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Executive summary

Purpose

For the Catharina Hospital, one of the focal points is obesity treatment through surgery. One of the
key performance indicators health insurance companies require before contracting a bariatric center is
that their patients should (on average) lose su�cient weight after the surgical procedure. However, a
bariatric intervention does not always lead to the desired weight loss. Several studies have reported
unsuccessful weight loss for 10 to 30 percent of the patients who underwent bariatric surgery (Melton et
al., 2008; Sugerman et al., 1992; Wittgrove & Clark, 2000; Yale, 1989). This study focuses on identifying
specific, easy to measure patient characteristics that predict the percentage total weight loss (%TWL)
after surgery. These predictors will then be used to develop a model that can be used to determine the
expected weight loss of new patients. Summarizing, the research question of this study is as follows:

How to predict the outcomes of bariatric surgery with high accuracy using pre-operative patient data?

The data

The data for this study is extracted from the hospital systems of the Catharina Hospital and from DATO
(Dutch Audit for Treatment of Obesity), a national database and is reviewed retrospectively. Only data
gathered from patients who did not undergo revisions and had their (primary) surgery between the 1st
of October 2011 and the 1st of March 2015 were included. For these patients, the outcomes of quality
of life surveys (RAND-36 and BAROS) and physiological measurements (such as weight, height, blood
pressure, waist circumference etc.) were collected. Also data about the existence of comorbidities and
lifestyle factors (such as smoking and alcohol abuse) were included. Furthermore, the outcomes of lab
test were collected. What a normal outcome of a certain lab test is depends on the characteristics of the
patient from which the blood sample is taken. In clinical medicine, lab results are frequently interpreted
by comparing them with earlier measurements taken from a reference population. The lab results in
this study are therefore standardized by their Z-score based on their reference intervals. If a variable is
measured more than once for a patient, the latest value before surgery is used in the analyses.

This data set was used to build to two types of models: fuzzy models and random forests. An overview
of the study design is shown in figure 1. The performance of the models is compared with that of the
base model. The base model predicts the average %TWL (of 30.9%) for every new patient.

Fuzzy modeling

Before fuzzy modeling techniques can be deployed, the data should meet a few requirements. First, the
data should be normalized to a standard range (in this study [0, 1]). This mitigates the potential bias
of one variable with large numeric values dominating other variables having smaller values. Also, the
data set should not contain any missing values, since the fuzzy modeling technique used in this study
requires clustering in metric space. A complete data set can then be obtained in two ways: one can
remove variables with missing data or one can remove patient records that contain missing values. By
balancing these two methods, as many patients records as possible are retained, so that enough data
points are available to give reliable results, while on the other hand enough variables are kept in the data
set to capture all relevant patterns and relations.

Another step in preparing the data for fuzzy modeling is the reduction of the size of the data set. This
could be accomplished by using feature extraction or feature selection. Feature extraction transforms
the data in the high-dimensional space to a space of fewer dimensions by combining several existing
variables into one new variable. However, due to low correlations between the existing variables, the
number of new variables is not much less than the number of original variables. Therefore, this method
is not suitable for this data set. Feature selection approaches try to find a subset of the original variables
without using any transformations. This subset consists of variables chosen by a domain expert or by an
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Figure 1: Graphical overview of the data (sub)sets used for the di↵erent modeling approaches.

algorithm. In this study, both approaches are used: One subset is composed by a domain expert (DE),
in this study a clinical chemist, and two sets are selected by deploying sequential feature selection (SFS)
using a zero-order and a first-order Takagi-Sugeno fuzzy model in the wrapper approach. In SFS, the
root mean squared error (RMSE) is optimized.

Once the variables with predictive value have been identified, the modeling data sets can be composed.
These sets consist of all patient records that contain no missing values for the selected variables. The
modeling sets are split in a training and test set using a 25% holdout procedure. The number of clusters
for each model is then determined using tenfold cross-validation. Finally, the models (predicting %TWL)
are created using the training set and evaluated on the test set.

Random forests

The other method used in this study, random forests, does not require a complete data set but handles
missing values internally. Therefore, all 1968 full patient records can be used for training these kind of
models. Sometimes, a missing value is not measured for a reason. To capture this in the model, dummy
variables that indicate whether a value is missing (‘1’) or not (‘0’) are created. These dummy variables
are used as input values for the random forests but not for the fuzzy models, since adding extra variables
to these data sets would make the computational time increase exponentially. Also, random forests deal
internally with feature reduction by calculating the variable importance and dropping the least important
variable iteratively. Therefore, the random forest is grown on the complete data set.

Two random forests are grown: one regression forest predicting the %TWL and one classification forest
that tries to classify the patients in three groups (expected low (%TWL<µ − σ = 21.85%), average, and
high (%TWL >µ + σ = 39.97%) performers).

Performance of the models

Even though table 1 shows all models perform better than the base model, the di↵erences in performance
are not statistically significant. The modeling techniques used do not seem to be able to construct models
that capture the variance in the data. It is possible that the usage of other techniques would result in
models with higher accuracy, but it could also be that the current data set does not contain enough
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Table 1: The occurrence of grouped variables in the modeling sets for each model.

Feature group Times selected Base model First-order FIS(DE) Zero-order FIS First-order FIS Regression forest Classification forest
Age 2 x x
Surgery type 2 x x
Weight 2 x x
Hypertension 1 x
Diabetes 5 x x x x x
Dyslipidemia 4 x x x x
Liver function 2 x x
Nutritional 1 x
Kidney function 5 x x x x x
Thyroid function 1 x
Anemia 3 x x x
Inflammation 2 x x
QoL 2 x x
RMSE - 9.1 8.8 8.6 8.5 8.4 -
MAE - 7.3 6.9 7.1 6.7 6.7 -

information to predict the percentage total weight loss one year after bariatric surgery.

All models use di↵erent sets of variables to predict the outcomes after bariatric surgery. This is due to
the di↵erent methods of feature selection. However, the di↵erences in variable sets do not mean that the
models all use completely di↵erent input. Some variables may measure the same underlying construct.
For example, increased glucose and c-peptide levels are both indicators of the existence of diabetes.
Therefore, the variables can be grouped. Table 1, shows an overview of which group of variables is used
in which model. This overview reveals that especially su↵ering from diabetes and kidney function seem
to have a relation with the percentage total weight loss one year after surgery. The direction of these
relations remain unclear and requires further investigation.
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Chapter 1

Introduction

1.1 Problem statement

Due to the increasing life expectancy, technological advances in care, the lifestyle of the population and
other factors, the Dutch healthcare expenditure is soaring rapidly (Van der Horst, Van Erp & De Jong,
2011). In 2015, health expenditures were 14 percent of the Dutch GDP (CBS, 2016). This number is
expected to rise to up to 31 percent in 2040 (Van der Horst, Van Erp & De Jong, 2011).

The Dutch government is concerned about these ongoing developments. One of the strategies employed
to control further growth of the health costs was the shift to a more market-oriented system within the
context of a national health insurance system (Enthoven & Van de Ven, 2007). This shift was enabled
by the enactment of the Health Insurance Act (HIA) in 2006. Under the HIA, every person who lives or
works in the Netherlands is obliged to buy individual health insurances from a private health insurance
company. On the other hand, the health insurance companies have the obligation to accept everyone
who enrolls for an insurance. In 2015, around 97,8 percent of the Dutch population were insured for their
healthcare costs (Ministerie van Volksgezondheid, Welzijn en Sport, 2015).

The health insurance companies are very influential in the Netherlands. Within the framework set by
the law, these companies decide which treatments will be reimbursed, when patients are entitled to these
treatments and which care providers are considered suitable to provide the required care. These care
providers are then o↵ered a contract which specifies the price per treatment and the number of treatments
they are allowed to o↵er to patients insured by the insurance company in question. If patients choose to
go to non-contracted care providers, they have to pay up to 30 percent (Supreme Court of the Netherlands
verdict, 11 July 2014, ECLI: NL:HR:2014:1646) of the treatment costs themselves, while contracted care
is fully reimbursed. Therefore, in practice, patients will only visit contracted care givers.

To be contracted, care providers have to make sure their quality of care meets the key performance
indicator criteria as set by the health insurance company. A clinic needs to obtain high patient volumes
to be profitable. Therefore, it is extremely important for care providers to meet the health insurance
company’s criteria and be contracted.

For the Catharina Hospital, one of the focal points is obesity treatment through surgery. This so-called
bariatric surgery restricts the amount of food the patient‘s stomach can hold, which leads to a lower
caloric intake and as a result to weight loss. One of the key performance indicators health insurance
companies require before contracting a bariatric center is that their patients should (on average) lose
su�cient weight after the surgical procedure.

However, a bariatric intervention does not always lead to the desired weight loss. Several studies have
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reported unsuccessful weight loss for 10 to 30 percent of the patients who underwent bariatric surgery
(Melton et al., 2008; Sugerman et al., 1992; Wittgrove & Clark, 2000; Yale, 1989). This thesis focuses
on identifying specific, easy to measure patient characteristics that predict a the patient’s weight loss
after bariatric surgery. These characteristics will then be used to develop a model that can help selecting
promising patients and reduce the amount of unsuccessful surgeries. Summarizing, the research question
of this study is as follows:

How to predict the outcomes of bariatric surgery with high accuracy using pre-operative patient data?

If it is possible to predict the outcomes of bariatric surgery beforehand, the advantages would be three-
fold. An accurate prediction would help the patient in making his decision whether undergoing surgery
is worth the trouble and to manage his expectations. For the care providers, an accurate prediction
model would help in identifying poor performing patients. These patients could be o↵ered an additional
preparatory trajectory or be rejected for surgery. In this way, meeting the health insurance companies’
key performance indicators would be easier. The health insurance companies would benefit because they
will not have to pay for surgeries that will most likely be unsuccessful.

To answer this research question, the following sub-questions need to be addressed.

What outcomes are of interest to care providers and patients?
There exist several outcome measures that are used in medical literature to evaluate the outcomes of
bariatric surgery. These measures can be categorized in three groups. The first group uses absolute or
relative weight loss as success criteria. The second focuses on the resolution of comorbidities after surgery.
The third group of outcome measures makes use of changes in quality of life. What outcome measures
will be used in this study, depends on the wishes of the bariatric care providers. Using their input will
enhance the practicality of the to be developed models.

What study design should be used when developing the model?
For developing the model, data is needed. This data will be collected in the Catharina Hospital. What
databases are used as a source is discussed with bariatric care providers. Data can for example include
lab results, physiological measurements, informations about the existence of comorbidities etc. Because
of the limited time span of this study, the data is analyzed retrospectively.

After integration, the most important predictors in the data set are identified. Feature selection is used
to reduce the dimensionality of the data by selecting a subset of predictor variables. This subset can be
chosen by a domain expert or by an algorithm. Selection criteria of algorithms are usually based on the
minimization of a specific measure of predictive error for model’s fit to di↵erent subsets. Therefore, if an
algorithm is deployed, a selection criterion should be chosen.

Then, the model building approach needs to be determined. Possibly not one, but several modeling
techniques can be used to extract useful models. If this is the case, multiple models are built and their
performance is compared to select the best model.

Based on the type of model(s) that are built, the experimental set-up of this research project should be
determined. Part of the data is used to train the model(s), while other data is used to test the performance
of the model(s). Also the form of the output should be agreed on beforehand with the intended end users
of the model. For example, the predictions could be given as point or interval estimates when employing
regression models or the model could classify patients in groups that reflect their degree of success.

What is the model that can predict outcomes of bariatric surgery and how does this model perform?
In this research question, the plan from the previous question is executed. The models that are extracted
are then evaluated on their accuracy by using several metrics, such as the mean absolute error (MAE),
root mean squared error (RMSE) or the confusion matrix, depending on the type of the model developed.

Is the developed model useful in practice for bariatric care providers and/or patients?
At this moment, there exists no data-driven approach to predict the patient’s weight loss after bariatric
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surgery. The doctors decide based on their expert knowledge whether the likelihood that the patient will
lose su�cient weight is high enough and therefore to operate the patient. The aim of this study is to
develop a model that aids doctors in making this decision. To be valuable, the model should have some
level of accuracy. Whether the created model’s predictions are accurate enough will be discussed with
the doctors.

1.2 Methodology

For this project, the CRISP-DM approach is used. The Cross Industry Standard Process for Data Mining,
mostly referred to by its acronym CRISP-DM, describes the most commonly used approach (Piatetsky,
2014) in which data miners tackle problems. CRISP-DM is a data mining methodology and process
model that provides a complete blueprint for conducting a data mining project. A visual representation
is given in figure 1.1. CRISP-DM breaks down the life cycle of a data mining project into six phases
(Shearer, 2000):

1. Business understanding focuses on understanding project objectives from a business perspective,
converting this knowledge into a data mining problem definition, and then developing a preliminary
plan designed to achieve the objectives. In this phase, the researcher will meet with the doctors, who
are the domain experts for this project, to discuss the problems they encounter in daily practice.
Out of these problems, the project’s objective is distilled.

2. Data understanding starts with initializing the collection of the data. Then, the data miner proceeds
to increase familiarity with the data, to identify data quality problems, to discover initial insights
into the data, or to detect interesting subsets to form hypotheses about hidden information. Since
the researcher has no medical background, she will rely on the knowledge of the domain experts and
on medical literature. Furthermore, data visualizations will help to gain a better understanding of
patterns in the data.

3. Data preparation covers all activities to construct the final data set or the data that will be fed into
the modeling tool(s) from the initial raw data. Tasks include table, record, and attribute selection,
as well as transformation and cleaning of data.

4. Modeling includes the selection of the modeling technique, the generation of test design, the creation
of models, and the assessment of models. Since every modeling technique has specific requirements
on the form of the data, it might be necessary to step back to the data preparation phase.

5. Evaluation is necessary to make sure the business objectives as defined in the first phase are met.
The models and their performance are discussed with the doctors to verify that these models are
indeed relevant. Also, a review of the data mining process is appropriate in this phase to make sure
no tasks are overlooked and to cover quality assurance issues.

6. Deployment means that the knowledge gained is structured and presented in a way that it can
be used. Depending on the requirements, the deployment phase can be as simple as generating a
report or as complex as implementing a repeatable data mining process. For this project, a report
is generated.
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Figure 1.1: The Cross Industry Standard Process for Data Mining (CRISP-DM) methodology (adapted
from Shearer (2000)).

1.3 Thesis outline

This report gives a full overview of the process of answering the research questions. In chapter 2, more
information on the problem is given. In this chapter the rising prevalence and the e↵ectiveness of bariatric
surgery are discussed. Furthermore, the rationale behind the chosen output variable of this study, the
percentage total weight loss, is explained. This chapter also gives more background information about
the data mining techniques that are used to construct the prediction models.

The data used for this study is extracted from the hospital systems of the Catharina Hospital and from
DATO (Dutch Audit for Treatment of Obesity), a national database. These real-world data are generally
incomplete, noisy and inconsistent. To be able to build models with these data, it should be prepared in
such a way that it is amenable to computer processing. Chapter 3 describes the steps needed to convert
the raw, real-world hospital data into a minable data set and describes the feature selection procedure
followed for identifying meaningful variables in the data set. After that, in this chapter the experimental
set-up is explained and the performance evaluation criteria of the models are described.

In chapter 4 the results of this study are given. First, a general overview of the data is given that aims at
providing insight into the data by giving descriptive statistics of several key variables and using simple
statistical tests and visualizations to explore the univariate relationship between input variables and the
output variable. Then, the data are used to construct models. In chapter 3 also the development of
several fuzzy inference systems and random forests is described. After the models have been developed,
they are evaluated. The performance of all models is compared with the base model using some statistical
tests and their (root) mean squared error and mean absolute error are given.

Finally, chapter 5 provides the answer to the main research question, the general conclusions that can be
distilled from this research, its limitations, and is finalized with suggestions for further research.
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Chapter 2

Background

2.1 Obesity and bariatric surgery

2.1.1 Obesity: Definition and health problems

The World Health Organization (WHO) defines obesity as ‘abnormal or excessive fat accumulation that
presents a risk to health’. According to Van Royen and colleagues (2006) a (Caucasian) person is obese
when he has a Body Mass Index (BMI) of minimal 30 kg/m2, and someone with a BMI of 40 kg/m2 or
more su↵ers from morbid obesity. The body mass index is calculated by dividing a person’s weight in
kilograms by the square of his height in meters.

