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Abstract—Neoangiogenesis, which results in the formation of an irregular network of microvessels, plays a funda-
mental role in the growth of several types of cancer. Characterization of microvascular architecture has therefore
gained increasing attention for cancer diagnosis, treatment monitoring and evaluation of new drugs. However, this
characterization requires immunohistologic analysis of the resected tumors. Currently, dynamic contrast-
enhanced ultrasound imaging (DCE-US) provides new options for minimally invasive investigation of the micro-
vasculature by analysis of ultrasound contrast agent (UCA) transport kinetics. In this article, we propose a
different method of analyzing UCA concentration that is based on the spatial distribution of blood flow.
The well-known concept of Mandelbrot allows vascular networks to be interpreted as fractal objects related to
the regional blood flow distribution and characterized by their fractal dimension (FD). To test this hypothesis,
the fractal dimension of parametric maps reflecting blood flow, such as UCA wash-in rate and peak enhancement,
was derived for areas representing different microvascular architectures. To this end, subcutaneous xenograft
models of DU-145 and PC-3 prostate-cancer lines in mice, which show marked differences in microvessel
density spatial distribution inside the tumor, were employed to test the ability of DCE-US FD analysis to differen-
tiate between the two models. For validation purposes, the method was compared with immunohistologic results
and UCA dispersion maps, which reflect the geometric properties of microvascular architecture. The results
showed good agreement with the immunohistologic analysis, and the FD analysis of UCA wash-in rate and peak
enhancement maps was able to differentiate between the two xenograft models (p , 0.05). (E-mail: t.a.saidov@
gmail.com) � 2016 World Federation for Ultrasound in Medicine & Biology.

Key Words: Contrast-enhanced ultrasound, Fractals, Immunohistology, Angiogenesis, Cancer, Dispersion, Perfu-
sion, Microvascular Architecture.
INTRODUCTION

Angiogenesis (and neovascularization) plays an impor-
tant role in the growth and development of many types
of solid tumors. It leads to the formation of a chaotic,
dense network of irregular microvessels and is often a
good predictor of cancer aggressiveness (Brawer 1996;
Carmeliet and Jain 2000; Folkman et al. 1989).
Angiogenesis is therefore a relevant imaging marker
and promising prognostic indicator for cancer
localization and diagnosis (Russo et al. 2012). Currently,
the characterization of an angiogenic network requires an
ddress correspondence to: Tamerlan Saidov, SPS Group,
ment of Electrical Engineering, TU/e, De Zaale, 5600MB Eind-
The Netherlands. E-mail: t.a.saidov@gmail.com
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invasive procedure: analysis of microvascular density
(MVD) from immunohistologic sections of resected tu-
mors (Bigler et al. 1993; Heneweer et al. 2011; Russo
et al. 2012). Non-invasive methods enabling characteriza-
tion of angiogenic structures can therefore make an
important contribution to cancer diagnostics, monitoring
of treatment and evaluation of new (anti-angiogenic)
drugs.

Currently, dynamic contrast-enhanced ultrasonogra-
phy (DCE-US) is a widely employed imaging technique
that makes use of ultrasound contrast agents (UCAs).
UCAs are gas microbubbles encapsulated in a biocompat-
ible shell that are injected intravenously and are easily de-
tected by contrast-specific ultrasound imaging due to
their high echogenicity and non-linear behavior (de
Jong et al. 2000; Ferrara et al. 2000). Because they are
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only a few micrometers in diameter, UCA microbubbles
can flow through the tiniest microvessels. Their use is
therefore promising for non-invasive cancer detection
by analysis of the microvasculature (Cosgrove 2003;
Kuenen et al. 2011; Russo et al. 2012). In the literature,
several approaches have been proposed for the
assessment of cancer microvasculature by DCE-US.
They are based on the analysis of features related to the
change in UCA concentration over time, referred to as
the time–intensity curve (TIC). All of these methods
are based on a linear (or linearized) relationship between
UCA concentration and measured acoustic intensity
(Rognin et al. 2008).

The features of an estimated TIC relate to either
blood perfusion or UCA dispersion kinetics, both of
which are considered good markers for reflecting changes
in the microvasculature due to the presence of cancerous
angiogenic processes (Cosgrove 2003; Kuenen et al.
2011). For perfusion estimation, temporal features like
wash-in rate or peak enhancement are extracted from
the measured TIC; UCA replenishment following a
destructive ultrasound pulse can also be analyzed and em-
ployed to measure perfusion (Hudson et al. 2009; Linden
et al. 2007; Wijkstra et al. 2004). Contrast ultrasound
dispersion imaging (CUDI) has recently been proposed
as an alternative method for non-invasive cancer localiza-
tion by assessing dispersion kinetics during DCE-US im-
aging (Kuenen et al. 2011; Mischi et al. 2012; Smeenge
et al. 2011). In its most promising implementation, the
similarity among neighboring TICs was estimated as an
indirect measure of the dispersion coefficient based on
the convection–dispersion equation (Kuenen et al.
2013; Mischi et al, 2012).

