Adaptive web-based educational application for autistic students

Citation for published version (APA):

Document status and date:
Published: 01/01/2016

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 10. Jun. 2022
Adaptive web-based educational application for autistic students

Alejandro Montes García
Eindhoven University of Technology
Eindhoven, the Netherlands
a.montes.garcia@tue.nl

Natalia Stash
Eindhoven University of Technology
Eindhoven, the Netherlands
n.v.stash@tue.nl

Marc Fabri
Leeds Beckett University
Leeds, United Kingdom
m.fabri@leedsbeckett.ac.uk

Paul De Bra
Eindhoven University of Technology
Eindhoven, the Netherlands
p.m.e.d.bra@tue.nl

George H. L. Fletcher
Eindhoven University of Technology
Eindhoven, the Netherlands
g.h.l.fletcher@tue.nl

Mykola Pechenizkiy
Eindhoven University of Technology
Eindhoven, the Netherlands
m.pechenizkiy@tue.nl

ABSTRACT

Adaptive web-based applications have proven successful in reducing navigation and comprehension problems in hypermedia documents. In this paper, we describe a toolkit that is offered as an adaptive Web-based application to help autistic students incorporate to high education. The toolkit has been developed using a popular CMS in which we have integrated a client-side adaptation library.

The toolkit described here was tried out during workshops with autistic students at Leeds Becketts University to gather (mostly qualitative) feedback on the adaptation and privacy aspects of the Autism&Uni platform. That feedback was later used to improve the toolkit.

CCS Concepts

• Information systems → Web applications; • Social and professional topics → People with disabilities; • Security and privacy → Privacy protections;

Keywords

adaptation, autism, learning styles, privacy

1. INTRODUCTION

In this paper, we demonstrate an adaptive Web-based application developed for the Autism&Uni\(^1\) project. It has been created with a tool that combines a popular CMS, namely WordPress\(^2\), and a library called WiBAF \([12]\) that enables client-side adaptation and that is being developed at the Eindhoven University of Technology (TU/e). Although WiBAF + WordPress integration is generic, meaning that it can be used for creating adaptive applications in different domains, so far we have only used it in the educational context. Apart from the Autism&Uni project we used it in our first year course on Design-Based Learning Hypermedia for creating the “First Aid Kit” for students entering the university.

Autism&Uni is aimed at widening access to higher education for autistic students by providing a toolkit that can help them overcome the challenges they may face when going to university. The goal is to give students a taste of how higher education works and how to cope with the physical university environment before they start their study. This toolkit\(^3\) is offered as an Adaptive Web-Based Application to autistic students, but also to non-autistic students that might find it useful.

The adaptive functionality differentiates in how the information site presents itself to autistic and non-autistic students, but in the end the toolkit provides the same information to everyone. The adaptive functionality offered in the toolkit presented here is based on learning styles and user history.

Adaptive Hypermedia is a research field that can be traced back to the nineties \([3, 4]\). It has become more complex since then and several frameworks have been developed. They aim to ease the development of these kind of applications. Some good examples of those frameworks are AHA! \([6]\) or GALE \([17]\).

Learning styles refer to the different ways a person can learn. There is previous research on adaptation to cognitive/learning styles and how these can be incorporated into Adaptive Hypermedia Systems and e-learning platforms \([16, 18]\). While adaptation to learning styles is useful in every e-learning platform, this is specially important in our use case scenario with autistic students as we showed in our previous work \([5, 13]\). Autistic students show problems linking concepts and therefore, adapting the content to their specific needs can be of great help.

In this demonstration we will showcase the integration of WiBAF and WordPress in several ways. We will show how we apply adaptive hypermedia and learning styles to a toolkit targeted at helping autistic students succeeding in their transition from high school to university. However during the demo session we will also showcase some parts described in our previous work on authoring of adaptive web-based applications with our tool \([14]\).

The remainder of this paper is structured as follows: We describe what autism is and why adaptation to adults on the autistic spectrum is important in Section 2 and then we describe the specific actions taken in our toolkit in Section 3. Section 4 measures the overhead that this integration causes compared to a CMS without any adaptation. Finally we conclude and propose future work in Section 5.

2. ADAPTATION FOR AUTISTIC STUDENTS

Adaptation for autistic students is first and foremost concerned with adapting to differences in cognitive abilities. Within this project in particular, we focus on comprehension between autistic and non-autistic students. Autism is often described as a "spectrum disor-
For this specific use-case, we also consider some factors related to the context namely, where the student is and what time it is. The reason for this is that autistic students often feel lost, they need reminders that tell them where they have to go inside the campus. We are implementing a feature so that they can import events from their Google Calendar. The tool will show a reminder when the student needs to go to a lecture and a link with the instructions to get to the room where she needs to be. This is still under development and not yet part of the generic platform, therefore we will not describe it further. We mention the notification feature because it needs to be developed in order to really help autistic students.

All the information written by experts on autism has been divided in learning objects. A learning object can be defined as a piece or a set of content with a specific learning goal. In order to effectively display the content from our learning objects, we have broken it down into small pieces or fragments with some semantic meaning, from which the student can learn something. In our case, we show an introduction first, we show also a comic strip or an image that shows quotes of students about the topic of the learning object, establishing a context for it. Then some background information is provided to justify the learning object. After that we talk about how the learning object being described is important for the reader and what she should do. We close the learning object with some additional tips, questions to think about and some follow-on reading. Each learning object can also have an alternative video version as well as pre and post-requisites.

3. ADAPTATION EFFECTS

After running workshops with autistic students at the Leeds Beckett University, and trying different alternatives like stretchtext, or reordering of parts that call users to do an immediate action, we have concluded that the following are the most valuable adaptation effects.