Although some researchers argue that obesity is a preventable risk factor for other diseases and conditions
and not a disease itself (see for example Heshka & Allison, 2001), several major physical di�culties and
diseases have been linked with obesity. Obesity is seen by The Institute for Health Metrics and Evaluation
(IHME, 2010) as the number one cause for cardiovascular diseases, which is the second highest death
cause above an age of 40. Carrying extra fat can also lead to health consequences such as type 2 diabetes,
musculoskeletal disorders like osteoarthritis, and some forms of cancer (WHO, 2013). Additionally, the
life expectation of someone with obesity decreases strongly (IHME, 2010).

2.1.2 Healthcare costs

Besides the significant personal toll, obesity and related health complications are driving up healthcare
costs. Finkelstein and colleagues (2009) found that there is ‘an undeniable link between rising rates of
obesity and rising medical spending’. They found that the annual medical burden of obesity in 2009
had risen to almost 10 percent of all medical spending in the USA. In the same study, the researchers
concluded that the healthcare expenditure for obese adults is 56 percent higher than for normal-weight
adults, while other studies have shown that this can even be up to 200 percent (Picot et al., 2012;
Crémieux et al., 2008). Wang and colleagues (2008) estimated future obesity-related healthcare costs
for adults in the USA to double every decade to 860.7-956.9 billion US dollars by 2030, accounting for
16-18% of total US healthcare costs. In the Netherlands, the associated costs for society have in ten years
risen from 51 million euros in 2003 to 192 million euros in 2013 (Obesitas Vereniging, 2014).

There are also other, more indirect costs related with obesity. Narbro and colleagues (1996) found that
sick leave of obese employees was 1.5-1.9 times greater than that of other employees. Robbins et al.
(2002) estimated that overweight led to 28,351 lost workdays in the US in 1997, costing about 3.5 million
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USD. Månsson and colleagues (1996) reported that the relative risk of receiving disability compared
with that of normal-weight persons is 1.3 for overweighed people and 2.8 for obese people, leading to
higher usage of disability pensions by overweighed and obese persons. Being overweight or obese also
increases the chance of workplace injuries significantly. A study, in which 10 000 employees of a Shell Oil
manufacturing facility in Texas participated, revealed that the rate of lower back injuries was 1.42 times
higher, and the rate of other, non-back musculoskeletal injuries was 1.53 times higher for overweighed
employees (Tsai et al., 1992).

2.1.3 Treatment methods

Several treatment methods exist to help obese patients lose weight. These treatment methods can roughly
be divided into two categories; methods that rely on behavior changes and surgical methods. A large
study performed in Sweden over a course of 15 years shows that methods relying on behavioral changes
on average only resulted in 2 kilograms weight loss, while bariatric surgery led on average to 32 kilograms
weight loss (Sjöström et al., 2007). Therefore, Sjöström and colleagues conclude that bariatric surgery is
the most e↵ective method for obese patients to lose weight.

In the Netherlands, when obesity becomes severe in a patient, bariatric surgery is funded by health
insurance companies. When the patient su↵ers from comorbidities, treatment is indicated when the
patient has a BMI of 35 kg/m2. Overweight and obesity are associated with poor levels of subjective health
status, particularly in terms of physical well-being (Doll, Petersen & Stewart-Brown, 1999). Since the
current health paradigm emphasis health, functioning and well-being (Larson, 1999) bariatric treatment
may be initialized, even when comorbidities do not (yet) exist. Therefore, in the Netherlands, bariatric
surgery is also funded by health insurance companies when the patients BMI exceeds 40 kg/m2, even
when patients do not yet su↵er from comorbidities. Treatment by a dietitian is reimbursed for up to 3
hours of treatment per year after referral by a general practitioner (CZ, 2016).

Behavior change methods

Dietary changes
Despite the development of various pharmacological and surgical treatments, dietetic treatment is still
the basic therapeutic tool for treating obesity. Oxford dictionaries (2016) explain diet as ‘the kinds of
food that a person, animal, or community habitually eats’ or ‘a special course of food to which a person
restricts themselves, either to lose weight or for medical reasons’. Di↵erent kinds of dietetic treatments
exist. The overall objective of all these diets is to decrease the caloric intake of the patient.

In 2000, Ayyad and Andersen systematically reviewed internationally published clinical data on long-term
outcomes of dietary treatment for obesity. They identified seventeen relevant publications with in total 21
study groups, in which in total 3030 patients starting dietary treatment were followed. The mean initial
weight loss of these patients ranged from 4 to 28 kg (median 11 kg) and the follow-up period ranged from
3 to 14 years, with a median of 5 years. In total, 70% of the patients completed the follow-up period of
their study. The overall median success rate for the 21 study groups included was 15% (range: 0-49%),
where the success criterion is defined as ‘maintaining all weight initially lost (or further weight reduction)’
or ‘maintaining at least nine to 11 kg of initial weight loss’. This outcome seems quite stable over time
for up to 14 years of observation. Most of the study groups included in this study maintained a weight
loss of at least 9 to 11 kilograms, which is associated with significant improvements in complications due
to obesity (Goldstein, 1992). This contradicts with the outcomes of the previously mentioned study as
performed by Sjöström and colleagues (2007), who report that behavioral changes on average lead to 2
kilograms of weight loss.
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Exercise and activity
Bouchard, Tremblay and Nadeau (1990) provide data on the e↵ect of exercise, independent of changes
in diet. In their 100-day long study, conducted at a residential facility, five male participants exercised
twice a day, 6 days a week, at 55% of their peak oxygen uptake (V O2

max) while their dietary intake was
held constant. The participants lost on average 8 kg over the 100 days. This study is a clear indication
that exercise alone can produce weight loss. However, this study does not report long term e↵ects.

Wing (1999) reviewed the evidence on the role of physical activity in the treatment of adult overweight
and obesity. She finds that exercise alone produces modest weight losses. Continued exercise is associated
with long-term maintenance of weight loss. In all of the long-term randomized trials reviewed, weight
losses at follow-up were greater in diet plus exercise than in diet only. However, she questions whether
participants in the reviewed studies could also have changed their dietary intake, despite the instructions
to do the contrary. This might compromise the outcomes of the studies severely.

Ross and colleagues (2000) studied the reduction in obesity and related comorbid conditions after diet
or exercise induced weight loss. They found that body weight decreased by 7.5 kg (8%) in both weight
loss groups and did not change in the control groups. Compared with the control group, cardiovascular
fitness (peak oxygen uptake) in the exercise groups improved by approximately 16%. Although total fat
decreased in both weight loss groups, the average reduction was on average 1.3 kg greater in the exercise-
induced weight loss group than in the diet-induced weight loss group. Plasma glucose and insulin values
were not di↵erent for both treatment groups, but improved compared to the control group. Therefore,
Ross and colleagues concluded that weight loss induced by increased daily physical activity without caloric
restriction substantially reduces obesity (particularly abdominal obesity) and insulin resistance in men.

Bariatric surgery

Bariatric surgical procedures restrict the amount of food the stomach can hold, which leads to a lower
caloric intake and as a result to weight loss. Most weight loss surgeries today are performed using
minimally invasive techniques, which is called laparoscopic surgery. The most common bariatric surgery
procedures are adjustable gastric band, gastric bypass and sleeve gastrectomy. However, the gastric
bypass and sleeve gastrectomy procedure are the most commonly performed procedures at the Catharina
hospital and therefore this study focuses on predicting the outcomes of these procedures.

Which procedure is chosen for a certain patient depends on the patient’s characteristics. Extremely
obese patients for whom the risk of performing gastric bypass surgery is deemed too large, undergo sleeve
gastrectomy as part of a two-stage gastric bypass operation. However, since the sleeve gastrectomy alone
often leads to su�cient weight loss, it is also used as a stand-alone procedure.

Sleeve gastrectomy

Figure 2.1: Vertical sleeve gastrectomy procedure
(taken from bariatrics.ucla.edu).

Due to excellent e�cacy for weight loss in the
short-term follow-up and of its low complication
rate, sleeve gastrectomy, also referred to as a gas-
tric sleeve procedure, has gained enormous popu-
larity as bariatric procedure. Sleeve gastrectomy
is not only used as first step in high-risk or super-
obese patients, but mainly as a sole and defini-
tive operation in morbidly obese (Bohdjalian et
al., 2010). According to the American Society for
Metabolic and Bariatric Surgery (ASMBS), almost
42 percent of all bariatric surgeries performed in
the United States in 2013 were laparoscopic sleeve
gastrectomies, which makes it the most popular
weight loss surgery.
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Sleeve gastrectomy is performed by removing approximately 75-80 percent of the stomach. The remaining
stomach is a tubular pouch that resembles a banana as shown in figure 2.1. The sleeve gastrectomy
procedure works by two mechanisms. First, the new stomach pouch holds a considerably smaller volume
than the normal stomach and helps to significantly reduce the amount of food and thus calories that
can be consumed. However, the e↵ect the surgery has on gut hormones that impact a number of factors
including hunger, satiety, and blood sugar control seems to have an even greater influence on the patient’s
calorie intake (ASMBS, 2016).

Himpens, Peeters and Dobbeleir (2010) studied the mid- and long-term e�cacy of sleeve gastrectomy as
treatment for morbid obesity. Three years after surgery, the overall mean excess weight loss was 72.8
percent. After the sixth postoperative year, weight regain was observed in 75.6 percent of the cases,
resulting in a residual overall mean excess weight loss of 57.3 percent.

Roux-en-Y gastric bypass
The Roux-en-Y gastric bypass procedure, sometimes simply called gastric bypass procedure, is depicted
in figure 2.2. During this procedure a small stomach pouch is created by dividing the top of the stomach
from the rest of the stomach. Thereafter, the first portion of the small intestine is divided, and the bottom
end of the divided small intestine is brought up and connected to the newly created small stomach pouch.
Finally, the top portion of the divided small intestine is connected to the small intestine further down
so that the stomach acids and digestive enzymes from the bypassed stomach and first portion of small
intestine will eventually mix with the food (ASMBS, 2016).

Figure 2.2: Roux-en-Y gastric bypass procedure (taken from dredwardoliveros.com).

The portion of the small intestine where food intake takes place is thus reduced, which means less food
intake is possible. Also, the reduction of the gastric ensures that a patient after surgery can eat less.
These two mechanisms help the patient to lose weight quickly after the surgery (ASMBS, 2016).

Several studies have proven the Roux-en-Y gastric bypass procedure to be e↵ective. Wittgrove and
Clark (2000) followed a group of 500 patients who underwent the Roux-en-Y gastric bypass procedure
prospectively. More than 80% of the patients completed a follow-up period of at least a year and reached
an average excess weight loss of about 80%. The total number of comorbidities was reduces by 96%, and
even when comorbidites persisted, they tended to be markedly reduced in severity. Shauer and colleagues
(2000) reported similar results: Excess weight loss at 24 and 30 months was 83% and 77%, respectively.
In patients with more than one year of follow-up, most of the comorbidities were improved or resolved,
and 95% of the patients reported significant improvement in quality of life.
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Measuring outcomes of bariatric surgery
The simplest way of defining a successful bariatric surgery is by using the absolute weight loss as success
criterion. However, the amount of weight loss that is realistic di↵ers per patient. For example, for a
patient with a BMI of 45 kg/m2 it is relatively easier to lose five kilograms than for a patient who has
a BMI of 35 kg/m2 (Biron et al., 2004). The same problem arises when using lost BMI points as succes
indicator. Therefore, the absolute weight loss, both measured in kilograms or BMI points, is hardly ever
used as success indicator.

Other possible outcome measures of bariatric surgery are the percentage excess weight loss (%EWL)
or the percentage excess BMI loss (%EBMIL). Excess weight or BMI can be defined as the number of
kilograms or BMI points above the ideal. An %EBMIL of 50 percent then means that the patient is 50
percent closer to his ideal weight than before surgery. The patients ideal weight is often assumed to be
reached when the patient has a BMI of 25 kg/m2.

Van de Laar, De Caluwé and Dillemans (2011) argue that in contrast to their widespread use, %EBMIL
and %EWL are not suited for comparing di↵erent patients or nonrandomized groups. They cause variation
by initial BMI, which disappears using the percentage of total weight loss. According to them, power
of bariatric procedures is best represented by the mean percentage of total weight loss value. The
percentage of total weight loss (%TWL), also called percentage baseline weight loss, can be calculated
with the formula:

%T W L =
P reoperative weight − F ollow up weight

P reoperative weight

Hatoum and Kaplan (2013) studied several di↵erent metrics commonly used for reporting weight loss
after bariatric surgery, including total weight loss, excess weight loss and excess BMI loss. Of the metrics
examined, the percentage total weight loss is the parameter describing weight loss after bariatric surgery
least influenced by pre-operative BMI. Pre-operative BMI is one of the strongest known predictors of
weight loss after bariatric surgery when weight is characterized as pounds/or BMI units lost (Hatoum and
Kaplan, 2013). Hatoum and Kaplan therefore state that using percentage total weight loss facilitates the
most sensitive identification of novel predictors of surgery-induced weight loss. Sczepaniak and colleagues
(2015) agree with them that the percentage of total weight loss should be used for the expression of weight
loss after surgery for sake of ease and accuracy of comparison.

In consultation with the doctors of the Catharina Hospital, the %TWL was chosen as the outcome
measure to be used in this study. This outcome measure has not only been identified in literature as the
most suitable for finding predictors, it is also relevant in clinical practice. If the doctors have an accurate
model to predict the patients’ %TWL, this number could easily be used to calculate the absolute weight
loss the patient is expected to lose. This information is valuable to the patients, since it can help them
to manage their expectations of the outcomes of bariatric surgery.

Besides these weight loss related outcomes, also other measures could be used to measure the success of
a bariatric surgery. Improvements in the patient’s quality of life have widely been used to measure the
e↵ectiveness of surgery (see for example: Oria & Moorehead, 1998; Ardelt , 1999; Tarlov et al., 1989;
Kolotkin et al., 1995). Surgery induced weight loss has also positive e↵ects on comorbidities such as
diabetes (type 2), hypertension and dyslipidemia (Noria & Grantcharov, 2013). Also this improvement
in comorbidities could be measured to express the e↵ectiveness of the operation. However, this study
solely focuses on percentage total weight loss after one year as outcome measure.
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2.2 Fuzzy logic

2.2.1 Fuzzy sets

In Boolean logic, it is assumed that declarative sentences are true or false, relative to a situation. Such
semantics is called bivalent or two-valued semantics and has been the standard assumption since Aristotle.
However, in natural language bivalency seems to be not enough. Some classes of objects exist only through
natural terms, such as high temperature, young man, big size etc. Classical logic is too rigid to account
for these kind of categories, where membership is a gradual notion rather than an all-or-nothing matter
(Dubois and Prade, 2012).

To deal with this impreciseness and gradualness in human reasoning, Lofti Zadeh (1965) introduced the
principle of ‘fuzzy sets’. These fuzzy sets can be used to represent gradualness. Gradualness refers to
the idea that many categories in natural language are a matter of degree, including truth. For example,
the word ‘tall’ occurs in our natural language and is used to describe someone’s body height. However,
we have no hard limits on when someone exactly is ‘tall’. Take for example the statement ‘John is tall’.
According to the Boolean logic this sentence would be true or false. If John’s body height is 1.6 meters,
we can say that the sentence is false and if John is two meters, no one will deny that the statement is
true. However, what if John is 1.8 meters? Some people might argue that he is tall, while others might
think 1.8 meters is not tall at all. With fuzzy logic it is possible to state that John is somewhat tall, by
stating that the proposition is true for 0.6.

2.2.2 Membership functions

The basic idea behind the fuzzy set is that an element belongs to a fuzzy set with a certain degree of
membership. The fuzzy set has fuzzy boundaries. A proposition is neither true nor false, but may be
partly true or partly false to any degree. If X is a collection of objects denoted generically by x, the fuzzy
set A in X is defined as a set of ordered pairs:

A = {(x, µA(x))|x ∈ X}

where µA(x) is called the membership function for fuzzy set A. For fuzzy sets, the value of these member-
ship functions is usually taken as a real number between 0 and 1. If the membership function is restricted
to either 0 and 1, set A would be reduced to a classical crisp set. The collection of objects X is usually
referred to as the universe of discourse and can consist of discrete objects (such as number of children,
which can only be integers) or continuous space (like age). An example of a membership function is
shown in figure 2.3.

