An integrated lignin biorefinery: Scaling-up lignin depolymerization technology for biofuels and chemicals
Kouris, P.; Oevering, H.; Boot, M.D.; Hensen, E.J.M.

Published: 22/02/2017

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Dec. 2018
Lignin RICHES (Resins Chemicals Fuels)

Lignin is one of the major components of lignocellulosic biomass, constituting 15-30% of the weight and approximately 40% of the energy content depending on the source. Currently, the lignin produced in 2G bio-ethanol plants is mainly used for on-side energy production. At Eindhoven University of Technology a method was explored to depolymerize lignin in super critical ethanol with cheap non-noble catalysts to produce a mixture of monomeric aromatics. The product might be applied directly as a bio marine fuel, or as a source for chemical building blocks (Resins), octane boosters or biofuels when blended with gasolines. The primary goal for pilot activities is to produce Lignin Crude Oil (LCO) from lignin with a viscosity spec < 800 cSt at 40 °C, on a ton scale and to collect information for designing a demo plant with the aim of having an economically viable process.

Scale-up reactions

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Lignin:Ethanol ratio (w/v)</th>
<th>Monomer Yield (wt%)</th>
<th>LCO viscosity (cSt at 40°C)</th>
<th>Ethanol conversion (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (no cat)</td>
<td>1:40</td>
<td>1</td>
<td>>1000</td>
<td>4</td>
</tr>
<tr>
<td>240</td>
<td>1:40</td>
<td>11</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td>280</td>
<td>1:40</td>
<td>3</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>340</td>
<td>1:40</td>
<td>11</td>
<td>5,5</td>
<td>53</td>
</tr>
<tr>
<td>340</td>
<td>1:30</td>
<td>14</td>
<td>3,3</td>
<td>46</td>
</tr>
</tbody>
</table>

Lignin: EtOH + catalyst CuMgAlOx

Kinemetric viscosity of LCO over different reaction temperatures (red line: maximum viscosity limit)

Design Challenges

- Process complexity
- Batch vs continuous
- Operating window
- Lignin / catalyst loading
- Ethanol conversion
- Reactor design
- Catalyst regeneration
- Separation steps
- Ethanol concentration in LCO
- Ethanol losses in the process

Approach

- Experimental data input for process design
- Mass & energy balances for all process streams
- Perform techno-economical study
- Optimize the most feasible process routes

This work is performed under the framework of Chemelot InSciTe and with contributions from the European Regional Development Fund (ERDF) within the framework of OP-Zuid and Interreg Vlaanderen Nederland, from the province of Brabant and Limburg and the Dutch Ministry of Economy.

TU/e technology

- Sulfur-free marine fuel
- Fuel boosters
- Resins
- Phenols