End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1109/TSG.2016.2556619

Document status and date:
Published: 01/01/2017

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
End-User Comfort Oriented Day-Ahead Planning for Responsive Residential HVAC Demand Aggregation Considering Weather Forecasts

Ozan Erdinç, Member, IEEE, Akin Taşçıkaraoğlu, Member, IEEE, Nikolaos G. Paterakis, Member, IEEE, Yavuz Eren, and João P. S. Catalão, Senior Member, IEEE

Abstract—There is a remarkable potential for implementing demand response (DR) strategies for several purposes, such as peak load reduction, frequency regulation, etc., by using thermostatically controllable appliances. In this paper, an end-user comfort violation minimization oriented DR strategy for residential heating, ventilation, and air conditioning (HVAC) units is proposed. The proposed approach manipulates the temperature set-point of HVAC thermostats aiming to minimize the average discomfort among end-users enrolled in an DR program, while satisfying the DR event related requirements of the load serving entity. Besides, the fairness of the allocation of the comfort violation among the enrolled end-users is also taken into account. Moreover, maintaining the load factor during the contracted DR period compared to a base case in order to reduce the load rebound effect due to shifting the use of HVAC units is also considered within the proposed strategy. Last but not least, the heat index that considers the impact of humidity is utilized instead of using ambient dry-bulb temperature through a spatio-temporal forecasting approach.

Index Terms—Demand response, direct load control, heating, ventilation, and air conditioning (HVAC) units, thermostatically controllable appliances, weather forecasting.

NOMENCLATURE

The main nomenclature used throughout the paper is listed in Tables I-IV.

I. INTRODUCTION

A. Motivation and Background

The electric power demand may vary significantly during the day, season and year and this issue is one of the main concerns of System Operators. In this regard, the production facilities should be suitably dispatched in all time periods in order to satisfy the varying load demand. The demand side has been traditionally considered relatively inelastic and therefore, the generation side should be adapted in order to fully supply it. However, a series of drivers have motivated efforts aiming to enable the active participation of the demand side in the power system operational procedures.

The activities through which the activation of the demand side is attempted are commonly referred to as demand side management (DSM). Among the different DSM solutions, demand response (DR) strategies are gaining more attention in power system operations recently, driven by the increasing interest in implementing the smart grid concept with several DR programs offered by load serving entities (LSEs) around the world.

There are two main DR strategy types: direct load control (DLC) and indirect load control (via various price-based programs) [1]. Although price-based methods are considered to be less demanding in terms of the required communication and control infrastructure, DLC programs aiming at peak load shaving during critical periods or at providing regulation and control services (e.g., frequency regulation to handle renewable energy volatility) are tools that are already being actively and effectively used by LSEs [1–3].

The participants in DR programs receive payments for providing DR capacity [4]. Thus, the DR capacity can be defined as “the potential for flexible response from end-use appliances across the commercial, industrial, and residential sectors” [5]. The DR capacity can be acquired from many types of end-user appliances as well as end-user types.

However, the telemetry requirements have limited the DLC based DR programs to be almost exclusively addressed to large industrial and commercial customers. As the required communication and control infrastructure is expected to be enabled by smart grid deployment for all types of end-users, residential or small industrial customers have also been in the center of the design of such programs [1, 6].
This would give access to a large portion of the total demand, given that 20-40% of the electricity in developed countries is consumed by residential end-users [7]. For instance, in the Electricity Reliability Council of Texas (ERCOT) jurisdiction area, the residential demand in March 2010 was around 6GWh and stood for 20% of the overall electricity consumption. However, the hot weather in August 2010 induced a residential load of 35.3 GWh that was 52% of the total load [8].

Among the many different appliances within residential end-user areas, thermostatically-controllable appliances (TCAs) including Heating, Ventilation and Air Conditioning (HVAC) units, electric water heaters (EWHs), refrigerators, etc. represent a considerable potential for DLC based DR programs due to their rapid response and the fact that thermal inertia allows for a sustained interruption of their service without compromising the comfort of the end-user [6], [9]. HVAC units are considered as the most suitable candidates among TCAs in order to implement DR solutions, mainly due to their larger energy consumption throughout the day, especially in the summertime during which LSEs face a greater challenge in comparison with other periods of the year [10].

B. Literature Overview

A considerable number of studies in the literature were dedicated to the use of different kinds of TCAs in order to obtain demand side flexibility during critical periods. Heffner et al. [11] considered the DR potential of residential EWHs on a pilot test study, examining both the end-user premises and the substation levels. Kondoh et al. [1] also investigated the potential of EWHs providing regulation services through a DLC approach using bi-directional signals for power decrease and increase requirements. EWHs load based balancing services through bi-directional LSE signals were also discussed in [12]. Furthermore, the provision of load shifting and renewable energy based volatility suppression was studied in [13].