From the purely mathematical viewpoint, many di↵erent shapes of membership functions can exist. The
most used shapes are the trapezoidal and triangular. A trapezoidal membership function is specified by
the four parameters a, b, c and d that determine the coordinates of the four corners of the underlying
trapezoidal membership function (with a ≤ b ≤ c ≤ d). Note that a trapezoidal MF reduces to a
triangular MF when b is equal to c.

Both triangular and trapezoidal membership functions have been used extensively due to their simple
formulas and computational e�ciency. However, since the membership functions are composed of straight
line segments, they are not smooth at the transition points specified by the parameters. The Gaussian
membership is defined by smooth and nonlinear functions as follows

Gaussian(x; c, σ) = e
! ( x ! c ) 2

2 ! 2 ,

where c represent the centre of the Gaussian function, and σ represent the spread of the membership
function. Due to its smoothness, the Gaussian membership function is increasing in popularity for speci-
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Figure 2.3: Example of the membership functions for age.

fying fuzzy sets. Gaussian functions are well-known in probability theory and statistics and possess useful
properties such as invariance under multiplication and Fourier transformation (Jang, Sun & Mizutani,
1997).

2.2.3 Fuzzy rules

Human beings make decisions based on rules. Although we may not be aware of it, all decisions we make
are based on computer-like if-then statements. For example, if it is raining, then we decide to wear a rain
coat when we go outside. Rules associate ideas and relate one event to another.

Fuzzy systems, which tend to mimic the reasoning of human beings, work the same way. However, the
decision and the means of choosing that decision are replaced by fuzzy sets and the rules are replaced by
fuzzy rules. A fuzzy rule is defined as a conditional statement in the form ’if x is A, then y is B’ where
x and y are linguistic variables; A and B are linguistic values determined by fuzzy sets on the universe
of discourse X and Y, respectively. The ’if x is A’ part of the rule is called the precedent or premise,
’then y is B’ is the consequence of the rule. In e↵ect, the use of linguistic variables and fuzzy if-then
rules exploits the tolerance for imprecision and uncertainty. In this respect, fuzzy logic mimics the crucial
ability of the human mind to summarize data and focus on decision-relevant information (Zadeh, 1994).

2.2.4 Fuzzy inference systems

A fuzzy inference system (FIS) is an expert system where the knowledge is represented in the form of
fuzzy rules. Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic. The mapping then provides a basis from which decisions can be made, or patterns
discerned.

Figure 2.4 graphically shows the components of and information flows in a FIS. In the fuzzification process,
the match between the given input and the linguistic terms is determined. For crisp inputs, the fuzzifier
computes the degree of membership to linguistic terms, for fuzzy inputs the maximum membership of
the input is determined. The rule base and the data base together form the knowledge base. The
knowledge base encodes the general relation between the inputs and the outputs. The inference system
is the reasoning mechanism that combines inputs with the information encoded in the knowledge base
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Knowledge Base

Inference System
DefuzzifierFuzzifier

input output

Figure 2.4: Components of and information flow in a fuzzy inference system (adaped from Kaymak,
Babuska & Van Nauta Lemke, 1995).

to compute the fuzzy output of the system. If a crisp output is required, the defuzzification process
computes the number that represents the output of the fuzzy set, for example the amount of weight lost
after surgery in kilograms.

The two most commonly employed types of FIS are the Mamdani and the Takagi-Sugeno FIS. Mamdani’s
method was among the first control systems built using fuzzy set theory. It was proposed in 1975 by
Ebrahim Mamdani as an attempt to control a steam engine and boiler combination by synthesizing a set
of linguistic control rules obtained from experienced human operators. In a Mamdani-type system the
output membership functions are fuzzy sets for each output variable that needs defuzzification.

Takagi-Sugeno fuzzy models were introduced in 1985 and are in many respects similar to the Mamdani
fuzzy model. The first two parts of the fuzzy inference process, fuzzifying the inputs and applying the
fuzzy operator, are the same. The main di↵erence between Mamdani and Takagi-Sugeno is that the
Takagi-Sugeno output membership functions are either linear or constant.

Takagi-Sugeno fuzzy models consist of fuzzy rules where each rule describes a local input-output relation.
When first order Takagi-Sugeno fuzzy systems are used, each discriminant function consists of rules of
the type:

Rj : if x1 is Aj1 and . . . and xN is AjN

T hen yj = aT
j x + bj

where, j = 1,..., J corresponds to the rule number, x = (x1,...,xN ) is the input vector, N is the total
number of input variables, Ajn is the fuzzy set for rule Rj and nth feature, and yj is the consequent
function for rule Rj . For a zero-order Takagi-Sugeno model, the output level yj is a constant (thus
a = 0). The degree of fulfillment of rule j is given by:

βj =
N!

n=1

µAjn xn.

The overall output is a weighted average of the individual rule outputs:

y! =

" N
j=1 βjyj

" N
j=1 βj

.

2.2.5 Fuzzy logic in medicine

Kaur and Wasan (2006) described the healthcare environment as being ‘information rich’ yet ‘knowledge
poor’. The amount of healthcare data is exceptionally large and the human body is an extremely complex
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Figure 2.5: The number of publications found per year in PubMed for the keyword ‘fuzzy logic’.

biological system. The human mind lacks capacity to summarize and extract useful knowledge from
these masses of data, making it impossible to discover hidden relationships and trends in the data.
Computerized systems, such as fuzzy inference systems, can help doctors extract those facts from the
data that are related to the task at hand, aiding them in their decision making process. Fuzzy logic is
especially suitable for application in the medical field since it follows the same reasoning mechanism as the
human mind (‘if symptom x, then diagnosis y’ ), making the models easy to interpret. Fuzzy set theory
also makes it possible to define inexact medical entities as fuzzy sets, dealing with their impreciseness,
inaccuracy, and inconsistency.

Because of these reasons, fuzzy logic has increased in popularity in the medical domain over the last
decades. This rise in popularity is illustrated in figure 2.5, which graphs the number of publications
found in PubMed for the keyword ‘fuzzy logic’. These publications cover a wide range of topics. For
example, fuzzy logic is applied to detect di↵erent forms of cancer, such as breast (Hassanien, 2003; Seker,
2003; Miranda & Filipe, 2015), prostate (Seker, 2003; Costa et al., 2006) and lung cancer (Schneider, 2002;
Murty & Babu, 2016), but also to calculate volumes of brain tissue from magnetic resonance imaging
(MRI) (Brandt et al., 1994), and to discriminate benign skin lesions from malignant melanomas (Stanley,
2003).

2.3 Random forests

Random forests or random decision forests are an ensemble learning method used for classification,
regression and other tasks, that operate by constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of
the individual trees. The first algorithm for growing random decision forests was developed by Tin Kam
Ho in 1995 using the random subspace method. This means that each classifier underlying the random
forest is trained using a given proportion of variables picked randomly from the original set.

An extension of Tin Kam Ho’s algorithm was developed by Leo Breiman and Adele Cutler (2001). This
extension combines Breiman’s bootstrap aggregating idea and the random subspace method in order
to construct a collection of decision trees with controlled variance. When bootstrap aggregating, also
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Figure 2.6: A decision tree for classifying fruits in the groups ‘grape’, ‘strawberry’, ‘apple’ and ‘lemon’.

referred to as ’bagging’, for each classifier a di↵erent bootstrap sample of the input data is used. According
to Breiman, this method reduces variance and helps to avoid overfitting. In this study, this extended
algorithm will be used to construct a random forest.

2.3.1 Decision trees

The underlying classifiers in a random forest are decision trees. Decision trees are built using a non-
parametric supervised learning method for building regression or classification models in the form of tree
structures. The goal of these models is to predict the value of a target variable by learning simple decision
rules inferred from the data features. An example of a decision tree is showed in figure 2.6.

A decision tree is constructed in a top-down recursive divide-and-conquer manner and includes a root
node, branches, internal nodes and leaf nodes. At each internal node, the decision tree searches through
all the independent variables to find a value of single variable that best splits the data into two or more
groups. Typically, the best split minimizes impurity of the outcome in the resulting data subsets. For
these two resulting groups, the process is repeated until a stopping criteria is invoked. For example, the
tree might stop splitting when the node is pure, which means it contains only observations of one class,
the number of observations in the node is smaller than the minimum parent size or splitting the node
would produce children with fewer observations than the minimum leaf size. The minimum leaf and
parent size are set by the researcher.

After the decision tree is developed, pruning is employed. Pruning means that an end node is removed if
the resulting tree does not perform worse on the validation set that the original unpruned tree. The node
is then removed and its leafs are combined in a new leaf. The process is repeated until further pruning
decreases the accuracy of the decision tree.

2.3.2 Decision trees in random forests

In Breiman’s random forest algorithm (2001), bagging is used in tandem with random feature selection.
An unpruned tree is grown using the CART methodology on a bootstrap sample of the training set using
randomly selected feature subset. This procedure is repeated n times. The n trees together form the
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random forest. After training, predictions for unseen samples can be made by averaging the predictions
from all the individual regression trees or by taking the majority vote in the case of classification trees.

Since each tree is trained on a subset of the total training data, each tree can be tested using samples not
used in building that specific tree. This is the out-of-bag error estimate: an internal error estimate of a
random forest that is calculated as it is being constructed. A study of error estimates for bagged classifiers
conducted by Breiman (1996) gives empirical evidence that the out-of-bag estimate is as accurate as using
a hold-out test set of the same size as the training set.

Also the out-of-bag feature importance can be estimated. Computing this measure requires several steps.
First, the out-of-bag error of is computed as explained. Then, the values of one variable are randomly
mixed across all the test set examples. Since this is just a permutation, this action does not alter the
distribution of the variable’s values. The out-of-bag error is then determined again. If this error is much
higher than before, this indicates the variable is important for prediction; the original values for these
features lead to better predictions than if their values were randomly assigned. This measure is computed
for every tree, then averaged over the entire ensemble and divided by the standard deviation over the
entire ensemble. In this way, the Z-score indicating the importance of a feature is obtained, which makes
it possible to compare the importance among all input variables.

Breiman (2001) claims that random forests perform very well compared to many other classifiers, including
discriminant analysis, support vector machines and neural networks. He found that the random forests
algorithm runs e�ciently on large data sets and does not require the data to be rescaled, transformed, or
modified. Furthermore, random forests are resistant to outliers and automatically handle missing values
by using only non-missing values for finding optimal splits. Because the random forest algorithm makes
use of bagging and random feature selection, the algorithm can handle high dimensional spaces as well
as large number of training examples.

2.3.3 Random forests in medicine

Random forest have been applied to several medical problems. Casanova and colleagues (2014) used
random forest to detect diabetic retinopathy. Khalilia, Chakraborty and Popescu (2011) trained several
models to predict disease risk for breast cancer, diabetes (with and without complication), hypertension,
coronary atherosclerosis, peripheral atherosclerosis, other circulatory diseases and osteoporosis. They
compared the accuracy of random forests, support vector machines (SVM), bagging and boosting in
terms of the area under the receiver operating characteristic (ROC) curve (AUC) and found that random
forests outperform the other models.

Besides producing one of the best accuracies to date, random forests have important advantages over
other techniques in terms of ability to handle highly non-linear biological data, robustness to noise,
tuning simplicity (compared to other ensemble learning algorithms) and opportunity for e�cient parallel
processing (De Bruyn et al., 2013; Caruana and Niculescu-Mizil, 2006; Menze et al., 2009). These factors
also make random forests an ideal candidate for handling high-dimensional problems where the number
of features is often redundant as is the case in this study.

2.4 Performance indicators

To evaluate the performance of the developed models, several performance indicators are used. These
performance indicators are described in this section. The performance of the regression models is com-
pared with that of the base model. This section also gives some background information on the statistical
tests used to compare these models.
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2.4.1 Performance indicators for regression models

Performance measures for regression models are based on errors of the model, naturally defined as the
di↵erence between the predicted and the actual value of the target. Based on the errors, two metrics are
calculated for each of the models: the (root) mean squared error and the mean absolute error.

(Root) Mean squared error ((R)MSE)

The mean squared error (MSE) measures the average of the squares of the errors or deviations between the
estimator and what is estimated. This di↵erence occurs because of randomness or because the estimator
does not account for information that could produce a more accurate prediction. The MSE is a measure
of the quality of a predictor and is always non-negative, with values closer to zero being better. The MSE
is calculated as follows:

MSE =
1

n

n#

i=1

(Ŷi − Yi)
2

where Ŷi is the predicted and Yi is the actual percentage weight loss for patient i in a data set with n
patients. The MSE is sometimes used to compute the root mean square error (RMSE), which has the
same units as the quantity being predicted and is therefore easier to interpret:

RMSE =
√

MSE

Mean absolute error (MAE)

Another widely used performance metric is the mean absolute error (MAE). Just like the MSE, the MAE
is always non-negative and smaller MAEs indicate a better performing model. The MAE is computed by
using the formula:

MAE =
1

n

n#

i=1

|Ŷi − Yi|

in which Ŷi is the predicted and Yi is the actual percentage weight loss for patient i in a data set with n
patients.

Independent two-sample t-test

The independent two-sample t-test is used to determine whether the means of two populations are equal.
In this study, this test is used to determine whether the mean error of the base model di↵ers significantly
from the means of the other, more sophisticated models.

The t-test is only applicable when the two sample sizes are of equal sizes and they have the same variance.
To make sure the second assumption is met, every time a t-test is used, also an F-test will be conducted.
The t-statistic can be calculated as follows:

t =
X̄1 − X̄2

sp
$

2/n

where

sp =

%
s2

1 + s2
2

2
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In this formula, sp is the pooled standard deviation and s1 and s2 are the sample standard deviations.
Further n is the sample size (for which n = n1 = n2). For significance testing, the degrees of freedom for
this test is 2n − 2.

F-test of equality of variances

An F-test (Snedecor and Cochran, 1989) is used to test if the variances of two populations are equal.
The equality of variances is one of the assumptions underlying the t-test. Therefore, each time a t-test
is conducted in this study, also an F-test will be performed to determine whether this assumption holds.

Since sample variances are related to chi-square distributions and the ratio of chi-square distributions is
an F-distribution, we can use the F-distribution to test against a null hypothesis of equal variances. The
test statistic is

F =
s1

s2
,

where s1 and s2 are the sample standard deviations and the test statistic is a ratio of the two sample
variances. The further this ratio deviates from 1, the more likely the null hypothesis should be rejected.
Under the null hypothesis, the test statistic F has a F-distribution with numerator degrees of freedom
equal to N1 − 1 and denominator degrees of freedom equal to N2 − 1, where N1 and N2 are the sample
sizes of the two data sets.

The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (K-S test) is a nonparametric test of the equality of continuous, one-
dimensional probability distributions that can be used to compare a sample with a reference probability
distribution (one-sample K-S test), or to compare two samples (two-sample K-S test). In this study, the
two-sample K-S test is used to test whether the errors of the models follow the same distribution as the
errors of the base model. If this is the case, one can conclude that the performance of the base model
is as good as the performance of the more advanced model. The two-sample K-S test is one of the most
useful and general nonparametric methods for comparing two samples, as it is sensitive to di↵erences in
both location and shape of the empirical cumulative distribution functions of the two samples.

In the K-S test, two cumulative distribution functions (CDFs) are compared. The CDF of a variable x
is the probability that the random variable is less than or equal to some value, or to be more precise:

CDF (a) = P (x ≤ a)

To test whether two distributions with the cumulative distribution functions CDF1 and CDF2 di↵er, the
point of maximum discrepancy between the CDFs should be found:

D = max(|F1(x) − F2(x)|)

The null hypothesis that the samples are drawn from the same distribution is rejected at level α = 0.05
if

D > 1.36

%
n1 + n2

n1n2
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2.4.2 Performance indicators for classification models

Classification accuracy

For the classification model, it is not possible to compute the previous mentioned metrics. Therefore, it
is not possible to compare the performance of the regression and the classification models.To assess the
performance of the classification model, its accuracy is computed. This can be done by using the formula:

Classification accuracy =
Correctly classified cases

T otal number of cases
.