- If the user is more visual than verbal, the video version of the content will be shown at the top of the learning object. Otherwise it will be moved to the last (bottom) section of the learning object.

- If the user is more global than analytical, all the sections of the learning object will be displayed on a single page. On the other hand, if the user is more analytical than global, each section will be shown sequentially in one page, in a similar way as in a slide-show.

- Some learning objects have pre-requisites, they require knowledge of some items to be completely understood. These pre-requisites are shown when the user starts to read a new learning object, unless she already fulfilled those pre-requisites. In that case, the pre-requisites block is not displayed in the learning object.

- The learning objects from which the user has already completed are marked as visited. This is done in order to help users remember which items they have already read and which ones they still have to read.

Some of these effects are hard-coded in our adaptation and modelling files, as they refer to the general structure of the content and they are independent of the number of learning objects and their content. Other effects are created dynamically by our framework, when new learning objects are created.

Figure 1 shows two learning object with two different versions of each one. The first learning object is shown on the top-left, the
version for a global-visual student is depicted and the same learn-
ing object for an analytic-verbal student is shown on its right. On
the bottom part of the image, a learning object with pre-requisites
is shown. On the left, the student has not read the pre-requisites
yet, on the right, the student has fulfilled these pre-requisites, and
therefore they are not shown again.

4. TECHNICAL PERFORMANCE

Technical performance (speed) is often a problem with adaptive
hypermedia systems, which is rarely reported. Some initiatives,
including the general-purpose adaptation engine GALE developed
at the Eindhoven University of Technology [17] pay special atten-
tion to efficiency and can withstand a stress test using hundreds
of simultaneous users. Most of the performance problems stem
from the adaptation that needs to be computed in the split second
between the user clicking on a link and the browser presenting the
“next” page. Since WiBAF performs user modelling and adaptation
inside the browser it does not face a performance problem because
of large numbers of simultaneous users. However there is still a bit
of overhead in the server because in the WiBAF+WordPress com-
bination WordPress has to serve (and sometimes generate) code for
the browser to execute. We are interested in seeing how both tasks
affect the overall performance of the modified WordPress.

We ran a performance test on a MacBook Air laptop together
with an Apache Server and a MySQL database. The server was
running WordPress version 4.4.2. While this is not the most realis-
tic setup, it gives us an intuition on what the performance could be
in a bad scenario (a single machine with limited capabilities) We
have measured the time it takes for our modified WordPress to load
several pages of different types (learning objects, the home page,
etc.). We did so by using a plugin called P3\(^6\). Then we compared
it to an unmodified WordPress with the default theme, without any
plugins (except P3).

The adaptive version of WordPress takes 176 ms to load the
site, while the not adaptive version takes 167 ms, that is an over-
head of just 9 ms. In the detailed analysis we see that indeed the
WiBAF plugin is executed in 9.1 ms while the theme is handled
slightly more efficiently in our WordPress than the default Word-
Press theme.

We also measured the time the client code uses (for user mod-
elling and adaptation). We used the Google Chrome profiler to
measure the total JavaScript execution time with our custom Word-
Press. In this measurements we include not only WiBAF but also
jQuery\(^7\), a popular JavaScript library that is used to manipulate the
DOM structures and it is required by WiBAF. and compared that to
the default WordPress (not performing any user modelling or adap-
tation). The execution time of the JavaScript code in our WordPress
was 487 ms, against 304 ms for the non-adaptive version. There-
fore the overhead we introduce in the client is 183 ms. More than
one half of that time (69 ms) is caused by the use of the Indexed
DB to store and retrieve data from the user model.

In total, we quantify that making a WordPress adaptive costs
192 ms per request. The page will be served with a delay of 9 ms
and adapted in 183 ms. In total the page is served and adapted in
663 ms. According to a study in 2004 [15], users consider a wait-
ing time of around 2 seconds acceptable. Since then people may

\(^6\)https://wordpress.org/plugins/p3-profiler/
\(^7\)https://jquery.com/
have grown more impatient. But when considering these performance numbers you should consider that we ran an unlikely scenario where the web server with WordPress, the mySQL database and the (Chrome) browser with adaptation code were all running on the same (relatively slow) computer.

5. DEMONSTRATION SCENARIO AND FUTURE OUTLOOKS

In this demo we showcase an adaptive web-based application developed with a framework consisting on a CMS and an adaptation library. This application is aimed at supporting autistic students in higher education, but it is available to everyone. The application takes advantage of the use of learning styles and user history, but extra functionality can be added, such as notifications or a progress bar e.g. “you have studied only 5% of the material and there are only 2 days left before the exam”, etc…Extra adaptive features can include adaptive testing or selection of navigation tools - more independent students (with field-independent learning style) can be provided with a search option while less independent students (with field-dependent style) can be provided with a “Next” button that at each step will be bringing them to the most suitable material. While in the current version we support other media, like videos, those are yet scarce and we expect that content providers make more in the future. This will give us more adaptive capabilities.

It is important that concepts of privacy, information sharing and storage locations are communicated in a clear, non-technical and unambiguous way. Initial usability tests of the settings screen were carried with autistic students. Trial participants did not understand the control these settings offered them. Inadequately implemented privacy settings, are likely to increase anxiety rather than alleviate it for the students that participated in our trials. Therefore we need to find a way to improve the scrutability of our user profile.

6. ACKNOWLEDGMENTS

This research is supported by the WiBAF project and the Lifelong Learning Programme (project no. 10018300 Authew 539031-LLP-2013-1-UK). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any errors. This research is supported by the WiBAF project and the Lifelong Learning Programme (project no. 10018300 Authew 539031-LLP-2013-1-UK). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any errors.

7. REFERENCES

\[8\] http://royhoutkamp.nl/
\[http://www.handicap-studie.nl/\]