Angeli and Kountouriotis [14] studied the potential of refrigerators providing frequency regulation services. Frequency regulation by refrigerators for a power system with high wind power penetration was analyzed by Aunedi et al. both from the environmental and the economic benefit perspectives [2]. Molina-Garcia et al. [7] assayed the aggregation of HVAC loads considering three different techniques to model the HVAC dynamics. Frequency regulation and peak load reduction services provision by HVAC were discussed in [15]. Furthermore, the potential of HVAC offering load balancing

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCCM</td>
<td>direct compressor control mechanism.</td>
</tr>
<tr>
<td>DLC</td>
<td>direct load control.</td>
</tr>
<tr>
<td>DR</td>
<td>demand response.</td>
</tr>
<tr>
<td>DSM</td>
<td>demand side management.</td>
</tr>
<tr>
<td>EWH</td>
<td>electric water heater.</td>
</tr>
<tr>
<td>HI</td>
<td>heat index.</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>LSE</td>
<td>load serving entity.</td>
</tr>
<tr>
<td>TCA</td>
<td>thermostatically-controllable appliance.</td>
</tr>
<tr>
<td>TSCM</td>
<td>thermostat set-point control mechanism.</td>
</tr>
<tr>
<td>WBGT</td>
<td>Wet-bulb globe temperature.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>SETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>set of households.</td>
</tr>
<tr>
<td>t</td>
<td>set of time periods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE III</th>
<th>PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{h}</td>
<td>element area for household h [m2].</td>
</tr>
<tr>
<td>c_a</td>
<td>thermal capacity of air [kJ/kg·°C].</td>
</tr>
<tr>
<td>COP</td>
<td>coefficient of performance.</td>
</tr>
<tr>
<td>H_{lt}</td>
<td>heat index in period t [°C].</td>
</tr>
<tr>
<td>l_{th}</td>
<td>element thickness value for household h [m].</td>
</tr>
<tr>
<td>L_{th}</td>
<td>length of household h [m].</td>
</tr>
<tr>
<td>w_{th}</td>
<td>width of household h [m].</td>
</tr>
<tr>
<td>h_{th}</td>
<td>height of household h [m].</td>
</tr>
<tr>
<td>M_{th}</td>
<td>mass of air for household h [kg].</td>
</tr>
<tr>
<td>n_{th}</td>
<td>model order.</td>
</tr>
<tr>
<td>N</td>
<td>sufficiently large positive constant.</td>
</tr>
<tr>
<td>N_{com}</td>
<td>ratio between minimum and maximum comfort violation values for all households in order to ensure fairness for comfort violation.</td>
</tr>
<tr>
<td>N_{h}</td>
<td>number of households enrolled to the DR program.</td>
</tr>
<tr>
<td>$P_{ac,h}$</td>
<td>HVAC rated power of household h [kW].</td>
</tr>
<tr>
<td>$P_{des,t}$</td>
<td>desired power reduction in period t of the DR event [kW].</td>
</tr>
<tr>
<td>$P_{total,ref,t}$</td>
<td>reference total HVAC power consumption in period t [kW].</td>
</tr>
<tr>
<td>$R_{eq,h}$</td>
<td>equivalent thermal resistance of household h [h·°C/J].</td>
</tr>
<tr>
<td>RH_{t}</td>
<td>relative humidity in period t.</td>
</tr>
<tr>
<td>$T_{a,t}$</td>
<td>ambient dry-bulb temperature in period t [°C].</td>
</tr>
<tr>
<td>$T_{dec,allowed,h}$</td>
<td>maximum allowed temperature set-point decrease from the desired comfort temperature level of household h during the DR event [°C].</td>
</tr>
<tr>
<td>$T_{des,h}$</td>
<td>desired comfort temperature level of household h [°C].</td>
</tr>
<tr>
<td>T_{h}</td>
<td>HVAC dead-band based operational deviation from the HVAC temperature set-point to the down side for HVAC of household h [°C].</td>
</tr>
<tr>
<td>T_{h}</td>
<td>HVAC dead-band based operational deviation from the HVAC temperature set-point to the upper side for HVAC of household h [°C].</td>
</tr>
<tr>
<td>$T_{inc,allowed,h}$</td>
<td>maximum allowed temperature set-point increase from the desired comfort temperature level of household h during contracted DR period [°C].</td>
</tr>
<tr>
<td>t_1</td>
<td>starting period of the contracted DR period.</td>
</tr>
<tr>
<td>t_2</td>
<td>ending period of contracted DR period.</td>
</tr>
<tr>
<td>t_3</td>
<td>starting period of the actual DR event.</td>
</tr>
<tr>
<td>t_4</td>
<td>ending period of the actual DR event.</td>
</tr>
<tr>
<td>V_{h}</td>
<td>volume of household h [m3].</td>
</tr>
<tr>
<td>ΔT</td>
<td>time granularity [h].</td>
</tr>
<tr>
<td>δ_{air}</td>
<td>air density [kg/m3].</td>
</tr>
<tr>
<td>σ_{th}</td>
<td>element thermal coefficient for household h [J/h·m·°C].</td>
</tr>
<tr>
<td>β_{h}</td>
<td>roof angle of household h [deg].</td>
</tr>
</tbody>
</table>
TABLE IV