To give a more complete, visual overview of the model’s performance, also the confusion matrix can
be provided. A confusion matrix is a specific table lay-out (table 2.1)that allows visualization of the
performance of a classification model. Each column of the matrix represents the instances in a predicted
class while each row represents the instances in an actual class (or vice versa). The name stems from the
fact that it makes it easy to see if the system is confusing two classes (i.e. commonly mislabelling one as
another).

Table 2.1: The lay-out of a confusion matrix.

Predicted

Positive Negative

A
ct

u
a

l

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Precision and recall

Precision (also called positive predictive value) is the fraction of retrieved instances that are relevant,
while recall (also known as sensitivity) is the fraction of relevant instances that are retrieved. Both
precision and recall are therefore a measure of relevance. In simple terms, high precision means that an
algorithm returned substantially more relevant results than irrelevant ones, while high recall means that
an algorithm returned most of the relevant results.

Precision is the ratio of correctly classified positives divided by the sum of correctly classified positives
and incorrectly classified positives:

P recision =
T P

T P + F P
.

Recall is the ratio of correctly classified positives divided by the total positive count:

Recall =
T P

T P + F N
.

The F1-score can be interpreted as a weighted average of the precision and recall, where an F1 score
reaches its best value at 1 and worst at 0:

F1 − score = 2 ∗
P recision ∗ Recall
P recision + Recall

.
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κ-statistic

Contrary to the previously mentioned metrics, the κ-statistic takes into account random chance, which
generally means it is less misleading. The κ-statistic measures the agreement between reality and a
prediction model that classifies N items into C mutually exclusive categories. The κ-statistic indicates
the proportion of agreement beyond the proportion expected by chance. It can be calculated using the
formula

κ =
Observed accuracy − Expected accuracy

1 − Expected accuracy
,

where

Observed accuracy =
T P + T N

T P + F P + T N + F N
.

The expected accuracy is directly related to the number of instances of each class, along with the number
of instances that the model agreed with the ground truth label (TP or TN). To calculate the expected
accuracy, first the marginal frequency of positives in the real-world should be multiplied by the marginal
frequency of positives for the prediction model, and divided by the total number of instances:

P ositives : mp =
(T P + F P ) ∗ (T P + F N)

T P + F P + T N + F N
.

The same should be done for the negatives:

Negatives : mn =
(F N + T N) ∗ (F P + T N)

T P + F P + T N + F N
.

The expected accuracy can than be calculated by using the formula

Expected accuracy =
mp + mn

T P + F P + T N + F N
.
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Chapter 3

Method

In this study the development of two types of models is described. The first type of models are fuzzy
models. These models have gained popularity in the medical world over recent decades due to their ability
to deal with imprecise medical data, to model non-linear relationships and their high interpretability.
More information on fuzzy models is given in section 2.2.

Firstly, two first-order fuzzy inference systems were created, one using the variables as selected by the
domain expert and the other using the variables as selected by stepwise sequential feature selection. Also
one zero-order model is developed, using features as selected by the stepwise sequential feature selection
algorithm. Since the feature set composed by the domain expert did not perform well, this feature set is
not further investigated by building a zero-order model with it.

The second type of models are random forests. The random forest algorithm runs e�ciently on large data
sets and does not require the data to be rescaled, transformed, normalized, or modified. Furthermore,
random forests are resistant to outliers and automatically handle missing values. This user-friendly
algorithm perform very well compared to many other classifiers (Breiman, 2001) and is therefore chosen
as second modeling technique in this study. More information about random forests can be found in
section 2.3.

Two random forests are developed. First, a random regression forest is grown. The performance of these
models will be compared with that of the base model. To test whether the data is more suitable for
classification, also a random classification forest is constructed.

Summarized, the following models are developed:

• Base model

• Fuzzy inference systems

(i) First-order fuzzy model with variables as selected by domain expert (DE)

(ii) First-order fuzzy model with variables as selected by sequential forward selection (SFS)

(iii) Zero-order fuzzy model with variables as selected by sequential forward selection (SFS)

• Random forests

(i) Random regression forest

(ii) Random classification forest

The aim of this chapter is to give an overview of the methods used to transform the raw data into a
processable data set and to describe the procedures for training the models.
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3.1 Data preparation

To be able to build models with the hospital’s data, the data should be processed in such a way that it
is amenable to computer processing. Real-world data are generally incomplete, noisy and inconsistent.
This chapter describes the steps needed to convert the raw, real-world hospital data into a mineble data
set.

3.1.1 Data consolidation

Collection of the data

The data for this study were obtained from the bariatric center of the Catharina Hospital in Eindhoven,
The Netherlands and was reviewed retrospectively. With around one thousand bariatric surgeries per year,
this facility is currently one of the largest in the Netherlands (CZ, 2015). The data was collected from the
hospital’s systems by a domain expert who has full access to the hospital database. Records of all primary
bariatric surgeries performed were selected. i.e. registered surgeries with the codes AC648 (gastric bypass)
and AC712 (gastric sleeve). Patients who underwent revisions were excluded from the data set, since
these patients often su↵er from complications from the previous surgery. These complications are likely
to be reflected in the patient’s blood work and other data, which makes it harder to detect patterns in
the data set.

Due to the selection criteria, only patients who underwent bariatric surgery are included in the data
set. This excludes patients who opted for surgery but were rejected by the care providers because they
expected poor results. Since this pre-selection is made, the data set might be biased.

Next, for all patient IDs occurring on the surgery list, additional data was extracted from the hospital
data base. Because of computational limitations, it was not possible to extract the hospital data in one
go. Therefore, the researcher was supplied with three separate files. The first file contains the outcomes
of lab tests. Before and after patients undergo bariatric surgery, a standard set of lab tests are conducted.
These lab results are used to monitor nutrition deficiencies and organ functions. A full list of lab tests
that are included in the standard bariatric lab package and therefore measured for (almost) all patients
pre-operatively can be found in appendix C. For some patients, other lab tests are ordered besides these
standard lab tests. The outcomes of these lab test are also included in the data. The second file contains
physiological measures (such as weight, height blood pressure etc.) and outcomes of the RAND-36 and
BAROS quality of life questionnaires. The last extracted file consists of the outcomes of the pre-operative
screening (PPOS). During this screening, patients fill in a questionnaire about their lifestyle, comorbidities
and past medical and surgical history etc., which is used by anesthesiologists and surgeons to detect risk
factors that may increase the risk of surgery above baseline and to propose strategies to reduce this risk.

All files do not only contain pre-operative measured data, but also information gathered during follow-up
consultations. Since the goal of this study is to predict weight loss after bariatric surgery using pre-
operative data, all post-operative measured data (except follow-up weight measures) were omitted from
the data set. Also, in consultation with a clinical chemist of the hospital, some irrelevant lab tests were
removed from the data set. Lab results containing ‘REM’ in their code represent some kind of obstruction
in the lab process (for example ‘Call ordering specialist’). Since these do not contain information about
the patient, these results were removed. Other lab results were obtained using old lab equipment, making
them incomparable with newer lab results. Also data about blood types were removed from the data set,
since the domain expert did not think these variable have added value.

The hospital data is complemented with data from the DATO (Dutch Audit for Treatment of Obesity)
database. DATO is a nationwide system that is used to store the results of di↵erent types of bariatric
surgeries. The goal of this system is to improve bariatric care by gathering data that provides bariatric
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professionals insights into the quality of their own delivered care and that of their colleagues.

The data that was gathered from bariatric patients changed over the years. For example, in 2011 the
bariatric lab panel was introduced. Appendix C contains a full list of conducted lab tests. Since one year
follow-up data is used to determine the outcome variable (percentage total weight loss), only patients
who have this measure can be used for model building. In order to have a homogeneous, as complete as
possible data set for analysis, only patients who had surgery between the 1st of October 2011 and the 1st

of March 2015 are included for model building.

The data set then contained information about 1,968 patients who underwent bariatric surgery. A
complete list of the variables can be found in appendix B. All data was anonymized before it was supplied
to the researcher, which means patient ID numbers were replaced by random ID numbers (to be able
to link the di↵erent extracted files later on) and birthdates were simplified into the age at the time of
surgery.

Intergrating the data

The data was supplied in the form of Excel files with all data formatted as plain text. To facilitate the
import of these data in MATLAB, the data was converted to a numerical format as much as possible.

• Dates are converted to serial date numbers in Excel. Later, these serial date numbers were converted
from the Excel to the MATLAB format. In the Excel 1900 date system, the Excel serial date number
1 corresponds to January 1, 1900 A.D. MATLAB date numbers start with 1 = January 1, 0000
A.D., hence there is a di↵erence of 693960 relative to the Excel date system. To avoid mistakes in
this conversion process, the data is converted back to the original format and it is checked that the
converted dates are equal to the original ones.

• Categorical text variables, such as answers to yes/no questions, are recoded in such a way that
they now are represented with numbers. For example, for yes/no questions, 1 now stands for yes
and 0 stands for no. Non-binary categoricals are converted to dummy variables. For example, the
variable ‘MDO’ (multidisciplinair overleg, multidisciplinary consultation) is a categorical variable
that indicates whether a patient has been approved or rejected for surgery. When rejected, some
patients are assigned to a preparatory trajectory with dietetics or with clinical psychology. After
this trajectory, the patients were still approved for surgery. To make this variable amendable for
processing, the variable was split into two new variables. The first new variable indicates whether
the patient had preparatory trajectory with dietetics and the second whether the patient had
preparatory trajectory with clinical psychology.

• The variable ‘Pols’ (‘pulse’ ) is split into the variables ‘Heart rate’ and ‘Pulse’ (the latter indicating
whether the pulse is regular or irregular) and the variable ‘Bloeddruk’ (‘blood pressure’ ) is split into
‘Diastolic blood pressure’ and ‘Systolic Blood pressure’. By splitting these variables, the information
can be used for further processing.

• Variables with free text fields are omitted from the data set. Using this kind of variables would
require some form of text mining, which is outside the scope of this project.

• The characters ‘<’ and ‘>’ (indicating ranges in the outcomes) indicate that the lab value had some
extreme value and could not precisely be estimated. These characters make it impossible to analyze
the outcomes as numerical values. Therefore, they were replaced by the cuto↵ value, a procedure
known as winsorizing (Chambers and Kokie, 1993). When the outcome is given as a range, for
example 0-1 (between zero and one), the average of this range was used.

Since several sources of data were used and some of these sources are (partial) copies of other sources,
some variables were included multiple times. Also, within the hospital system, multiple fields exist for the
same variable. These duplicate variables were combined into one. For example, the variables ‘Gewicht’
and ‘Gewicht (kg)’ both represented the weight of the patient in kilograms. Therefore, these variables
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Figure 3.1: Received format of the data and required data format for analysis purposes.

were merged into one variable ‘Weight’. For many duplicate variables, deviations in the values were small.
Since the DATO set is the most complete data set, this set was (in consultation with the physicians)
chosen as the primary data source and it was complemented with data from other sources. However, the
variables that represented alcohol usage and smoking behavior deviated considerably in di↵erent data
sources. In consultation with the domain experts, the PPOS data set was chosen as primary data for
these variables. When the information was missing in this data set, it was completed with data from the
DATO set.

For certain patients, some variables are measured multiple times in time. Since each variable can have
only one value per patient for analysis purposes, only the last known value prior to surgery is used as
proposed by Cismondi et al. (2013). The authors of this paper claim that this value is most representative
for the state of the patient at time of surgery, which is chosen as the point of prediction for this study.

For all data sets except the DATO set, the records were presented in a format where each entry represents
the measurement for one variable for a certain patient. However, for analysis purposes this data should
be transposed in a format where each line of data contains the values for all variables of one patient as
illustrated in figure 3.1.

3.1.2 Data cleaning

Eliminating erroneous data

All lab outcomes present within the data sets are being recorded automatically via machines that perform
the blood analyses. Since these results are not manually entered by human beings, the quality of these
data is high and the number of erroneous data can be considered non-existent. Therefore, no data were
eliminated in the lab results. However, the other variables are manually entered into the system by
healthcare providers, making the process prone to errors. Therefore, these data were checked for values
that are clearly coding errors. For example, a human cannot have a body length of 1.71 cm, thus this
is seen as an error in the data. For some of these erroneous values, it was clear what the intended value
should be. In the example, the care provider entered the body length in meters, where the body length
in centimeters was required. These type of errors where corrected by the researcher. However, when the
intended value was not clear, the value was recoded as missing value.

Observations that are humanly possible but should be considered outliers are not removed from the
data set. When these observations are members of the target population, their presence in the dataset
can be informative about the nature of the population (see for example, Mourão-Miranda et al., 2011).
Removing these outlier cases from the data would then lead to loss of information about the population at
large. In such situations, outlier detection could be helpful to identifying unusual members in the target
population, but these data should not be removed from the data set (Zijlstra et al., 2011). Therefore,
outliers are retained in the data set.
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Missing data

Since this is a retrospective study, the data was not gathered with the intention to use it for analyses.
As a result, the data set used for this study contains a lot of missing values. If a patient did not undergo
a certain lab test or a physiological variable was not measured, these variables are recorded as missing.
Some lab results can be used to calculate the outcomes of other missing lab tests:

• Hb-A1c: Hemoglobin A1c (IFCC) (in mmol/mol) = 10.93 * Hemoglobin A1c (in %) - 23.5 (Con-
census Committe, 2007)

• Calcium corrected for albumin = Calcium (in mmol/L) + 0.02 * (40-Albumin (in g/L)) (Payne et
al., 1977)

• CKD-EPI (Levey et al, 2009):

– Females: CKD − EPI = 141 ∗ min(
serum creatinine ( in mg/dL )

0 . 7
88.42 , 1)" 0.329

∗ max(
serum creatinine ( in mg/dL )

0 . 7
88.42,1 )" 1.209 ∗ 0.993Age (in years) ∗ 1.018

– Males: CKD − EP I = 141 ∗ min(
serum creatinine ( in mg/dL )

0 . 9
88.42 , 1)" 0.411

∗ max(
serum creatinine ( in mg/dL )

0 . 9
88.42,1 )" 1.209 ∗ 0.993Age (in years)

Using these formulas, the missing values for Hb-A1c, calcium corrected for albumin and CKD-EPI were
imputed, thereby enriching the data set.

For some patients, a complete blood count (BDI003, ‘di↵erentile telling’) is performed. This means that
the number of blood cells of any type that are present per unit of volume blood are counted. Complete
blood counts are done to monitor overall health, to screen for some diseases, to confirm a diagnosis of
some medical conditions, to monitor a medical condition, and to monitor changes in the body caused by
medical treatments (Mayoclinic, 2014). However, this test is only performed when some other lab values
indicate this test is required. Therefore, the informative value is not in the measured value but in the fact
that the variable is measured or not, since this indicates an abnormality or possible illness. Therefore
the outcomes of these counts are not included in the data set, but only if this test is performed or not.

In the DATO set, binary variables are often only filled in when the variable is present for a patient. For
example the variable ’diabetes’ is filled in with a ‘1’ when a patient su↵ers from this comorbidity, but the
variable might be missing when the comorbidity does not exist for that patient. The reason for this is the
method of entering the information in the system: The person doing this should check a box from a list
of options. Only when the box is checked, a ‘1’ is entered in the system. When the box is left unchecked,
this is recorded as a missing value. Therefore, on the advice of the domain experts, it is assumed that
the missing values for these variables should be recoded to ‘0’.

After these imputations many values are still missing in the data set. It is assumed that these variables
are missing at random (MAR). Since the fuzzy modeling technique used in this study requires clustering
in metric space and is not able to handle the presence of missing values, the data set should be complete.
Therefore, missing values should be imputed or patient records or variables with missing values should be
omitted from the data set. Since imputation can distort the shape of distributions and the relationships
between variables, the latter is chosen. A complete data set can then be obtained in two ways: one can
remove variables with missing data or one can remove patient records that contain missing values. By
balancing these two methods, as many patients records as possible are retained, so that enough data
points are available to give reliable results, while on the other hand enough variables are kept in the data
set to capture all relevant relations.