Several key properties of the microvascular architec-
ture, such as microvascular density, vessel tortuosity and
multi-path trajectories, influence not only the dispersion
kinetics of a diluted agent (Taylor 1953) but also regional
blood flow distribution (Qian and Bassingthwaighte
2000). Therefore, the regional blood flow distribution,
defined by the geometry of the vascular network, is also
affected by the presence of cancerous angiogenic pro-
cesses (Jain 1999). The well-known concept of Mandel-
brot suggests that fractal bifurcating networks mimic
the vascular tree (Mandelbrot 1983), enabling the charac-
terization of angiogenic networks in terms of fractal
mathematics. In fact, the concept of Mandelbrot was
applied to characterize regional blood flow distribution
and cancer grading in immunohistologic samples (Baish
and Jain 2000; Qian and Bassingthwaighte 2000; van
Beek et al. 1989). By studying resected tissue samples,
the vascular networks were represented by a specific
parameter (i.e., the fractal dimension [FD]). It was
shown that higher levels of vascular disorder lead to
higher values of FD, whereas more structured
vasculature is represented by a lower FD (Karshafian
et al. 2003; Qian and Bassingthwaighte 2000).

For FD assessment of regional blood flow distribu-
tion, tissue samples are filled with a specific indicator
(compound) that binds to the epithelial cells of blood ves-
sels; the intensity of the bonded indicator is assumed to
correlate with blood vessel size and density and, there-
fore, to flow (Qian and Bassingthwaighte 2000). Typi-
cally, FD assessment is based on images of indicator
binding to the targeted cells. The image intensity is
then assumed to correspond with the indicator density
(Baish and Jain 2000; Qian and Bassingthwaighte 2000).

In this article, we evaluated the potential of FD to
characterize microvascular networks by combining the
aforementioned approaches with non-invasive DCE-US
imaging. To this end, DCE-US was used to define suitable
TIC parameters reflecting blood flow. In this study, peak
intensity (PI) and wash-in rate (WiR) were measured. The
method was tested with two subcutaneous (SC) xenograft
mouse models of human prostate cancer (PCa) cell lines:
DU-145 and PC-3. These models are characterized by a
marked difference in MVD distribution: SC PC-3 de-
velops a spatially homogenous vascular network,
whereas SC DU-145 forms a core with higher MVD
compared to the periphery (Heneweer et al. 2011;
Saidov et al. 2012). For validation, the method was
compared with immunohistologic MVD and FD
assessment as well as with the recently proposed CUDI
assessment based on the coherence between neighbor
TICs measured by DCE-US (Kuenen et al. 2013;
Mischi et al. 2012).
MATERIALS AND METHODS

Data acquisition
The animal experiments were performed at the Uni-

versity Hospital of Schleswig-Holstein in Kiel, Germany,
in compliance with the Institutional Animal Care and Use
Committee guidelines. The method for DCE-US–based
FD estimation was developed and tested at the Eindhoven
University of Technology in Eindhoven, The
Netherlands.

Two types of PCa cell lines, DU-145 and PC-3, were
implemented on SC xenograft models (Heneweer et al.
2011). Fourteen mice were injected subcutaneously
with cancer cells (six with DU-145 and eight with PC-
3). Once the tumors had developed (14 d), all of the
mice were administered a 0.1-mL bolus of MicroMarker
Non-Targeted Contrast Agent Kit (VisualSonics Inc.,
Toronto, Ontario, Canada) using a tail vein catheter,
and the TICs of the UCA passage through the tumors
were measured by pixels. Necrosis was observed in one
xenograft mouse model (DU-145). This mouse was there-
fore excluded from further analysis.
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DCE-US imaging was performed with a Vevo 2100
imaging system (VisualSonics Inc.) equipped with an
MS-250 probe using contrast-specific imaging (power
modulation) at 18 MHz with axial resolution of about
0.08 mm. The acquisition frame rate was 10 Hz. A low
mechanical index equal to 0.01 was adopted to prevent
microbubble disruption. Separate in vitro measurements
were performed to establish the relationship between
UCA concentration and image intensity according to
the procedure described by Mischi et al (2003) and
Kuenen et al (2011). A logarithmic relationship between
contrast agent concentration and image intensity was
observed (R2 5 0.98). This logarithmic relationship
was compensated (linearized) to ensure that subsequent
analysis was based on a linear measure of UCA concen-
tration. An example of linearized TIC is presented in
Figure 1.

