<� sex
y [ j ,18]<� agestd }

data [ [ i ]]<�y }

r e s u l t s <�matrix (NA, nrow=n . data , nco l=( l ength ( i n i t i a l 2 )+1))

f o r (p in 1 : n . data ){

y<�data [ [ p ] ]
p r i n t (p)

p r i n t ( l o g l i k e l i h oodnew . 2 .AR( i n i t i a l 2 ) )

57



APPENDIX H. R CODE FOR THE SIMULATION 58

r e s <� n lopt r ( x0=i n i t i a l 2 , eval_f=l og l i k e l i h oodnew . 2 .AR, lb=lb , ub=ub , opts=opts )

r e s u l t s [ p,]<�c (p , r e s $ s o l u t i o n ) }

s ink (" re su l t s_s imu la t i on1000 . mylik .AR( 1 ) . alpha =7.5 . lam=2. ro =0.75.250 sub . txt ")

sum . tot<�0
f o r ( i in 1 : n . data ){

sum . tot<� sum . to t + r e s u l t s [ i , 2 : 8 ] }

mean . res<� sum . to t /n . data

std<�c ( sd ( r e s u l t s [ , 2 ] ) , sd ( r e s u l t s [ , 3 ] ) , sd ( r e s u l t s [ , 4 ] ) , sd ( r e s u l t s [ , 5 ] ) ,
sd ( r e s u l t s [ , 6 ] ) , sd ( r e s u l t s [ , 7 ] ) , sd ( r e s u l t s [ , 8 ] ) )

t rueva lue<�c ( ar *15 , w, s ig , mu. 0 , alpha . 0 , 2 . 5 , 0 . 5 )

bias<�mean . r e s �t rueva lue
r e l a t i v e . b ias<� b ia s / t rueva lue

perc . r e l <�r e l a t i v e . b i a s *100
perc . r e l sum2<�0
f o r ( j in 1 : n . data ){

sum2<� sum2 + ( trueva lue�r e s u l t s [ i , 2 : 8 ] ) ^ 2 }

MSE<� sum2/n . data

standard . bias<�b ia s / std
cbind ( trueva lue , mean . res , std , b ias , standard . b i a s , r e l a t i v e . b ias , perc . r e l , MSE)

s ink ( )

save ( r e s u l t s , f i l e ="250sub . alpha7 . 5 . ro0 .75 lam2 .Rda")

t e s t . hetero<�rep (0 , n . data )

t e s t . gamma. ad<�rep (0 , n . data )

t e s t . gamma. cvm<�rep (0 , n . data )

alpha<�rep (0 , n . data )
beta<� rep (0 , n . data )

f o r ( i in 1 : n . data ){

var iances<�rep (0 , n . sub )

dataset<� data [(1+( i �1)*800) :(800* i ) , ]

f o r ( j in 1 : n . sub ){

va r i anc e s [ j ]<� 1/ var ( datase t [ (1+( j �1)*16) : (16* j ) , 1 ] ) }

m1<�mean( va r i ance s )

std1<�sd ( va r i anc e s )
alpha [ i ] <� m1^2/ std1^2

beta [ i ]<� m1/ std1^2

dataset<�as . matrix ( datase t )

group<�as . f a c t o r ( datase t [ , 2 ] )
t e s t . hete ro [ i ]<� l eveneTest ( datase t [ , 1 ] ~ group )$ ` Pr(>F) ` [ 1 ] <0 .05

t e s t . gamma. ad [ i ]<�ad . t e s t ( var iances , "pgamma" , alpha [ i ] , beta [ i ] ) $p . value >0.05

t e s t . gamma. cvm [ i ]<�cvm . t e s t ( var iances , "pgamma" , alpha [ i ] , beta [ i ] ) $p . value >0.05 }

t e s t . het<� sum( t e s t . hete ro )/n . data

ad . gamma<� sum( t e s t . gamma. ad )/n . data
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cvm .gamma<� sum( t e s t . gamma. cvm)/n . data



Appendix I

SAS Code for the Preliminary Case

Study Analysis

PROC MIXED DATA=data METHOD=ML CL;

CLASS sub j e c t day sex age ;

MODEL ecg_hr_mean__MEAN= day sex age/SOLUTION DDFM=sa t t e r t hwa i t e CL RESIDUAL;

RANDOM INT/SUBJECT=sub j e c t ;

REPEATED DAY/ SUBJECT=sub j e c t TYPE=AR( 1 ) ;

RUN;
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