To keep as many variables and patient records as possible in the data set, the method as proposed by
Setnes and Kaymak (2001) is used. This method assumes there is an optimal threshold η* [0, 1] for
which all variables with a higher proportion of missing values should be removed. Patient records still
containing missing values after this should be removed from the data set. This threshold η* is determined
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using a fuzzy decision making approach. The two fuzzy goals ‘most records retained’ and ‘most variables
allowed’ can be defined on the universe of allowed percentage of missing values in a variable. According to
Bellman and Zadeh’s fuzzy decision-making model (1970), the optimal threshold is where the maximizing
decision is taken as the optimal threshold that satisfies both goals. Both criteria are assumed to be equally
important. Therefore, the optimal threshold is the point where the intersection of the two fuzzy goals
has its maximum membership.

3.1.3 Data rescaling

Some variables are transformed to make the dataset more amenable to computer processing. In this
section, these transformations are discussed.

Standardizing lab outcomes

What a normal outcome of a certain lab test is depends on the characteristics of the patient from which
the blood sample is taken. For example, while a testosterone level of 20 nmol/L might be perfectly normal
for an adult male, it is very high for females. Therefore, it is not reasonable to compare the absolute
values of lab outcomes. In clinical medicine, lab results are frequently interpreted by comparing them with
earlier measurements taken from a reference population. A reference population is a carefully defined
group of individuals that are representative for the population that will be tested (Boyd, 2010). The
reference interval for many laboratory tests is defined by threshold values between which the test results
of a specified percentage (usually 95%) of apparently healthy individuals of the reference population
would fall (Boyd, 2010). Factors that are taken into account while defining a reference population are for
example age, gender and race. (Burtis & Bruns, 2014). Also, the instruments and lab techniques used
might a↵ect the reference interval. Therefore, reference intervals are lab specific.

To make the lab results comparable, these data are standardized. Standardization is the process by
which similar data received in di↵erent formats are transformed to a common format that enhances the
comparison process. The lab results in this study are standardized using their reference intervals. For
most lab tests, the reference interval is defined by an upper and a lower reference limit. For these lab
tests, standardization is done using the Z-score. The advantage of using the Z-score is that this number
still gives notion of deviations from ‘normal’ outcomes. The Z-score is defined as the deviation of a value
x of its expected value, expressed in standard deviations. This can be written as:

Z =
x − µ

σ
.

In this case, the lower reference value is assigned to −2 standard deviations and the upper reference value
is assigned to +2 standard deviations from the mean. This means that the lab outcomes are assumed to
follow a gaussian distribution and that it is assumed that the reference values indicate the 95% confidence
interval.

Some reference intervals are solely displayed as an upper or lower reference limit. Since it is not possible
to deduce the standard deviation from this value, another approach must be taken for standardizing the
results of these tests. If only an upper boundary is known, +2 standard deviations is assigned to the
value of this boundary. However, since there is no indication where the lower boundary should be, this
boundary is set to be zero, since a concentration of less than zero units of a substance is not possible.
Therefore,−2 standard deviations is assigned to the value of zero. If solely the lower boundary of the
reference interval is known, −6 standard deviations is assigned to the value of 0 and the lower boundary
is assigned to be −2 standard deviations from the mean. The value −6 is chosen because to make sure
that the distance between the lower and the upper boundary is always 4 standard deviations.
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Normalization

Before the data can be used for modeling, all data needs to be normalized. This means the range of
values in each numerically valued variable is reduced to a standard range, i.e. [0,1]. Data normalization
deals with the problem of variables having di↵erent units and scales. It is done in order to mitigate the
potential bias of one variable with large numeric values dominating other variables having smaller values.

All variables are normalized using min-max-normalization. Min-max-normalization means that one lin-
early transforms real data values such that the minimum and the maximum of the transformed data take
certain values. In this study, the interval of 0 to 1 is chosen. The following formula is used:

xnew =
xold − xmin

xmax − xmin

Here xmin is the minimal and xmax is the maximal data value appearing in the data set. xnew denotes
the normalized value of the raw value xold. The min?max normalization method is commonly used in
engineering applications to normalize the data due to its linear transforming form (Milligan & Cooper,
1988).

3.1.4 Data reduction

Although large amounts of data are required to build accurate prediction models, too much data is also
a problem. Many clustering approaches work quite well in low dimensions, but especially the fuzzy c-
means algorithm, which is used in this study, seems to fail in high dimensions (Winkler, Klawonn &
Kruse, 2012). This problem is commonly called ‘the curse of dimensionality’, a term coined by Bellman
(1957) to describe the problem caused by the exponential increase in volume associated with adding
extra dimensions to Euclidean space. The absolute distance, and therefore the ability to discriminate,
between the nearest neighbor and the furthest data point diminishes as the dimensionality of the data
set increases (Beyer et al, 1999).

To avoid these problems, the dimensions of the data set should be reduced to a manageable size. This
could be accomplished by using feature extraction or feature selection. Feature extraction transforms the
data in the high-dimensional space to a space of fewer dimensions. This means that new variables are
created based on the combination of value of existing variables. The main linear technique for feature
extraction, principal component analysis, performs a linear mapping of the data to a lower-dimensional
space in such a way that the variance of the data in the low-dimensional representation is maximized. It
converts a set of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components. However, due to low correlations between the existing variables
that are used in this study, the number of principal components to be included for analysis is not much
less than the number of original variables. Therefore, a principal component analysis is not suitable as
data reduction method for this study.

Since feature extraction gives no good results, feature selection methods are used. Feature selection
approaches try to find a subset of the original variables without using any transformations or combining
features into one. This subset can consist variables chosen by a domain expert or by an algorithm. In
this study, both approaches are used.

The domain expert involved in feature selection is a clinical chemist of the Catharina hospital. Since the
existence of comorbidities and life style habits are reflected in the patient’s blood, he composed a subset
of variables that he expected to have predicted value based on univariate graphs of the possible input
variables and the output variable.

Another subset for modeling was chosen by an algorithm implemented in Matlab. Since there might be
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variables that (partly) measure the same thing, feature selection with a wrapper method is used because
it takes interaction between variables into account. Wrapper methods use a predictive model, in this
case a Takagi-Sugeno first-order fuzzy model, to score feature subsets. Each new subset is used to train
a model, which is tested on a hold-out set. Calculating the root mean squared error on that hold-out set
gives the score for that subset of features.

As feature selection method, sequential forward selection (SFS) is deployed. In this method features are
sequentially added to an empty candidate set until the addition of further features does not decrease the
root mean squared error of the model. In appendix H, the algorithm that is used is explained in more
detail.

Both feature sets selected by the domain expert and by the algorithm are used as input variables for fuzzy
modeling. Since the fuzzy model with the features selected by the algorithm performs best, this method
of selecting features is further investigated by using it to select features for a zero-order Takagi-Sugeno
fuzzy model. Therefore, feature selection is repeated, this time using a zero-order Takagi-Sugeno model
as wrapper method.

Besides these fuzzy models, also random forests have been developed. The random forest algorithm deals
with feature reduction internally. Therefore, the random forest will be grown on the complete data set.

3.2 Experimental set-up

3.2.1 Base model

At this moment, in the clinical practice of the Catharina hospital, no model is used that gives patient-
specific predictions for weight loss after bariatric surgery. Therefore, the percentage total weight loss
achieved by previously operated patients is used to give an indication of the percentage total weight loss
the new patient can expect to achieve. This mean percentage total weight loss is determined using a
training set (75%) and its usefulness is evaluated on a test set (25%). This model is used as the base
model in this study. All developed models will be compared with this base model.

3.2.2 Fuzzy modelling

In matlab, fuzzy inference systems can be created using the functions genfis1, genfis2 and genfis3. In this
study, genfis3 is used. Genfis3 generates a Takagi-Sugeno FIS using fuzzy c-means (FCM) clustering by
extracting set of rules that models the data behavior. Clustering techniques are used to divide instances
into natural groups, also called clusters. These clusters reflect some mechanism that is at work in the
domain from which instances are drawn, a mechanism that causes some instances to bear a stronger
resemblance to each other than they do to the remaining instances (Hall, Witten & Frank, 2011).

Fuzzy c-means clustering was developed by Dunn in 1973 and improved by Bezdek (1981) and is nowadays
one of the most widely used fuzzy clustering algorithms. The algorithm minimizes the following objective
function:

N#

i=1

C#

j=1

um
ij |xi − cj |2

where uij is the degree of membership of xi in cluster j, xi is the ith of d-dimensional measured data cj
is the d-dimension center of the cluster and |xi − cj | is the norm expressing the similarity between the
measured data and the cluster center. In this formula, C is the total number of clusters and N is the
total number of data instances.
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The fuzzy clustering is done by iterative optimization of the objective function. In each cycle, the
membership uij and the cluster center cj are updated by:

uij =
1

" C
k=1( |xi " cj |

|xi " ck | )
2

m ! 1

and

cj =

" N
i=1 um

ij ∗ xi
" N

i=1 um
ij

.

The process will stop when the absolute di↵erence in the outcome of the objective function between two
consecutive cycles is smaller than termination criterion ε. This procedure converges to a (local) minimum
or saddle point. When the clusters are determined, linear least squares estimation is used to determine
the coe�cients of the corresponding consequent equations.

To optimize the parameters of the model, Matlab’s function anfis is used. The adaptive neuro-fuzzy
inference system (ANFIS), also called the adaptive network-based fuzzy inference system, was introduced
by Jang and colleagues in 1997. ANFIS makes use of a hybrid-learning rule to optimize the fuzzy system
parameters of a Takagi-Sugeno system. The algorithm optimizes the parameters of a fuzzy inference
system by exploiting back propagation in combination with the least squares method.

First-order fuzzy inference system with feature set selected by domain expert

As explained in section 3.1.4, the clinical chemist who is involved in this study as domain expert selected
variables based on univariate graphs of the possible input variables and the output variable and his
experience. This variable set is used as input for a first order Takagi-Sugeno fuzzy inference system.
This system is generated using Matlab’s functions genfis3 and anfis. Since this fuzzy modeling approach
requires a complete data set, all patient records that have missing values in one of the variables required
for the model are left out of the analysis.

Before modeling, the data set is split in a training (75% of the data) and test (25%) set. The parameters
of the fuzzy model is optimized using tenfold cross-validation. The models is then trained using the
full training set and its performance is assessed using the unseen test set. Figure 3.2 summarizes this
procedure graphically.

First-order fuzzy inference system with feature set selected by algorithm

Another subset for fuzzy modeling was chosen by an algorithm implemented in Matlab. Since there
might be variables that (partly) measure the same thing, feature selection with a wrapper method is
used to avoid the selection of redundant variables (Phuong, Lin & Altman, 2006). Wrapper methods use
a predictive model, in this case a Takagi-Sugeno first-order fuzzy model, to score feature subsets. Each
new subset is used to train a model, which is tested on a hold-out set. Calculating the root mean squared
error on that hold-out set gives the score for that subset of features.

As feature selection method, sequential forward selection (SFS) is deployed. In this method features are
sequentially added to an empty candidate set until the addition of further features does not decrease the
root mean squared error of the model. In appendix H, the algorithm that is used is explained in more
detail. Since the feature selection algorithm employed in this study constructs fuzzy models, values for
all 141 included variables should be present.

After the ultimate variables are chosen, the data set that is used for creating the final model is expanded
with patient records initially left out, but complete for the selected variables. The data set is split in a
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Figure 3.2: Graphical overview of the experimental set-up for creating the fuzzy models.

training (75% of the data) and test (25%) set. It is made sure that patient records that were used for
feature selection are in the train set to guarantee a completely unseen test set. The final fuzzy model is
created using Matlab’s functions genfis3 and anfis. The model’s parameters are estimated using tenfold
cross-validation. Figure 3.2 gives an overview of this procedure.

Zero-order fuzzy inference system with feature set selected by algorithm

Also a zero-order fuzzy inference system with the feature set as selected by a computer algorithm is
created. This model is generated using a similar procedure as the one used for creating the first-order
model (as described in section 3.2.2). Of course, while creating the zero-order model, also zero-order
models were used in the wrapper of the feature selection algorithm.

3.2.3 Random forests

To grow both the random regression and the classification forest, the TreeBagger function of Matlab is
used. This function first grows many regression or classification decision trees on subspaces of the dataset
by calling the function fitrtree (for regression) or fitctree (for classification). Both functions implement
the CART algorithm (as explained in appendix A) and return an ensemble of binary trees where each
branching node is split based on the values of the input variables.

Both random forests are developed using the full data set (including variables with missing values). Just
like for the fuzzy models, the random forests are trained on 75% of the data, the remaining 25% is left
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as unseen test set to assess the performance of the resulting models.

When constructing the random forest, missing values are simply ignored when determining the optimal
split. Also feature selection is handled internally and based on variable importance. To estimate variable
importance, Matlab’s function OOBPermutedVarDeltaError is used. Computing this measure requires
several steps.

First, the out-of-bag error is computed. Each tree is constructed using a di↵erent bootstrap sample
from the original data and a random subset of features. About one-third of the patient records are left
out of the bootstrap sample and are not used in the construction of the tree. Each case left out in the
construction of this tree is used estimate the error of that three. In this way, a test set regression or
classification is obtained for each case in about one-third of the trees. These outcomes can be used to
calculate the overall error of the random forest. This internal error estimate is called the out-of-bag error.
A study of error estimates for bagged classifiers conducted by Breiman (1996) gives empirical evidence
that the out-of-bag estimate is as accurate as using a hold-out test set of the same size as the training
set.

After the out-of bag error is determined, the values of one variable are randomly mixed across all the
test set examples. Since this is just a permutation, this action does not alter the distribution of the
variable?s values. The out-of-bag error is then determined again. If this error is much higher than before,
this indicates the variable is important for prediction; the original values for these features lead to better
predictions than if their values were randomly assigned. This measure is computed for every tree, then
averaged over the entire ensemble and divided by the standard deviation over the entire ensemble. In this
way, the Z-score indicating the importance of a feature is obtained, which makes it possible to compare
the importance among all input variables.

The function OOBPermutedVarDeltaError stores these Z-scores that can be used to compare the contri-
bution of each variable.The larger this value, the more important the variable is for predicting the weight
loss. To reduce the number of necessary variables to predict the weight loss for new patients, all variables
that have a importance that is ≤ 0.0 are initially left out for analysis. These variables do negatively
contribute to the performance of the model and can therefore be regarded as noise. Then, one-by-one
the least important variable is dropped and each time the error of the resulting model is computed. This
process is iterated until omitting an extra variable from the data set no longer results in decrease in the
model’s error but increases it, which means the model is fitted to noise.

When training a regression forest, the minimum leaf sizes of the regression trees underlying the random
forest should be determined. The optimal leaf size is determined by comparing mean squared errors
obtained by regression for various leaf sizes. The Matlab function oobError computes MSE versus the
number of grown trees. The leaf size that results in the model with the lowest MSE is chosen for the
final model.

Since average performing patients are overrepresented in the data set, the data set is balanced before
training the random classification forest. To do this, the data set is split in three groups: the low, average
and high performing patients. Low performing patients lose less than µ − σ percentage of their initial
weight. Patient are labeled as a high performing patients when they lost more than µ + σ percentage of
their pre-surgical weight. All other patients are classified as being average performers.

However, to be able to assess he performance of the random forest on data with the original patient
distribution, the data set is first split in a train (75%) and test set (25%). The train set is balanced
by selecting a random sample containing the records of 220 low, 220 average and 227 high performing
patients.

To predict the weight loss for new bariatric patients from an input vector, the input vector is put down
each of the separate trees in the forest and each tree gives its outcome. For random regression forests, these
outcomes are then averaged and this gives the overall prediction for the weight loss. For classification
problems, each decision tree in the forest ‘votes’ for a certain classification label. The label with the
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majority of the votes is then assigned to the patient.

If the input vector contains a missing value for a variable on which a split is based, a surrogate split is
used. For each split in every decision tree, surrogate splits are determined when training the model. A
surrogate split is an alternative to the optimal decision split and uses another predictor variable. It is
imposed in such a way that it divides the data in groups similar to those made by the primary split.