After imaging, 50 mL of tomato lectin fluorescein
isothiocyanate (FITC; Vector Laboratories, Burlingame,
CA, USA) were injected via a tail vein catheter in order
to determine the MVD maps by immunohistology,. The
animals were killed after 8 min of circulation. The tumors
were then resected, embedded within Optimal Cutting
Temperature compound (Tissue Tek, Sakura Finetek,
Torrance, CA, USA) in cryomolds and stored at
280�C. Tissue sections 5 mm thick were cut from the tu-
mor and imaged with a fluorescence microscope (Axio-
vert, Zeiss, Oberkochen, Germany). The bound tomato
lectin FITC normalized (between 0 and 1) grayscale in-
tensity maps were taken as a measure of MVD
(Heneweer et al. 2011). In seven mice, tomato lectin bind-
ing failed, and no fluorescence was observed. For these
mice (two DU-145 and five PC-3), new tissue sections
of 5-mm thickness were cut from the tumor and processed
by CD31 staining. Slices were fixed (200 mL of ice-cold
acetone 1 2 mL of a 30% solution of H2O2) for 10 min.
Fig. 1. Example of DCE-US imaging of a mouse impregnated w
white dashed line) and measured, linearized, filtered (5-s averag

PI 5 peak intensity; TP 5 time-to-pea
After rinsing three times for 5 min with phosphate-
buffered saline (PBS), non-specific binding was blocked
with 4% bovine serum albumin in PBS for 20 min. Then
the anti-CD31 antibody (BD Pharmingen 558736;
BD Biosciences, San Jose, CA, USA) was added for
45 min in a 1% solution of bovine serum albumin in
PBS using a dilution of 1:250. A non-specific IgG2a rat
antibody was used in the same way as an isotype control.
After rinsing three times for 5 min with PBS, the anti-rat–
Alexa 488 antibody (Molecular Probes A21210; Thermo
Fisher Scientific Inc., MA, USA) was applied in the dark
in a dilution of 1:1000 in PBS for 30 min. After rinsing
three times with PBS, the slices were mounted with Flu-
orSave (Merck Millipore Corporation, Darmstadt, Ger-
many) and stored in the dark at 4�C. New fluorescence
imaging was then performed using the same equipment.
The MVD map was associated with the intensity (gray
level) of the resulting digital image, which was low-
pass filtered and normalized between 0 and 1.

Regional blood flow and fractal dimension. The
objective of this study is to investigate vascular heteroge-
neity by assessing the relative dispersion (RD) of the
regional blood flow distribution. The RD is defined as
the ratio between the standard deviation and mean
of the regional blood flow distribution; RD is therefore
a measure of spatial heterogeneity (Qian and
Bassingthwaighte 2000).

For RD assessment by DCE-US, a parametric map
that represents a measure of blood flow distribution
must be generated. TIC parameters such as PI and WiR
reflect properties of blood flow (Greis 2011). Therefore,
these parameters are employed as flow measure to assess
the RD of regional blood flow distribution. PI is defined as
the TIC peak after preprocessing with a 5-s averaging fil-
ter. Appearance time (AT) is defined as the time when
10% of PI is first reached, and the time to peak (TP) is
ith DU-145 cancer cells (left image; tumor is marked by
ing) time-intensity curve (right). AT 5 appearance time;
k; WiR 5 wash-in-rate (PI/TP).
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the time between ATand PI. Finally, WiR is defined as PI/
TP, as shown in Figure 1. Figure 2 shows an example of PI
and WiR parametric maps for an SC DU-145 and an SC
PC-3 tumor; the corresponding normalized distributions
(histograms) of the parameters are plotted in Figure.3.
Normalization involves the intensity, which is scaled be-
tween 0 and 1, as well as the distribution integral, which is
equal to 1.

Following the research of Bassingthwaighte et al.
(Qian and Bassingthwaighte 2000; van Beek et al.
1989), FD is related to the relative dispersion of
regional blood flow distribution, RD. This relation is
given in eqn (1):