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>com_{vio_h}</td>
<td>comfort violation of household h [°C · h].</td>
</tr>
<tr>
<td>$com_{vio_{max}}$</td>
<td>maximum comfort violation value for all</td>
</tr>
<tr>
<td></td>
<td>households [°C · h].</td>
</tr>
<tr>
<td>$com_{vio_{min}}$</td>
<td>minimum comfort violation value for all</td>
</tr>
<tr>
<td></td>
<td>households [°C · h].</td>
</tr>
<tr>
<td>$P_{AC,t}$</td>
<td>actual power consumption of the HVAC unit of</td>
</tr>
<tr>
<td></td>
<td>household h in period t [kW].</td>
</tr>
<tr>
<td>$T_{down,h,t}$</td>
<td>decrease in the ambient dry-bulb temperature</td>
</tr>
<tr>
<td></td>
<td>from desired comfort temperature for</td>
</tr>
<tr>
<td></td>
<td>household h in period t [°C].</td>
</tr>
<tr>
<td>$T_{amb,h,t}$</td>
<td>ambient dry-bulb temperature of household h</td>
</tr>
<tr>
<td></td>
<td>in period t [°C].</td>
</tr>
<tr>
<td>$T_{set,h,t}$</td>
<td>thermostat set-point of household h in</td>
</tr>
<tr>
<td></td>
<td>period t by LSE [°C].</td>
</tr>
<tr>
<td>$T_{up,h,t}$</td>
<td>increase in the ambient dry-bulb temperature</td>
</tr>
<tr>
<td></td>
<td>from desired comfort temperature for</td>
</tr>
<tr>
<td></td>
<td>household h in period t [°C].</td>
</tr>
<tr>
<td>$u_{AC,h,t}$</td>
<td>binary variable for the status of the HVAC</td>
</tr>
<tr>
<td></td>
<td>unit of household h in period t (1=ON,</td>
</tr>
<tr>
<td></td>
<td>0=OFF).</td>
</tr>
<tr>
<td>$u_{t,h,t}$</td>
<td>binary variable – 1 if the ambient dry-bulb</td>
</tr>
<tr>
<td></td>
<td>temperature of household h in period t</td>
</tr>
<tr>
<td></td>
<td>is above desired comfort temperature, else 0.</td>
</tr>
</tbody>
</table>

services through bi-directional LSE signals for power reduction or increase requirements was analyzed by Lu and Zhang in [16] and Zhang and Lu in [17]. HVAC response capability to mitigate the renewable energy volatility was the scope of the studies conducted by Bashash and Fathy in [18] and Zheng and Cai in [19]. The use of building scale HVAC units for regulation services regarding high frequency power mismatches was discussed by Hao et al. [20] and Goddard et al. [21]. Additionally, the impacts of uncertainty regarding HVAC physical parameters were analyzed in [10]. The study presented in [22] compared two methods, namely the thermostat set-point control mechanism (TSCM) and the direct compressor control mechanism (DCCM) for HVAC load aggregation. Stochastic switching based control of a population of HVAC loads was also proposed in [23]. The idea of maintaining fairness for the enrolled consumers while exercising DLC was introduced by Koutitas [24]. However, [24] defined fairness from the perspective of the economic benefits of the different end-users, while the fairness in violating the consumer comfort constraints was neglected. A generic study regardless of TCA type to aggregate a population of TCAs for load balancing services was conducted by Soudjani and Abate [25]. Besides, the verified TCA models were presented by Shao et al. in [26].

C. Content and Contributions

In this study, a day-ahead residential HVAC load aggregation scheduling, considering the minimization of the average consumer comfort violation among the enrolled end-users is presented. One of the major barriers to the wider implementation of residential DR is their insufficient social acceptance, which has a direct connection to the unwillingness of the end-user to incur a compromise of its comfort level during a DR event. Therefore, the end-user comfort violation is a major issue that can affect the wider penetration of such strategies.

Nowadays, there is an increasing trend in the relevant industry for enabling “behavioral DR” [27]. This concept aims to clearly show to the end-users willing to participate in DR programs what their gains are, in order to motivate them to become part of such programs. Typically, simple interfaces embedded in smart phone applications or personal computers present the daily economic savings, the contribution to environmental sustainability, etc. Embedding the proposed strategy in this framework will use a similar infrastructure to engage people in participating in DR programs. Through their smart devices, the occupants will be able to monitor how their comfort violation is minimized through comparisons with a reference case and by providing brief explanations on how they should perceive the results.

Thus, through simple and effective interfaces, suitably designed to be used by non-experts, and with dynamic information updates by the load serving entities, the occupants can be more easily aware of their benefits by participating in such DR programs.

The contribution of this study is three-fold:

- Implementation of a consumer comfort violation minimization oriented approach that has not been considered in the relevant literature, aiming to increase the social acceptance of DR in residential premises.
- Consideration of the fairness in the allocation of comfort violation among the enrolled consumers and the constraint of the load factor during contracted DR period in order to improve the end-users’ satisfaction and reduce load rebound effect.
- Consideration of the impact of humidity on ambient dry-bulb temperature, which provides a more realistic estimation in comparison with the utilization of the ambient dry-bulb temperature in the model, where the weather forecasts are performed using a spatio-temporal approach.

D. Organization of the Paper

The remainder of the paper is organized as follows: Section II describes the employed methodology. Afterwards, Section III presents and discusses the results of the numerical simulations. Finally, conclusions are drawn in Section IV.

II. METHODOLOGY

A. HVAC Load Aggregation Model

The objective function to be minimized is the average comfort violation of each household which is related to the increase or decrease in the ambient dry-bulb temperature with respect to the end-user’s predefined value, which is measured in °C·h. For example 10 °C·h may stand for a decrease/increase of 1°C for 10 hours or 2°C for 5 hours, etc. The objective function is expressed by (1).

$$
\min \sum_h \sum_{i=1}^{t_2} \left(T_{up,h,t} + T_{down,h,t} \right) \Delta T / N_h
$$

(1)
The division by \(N_h \) in (1) is performed in order to obtain the average comfort violation among the enrolled end-users. Normally for the proposed methodology it can be eliminated without changing the optimal solution. However in order to compare individual comfort violation value of each end-user with the average comfort violation among the enrolled end-users, this division term is needed. Also, if \(N_h \) is defined as a time dependent parameter, then a varying number of households can be considered in different periods.