3.3 Evaluation of the models

Performance measures for regression models are based on errors of the model, naturally defined as the
di↵erence between the predicted and the actual value of the target. Based on the errors, two metrics will
be calculated for each of the models: the (root) mean squared error ((R)MSE) and the mean absolute
error (MAE).

While both the MSE and the MAE use the same input (namely the model’s errors), both metrics give
di↵erent information about the performance of the model. The MAE favors general accuracy at the
expense of occasional wide misses since it gives the same weight to all errors; the (R)MSE penalizes
variance as it gives errors with larger absolute values more weight than errors with smaller absolute
values and therefore favors less overall accuracy as the price to reduce the likelihood of wide misses. The
RMSE is by definition never smaller than the MAE. By comparing the RMSE and the MAE, it can be
determined whether the forecast contains large but infrequent errors. The larger the di↵erence between
the RMSE and the MAE, the more inconsistent the error size.

The distribution of the errors of the regression models are compared with that of the base model. This
is done by conducting independent two-sample t-tests, F-tests of equality of variances and Kolmogorov-
Smirnov tests. These tests are explained in more detailed in section 2.4.1.

The classification model’s performance is evaluated using metrics based on the confusion matrix. The
classification accuracy, kappa-statistic and precision and recall are calculated. More information about
these metrics can be found in section 2.4.2.
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Chapter 4

Results

In this chapter, the actual model building and the resulting models are discussed. The models are
developed using the methods as described in chapter 3. However, before training the models, a closer
look is taken at the underlying data.

4.1 The data

Before using data for modeling purposes, the researcher should have a basic understanding of its content.
This section aims to provide insight into the data by giving descriptive statistics of several key variables
and using simple statistical tests and visualizations to explore the univariate relationship between input
variables and the output variable, percentage total weight loss one year after surgery. The tests are
performed in Matlab R2016A. Although these analyses may show no significant relationships between
the variables and the output variable, there might exist multivariate relationships. Therefore, all variables
will later be used for modeling purposes.

4.1.1 General patient and surgery data

Age at the time of surgery

The data set contains information about 1968 patients in the range of 18 to 68 years old with a median
age of 42.8 years old (µ = 42.0 years old, σ = 11.3 years). The frequencies of the patient’s ages are
plotted in figure 4.1. Since obese children are not treated in the Catharina hospital, the data set contains
no data from minors. Guidelines drawn up by the Dutch Society for Surgery (2011) suggest that bariatric
surgery for elderly (>65 years old) should only be considered in extreme cases, because of the increased
risk of complications and mortality. This explains the low amount of elderly patients in the data set.

Figure 4.2 shows the relation of patients’ ages on weight loss in a scatterplot. According to Sugerman
and colleagues (2004) older patients tend to lose less weight than younger patients. They suggest that
this could be due to impaired ambulation and physical activity in older patients, which would preclude
an adequate response to bariatric surgery. Although not very clear due to the larger variance in the data,
this e↵ect can be observed in figure 4.2. A least square regression line is added to elucidate this trend.
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Figure 4.1: Frequencies of the patient’s age (with
median as reference line).

Figure 4.2: Scatterplot of age at time of surgery
against weight loss achieved after one year.

Surgery type

In the Catharina Hospital, two types of bariatric surgery are performed: the gastric bypass procedure
(47.2%) and sleeve gastrectomy (52.8%). Sleeve gastrectomy is often used as a first step to lower the
weight of very heavy patients (BMI >50 kg/m2). Those patients can later decide to undergo more
complex surgeries such as the gastric bypass procedure. Patients with specific medical conditions that
hamper them from choosing complicated operations may opt for gastric sleeve surgery as a standalone
procedure. In this study, only primary surgeries are taken into account. More information about the
gastric sleeve and gastric bypass procedure can be found in section 2.1.3. Boxplots of the weight losses
achieved one year after surgery for both surgery types are given in figure 4.3.

An independent t-test was conducted to determine if a di↵erence exists between the mean percentage
total weight loss in kilograms a year after bariatric surgery for both procedures. There is a statistical
significant di↵erence (t(1966) = 5.4, p = 0.00) between the weight loss of patients who underwent gastric
bypass surgery (µ = 32.1 %, σ = 8.8 %) and of patients who underwent sleeve gastrectomy surgery
(µ = 29.9 %, σ = 9.1 %). These results do not seem to comply with those found in previous studies. For
example, Karamanakos and colleagues (2008) reported that the gastric bypass group lost on average 40.0
kg (σ = 8.3 kg) 12 months after the operation and the gastric sleeve group lost 43.6 kg (σ = 11.7 kg).
Although they did find a di↵erence in weight loss for the procedures, this di↵erence was not significant
(p = 0.322). This deviation in results can be caused by the di↵erent outcome measures used (absolute
vs. percentage total weight loss).

Gender

The data set contains the patient records of 441 male (22.4%) and 1527 female (77.6%) patients. Similar
gender ratios were found in other study populations (see for example Sjöström et al., 2007; Buchwald et
al., 2007; Carbonell et al., 2005). The initial BMI of male patients (µ = 43.6 kg/m2, σ = 8.9 kg/m2) does
not significantly di↵er (t(1966)=0.16, p=0.88) from that of female patients (µ = 43.6 kg/m2, σ = 9.3
kg/m2).

An independent t-test shows there exists a significant di↵erence (t(1966) = 2.9, p = 0.00) between the
percentage total weight loss for males (µ = 29.8 %, σ = 9.3 %) and females (µ = 31.2 %, σ = 9.0 kg).
Boxplots of the weight losses achieved one year after surgery for both males and females are given in
figure 4.4.
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Figure 4.3: Boxplot of the weight losses achieved
one year after surgery for gastric bypass procedure
and sleeve gastrectomy.

Figure 4.4: Boxplot of the weight losses achieved
one year after surgery for male and female patients.

4.1.2 Physiological data

Pre-operative BMI

The mean body mass index (BMI) of bariatric patients before surgery is 43.6 kg/m2 (σ = 5.7, median
42.4 kg/m2). Figure 4.5 shows a histogram with the frequencies of di↵erent levels of pre-operative BMI.
The red reference line in the figure indicates the median BMI. The lowest BMI measured pre-operatively
is 32.2 kg/m2. This is remarkable, since patients should only be eligible for bariatric surgery if their BMI
exceeds 35 kg/m2 with the existence of comorbidities, or 40 kg/m2 without comorbidities. The highest
BMI measured is 72.3 kg/m2.

Livhits and colleagues (2011) preformed a literature study and found that 37 out of 62 studies report a
negative relation between weight loss and pre-operative BMI. Their meta-analysis revealed that super-
obese bariatric patients (BMI >50 kg/m2) on average lose 10.1% excess weight loss less than other
patients. This relationship is not observed in figure 4.6, in which the red line indicates the least squares
regression line. Scatterplots of the maximum weight ever recorded and pre-operative weight in relation
to the percentage total weight loss after one year can be found in appendix G. These scatterplots look
very similar to the one in figure 4.6.

Other physiological variables

The mean values, standard deviations and medians of other physiological variables can be found in
table 4.1. Scatterplots for these variables can be found in appendix G. The scatterplots show no clear
relation.

The waist circumference gives an indication of the body fat distribution of the patient. According to
Jensen (2008), the known major environmental factors that a↵ect body fat distribution include alcohol
intake, cigarette smoking and the timing of onset of childhood obesity. In addition, genetic factors seem
to play an important role in regional fat gain and loss. A patient with a relatively large waist circumfer-
ence will have a predominantly upper body fat distribution, which is associated with increased visceral
fat. This kind of fat has been related with excess free fatty acid availability, which can lead to metabolic
abnormalities such as dyslipidemia, hypertension, type 2 diabetes and sleep apnea (Jensen, 2008). There-
fore, waist circumference might a↵ect the percentage weight loss through multivariate relationships, even
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Figure 4.5: Histogram of pre-operative BMI with
median as reference line.

Figure 4.6: Scatterplot of pre-operative BMI and
weight loss after one year.

Table 4.1: Minimum, Maximum, mean, standard deviation and median of the variables heart rate, blood
pressure and waist circumference.

Min. Max. Mean St. dev Median
Heart rate 52 bpm 122 bpm 76 bpm 12 bpm 72 bpm
Blood pressure

Diastolic blood pressure 48 mmHg 134 mmHg 84 mmHg 10 mmHg 85 mmHg
Systolic blood pressure 90 mmHg 210 mmHg 139 mmHg 18 mmHg 140 mmHg

Waist circumference 93 cm 200 cm 128 cm 14 cm 126 cm

though waist circumference alone seems not to explain the variance in percentage total weight loss.

4.1.3 Quality of life data

The quality of life of patients is measured pre-operatively by means of the BAROS score. The BAROS
score consists of five components: self-esteem, physical activity, sexual activity, social life and work
conditions. The scores for these components are shown in scatterplots in appendix D. None of the
BAROS components shows a clear univariate relationship with the percentage weight loss one year after
surgery. A multiple linear regression was calculated to predict the percentage weight loss based on the five
components of the BAROS score together. No significant regression equation was found (F (5, 1424) =
0.81, R2 = 0.135, R2

Adjusted = 0.012), meaning that the combined five BAROS score components alone
do not explain a significant amount of the variance in the achieved percentage total weight loss after one
year.

Another survey used to measure quality of life is the RAND-36 questionnaire. Unlike the BAROS score
which is only used for determining quality of life in the field of bariatrics, the RAND-36 covers the whole
area of health and is not aimed at specific illnesses. The RAND-36 consists of 36 questions measuring 8
items: physical functioning, social functioning, role limitations due to physical problems, role limitations
due to emotional problems, mental health, pain, general health perception and health changes (over
the last year). Using a multiple linear regression, none of the items seem to contribute to explaining the
variance in the achieved percentage total weight loss one year after surgery (F (9, 1337) = 1.42, R2 = 0.01,
R2

Adjusted = 0.00). The descriptive statistics and the output for the regression analysis are summarized
in table 4.3.
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Table 4.2: Output for linear regression with percentage weight loss as dependent and the BAROS scores
as independent variables.

Model Coe!cient esti-
mate

Std. dev. t-statistic Sig.

(Constant) 31.79 0.71 45.1 0.000
Self-esteem score 0.00 0.13 0.0 0.98
Physical score 0.04 0.16 0.2 0.81
Sexual score -0.18 0.11 -1.6 0.11
Social score -0.01 0.12 -0.1 0.94
Work score 0.00 0.12 0.0 0.98

Table 4.3: Descriptive statistics of RAND-36 items & summary regression results.

Descriptive Statistics Regression model
N Min. Max. Mean Std. dev. Coe!cient estimate Std. dev. t-statistic Sig.

(Constant) 29.63 1.39 21.3 0.00
General health perception 1358 1 23 12 3.7 0.10 0.07 1.3 0.18
Mental health 1357 2 30 21 4.7 -0.01 0.07 -0.1 0.89
Health changes 1356 0 5 2 0.9 -0.01 0.28 0.0 0.97
Emotional role limitations 1353 0 6 5 1.3 0.41 0.22 1.8 0.07
Physical role limitations 1356 0 8 5 1.6 -0.18 0.19 -0.9 0.35
Pain 1358 0 60 37 13.0 0.01 0.02 0.5 0.63
Vitality 1358 3 24 12 3.6 -0.15 0.09 -1.7 0.10
Physical functioning 1359 2 30 19 4.6 -0.02 0.07 -0.3 0.80
Social functioning 1359 0 10 6 2.1 0.22 0.16 1.3 0.18

4.1.4 Comorbidities

Surgery induced weight loss has positive e↵ects on comorbidities such as diabetes (type 2), hypertension
and dyslipidemia (Noria & Grantcharov, 2013). At the same time, the existence of comorbidities might
a↵ect the achieved weight loss after surgery. Several independent t-tests were performed to test this
hypothesis. These t-tests indicate that patients who su↵er from diabetes, hypertension, dyslipidemia and/
or sleep apneas on average loose less weight than patients who do not su↵er from these comorbidities.
The results of the conducted t-tests can be found in table 4.4. Figure 4.7 shows boxplots of the achieved
percentage total weight loss for patients su↵ering from certain comorbidities.

4.1.5 Lab results

For all patients who will undergo bariatric surgery, a standard lab panel is ordered to assess the patient’s
health status and monitor organ functions. The (standardized) results of these test are included for
analysis. In appendix F, scatterplots are displayed to show the relations between the results of the tests

Table 4.4: Outcomes of the independent t-test for the comorbidity variables.

N Mean St. dev. Min. Max. t-statistic Sig.
Diabetes No 1589 31.5% 8.9% -16.9% 71.4% 6.1784 0.00

Yes 379 28.3% 9.3% 0.2% 69.4%
Hypertension No 1275 31.4% 9.1% -16.9% 71.4% 3.4485 0.00

Yes 693 30.0% 8.9% 0.0% 69.4%
Dyslipidemia No 1606 31.3% 8.9% -16.9% 71.4% 3.9799 0.00

Yes 362 29.2% 9.5% 5.2% 69.4%
OSAS No 1691 31.2% 9.0% -16.9% 71.4% 3.4189 0.00

Yes 277 29.2% 9.2% 0.2% 54.7%
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Figure 4.7: Boxplots of weight loss for patients with or without diabetes, hypertension, dyslipidemia and
sleep apneas. Patient with one of these comorbidities tend to lose significantly less weight.

and the patient’s percentage weight loss one year after surgery. Note that the outcomes are standardized
to their Z-score (for more information, see section 3.1.3) so that the values on the x-axis now represent
the deviation from the mean of the reference population. To make trends more visible, the median is also
displayed in these graphs.

It is worth noting that some lab outcomes (for example the outcomes indicating the patients’ LDL-
cholesterol levels as shown in figure 4.8) are almost completely outside the reference range (which is
between -2 and +2). This indicates that the blood levels found in the bariatric population substantially
di↵er from those found in the reference population.

4.1.6 Life style

The data set contains data about 425 smokers (21.6%) and 1543 non-smokers (78.4%). This information
is self-reported and no distinction is made by how much and how long the patient smokes. Patients who
reported to have quit smoking in the past are registered as non-smokers. An independent t-test reveals
that the di↵erences in weight loss one year after surgery between smokers (µ = 31.9 %, σ = 9.7 %) and
non-smokers (µ = 30.6%, σ = 8.9%) is significant (t(1966) = −2.5, p = 0.01). Boxplots showing the
distribution of the percentage total weight loss for smokers and non-smokers are displayed in figure 4.9.

In the data set, 178 patients (9.1%) report to drink three units of alcohol or more a day and 1790 patient
(90.1%) do not. The di↵erence in weight loss between non-drinkers (µ = 30.9%, σ = 9.1 %) and drinkers
(µ = 31.1%, σ = 8.6%) is not significant (t(1966) = −0.26, p = 0.79). The distribution of the percentage
total weight loss for both patient groups is displayed in figure 4.10.
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Figure 4.8: Scatterplot of the standardized values for LDL-cholesterol. The LDL-cholesterol levels for
bariatric patients are almost completely outside the reference range (which is between -2 and +2).

Figure 4.9: Boxplot of the percentage weight
losses achieved one year after surgery non-
smokers and smokers.

Figure 4.10: Boxplot of the percentage weight
losses achieved one year after surgery for pa-
tients drinking less and more than 3 units of
alcohol per day.
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4.2 Base model

To determine the base model, the data set was split in a train and test set using a 25% hold-out. Patients
in both the train and test set lost on average 30.9% (st. dev. 9.1%, 95% CI 12.7%-49.1%) of their
pre-operative weight after surgery. Using the average weight loss of the train set as the predicted weight
loss for the patients in the test set results in a mean absolute error (MAE) of 7.3 and a root mean squared
error of 9.1 percentage points. The distribution of the errors is displayed in figure 4.11. The median error
is indicated by the red line in the figure.