RDðmÞ
RD

�
mref

� 5

�
m

mref

� 12FD

; (1)

where FD is the fractal dimension (FD . 1) and RD is the
relative dispersion of the regional blood flow distribution
for a given scale as determined by subsamples of size m
(surface area). In practice, the RD can now be computed
on the values representing the integral of the DCE-US
parametric (flow) map over each tissue subsample. The
ratio between the RD for tissue subsamples of size m
(RD[m]) and the RD for the reference subsamples of
size mref (RD[mref]) is then calculated. The number of
subsamples (n) into which a given tissue sample is
divided is inversely related to m, that is, n f 1/m.
Fig. 2. Examples of tomato-lectin-FITC immunohistology of an
corresponding DCE-US WiR (b and e) and PI (c and f) parame

units.
FD estimation. To estimate FD from eqn (1), a refer-
ence sample mref and a method to define subsamples m
have to be defined. Generally, the choice of a reference
sample is arbitrary; in this study, a sample was a zone
covering the area to be investigated for its vascular het-
erogeneity. For consistency, we always chose mref 5 1/
4, (i.e., a quarter of the entire zone) where 1 refers to
the entire sample (zone); therefore, m ˛ [0,1]. To opti-
mize the computation time, the algorithm implemented
in this study selected m as represented in eqn (2):

m 5
1

22k
; (2)

where k 5 1, 2, 3,. is a scale factor. Figure 4 shows a
schematic of few subsequent subdivisions (scalings) for
increasing k.

For the assessment of FD by model fitting of the
parametric maps, the derivative operator d/dm is applied
to eqn (1), resulting in eqn 3:

dlnðRDÞ 5 ð12FDÞdlnðmÞ 0 DlnðRDÞ
z ð12FDÞDlnðmÞ :

(3)

A linear regression is then used to estimate FD in
eqn (3). An example of the fitting is presented in
Figure 5. The method was tested by dedicated simulation
using a map with known FD. For that purpose, a binary
SC DU-145 (a) and SC PC-3 (d) tumor, together with the
tric maps, estimated for the whole tumor. a.u. 5 arbitrary



Fig. 3. Examples of normalized intensity distributions for immunohistology (left) and DCE-US parametric maps of WiR
(center) and PI (right) corresponding to the parametric maps in Figure 2, calculated over the full surface of an SC DU-145

and PC-3 tumor.
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(black and white) reference map with FD 5 1.5 was used
(from Fig. 1 in King et al. [1990]), and FD 5 1.49 was
obtained.

Methodological considerations
In real measurements, the observed RD (RDobs) re-

sults from the RD of the vascular system (RD), the RD
Fig. 4. Schematic representation of RD derivation for a given s
picted and RD is calculated as a function of m. k 5 scale factor;
due to flow variation over time (RDflow) and the RD due
to measurement errors (RDerror) (Glenny and Robertson
1990). Assuming these contributions are independent,
we can describe RDobs as the sum shown in eqn (4)
(Glenny and Robertson 1990):

RD2
obs 5 RD21RD2

flow1RD2
error : (4)
ample. From left to right, the scaling of the sample is de-
m 5 surface area of subsample; RD 5 relative dispersion.



Fig. 5. Example of RD variation (PI by DCE-US in the central zone) as a function of sample size and FD assessment by
curve fitting (dashed thick line) for a mouse impregnated with DU-145 cancer line. DCE-US 5 dynamic contrast-

enhanced ultrasonography; FD 5 fractal dimension; PI 5 peak intensity.
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As we calculate RD over a single flow estimation
with PI or WiR, which average flow variations, the RD
introduced by flow variations is negligible and RDflow

x 0. To guarantee that RDobs reflects the actual relative
distribution of regional blood flow RD (i.e., that it is mini-
mally influenced by measurement errors), the following
condition in eqn (5) must be satisfied:

RD2
obsz RD2[ RD2

error : (5)

The measurement errors relate to the possible effects
of image resolution and noise on RDobs. These errors can
be significant when (i) the size of the tissue subsample
(m) is close to that of a microvessel (unit of perfusion
problem discussed in Glenny and Robertson [1990]),
(ii) the tissue subsample is smaller than the image resolu-
tion and (iii) strong image noise is present. These three
conditions are investigated below.

1. Mathematical (ideal) fractal objects keep fractal prop-
erties for any given scale, because zooming in does not
influence the properties of the object. However, non-
ideal fractal objects carry fractal properties until a
certain scale, which represents the smallest part of
the object (maximal possible zooming) that can still
be considered as representative of the entire object.
In our context, this represents the unit of perfusion
problem (Glenny and Robertson 1990). This problem
occurs when the microvessel size is in the range of the
tissue subsample size; that is, a given tissue subsample
m contains only one (or a part of a) microvessel (unit
of perfusion), but not a representative vascular
network. In this case, the obtained FD does not repre-
sent the FD of a vascular network. In our images, the
axial resolution of the scanner is 0.08 mm (80 mm) and
the pixel size corresponds to 0.045 mm, both of which
are significantly larger than a capillary (5–10 mm in
diameter).
2. To avoid the image resolution influencing the estima-
tion of FD, a given tissue subsample of size m must al-
ways exceed the ultrasound scanner resolution. For
simplicity and to avoid dealing with depth depen-
dency, a homogeneous, isotropic resolution of
0.08 mm (axial resolution) was considered. In our
DCE-US images, the pixel size is about
0.045 3 0.045 mm2; that is, the ultrasound scanner
resolution cell equals almost 4 pixels. Therefore, a tis-
sue subsample must contain at least 4 pixels (2 3 2),
i.e., nmax 5 1/m(kmax) , N/4, where N is the amount
of pixels in the entire sample (when m 5 1) and kmax is
the maximal value of the scale-factor k. With respect
to eqn (2), the condition for the scale-factor is shown
in eqn (6):