The ambient dry-bulb temperature depends on several factors such as the thermal properties of air, the heat exchange between the house and the ambient, as well as the thermodynamic properties of the building structure. In this study, a model based on the equivalent thermal resistance of the building is developed and is represented by (2). Naturally, this model is based on differential equations that under several plausible assumptions may be linearized [28], [29].

\[
T_{in,h,t} = \left(1 - \frac{\Delta T}{1000 \cdot M_{a,h}c_aReq,h} \cdot T_{in,h,t-1} + \frac{\Delta T}{1000 \cdot M_{a,h}c_aReq,h} \cdot HI_{t-1} - u_{AC,h,t-1} \cdot \frac{COP_h \cdot P_{AC,h} \cdot \Delta T}{0.000277 \cdot M_{a,h}c_a} \right) \quad \forall t > 1 \quad (2)
\]

It should be noted that (2) considers only the cooling operation of the HVAC. A similar expression can be trivially derived for the heating mode of the HVAC as well. Here, the calculations regarding the equivalent thermal resistance of the houses as well as the mass of air inside the building structure may be performed using equations (3)-(5), considering for simplicity a rectangular geometry and an inclination of the roof of \(\beta^o \) [30].

\[
Req,h = \frac{1}{N} \sum_i \frac{l_{i,h}}{\alpha_{i,h}A_{i,h}} \quad (3)
\]

\[
V_h = L_{1,h} \cdot L_{2,h} \cdot L_{3,h} + \tan(\beta_h) \cdot L_{1,h} \cdot L_{2,h} \quad (4)
\]

\[
M_{a,h} = V_h \cdot \delta_{air} \quad (5)
\]

In each time interval \(t \) the ambient dry-bulb temperature of household \(h \) is decomposed as in (6).

\[
T_{in,h,t} = T_{des,h} + T_{up,h,t} - T_{down,h,t} \quad \forall t \quad (6)
\]

The desired temperature is determined by the end-user. This value can be either specified in the DR enrollment contract or it can be dynamically set before each DR event. Alternatively, a range of temperatures can be provided. This requirement can be trivially be altered by changing (1) and (6).

In order to prevent \(T_{up,h,t} \) and \(T_{down,h,t} \) from receiving values simultaneously, the binary variable \(u_1 \) is employed as in (7) and (8), in which \(N \) is a sufficiently large constant.

\[
T_{up,h,t} \leq N \cdot u_1, h,t, \quad \forall t \quad (7)
\]

\[
T_{down,h,t} \leq N \cdot (1 - u_1, h,t), \quad \forall t \quad (8)
\]

In this study, TSCM will be followed considering that the LSE will directly manipulate the thermostat temperature set-point \(T_{set,h,t} \). This is considered to be more suitable in the literature for peak load reduction, while DCCM in which LSE directly turns the HVAC “on” or “off” is considered to be more suitable for fast regulation services [22].

The temperature set-point \(T_{set,h,t} \) can be changed during the DR horizon within the upper and lower limits by LSE in order not to exceed the contracted allowed minimum comfort violation limits of the end-user as expressed by (9).

\[
T_{des,h} - T_{deadallowed,h} \leq T_{set,h,t} \leq T_{des,h} + T_{deadallowed,h} \quad \forall t \in [t_1, t_2] \quad (9)
\]

The decision variable for the operation of the proposed methodology is \(T_{set,h,t} \).

Thus, \(T_{set,h,t} \) manipulation between the given limits will also allow the LSE to investigate different strategies such as cooling down the household below the comfort temperature within the contracted DR horizon (e.g., 12 pm-6pm) but before actual DR event (e.g., 2-4 pm). This will give LSE considerable flexibility. But these strategies can also be strictly categorized (like pre-cooling strategy, temperature increment strategy, etc.) to force LSE to select one of the possible strategies for each household.

The ambient dry-bulb temperature limits are defined by (10).

\[
T_{set,h,t} - T_h^d \leq T_{in,h,t} \leq T_{set,h,t} + T_h^u \quad \forall t \quad (10)
\]

The power consumption of HVAC of each household \(h \) at each time \(t \) follows (11).

\[
P_{AC,h,t} = P_{AC,h} \cdot u_{AC,h,t} \quad \forall t \quad (11)
\]

The total desired load reduction from the HVAC units of the households enrolled in the DR program during a DR event is obtained by (12).

\[
P_{des,t} \leq P_{total,ref,t} - \sum_h P_{AC,h,t} \quad \forall t \in [t_3, t_4] \quad (12)
\]

The total HVAC consumption during the actual DR event, between \(t_3 \) and \(t_4 \), should be reduced at least by the level of \(P_{des,t} \) with respect to \(P_{total,ref,t} \). A similar approach can be applied to consider also load increase requirements in certain periods.

The comfort violation per household is calculated using (13) considering both the upward and downward deviations with respect to the desired temperature:

\[
com_{vio}_h = \sum_{t=t_1}^{t=t_2} (T_{up,h,t} + T_{down,h,t}) \Delta T \quad \forall t \in [t_1, t_2] \quad (13)
\]

Although the main objective is to minimize the average comfort violation among enrolled consumers, it is also necessary to ensure the fairness of the allocation of this comfort violation among the consumers.