4.3 Fuzzy models

4.3.1 First-order domain expert

Feature selection

The domain expert involved in feature selection is a clinical chemist of the Catharina hospital. Since the
existence of comorbidities and life style habits are reflected in the patient’s blood, he composed, based
on univariate graphs of the possible input variables and the output variable (see appendix F), a subset
consisting of the following 15 lab results:

1. ASAT
2. Vitamin B6
3. Creatinine
4. MCH
5. Glucose

6. Urea
7. CKD-EPI
8. Calcium
9. HDL-cholesterol

10. LDL-cholesterol

11. HbA1c
12. Parathormone
13. Ferritin
14. Vitamin B1
15. HbA1c/Insulin ratio

These 15 variables will be given as input to genfis3 and anfis to build a Takagi-Sugeno fuzzy model that
predicts the percentage total weight loss for new patients undergoing bariatric surgery. Only the data of
patients with all these variables measured are used (n=1734). As mentioned before, 75% of these patient
records are used for training the model, the remaining patient records will be used to assess the quality
of the developed model.

Parameter estimation

Using tenfold cross-validation, the optimal number of clusters was determined. Models with 2 to 20
clusters were considered and evaluated based on their root mean squared error. The model containing 2
clusters had the lowest error and was therefore selected. The consequences of the rules are as following:

• Cluster 1: Weight loss (in %) = -14.61 * ASAT + -0.80 * Vitamin B6 + 90.63 * Creatinine +
-3.90 * MCH + 12.47 * Glucose + 6.64 * Urea + 17.44 * CKD-EPI + -5.35 * Calcium + 4.84 *
HDL-cholesterol + -0.43 * LDL-cholesterol + -16.91 * HbA1c + 4.42 * Parathormone + -2.90 *
Ferritin + 0.44 * Vitamin B1 + 1.83 * HbA1c

Insulin + 20.38
• Cluster 2: Weight loss (in %) = 7.57 * ASAT + 8.60 * Vitamin B6 + -31.27 * Creatinine + -11.02

* MCH + -9.00 * Glucose + -17.75 * Urea + -2.75 * CKD-EPI + 3.49 * Calcium + -1.26 * HDL-
cholesterol + 12.62 * LDL-cholesterol + 11.44 * HbA1c + 9.31 * Parathormone + 1.97 * Ferritin
+ 21.43 * Vitamin B1 + -47.93 * HbA1c

Insulin + 43.55
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Figure 4.11: The distribution of errors when employing the base model on a 25% test set. The red line
indicates the median error of 0.2%.

The consequences of the fuzzy model show that direction of the relationships of the variables often di↵ers
for the two clusters. To use these formulae to calculate the expected total weight loss of new patients,
the outcomes of their lab tests should be filled in after standardizing them as explained in section 3.1.3.

The membership functions of this model can be found in figure 4.12 and 4.13. As can be observed in
these graphs, the membership functions of this model are overlapping. This means no clear clusters are
distinguished.

Evaluation of performance

The first-order Takagi-Sugeno fuzzy model using the input variables as selected by the domain expert has
a RMSE of 8.8 and a MAE of 6.9 percentage points. The scatterplot in figure 4.14 shows the di↵erences in
the predicted and the actual weight loss. In this graph it is observable that the variance in the predicted
%TWL is notably smaller than the % achieved in reality. Both the distributions of the errors of the
first-order fuzzy model based on the domain expert’s knowledge (µ=0.6 percentage points, st. dev. = 9.0
percentage points, 95% CI -17.4% - 18.6%) and the base model (µ=0.6 percentage points, st. dev. = 8.8
percentage points, 95% CI -17.0% - 18.2%) are graphed in figure 4.15 and 4.16. An independent t-test
on the prediction errors of the test set shows that the di↵erence in the mean is not significant (p = 0.96,
t = −0.05)). Also, the variances in the prediction errors do not di↵er significantly (p = 0.67, F = 0.97).
The errors of both models seem to follow a similar distribution. To test this, the K-S test is conducted on
the prediction errors of the test set. This test shows the di↵erence is not significant (p = 0.98, D = 0.03)).
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Figure 4.12: Part 1/2: The membership functions for the input variables of the first-order Takagi-Sugeno
fuzzy model based on the domain expert’s knowledge. The blue lines indicate the membership functions
for cluster 1, the orange lines for cluster 2.
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Figure 4.13: Part 2/2: The membership functions for the input variables of the first-order Takagi-Sugeno
fuzzy model based on the domain expert’s knowledge. The blue lines indicate the membership functions
for cluster 1, the orange lines for cluster 2.
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Figure 4.14: Scatterplot of the actual achieved against the predicted weight loss for the first-order Takagi-
Sugeno fuzzy model with variables as picked by the domain expert.

Figure 4.15: The distribution of errors of the
first-order Takagi-Sugeno fuzzy model based on
the domain expert’s knowledge and the base
model as measured on a 25% hold-out test set.

Figure 4.16: Boxplots of the errors of the first-
order Takagi-Sugeno fuzzy model based on the
domain expert’s knowledge and the base model
as measured on a 25% hold-out test set.
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Figure 4.17: The fuzzy goals ’most records retained’ and ’most variables allowed’. The optimal threshold
is the point where the intersection of the two fuzzy goals has its maximum membership. For this study
this intersection lies at # NaNs = 417 as indicated by the grey line.

4.3.2 First-order algorithm

Feature selection

As explained in section 3.1.2, the method as proposed by Setnes and Kaymak is used to determine which
variables are included for feature selection. Both fuzzy goals for this data set are plotted in figure 4.17.
Using this method, some of the variables the domain experts labeled as variables that should be included
would be left out for analysis. This mainly concerns variables measuring the patient’s quality of life. To
avoid this, the limit for inclusion was relocated to include those variables. The data set then contains
834 patient records and 144 input variables. A complete list of the variables and their percentage of
missingness is given in appendix E. The line drawn in this appendix and in figure 4.17 indicates the
inclusion threshold.

From this list, the stepwise forward feature selection algorithm chose six features to be included as input
for the first-order fuzzy model:

1. Surgery type
2. Hypertension
3. Diabetes

4. Self-esteem score (BAROS)
5. CRP
6. CKD-EPI

These six variables will be given as input to genfis3 and anfis to build a Takagi-Sugeno fuzzy model that
predicts the percentage weight loss for new patients undergoing bariatric surgery. These variables are all
measured for 1496 patients. Again, 75% of these patient records will be used for training and 25% will
be used to measure the performance of the created model.
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Figure 4.18: The membership functions for the input variables of the first-order Takagi-Sugeno fuzzy
model.

Parameter estimation

Again, the optimal number of clusters was identified building 19 models, with the number of clusters
varying from 2 to 20. The outcomes of this procedure were validated using tenfold cross-validation and
evaluated based on their root mean squared error. The model that identifies two clusters showed the best
performance. When training a first-order fuzzy model with two clusters, the consequences of the rules
are as following:

• Cluster 1: Weight loss (in %) = 0.25 * Surgery type + -0.61 * Hypertension + -8.31 * Diabetes +
21.04 * Self-esteem score + -6.82 * CRP + -10.6 * CKD-EPI + 32.97

• Cluster 2: Weight loss (in %) = -4.77 * Surgery type + 0.01 * Hypertension + 3.08 * Diabetes +
-15.00 * Self-esteem score + 24.13 * CRP + 8.72 * CKD-EPI + 27.23

In these consequences surgery type should be substituted by 1 if a gastric bypass and by 0 if a sleeve
gastrectomy will performed on the patient. Hypertension and diabetes should by substituted by 1 if
the patient su↵ers from (one of these) diseases. The variable ’Self-esteem score’ should be measured
using the RAND-36 questionnaire. The outcomes of the lab tests should be standardized as explained in
section 3.1.3.

Again, the consequences of the fuzzy model show that direction of the relationships of the variables often
di↵ers for the two clusters. The membership functions for the six input variables are shown in figure 4.18.
As can be observed in these graphs, the membership functions of this model are highly overlapping. Only
the membership functions for the variable ’Diabetes’ di↵ers for the two clusters.

Evaluation of performance

The second first-order Takagi-Sugeno model was build using variables as selected by sequential feature
selection. This model has a RMSE of 8.5 and a MAE of 6.7 percentage points. The scatterplot in
figure 4.19 shows the di↵erences in the predicted and the actual weight loss. Again, the variance in the
predicted values is smaller than the variance in the real-world values.
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Figure 4.19: Scatterplot of the actual achieved against the predicted weight loss for the first-order Takagi-
Sugeno fuzzy model with variables as selected by sequential feature selection.

Figure 4.20: The distribution of errors of the
first-order Takagi-Sugeno fuzzy model and the
base model as measured on a 25% hold-out test
set.

Figure 4.21: Boxplots of the errors of the first-
order Takagi-Sugeno fuzzy model and the base
model as measured on a 25% hold-out test set.

A distribution of the errors of fuzzy model and the base model are depicted in figure 4.20 and 4.21. The
first order fuzzy model has a mean error of 0.9% (st. dev. 8.4%), whereas the base model has a mean
error of 0.9% (st. dev. 8.6%). The t-test (p = 0.97, t = −0.03) and F-test (p = 0.0.69, F = 1.04) show
the di↵erence in these numbers are not significant. According to the results of a K-S test, the errors of
the fuzzy and the base model follow the same distribution (p = 0.83, D = 0.05).
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Figure 4.22: The membership functions for the input variables of the zero-order Takagi-Sugeno fuzzy
model.

4.3.3 Zero-order algorithm

Feature selection

Also a zero-order Takagi-Sugeno model is generated. The feature selection was performed on the same
set as used for feature selection for the zero-order fuzzy model. The following features were chosen by
the SFS algorithm for the creation of this model:

1. Hemoglobine A1c (HbA1c)
2. LDL-cholesterol
3. Role limitations due to emotional problems (RAND-36)
4. Sodium

These variables were all complete for 1311 patients. The records of these patients will be used to train
(75%) and test (25%) the zero-order fuzzy model.

Parameter estimation

This model performs optimal when it identifies two clusters. The consequences of the model are as
follows:

• Cluster 1: Weight loss (in %) = 37.40

• Cluster 2: Weight loss (in %) = 27.36

The membership functions for this zero-order model are displayed in figure 4.22. This figure shows that
the membership functions of this model show less overlap than those of the previous developed models.
Therefore, it can be concluded that the zero-order fuzzy model performs better at distinguishing separated
clusters than the first-order models. The consequences of the zero-order model di↵er considerably and
therefore this model seems to di↵erentiate two separate patient groups.
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Figure 4.23: Scatterplot of the actual achieved against the predicted weight loss (as predicted by the
zero-order Takagi-Sugeno fuzzy model).

Evaluation of performance

The third fuzzy model is the zero-order Takagi-Sugeno model. This model has a RMSE of 8.9 and a
MAE of 7.1 percentage points. Figure 4.23 shows the di↵erences in the predicted and the actual weight
loss for patient records in the test set and again the real values show greater variance than the predicted
% TWL values. A histogram and boxplot of the errors are displayed in figure 4.24 and 4.25. The means
of the errors of the base model (µ=0.9 percentage points, st. dev. = 8.6 percentage points) and the
zero-order fuzzy model (µ=1.3 percentage points, st. dev. = 8.8 percentage points) do not significantly
di↵er (p = 0.85, t = 0.19). The same holds true for the variances of to models (p = 0.90, F = 1.01).
Also, the distribution of the errors of the base model and the fuzzy model appears to be the same when
conducting a K-S test (p = 1.00, D = 0.03).
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Figure 4.24: The distribution of errors of the
zero-order Takagi-Sugeno fuzzy model and the
base model as measured on a 25% hold-out test
set.

Figure 4.25: Boxplots of the errors of the zero-
order Takagi-Sugeno fuzzy model based on the
domain expert’s knowledge and the base model
as measured on a 25% hold-out test set.
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Figure 4.26: The mean squared errors for di↵erent leaf sizes for the random forest. The light blue curve
(leaf size = 20) yields the lowest MSE values.

4.4 Random forests

4.4.1 Random regression forest

Feature selection and parameter estimation

First, the minimum leaf sizes of the regression trees underlying the random forest should be determined.
The optimal leaf size is determined by comparing mean squared errors obtained by regression for var-
ious leaf sizes. The Matlab function oobError computes MSE versus the number of grown trees. This
procedures shows that the best results are obtained when the leaf size is equal to 20 as can be seen in
figure 4.26.

Now that the optimal leaf size is estimated, a large ensemble with 2000 trees is grown to estimate variable
importance. In general, the more trees in a forest, the better the forest’s performance. However, the
improvement per tree added decreases as the number of trees increases, i.e. at a certain point, the benefit
in prediction performance from learning more trees is lower than the cost in computation time for learning
these additional trees.

The following variables are selected using Matlab’s function OOBPermutedVarDeltaError (as discussed
in section 3.2.3) and then used for growing the final random forest model with 2000 trees:

1. Age (at time of surgery)
2. Surgery type
3. BMI
4. Maximum weight
5. Waist circumference
6. Diabetes

7. Cholesterol
8. Erythrocytes
9. Glucose

10. Hemoglobine A1c (HbA1c)
11. LDL-cholesterol
12. CKD-EPI

The importance of these variables in the final random forest is depicted in figure 4.27. From this graph, it
can be concluded that surgery type, age and renal function (CKD-EPI) give the most information when
predicting the percentage total weight loss a year after surgery.
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Figure 4.27: The importance of the used variables in the random regression forest.

Evaluation of performance

The random regression forest has a RMSE of 8.4 and an MAE of 6.7 percentage points. A distribution of
the errors of the random forest and the base model is displayed in figure 4.29 and 4.30. The di↵erences
between the average error of the models is assessed using an independent t-test. This test shows that the
performance of the random regression forest (having a mean error of 0.8% with a standard deviation of
8.4%) does not significantly di↵er (p = 0.13, t = −1.52) from the performance of the base model (with
a mean of 0.0% and a standard deviation of 8.7%). Also the F-test has non-significant results(p = 0.71,
F = 1.03), meaning that the standard deviations of the errors do not di↵er. A K-S test shows that the
distribution of the errors of the random regression forest is not significantly di↵erent (p = 0.27, D = 0.06
from that of the base model.

4.4.2 Random classification forest

Feature selection and parameter estimation

Since none of the regression models perform better than the base model, a new approach is taken. The
data set is split in three groups: the low, average and high performing patients. Low performing patients
(n=294) lose less than µ − σ (= 21.85) percentage of their initial weight. Patient are labeled as a high
performing patients (n=298) when they lost more than µ + σ (= 39.97) percentage of their pre-surgical
weight. All other patients are classified as being average performers (n=1367). A visual representation
of this split is given in figure 4.31.

Since average performing patients are overrepresented in the data set, the data set is balanced before
training the random classification forest. However, to be able to assess he performance of the random
forest on data with the original patient distribution, the data set is first split in a train (75%) and test
set (25%). The train set is balanced by selecting a random sample containing the records of 220 low, 220
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Figure 4.28: Scatterplot of the actual achieved against the predicted weight loss as predicted by the
random regression forest.

Figure 4.29: Histogram of the distribution of
errors of the random forest (with 2000 trees)
and the base model.

Figure 4.30: Boxplot of the distribution of er-
rors of the random forest (with 2000 trees) and
the base model.
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Figure 4.31: Histogram of the achieved percentages weight loss one year after surgery. The red lines split
the data set in three sub sets: the low, average and high performing patients.

average and 227 high performing patients.

Again, Matlab’s function ‘TreeBagger’ is used to construct a random forest. This time the method
‘classification’ is chosen and a forest of 2000 trees is grown. The following 16 variables are chosen for
model building based on their importance:

1. Age (at time of
surgery)

2. BMI
3. Maximum weight
4. Diabetes

5. Dyslipidemia
6. C-peptide
7. CRP
8. Erytrocytes
9. Glucose

10. Hematocrit
11. Hemoglobine
12. HbA1c
13. Triglycerides
14. Urea

15. Vitamin A
16. CKD-EPI

The importance of these variables in the final random forest is depicted in figure 4.32.

The random forest consists of a large number of deep trees, where each tree is trained on bagged data
using random selection of features. This makes that gaining a full understanding of the decision process
by examining each individual tree is infeasible. Even examining just a single tree is only feasible in the
case where it has a small depth and low number of features. A tree with a depth of ten can already have
thousands of nodes, meaning that using it as an explanatory model is almost impossible. To give an idea
how the trees underlying the random forest could look like, a single decision tree is trained. A minimum
leaf size of 20 cases is imposed to limit the depth of the tree and make it interpretable. A graphical
representation of the resulting decision tree can be found in appendix J.