k,kmax 5
1

2

�
lnðNÞ
lnð2Þ22

�
: (6)

For the derived DCE-US parametric maps, the num-
ber of pixels in each map is approximately 20 3 103, and
eqn (6) reads k , 6.14. Therefore, to avoid resolution ef-
fects, we run k from 1 to 6; that is, eqn (3) is fitted through
six points.

3. If conditions 1 and 2 are satisfied, the only error influ-
encing RDobs is noise, and eqn (5) can be rewritten in
the form:

RD2
obs 5 RD21RD2

error 5 RD21RD2
noise: (7)

DCE-US images are built on the US backscatter pro-
cess. This process inherently results in speckle noise,
which can be described statistically by a Rayleigh distri-
bution (Thijssen and Mischi 2014) as shown in eqn (8),
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with a as a model parameter and x representing the vari-
able (Papoulis and Pillai 1984):

pR 5
x

a2
Exp

�
2

x2

2a2

�
; (8)

Although noise in DCE-US shows more complex
behavior, with a distribution that varies depending on
the UCA concentration (Barrois et al. 2013; Kuenen
et al. 2014), a Rayleigh approximation still holds for
larger concentrations, such as at peak enhancement or
toward the end of the wash-in phase (Bar-Zion et al.
2015). Therefore, assuming DCE-US gray level noise
could be represented by Rayleigh noise, a dedicated
simulation was implemented (see Appendix), proving
that Rayleigh noise is reflected in parametric images of
WiR and PI, whose estimation error is also well described
by a Rayleigh distribution. As a result, eqn (7) can be rep-
resented by eqn (9), where RDRayleigh is the RD of a Ray-
leigh distribution:

RD2
obs 5 RD21RD2

Rayleigh; (9)

It can be shown that RDRayleigh is constant. In fact,
the mean and standard deviation of the distribution in
eqn (8) read, respectively:

mR 5 a
���
p
2

r

; sR 5 a
����������
42p

2

r

: (10)

The RD can be obtained as the standard deviation
divided by the mean, i.e., RDRayleigh 5

���������������
4=p21

p
5 const.
Fig. 6. Example of immunohistologic fluorescence images (lef
tion) mode with overlapped CUDI-coherence maps (right) of su
(bottom) human PCa lines. In comparison with PC-3, DU-145
characterized by a high-coherence central region and a low-co

dispersion imaging; PCa
This proves the effect of Rayleigh noise on the estimated
RDobs, referred to as RDRayleigh, is constant. As a result,
eqn (5) can be rewritten in the form:

 
RDobsðmÞ
RD

�
mref

�

! 2

5

 
RDRayleighðmÞ

RD
�
mref

�

! 2

1

 
RDðmÞ

RD
�
mref

�

! 2

5 const1

 
RDðmÞ

RD
�
mref

�

! 2

:

(11)

Applying a differential operator d/dm to eqn (11)
yields eqn (3). From this we conclude that DCE-US
gray level noise makes only an additive constant contri-
bution to the observed relative dispersion and does not
affect the determination of FD.
Validation
To evaluate the potential of FD to characterize

microvascular networks, the zones to be investigated
(i.e., the zones to perform sequential subsampling) must
be chosen. To this end, CUDI coherence analysis
(Mischi et al. 2012) and immunohistology, aimed at the
determination of the MVD maps, were performed; the re-
sults are presented in Figure 6.

CUDI coherence analysis was used as in Mischi
et al. (2012) to assess the spatiotemporal similarity of
each pixel TIC with the TICs measured in a surrounding
ring-shaped kernel at distances between 0.25 and 1.0 mm.
The adopted similarity measure, referred to as coherence
t), B-mode (center) and contrast-specific (power modula-
bcutaneous xenograft models for DU-145 (top) and PC-3
xenografts show a heterogeneous coherence distribution,
herence peripheral region. CUDI 5 contrast ultrasound
5 prostate cancer.