Therefore (14)-(15) are used to obtain a fair allocation constrained by a percentage between the minimum and maximum values of the comfort violation:

\[
com_{vio}_{min} - com_{vio}_h \leq com_{vio}_{max} \quad \forall t \in [t_1, t_2] \quad (14)
\]

\[
com_{vio}_{max} \leq N_{com} \cdot com_{vio}_{min} \quad \forall t \in [t_1, t_2] \quad (15)
\]

Constraints (14)-(15) ensure that the maximum comfort violation among the enrolled consumers will not exceed \(N_{com} \).
times the minimum comfort violation value. It should be noted that specifying a smaller \(N_{com} \) value will lead to a more fair distribution of the comfort violation among the enrolled end-users but will also increase the chance of facing infeasibility. On the other hand, larger \(N_{com} \) value will lead to an undesired unfair operation of the proposed methodology.

It is very likely that reducing the power consumption in some specific periods will lead to a load recovery or load rebound effect that is caused by the aggregation of total HVAC load before or after the actual DR event.

This effect will lead to a sharp peak just after or before the actual DR event that is undesired by the LSE and should be prevented. In this regard, an additional constraint is also inserted to maintain the load factor of the case of DR event equal or greater than the load factor of \(P_{total,ref,t} \). Here the mentioned load factor related constraint is decomposed into two constraints as follows:

\[
\sum_h P_{AC,h,t} \leq \max(P_{total,ref,t}), \forall t \in [t_1, t_2] \quad (16)
\]

\[
\text{avg} \left(\sum_h P_{AC,h,t} \right) \geq \text{avg}(P_{total,ref,t}), \forall t \in [t_1, t_2] \quad (17)
\]

where \(\text{max} \) and \(\text{avg} \) notations represent the maximum and average values of the relevant variables and parameters within the defined time horizon. Constraints (16) and (17) limit the load factor to be equal to or greater than the reference condition. Since the load factor is defined as the ratio of average power to the maximum power within a predefined time horizon, (16) tends to increase the nominator of load factor formulation while (17) tends to decrease the denominator compared to the reference case. Thus, (16) and (17) constrain the load factor in the DR program at least to be equal to the reference case.

B. Perceived Temperature Forecast

Residential HVAC units are generally controlled by setting a desired temperature value and the operation of the unit is interrupted once the set value is reached. However, the temperature measured by the thermostats of HVAC or an ordinary thermometer is mostly different from the temperature which affects the end-users due to three main reasons: (i) relative humidity, which causes air temperature to be felt warmer than its actual value since high humidity reduces the evaporation of perspiration from the body and thereby, results in a feeling of being overheated, (ii) wind speed, which generally makes oneself to feel colder and, (iii) direct insolation which causes us to feel increased temperature if we are exposed to it, compared to shaded areas. Other factors influencing how an individual feels temperature are subjective, i.e., they vary from person to person.

The air temperature given by the standard thermometers is the measure of the temperature recorded in an area protected from exogenous weather variables such as humidity, sunshine and wind. Therefore, it cannot indicate the temperature that end-users feel. Hence, new temperature definitions were recommended to determine the temperature more accurately. For example, Wet Bulb Globe Temperature (WBGT) defines the perception of temperature depending on solar radiation, humidity, temperature and wind speed. However, WBGT is not frequently used in the literature of ambient dry-bulb temperature forecasting due to its location-specific nature. Besides, in the residential buildings, the humidity can be indicated as the only factor that affects the measured temperature due to the very limited effects of wind speed and radiation on the temperature that an individual feels because of walls, windows, etc. Therefore, another metric, called Heat Index (HI), which measures the effect of humidity on the ambient dry-bulb temperature is more widely used to describe the perception of temperature for indoor conditions. Considering the significant effect of humidity on the perceived temperature and therefore, on the control of HVAC units, the HI is used in this study in order to estimate the equivalent human-perceived temperature.

In order to calculate the HI values, first, the ambient dry-bulb temperature is forecasted and then the HI is calculated using an appropriate formula.

1) Forecasting Model: The efficiency of the proposed day-ahead planning approach is mainly based on the accurate hourly temperature information of the following day. Therefore, a spatio-temporal approach, which accounts for the temperature data collected from both the site of interest and other weather stations on its surrounding area, is used for the daily forecasts of temperature. Because of the promising results achieved with spatio-temporal methods in recent studies on wind [31]–[35] and solar forecasting [36]–[39], mainly due to their efficiency in exploiting all the available data and to their relatively low computational cost, these methods are expected to effectively forecast other meteorological quantities such as temperature.