Table 1. Overall results (mean 6 SD) of different
imaging methods in DU-145 and PC-3 subcutaneous

xenograft models in mice

Parameter (relative difference between the
central and peripheral zones) DU-145 PC-3

D FD/FD (immunohistology)* 0.11 6 0.06 0.01 6 0.02
D FD/FD (DCE-US, WiR-based)* 0.18 6 0.11 0.07 6 0.24
D FD/FD (DCE-US, PI-based)* 0.17 6 0.1320.04 6 0.11
D CUDI/CUDIy 0.37 6 0.08 0.07 6 0.06
D MVD/MVDy 0.31 6 0.09 0.10 6 0.12
D WiR/WiR 0.29 6 0.25 0.51 6 0.24
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(r), consists of the correlation coefficient of the TIC
amplitude spectra in a fixed frequency range. This range,
based on typical TIC frequency spectra, is taken between
0–0.5 Hz. The coherence r varies in a range of [21,1],
that is, from anticorrelation (r 5 21), to uncorrelation
(r 5 0), up to maximum correlation (r 5 1) of the power
spectra. The adopted definition of coherence does not
take into account TIC phase information and is therefore
independent of mutual TIC delays. The levels of coher-
ence were then used to generate CUDI-coherence maps
(Fig. 6).

Based on the aforementioned methods, two zones
were defined in each tumor: a central zone and a periph-
eral zone, as presented in Figure 6. According to the liter-
ature and to our MVD data (Heneweer et al. 2011; Saidov
et al. 2012), the central zone in SC DU-145 tumors shows
a higher vascularization with respect to the peripheral
zone, while a higher degree of microvascular homogene-
ity is observed in SC PC-3 tumors. The central and the pe-
ripheral zone were defined in such a way that, in the case
of DU-145, a threshold of 70% of the maximal value in
CUDI-coherence (for the parameters PI and WiR) and
MVD intensity (for immunohistology) levels were com-
bined and used to distinguish between the zones. In the
case of PC-3, the surface of the central zone is one third
(corresponding to the average ratio between the two
zones in SC DU-145 tumors) of the surface of the periph-
eral one with the same scaled-shape of the surface
boundary.

For each tumor, the function RDobs(m) was obtained
from both zones separately, with the scale factor k
ranging up to 6. The FD was estimated by curve-fitting
eqn (3) to the obtained RDobs(m) values, as shown in
Figure 5. The linear regression method was applied for
curve fitting. The FD was determined for the DCE-US
flow maps (PI and WiR) as well as for the immunohisto-
logic fluorescence maps. To investigate the difference in
FD between the two predefined zones, the relative differ-
ence in FD between these zones was evaluated as:

DFD

FD
5

FDcenter2FDperiphery

FDcenter

: (12)

The same relative-difference approach was applied
to the dispersion parameter derived from CUDI. For the
purpose of validation, a relative difference as in eqn
(12) was also estimated for WiR and PI maps. A two-
tailed Student’s t-test was used to evaluate the statistical
significance of the results (p).
D PI/PI 0.43 6 0.12 0.45 6 0.11

CUDI 5 contrast ultrasound dispersion imaging; DCE-
US 5 dynamic contrast-enhanced ultrasonography; FD 5 fractal
dimension; MVD 5 microvascular density; PI 5 peak intensity;
WiR 5 wash-in rate.

* p , 0.05.
y p , 0.01.
RESULTS

For DU-145 tumors, both immunohistology (MVD)
and CUDI images show two zones with a lower (periph-
ery) and a higher (center) intensity, while no significant
difference between the two zones is found for PC-3
(Fig. 6). To compare the obtained FD results, relative dif-
ferences D FD/FD are presented in Table 1 for immuno-
histology (MVD), WiR and PI maps. To estimate FD, the
model in eqn (3) was fitted by linear regression; the over-
all coefficient of variation and correlation coefficient of
the fits were 0.05 and 0.92 (p , 0.05), respectively.

In the chosen DCE-US parametric maps, PI-based
FD shows the best capability to discriminate between
central and peripheral zone for SC DU-145 and shows
the highest similarity between these zones for SC PC-3.
The difference in the microvasculature distribution across
the tumor permits discrimination between SC DU-145
and SC PC-3 cancer lines (p , 0.05).

For validation purposes, Table 1 also reports the
relative difference in PI and WiR between the two zones.
In this case, the difference is not significant (p 5 0.61 for
PI and p 5 0.14 for WiR).

DISCUSSION

Two DCE-US parameters reflecting the regional
blood flow distribution, PI and WiR, were used to
generate flow maps to be processed for the estimation
of the FD. The presented results indicate good agreement
of the estimated FD between the results obtained by im-
munohistology and CUDI, which shows an ability to
distinguish between areas with different MVDs in agree-
ment with the immunohistology. This is a promising
result in the development of additional non-invasive tools
for investigating tumor typing by means of FD.