In order to alleviate the requirement of a time-consuming data selection process, the proposed algorithm uses all the available temperature data from 43 meteorological stations in the training stage, while in forecasting stage only the data that have the potential to benefit the predictions are included [40]. The contribution of the data from different meteorological stations to the output of target station is determined considering the correlations between the target station and its neighbor stations for each prediction horizon (i.e., 24 h). The proposed approach can be defined as follows (18)-(22).

\[
y = A_1 x_1 + A_2 x_2 + \cdots + A_K x_K = \sum_{i=1}^{K} A_i x_i \quad (18)
\]

where

\[
y = \begin{bmatrix}
y_{n+1}^x \\
y_{n+2}^x \\
\vdots \\
y_{n+m}^x
\end{bmatrix} \quad (19)
\]

\[
A = \begin{bmatrix}
T_{Mn}^H \\
\vdots \\
T_{Mn}^H
\end{bmatrix} \quad (20)
\]
The matrix T_{Mn}^b is an $M \times n$ Toeplitz matrix given by (22).

$$T_{Mn} = \begin{pmatrix}
y_n & \cdots & y_1 \\
y_{n+1} & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
y_{n+M-1} & \cdots & y_M
\end{pmatrix}$$

In (18)-(22), y denotes the output vector (i.e., temperature values of target house in this study) and x is a coefficient matrix associated with the i-th time lag, in which the vector elements are calculated with the least-squares method. Also, n is the model order and $n+M$ represents the training data size. Besides, y^h_t is the temperature value at the h-th house at sample time $t (t = 1, 2, \ldots, M+n)$, y^H_t is the target variable and H is the number of houses ($h = 1, 2, \ldots, H$).

C. Heat Index

The HI equation (23), which is obtained by multiple regression analysis, is used in this study [41].

$$HI_t = -42.379 + (2.04901523 \times T_{a,t}) + (10.1433127 \times RH_t) - (0.22475541 \times T_{a,t} \times RH_t) - (6.83783 \times 10^{-3} \times T_{a,t}^2) - (5.48171 \times 10^{-2} \times RH_t^2) + (1.22874 \times 10^{-3} \times T_{a,t}^2 \times RH_t^2) + (8.5282 \times 10^{-5} \times T_{a,t} \times RH_t^2) - (1.99 \times 10^{-6} \times T_{a,t}^2 \times RH_t^2)$$

with $T_{a,t}$ being ambient dry-bulb temperature and RH_t being relative humidity at time t. The HI cannot be measured using an instrument. Instead, various equations are provided in the literature in order to approximate this value using the ambient dry-bulb temperature, which is easily measured with common thermometers, and humidity. Note that since the “perceived temperature” also depends on the subjective parameters such as the state of human body and the heat resistance of clothes, a mean value is generally used instead of extreme values.

III. TESTS AND RESULTS

A. Input Data

Hourly temperature and relative humidity data from Meteorological Terminal Aviation Routine (METAR) weather reports of 43 weather stations located in USA are used [42].

A time period spanning from June 2, 2013 to June 23, 2013, which presents high and unsteady temperature characteristics, is considered in the simulations. The data is divided into two subsets: (i) a two-week training set spanning from June 2 to June 15 and, (ii) an one-week test set spanning from June 16 to June 23.

The forecasts of the perceived temperature are carried out with a two-stage process. In the first stage, daily ambient dry-bulb temperature is forecasted with the proposed spatio-temporal method and the temperature forecasts obtained are converted to the perceived temperature forecasts in the second stage by using the HI equation given in (23). For the ambient dry-bulb temperature forecasts, first, the data from all the 43 weather stations are applied to the forecasting model, as an alternative approach to the use of various methods for the purpose of determining the best subset of weather stations [43], [44].

A coefficient vector x, as shown in (21), is then calculated in the training phase. Lastly, the forecasted values are calculated using the x vector and the matrix A that includes the recent measurements. The x vector is recalculated for every prediction horizon. Also, a recursive approach is followed in the forecasts, i.e., the temperature forecasts at time t are included in the matrix A for the forecasting of the temperature value at time $t+1$ and so on. Once the forecasts are completed for the corresponding time horizon, the matrix A is updated with the new values measured during the previous prediction horizon and a new prediction process begins for the next horizon. This algorithm helps the model always present the latest temperature trend, resulting in a higher accuracy. Fig. 1 presents the results of the ambient dry-bulb temperature forecasting compared to the real values, where it may be noticed that the two time series present similar similarity.

With the objective of better measuring the effectiveness of the proposed daily forecasting approach, various performance metrics for this method as well as three different time series methods are shown in Table V. The metrics given in Table V, namely, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Normalized Root Mean Squared Error (NRMSE), are negatively oriented error metrics, which means that the lower these metrics are, the higher the forecast accuracy is. Basically, a permanent deviation between the measurements and forecasts indicates a higher MAE while large error values observed generally in peak times cause
Table V
Comparison of Statistical Error Measures for Different Approaches

<table>
<thead>
<tr>
<th>Forecasting Model</th>
<th>MAE [°C]</th>
<th>RMSE [°C]</th>
<th>NRMSE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistence</td>
<td>2.15</td>
<td>2.71</td>
<td>22.17</td>
</tr>
<tr>
<td>Autoregressive</td>
<td>1.42</td>
<td>1.79</td>
<td>14.70</td>
</tr>
<tr>
<td>WT-ANN</td>
<td>1.21</td>
<td>1.45</td>
<td>11.85</td>
</tr>
<tr>
<td>Proposed model</td>
<td>1.04</td>
<td>1.14</td>
<td>9.33</td>
</tr>
</tbody>
</table>

Fig. 2. The comparison of forecasted temperature and HI.

A higher RMSE value. NRMSE provides a scale-independent error measure that allows comparing the forecasting accuracy obtained in the case of different data sets.

As it can be seen in Table V, the persistence model, which simply uses the last measured value as forecast during the prediction time, gives relatively poor forecasts. Despite its inefficiency in such a long prediction horizon, the results of this model are included in the comparisons since it is the most commonly used benchmark method in the literature of forecasting for a wide range of prediction horizons [45].

More reasonable forecasts are achieved by including a number of recent data in addition to the last measured value in the Autoregressive (AR) model. Furthermore, a compound model that integrates Artificial Neural Networks (ANN) and Wavelet Transform (WT) is employed for the comparisons due especially to its high efficiency on the modelling of the daily cycles embedded in time series [46]. Compared to the error metrics of benchmark models given in Table V, its significantly lower metrics show the effectiveness of the proposed model for daily temperature forecasts.

The impact of the humidity on the perceived temperature is not negligible as mentioned before. Thus, the ambient dry-bulb temperature forecasts, together with the humidity data, are applied to ambient dry-bulb temperature-to-HI formulation given in (18) in order to calculate the anticipated perceived temperature. The comparison of the ambient dry-bulb temperature and the HI is presented in Fig. 2. As it may be noticed, there are significant differences between the HI and the ambient dry-bulb temperature, which can affect the day ahead planning and it is therefore more valid to use the actual HI the households will face. As the HI index is considered to imply the relevant changes in outdoor dry-bulb temperature regarding the humidity and all the enrolled households are considered to be imposed to similar outdoor conditions, the individual household indoor temperature variations regarding outdoor temperature changes are just affected by the physical household parameters.

For the sake of simplicity and clarity while discussing the results, 40 identical households (such as a site of identical flats constructed by the same company in a field) with the structural parameters shown in Table VI are considered. As stated in [47], a specification of household types can be realized between relatively uninsulated (Type 1) to well-insulated (Type 7) household structures and some specific physical parameters for house types 1 to 7 are given in [48]. However, dealing with the uncertainty of such parameters can be realized via various estimation techniques etc.

Generally, the density of the air and its thermal capacity depend on its thermodynamic properties (temperature, pressure, etc.). In this study, they are considered constant and standard values are utilized \(\delta_{\text{air}} = 1.225\text{kg/m}^3 \) and \(c_a = 1.01 \text{kJ/kg} \cdot \text{°C} \). Furthermore, all the households are assumed to have identical HVAC units with a rated power of 3kW and the coefficient-of-performance (COP) of 2. Besides, the HI variation during the considered period is shown in Fig. 3 (June 16, 2013). Moreover, the temperature based parameters for households are also presented in Table VII. It should be noted that the same value is assigned to all end-users in terms of desired temperature for the sake of simplicity and of showing comparatively how the temperature varies among...
the enrolled end-users starting from the same point and for the same necessities imposed by the end-users. However, the desired temperature can also be diversified by the proposed methodology as $T_{des,h}$ is a parameter related to each end-user’s preferences. However, as the proposed methodology is not mainly targeting the $T_{des,h}$ setting -in fact $T_{up,h,t}$ and $T_{down,h,t}$ variables specifying how much $T_{in,h,t}$ diverges from the desired comfort settings are the primary factors affecting the comfort violation-, the performance is not largely dependent on the defined $T_{des,h}$ value.

The time granularity used in the optimization is 5 min (0.0833h). The Mixed-Integer Linear Programming (MILP) model has been coded in GAMS 24.1.2 and has been solved by the commercial solver CPLEX 12. For the DR contract, the households are assumed to accept being involved in DR events during summer times between 12pm-6pm. Besides, it is also assumed for the considered sample day that a peak-reduction DR event is activated between 2pm-4pm. It should be also noted that the initial ambient dry-bulb temperature values of households are randomly allocated between 19.1°C and 20.9°C.

B. Simulation and Results

The model is initially run by defining $T_{set,h,t} = T_{des,h}$, while implementing no constraint for the desired power reduction in order to obtain the reference HVAC power consumption pattern ($P_{total,ref,t}$) as shown in Figs. 4-6.

Subsequently, the proposed strategy is evaluated in order to assess its impacts on consumer satisfaction in terms of the average comfort maximization while taking into account the constraint of $P_{des,t}$. It should be noted that during the actual DR event between 2pm and 4pm, if the $P_{total,ref,t}$ is zero then the constraint for $P_{des,t}$ is not implemented for these intra-hour periods, since no actual reduction from zero is possible.

The desired load reduction when the reference HVAC power is non-zero during an actual DR event is assumed to be 20 kW from the total of the 40 households. Three case studies are provided as follows:

- Case 1: Consideration of only the average comfort violation neglecting constraints (14)-(17).
- Case 2: Consideration of the fair allocation of comfort violation among enrolled end-users neglecting the load factor constraints (16)-(17).
- Case 3: Consideration of both the fair allocation of comfort violation and load factor constraints.

The power consumption during the contracted DR period and the reference power for all case studies are depicted in Figs. 4-6.

Firstly, it is evident that the proposed limitation on satisfying at least the level of desired reduction during the actual DR event between 2pm and 4pm is satisfied by the proposed approach in each case. Besides, implementing such strategies is known to be accompanied by the load-rebound effect due to shifting consumption before or after the DR event. This issue can be observed in Figs. 4 and 5 for Case-1 and Case-2 where the constraints related to load factor are neglected. The temperature set-points of HVAC units are set to higher values than the corresponding the ambient dry-bulb temperature just before the actual DR event by the employed strategy in order to cool down the households that will be called during the actual event. Then when the actual DR event period ends, the households thermostat temperature set-points are set to values around the desired level in order to minimize the comfort violation that provides an additional peak load demand after the DR event.