The results, both from immunohistology as well as
DCE-US, show that the SC DU-145 type of cancer de-
velops two spatial regions with different FDs: a core
with increased FD and an outer region with lower FD.
SC PC-3 has no spatially different FD zones, indicating
a more homogeneous vascularization. These results,



Table 2. Immunohistologic results (mean 6 SD) in DU-
145 and PC-3 subcutaneous xenograft models in mice

comparing CD31 and tomato-lectin FITC staining

Staining method: Parameter
(relative difference between the central

and peripheral zones) DU-145 PC-3

Tomato-lectin: D FD/FD
(immunohistology)*

0.11 6 0.05 0.002 6 0.02

CD31: D FD/FD (immunohistology)* 0.11 6 0.06 0.02 6 0.02
Tomato lectin: D MVD/MVDy 0.30 6 0.08 0.09 6 0.13
CD31: D MVD/MVDy 0.32 6 0.09 0.11 6 0.10

FD 5 fractal dimension; MVD 5 microvascular density.
* p , 0.05.
y p ,0.01.
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confirmed by immunohistologic analysis, agree with our
previous analysis of SC DU-145 and PC-3 cancer lines by
CUDI (Saidov et al. 2012), as well as with the previous
literature (Heneweer et al. 2011).

The results show the ability of CUDI and DCE-US
FD to discriminate between the different microvascular
spatial distributions in the center and periphery of tumors.
Direct analysis of the flow maps by PI and WiR could not
produce the same results, confirming flow alone to be a
poor indicator of neoangiogenic changes in the microvas-
cular architecture.

In agreement with the concept of in dichoto-
mously branching vascular networks (Qian and
Bassingthwaighte 2000), a higher level of vascular disor-
der leads to higher values of FD, while more ordered
vasculature shows lower FD. Although additional
research is required to draw a definitive conclusion, the
presented method shows a promising capability to assess
the level of disorder of vascular networks. The obtained
results also suggest an interesting correlation between
vascular disorder assessed by FD, MVD assessed by im-
munohistology and UCA dispersion kinetics assessed by
CUDI. In general, the ability to detect different degrees of
Fig. 7. Examples of CD31 staining in SC DU-145 (a) and P
enhancement) in the core (cen
vascularization by the presented methods may lead to
new options for non-invasive tumor grading that support
clinical decision making. To this end, an extensive clin-
ical validation in humans is required.

Of particular interest are the improved FD results
based on PI. The use of PI leads to better discrimination
between the two cancer lines than the use of WiR. Other
TIC parameters, such as mean transit time and TP have
also been considered, but the resulting FD discrimination
was lower than by WiR. Compared to the other parame-
ters, PI is more related to vascular fraction than flow.
We may therefore hypothesize that vascular fraction is
a better parameter for characterizing underlying micro-
vascular architectures based on the FD. However, to
gain sufficient insight into these correlations, additional
research is needed to investigate the relationship between
the estimated FD and the main features characterizing
microvascular architecture. To this end, not only MVD
but also tortuosity and other forms of vascular irregularity
should be investigated and correlated with the FD.

The results obtained by CUDI are superior by those
obtained by FD. This might be because CUDI investi-
gates kinetic processes rather than pure geometrical dis-
tributions. The methods are fundamentally different and
can possibly underline different (complementary) fea-
tures of microvascular architecture. Future research is
therefore necessary for a deeper understanding of the
relationship between these parameters and the main fea-
tures of neoangiogenic microvascular networks, such as
arteriovenous shunting, tortuosity and irregularity in
size and bifurcations (Russo et al. 2012). Eventually, a
combination of different parameters might provide
more exhaustive information on underlying angiogenic
processes. However, all these methods for characteriza-
tion of microvascular architecture are limited by the
need for a microvascular network and fail in the case of
avascular, necrotic areas.
C-3 (b) tumors showing increased vascularization (red
tral region) of DU-145.



Fig. 8. An example of simulated TIC with (right) and without (left) noise. a.u. 5 arbitrary units; n 5 noise; PI 5 peak
intensity; s 5 sound; TIC 5 time–intensity curve; WiR 5 wash-in rate.
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Validation was performed by comparison with im-
munohistology staining either by tomato lectin-FITC
(seven mice) or by CD31 (seven mice). This was due to
some difficulties in obtaining suitable fluorescence im-
ages by tomato lectin staining. Tomato lectin staining
was preferred over CD31, as it enhances functional ves-
sels only. To compare the two subgroups, the MVD and
FD were also tested separately for the different immuno-
histologic tests. As shown in Table 2, the results are
similar, and small differences may possibly be ascribed
to the presence of closed-ended vessels, as highlighted
by CD31 only. Figure 7 shows an example of CD31 stain-
ing for an SC DU-145 and an SC PC-3 tumor, confirming
a hypervascular core for DU-145 in contrast to a homoge-
neous vascular distribution for PC-3.