In order to tackle with this problematic issue for LSEs, constraining the load factor reduces these additional peaks before or after the actual DR event within the contracted DR period as seen in Fig. 6.

Implementing a generic strategy without focusing on end-user comfort, only with the limitation of satisfying a load reduction target, is likely to cause more discomfort for end-users. The results regarding the ambient dry-bulb temperature of households for all cases can be seen in Figs. 7-9.

It can be noticed that most households follow a similar pattern of temperature, while the proposed approach allocated their HVAC operation considering load reduction targets during the DR event periods.
As the proposed study aims to minimize the comfort violation of end-users, the results related to each consumer in terms of the proposed comfort violation index are presented in Fig. 10. Besides, the relevant results together with the load factor values for each case are summarized in Table VIII.

It should be noted that for Case-2 and Case-3, N_{com} parameter is set to 1.3 in order to limit the maximum comfort violation among the enrolled end-users in the DR event to be less than 30% more of minimum comfort violation. This extra constraint on fairness slightly increases the average comfort violation while providing a more homogenous distribution of the comfort violation among the end-users when the results given in Fig. 10 and Table VIII are examined for Case-1 and Case-2. In order to sustain the load factor more than the base case, Case-3 can be expected to cause more comfort violation among the end-users. This issue can be observed from the results in Fig. 10 and Table VIII. Together with sustaining the ratio of 1.3 times between maximum and minimum comfort violations, the average comfort violation increases significantly in Case-3 on behalf of providing a higher load factor. This clearly indicates that it is a trade-off for the LSE to find the right balance between minimizing the comfort violation and sustaining an acceptable level of load factor during the DR events.

<table>
<thead>
<tr>
<th>Case</th>
<th>Minimum Com. Vio. $[^\circ C \cdot h]$</th>
<th>Maximum Com. Vio. $[^\circ C \cdot h]$</th>
<th>Average Com. Vio. $[^\circ C \cdot h]$</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>1.5132</td>
<td>1.6636</td>
<td>1.5718</td>
<td>0.3698</td>
</tr>
<tr>
<td>Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-1</td>
<td>2.0773</td>
<td>3.7758</td>
<td>2.8562</td>
<td>0.1438</td>
</tr>
<tr>
<td>Case-2</td>
<td>2.6127</td>
<td>3.3936</td>
<td>2.8724</td>
<td>0.1465</td>
</tr>
<tr>
<td>Case-3</td>
<td>2.8802</td>
<td>3.7011</td>
<td>3.2263</td>
<td>0.5792</td>
</tr>
</tbody>
</table>
IV. CONCLUSION

In this study, an end-user average comfort violation minimization oriented HVAC load aggregation strategy was proposed based on MILP. The aim of the proposed approach was to minimize the average deviation of household temperature values of a group of contracted residential end-users during a DR event, while satisfying load reduction targets of the LSE. A TSCM approach was employed to manipulate the end-users’ HVAC temperature settings in order to aggregate the mentioned reduction of the total HVAC load. Besides, the fairness among the end-users in terms of comfort violation allocation was considered together with constraining load factor during contracted DR period in order to reduce possible load rebound effect. Moreover, the HI was utilized instead of the ambient dry-bulb temperature, also supported by a spatio-temporal forecasting method. Based on the simulations conducted, the strategy proved to have a decrement in violation of end-user comfort level while effectively satisfying the requirement of LSE in terms of load demand reduction. Besides, the constraints related to comfort violation fairness and load factor improved the fair distribution among contracted end-users and load rebound effect as shown in relevant comparisons. There are numerous areas to which this study can be extended. Although this study aims at residential end-users and specifically HVAC units, the proposed formulation is extendible to any variety of appliance types by additional specifications on comfort violation because of the participation in DR programs. Thus, the diversification of DR capacity offered by each end-user type and more specifically by each end-user appliance can be considered in a future study aiming at more different DR enabling appliance scheduling. Investigating the relationship between HVAC power consumption and humidity especially for indoor dynamics by specifically focusing on this issue can be also considered in a future study. Other future studies could also consider a DCCM approach using decentralized solutions by TCA aggregators instead of a centralized solution, the implementation of a stochastic approach considering the uncertainty related to the acceptance of the contracted end-users to participate in the actual DR event, the definition of an economic incentive index related to the each end-user’s comfort violation, and finally considering end-users with multiple TCAs and other appliances convenient for DR purpose (e.g., electric vehicles).

REFERENCES

Ozan Erding (M’14) received the B.Sc., M.Sc., and Ph.D. degrees from Yildiz Technical University, Istanbul, Turkey, in 2007, 2009, and 2012, respectively. Until 2013, he worked in private sector in different positions, including electrical installations, renewable energy investments, and Procurement Expert. He has been a Post-Doctoral Fellow with the University of Beira Interior, Covilhã, Portugal, since 2013, under the EU FP7 funded projects “Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration.” From 2014 to 2015, he was an Assistant Professor with the Department of Electrical and Electronics Engineering, Istanbul Arel University, Istanbul, Turkey. In 2015, he joined the Department of Electrical Engineering, Yildiz Technical University, where he is currently an Associate Professor. He is currently a Researcher with INESC-ID, Lisbon, Portugal. His research interests are hybrid renewable energy systems, electric vehicles, power system operation, and smart grid technologies.