Additional complexity in the validation procedure
was posed by the determination of corresponding regions
in the immunohistologic and DCE-US images. Although
no automatic registration was employed, the scan was
performed according to a standard protocol, with the
probe aperture perpendicular to the mouse femur. This
provided a reference point for manual alignment of the
Fig. 9. Histograms of the TIC PI (a) and WiR (b) estimation err
leigh fitting. n 5 noise; PDF 5 probability distribution functio
images. In the future, accurate registration can be
achieved by using 3-D imaging, which would permit bet-
ter image alignment even without employing automatic
registration.

An additional advantage of 3-D over 2-D imaging
also relates to the estimation of the RD. In a 2-D
approach, all of the information across the elevation
plane, which varies with image depth, is projected on
one plane. This can affect the accuracy of the estimation.
With a 3-D approach, the RD estimation can integrate
higher-resolution information from the elevation plane,
possibly gaining in accuracy and reliability of the
estimates.
CONCLUSIONS

In this study, the theoretical requirements for correct
fractal analysis have been discussed in relation to image
characteristics and showed the acquisition settings were
suitable for the proposed analysis. In future work, a thor-
ough evaluation of the effects of the acquisition settings
on the estimated FD should be conducted. The resolution
or for noise amplitude An 5 0.6 with corresponding Ray-
n; PI 5 peak intensity; s 5 sound; WiR 5 wash-in rate.
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anisotropy and depth dependency of ultrasound images
should also be considered and evaluated in relation to
the estimated FD. The results can be used to suggest
optimal settings for performing fractal analysis. In partic-
ular, here the FD was estimated for entire predefined
zones corresponding to different microvascular architec-
tures. The application of the proposed method for diag-
nostic purposes would require the realization of an FD
map from which variations in the underlying microvas-
cular architecture could be detected. To this end, a kernel
should be defined to span the entire parametric perfusion
image and determine the FD at each position. A proper
compromise should then be found between resolution in
the resulting FD map, which improves with smaller
kernel size, and FD estimation accuracy, which improves
with larger kernel size (larger k).
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APPENDIX
EFFECT OF SPECKLE ON THE PARAMETER
ESTIMATION

This appendix investigates the RD of the parameter (PI and WiR)
estimation error.

First, we simulate a series of TICs (20 3 103 curves) with the
modified Local Density Random Walk model (mLDRW) as shown in
eqn (A1) (Kuenen et al. 2011):

cðtÞ 5 A
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where c(t) is the intensity of a TIC as a function of time, A is the area
under the curve, k is the dispersion parameter and m is the mean transit
time. This model was chosen because it provides a physical represen-
tation of the perfusion process based on the convective-diffusion equa-
tion (Kuenen et al. 2011). Within this simulation, we randomly vary
(uniform distribution) the parameters k,m and A to mimic TICs
measured in mice, that is k ˛ [0.05, 0.15], m ˛ [10, 25] and A ˛
[15, 30].
Second, multiplicative Rayleigh noise is applied to the simulated
TICs (Wagner et al 1983):

cnðtÞ 5 An pRða; xÞ; (A2)

with cn(t) being the resulting noisy TIC, pR the Rayleigh noise
distribution and An the noise amplitude relative to the intensity of
the simulated TICs; that is, the values of An are given as a fraction of
the TIC maximal intensity. The value of An is uniformly varied be-
tween 0.1 and 0.8 with 0.1 resolution, amply covering the range
observed in the acquired data. For each value of An, 100 curves are
generated. In eqn (2), a5c(t)2/p corresponds to the mean of the Ray-
leigh distribution and pR5c(t) to the intensity of the TIC, while x is a
uniformly distributed variable. An example of a simulated TIC is given
in Figure 8.

For all simulated TICs, the parameters PI and WiR are estimated
with and without noise, respectively; these are referred to as (PIs1n,
WiRs1n) and (PIs, WiRs), respectively. The parameter estimation errors
jPIs1n2PIsj and jWiRs1n2WiRs1nj are then determined.

Finally, the normalized distribution (histogram) of the RD of the
parameter estimation error is calculated and fitted with the Rayleigh dis-
tribution in eqn (8). An example is shown in Figure 9. For the investi-
gated noise amplitude An , 0.8, the correlation coefficient of the
Rayleigh fit was R , 0.86, both for PI and WiR. Therefore, the estima-
tion error is well approximated by a Rayleigh distribution.
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