Evaluation of performance

To evaluate the performance of the random classification forest, its confusion matrix (as shown in ta-
ble 4.5) is computed using the test set. From this confusion matrix it becomes apparent that model
classifies 61.6% of the patient records into the right category. The kappa of this model equals 41.22%.
The recall and precision per category are shown in table 4.6. From this table it becomes clear that
the model tends to classify average performing patients as low or high performing patients too often.
However, it is striking that patients that are classified as low performers almost never turn out to be high
performers. Also the opposite is true: patients classified as high performers almost never lose less than
µ − σ kilograms. This makes the model potentially useful for detecting patients who are likely to lose
little or a lot of percentage total weight loss.
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Figure 4.32: The importance of the used variables in the random classification forest.

Table 4.5: Confusion matrix for the random classification forest.

Predicted
Low Average High Sum

A
ct

u
a

l Low 63 6 5 74
Average 60 170 117 347
High 1 0 70 71
Sum 124 176 192 492

Table 4.6: Performance indicators of the random classification forest.

Performance Recall Precision
Low 85.1% 50.8%
Average 49.0% 96.6%
High 98.6% 36.5%
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4.5 Summary of the models

In table 4.7 the performance metrics of the developed regression models are summarized. Table 4.8
summarizes the outcomes of the statistical test performed on the error rates of these models. Since the
claasifaication model is evaluated using di↵erent performance metrics, only regression models are included
in this overview. These tables show that none of the regression models performs statistically better than
the base model. However, all these models perform better in absolute terms.

For all of the developed models, a di↵erent set of input variables were used. An overview of the variables
that are used for each model can be found in appendix K. Since the fuzzy modeling technique used in
this study requires complete data sets and di↵erent models use di↵erent input variables, di↵erent sets of
patient records are used to train the models. The used data subsets are assumed to be representative for
the bariatric population of the Catharina Hospital. However, this assumptions does not hold necessarily.
In appendix I it is shown that, when the mean of several demographic variables of the subsets are
compared with those of the whole data set, some significant di↵erences exist. These di↵erences are
revealed by conducting independent t-tests. The violation of this assumption may lead to models that do
not perform optimal on data from the complete data set. Especially the subset used for feature selection
seems to di↵er from the complete data set. This could lead to impaired performance of the models trained
with features selected based on this set.

Table 4.7: Summary of the performance of the generated regression models.

Model # Patient records RMSE MAE
(in percentage points) (in percentage points)

Base model 1968 (1476 train) 9.1 7.3
Zero-order FIS 1311 (983 train) 8.6 7.1
First-order FIS 1496 (1122 train) 8.5 6.7
Expert-based first-order FIS 1734 (1302 train) 8.8 6.9
Random regression forest 1986 (1476 train) 8.4 6.7

Table 4.8: Summary of the outcomes of the statistical tests performed on the errors of the generated
regression models compared with the errors of the base model.

Model F-test KS-test Independent t-test
P-value F-stat P-value KS-stat P-value T-stat

Zero-order FIS 0.9040 1.0134 1.0000 0.0276 0.8473 0.1926
First-order FIS 0.6911 1.0420 0.8261 0.0455 0.9748 -0.0316
Expert-based first-order FIS 0.6730 0.9601 0.9751 0.0324 0.9616 -0.0481
Random regression forest 0.7093 1.0342 0.2740 0.0630 0.1292 -1.5185
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Figure 4.33: Graphical overview of the data (sub)sets used for the di↵erent modeling approaches.
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Chapter 5

Discussion

5.1 Conclusions

Even though all models perform better than the base model, the improvements in performance are not
significant. The modeling techniques used do not seem to be able to construct models that capture the
variance in the data. It is possible that the usage of other techniques would result in models with higher
accuracy, but it could also be that the current data set does not contain enough information to predict
the percentage total weight loss one year after bariatric surgery.

Even though the regression models do not perform well, the classification model shows potential. The
model is able to distinguish low and high performing patients, although it has di�culties discerning the
average performing patient group. However, if the model predicts the patient will be a low performer, in
reality, he will be an average performer at best. This makes it interesting to pay extra attention to these
individuals when assessing their suitability for bariatric surgery. Therefore, the classification model may
have added value for clinical practice. To enhance the performance of this model, more sophisticated
clustering techniques (such as the evidential c-means (ECM) algorithm (Masson & Denoeux, 2008)) could
be used.

In this study, two modeling techniques were used: fuzzy modeling and random forests. Both techniques
have their advantages and disadvantages. One of the biggest advantages of using fuzzy modeling is
the interpretability and simplicity of the obtained models. This in contrary to the models obtained by
random forest algorithms, which give a black box model. On the other hand, random forests can deal
well with missing data. Fuzzy modeling requires a full data set which leads to disposal of incomplete
patient records, making the training process more prone to su↵er from a selection bias. However, both
the first-order fuzzy inference system and the random regression forest perform equally well in predicting
weight loss in the end.

Even though high interpretability is often mentioned as one of the main advantages of using fuzzy mod-
eling, the models obtained in this study have highly overlapping fuzzy sets that hardly allow for any
interpretation. This problem is often encountered when fuzzy models are determined based on input-
output product space fuzzy clustering. Therefore many researchers have investigated the problem of
designing interpretable fuzzy models (Guillaume, 2001). To reduce the complexity of models with a large
number of highly overlapping fuzzy sets fuzzy rule base simplification has been proposed in order to make
the models more amenable to interpretation (Setnes, 1998). These techniques could be used to enhance
the interpretability of the models developed in this study. However, simplifying the rule base of fuzzy
models sacrifices accuracy of the models. Taking into account that all the models are not performing
significantly better than the base model, further reduction of the models’ prediction accuracy in exchange
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for transparency is useless.

All models use di↵erent sets of variables to predict the outcomes after bariatric surgery. This is due
to the di↵erent methods of feature selection. The first fuzzy model uses a variable set as selected by
the domain expert. The domain expert based his choices on visual inspection of scatterplots of the lab
results. Therefore, interaction between variables is not taken into account, except for some lab test ratios
the domain expert expected to be relevant. Also, other variables than the outcomes of lab tests were
not considered when composing the variable set. For the other two fuzzy models, the input variables are
chosen using forward feature selection with the wrapper approach. The variables for the random forests
are chosen using an embedded approach. This approach interacts with learning algorithm at a lower
computational cost than the wrapper approach, making the resulting models quicker to train. Another
advantage of using this approach is that it does not only consider relations between one input variable
and the output variable, but also searches for variables that allow better local discrimination. These
di↵erences in feature selection approaches explain why di↵erent variable sets were chosen for each model.

However, the di↵erences in variable sets do not mean that the models all use completely di↵erent input.
Some variables may measure the same underlying construct. For example, increased glucose and c-peptide
levels are both indicators of the existence of diabetes. Therefore, the variables could be grouped:

Age

• Age

Surgery type

• Surgery type

Weight

• BMI
• Maximum weight
• Waist circumference

Hypertension

• Hypertension

Diabetes

• Glucose
• C-peptide
• HbA1c
• HbA1c/Insulin ratio

Dyslipidemia

• Cholesterol
• HDL-Cholesterol
• LDL-Cholesterol
• Triglycerides

Liver function

• Bilirubin
• ASAT

Nutritional shortage

• Vitamin B1
• Vitamin B6
• Ferritin

Kidney function

• CKD-EPI
• Creatinine
• Urea
• Sodium

Thyroid function

• Parathormone
• Calcium

Anemia

• MCH
• Hematocrit
• Erythrocytes
• Hemoglobin

Inflammation

• CRP

Quality of life (QoL)

• Role limitations (emotional) (RAND-36)
• Self-esteem (BAROS)

Table 5.1 shows what variable groups are selected for each model. The variables that were selected
seem reasonable predictors according to the doctors involved as domain experts in this study. From
table 5.1, it becomes clear that having diabetes or su↵ering from an impaired kidney function influences
the percentage total weight loss that will be achieved one year after bariatric surgery. Also su↵ering from
dyslipidemia or anemia is likely to influence the percentage total weight loss.
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Table 5.1: The occurrence of grouped variables in the modeling sets for each model

Feature group First-order FIS(DE) Zero-order FIS First-order FIS Regression forest Classification forest Times selected
Age x x 2
Surgery type x x 2
Weight x x 2
Hypertension x 1
Diabetes x x x x x 5
Dyslipidemia x x x x 4
Liver function x x 2
Nutritional x 1
Kidney function x x x x x 5
Thyroid function x 1
Anemia x x x 3
Inflammation x x 2
QoL x x 2

In literature, obesity has been linked to initiation and exacerbation of chronic kidney disease (for example
by Hall et al., 2002; Wang et al., 2008). Weight loss induced by surgical interventions reverses this e↵ect
and normalizes the glomerular filtration rate (Navaneethan et al, 2009), which is a measure of kidney
function. Surgery induced weight loss also has positive e↵ects on comorbidities such as diabetes (type
2), hypertension and dyslipidemia (Noria & Grantcharov, 2013). However, to the knowledge of the
researcher, the e↵ects of these conditions on (the percentage total) weight loss after bariatric surgery
have not been studied.

5.2 Limitations of this work and future research

The models developed in this study used data as stored in the hospital’s information system and DATO,
a nation-wide database in which data about bariatric patients is kept. Although the number of variables
used in this study is high, the set is not necessarily complete. It is likely that some pre-surgically
measurable patient characteristics with predictive value exist that are not in the current data set. For
example, no psychological factors or information about the patient’s social support system were taken
into account. In 2005, Elfhag and Rössner reviewed the literature on factors associated with weight
loss maintenance and weight regain and found that more psychological strength and stability resulted in
better weight loss maintenance. Measuring and including these personality traits in the data set could
possibly enhance the accuracy of the predictive models. The role of (perceived) social support on the
patient’s weight loss is less clear and needs further investigation (Livhits et al., 2011). Also, the patient’s
level of motivation and primary motivating factor might influence the outcomes of bariatric surgery
(although these factors alone do not appear to a↵ect weight loss (Dixon et al., 2009; Munoz et al., 2007)).
However, measuring these kind of concepts is hard, since patients may give socially desirable answers on
questionnaires in order to be eligible for surgery. Future research may focus on finding meaningful ways
of measuring and including these kind of concepts and exploring their (multivariate) e↵ect on weight loss
after bariatric surgery.

All developed models (except for the base model) use lab values as input variables, but blood work is
heavily influenced by medication usage. For example, vitamin deficiencies are eliminated through taking
nutritional supplements and glucose levels of diabetics are e.g. controlled by the injection of insulin.
Therefore, the lab results may show blood levels that fall within the range of the healthy reference
population, while the patient is su↵ering from some condition. This e↵ect can be reduced by including
information about medication usage in the data set. However, the hospital only has information about
what medication are prescribed by hospital doctors. It is unknown whether patients comply and take
the prescribed medication or obtain medication from other sources (for example via the GP or by buying
freely accessible medication).

Another possible factor resulting in poor performing models is the tendency for most bariatric patients to

59



have more or less the same amount of percentage total weight loss. This leads to an unbalanced data set,
in which most patients lose about the average %TWL. The models then only give predictions around this
average. This problem could be solved by balancing the data set. The e↵ect of this balancing is studied
in appendix L. In this appendix, it is shown that balancing the data does result in models that give
predictions in a broader range. However, these models do not perform better than the models trained on
unbalanced data.

The data subsets used for modeling purposes are assumed to be representative for the whole bariatric
population of the Catharina Hospital. However, this assumptions does not hold necessarily. In appendix I
it is shown that, when the mean of several demographic variables of the subsets are compared with those
of the whole data set, some significant di↵erences exist. These di↵erences are revealed by conducting
independent t-tests. The violation of this assumption may lead to models that do not perform optimal on
data from the complete data set. Especially the subset used for feature selection seems to di↵er from the
complete data set. This could lead to impaired performance of the models trained with features selected
based on this set.

The data analyzed in this study was gathered from bariatric patients in only one facility. Furthermore,
this facility does pre-selection before proceeding to surgery. Therefore, data of patients who applied for
surgery but are declined, are not in de data set. This may cause a selection bias in the data and therefore
the results should be interpreted and extended to new patient groups with caution. It is also likely that
the population visiting the Dutch bariatric centers di↵ers from populations in other countries because of
the Dutch insurance policy. The generalizability of the study could be improved by diversifying the data
by combining data from di↵erent bariatric centers.

The outcome measure chosen for this study is the percentage total weight loss (%TWL). However, this
is not the only outcome of interest for bariatric care providers. For some patients, weight loss is not the
primary goal of surgery, but the improvement or even cure of comorbidities is. Therefore, future research
could focus on finding a model that predicts these outcomes.

In this study, feature selection is applied instead of feature extraction. Because of this, no new features
that reflect linear or non-linear interaction between variables are constructed (except for a few ratios of
lab results that were considered for the variable set as selected by the domain expert). This may result in
the loss of predictive power. However, the construction of new extracted features may lead to including
features that do not have physical interpretation or meaning. This would make the interpretation of the
model harder.

The last factor that limits this study is the fact that the whole bariatric population in this data set is
treated as one group. However, di↵erent mechanisms may be at work for sub-populations. For example,
the patients in the data set as used in this study can be split in two groups: patients seeking a cure
for their comorbidities (typically, these patients have a BMI of less than 40 kg/m2) and patients whose
main goal is to simply loose weight (BMI of greater than 40 kg/m2). Therefore, splitting the bariatric
population in sub-groups and developing a specific model for each group could lead to better performing
models. Future research may focus on identifying these groups and finding the best performing model
for each group.

5.3 Final remarks

The human body is a complex biological system, in which the di↵erent subsystems have a large influence
on each other. For example, because of diabetes the blood vessels may be less flexible, resulting in a
higher blood pressure. This elevated blood pressure may cause renal damage and therefore an impaired
kidney function. The usage of medication may even complicate the system further. Because of these
dependencies, developing a model that simulates this system is very hard.
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This study shows that, although a lot of data is available in health care, it is not easy to extract
meaningful knowledge from it. Data mining tools can be used to unravel the complex human body in
more detail. This research can therefore be seen as a starting point and an early attempt of using data
mining techniques in exploring and predictive model building with health care data sets.
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Appendix A

The CART algorithm

1. Start with all input data, and examine all possible binary splits on every predictor.

2. Select a split

• For regression trees: with the lowest mean squared error:

MSE =
1

n

n#

t=1

e2
t

• For classification trees: with the lowest Gini’s Diversity Index:

gdi = 1 −
#

p2(i)

3. Impose the split.

4. Repeat recursively for the two child nodes until:

(a) The node is pure, which means

• For regression trees: The mean squared error (MSE) for the observed response in this
node drops below the MSE for the observed response in the entire data multiplied by the
tolerance on quadratic error per node.

• For classification trees: Gini’s Diversity Index equals 0.

(b) There are fewer observations than the minimum parent size in this node.

(c) Any split imposed on this node produces children with fewer observations than the minimum
leaf size.

(d) The algorithm has reached its maximum number of splits.
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Appendix B

All variables available
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Variable Reason to omit 
DATO - Screening 
PatientCode 

 Age 
 Gender 
 Weight 
 Lenght 
 BMI  
 Waist circumference 
 Max weight 
 Smoking 
 Smoking packs per year 
 Alcohol 
 Alcohol Units 
 hypert 
 hypmed 
 hypmedn 
 diabet 
 diahba1c Covered by lab data 

diamed 
 oraal 
 oraaln 
 insul 
 insuln 
 insuleh 
 dyslip 
 dyslipldl Covered by lab data 

dysliphdl Covered by lab data 
dysliptrig Covered by lab data 
dyslipratio Covered by lab data 
dyslipmed 

 dyslipmedn 
 oesofa 
 oesofadiag Not enough data (<20) 

oesofamed 
 osas 
 cpap 
 gewrklacht 
 comorb 
 comorbsetall Not enough data (<20) 

comorbcar 
 comorbvas 
 comorbpul 
 commda 
 comhep 
 psych 
 comtro1 
 comcar04 Not enough data (<20) 

comcar01 
 comcar08 Not enough data (<20) 

corafw 
 comcar07 
 comneu1 
 comvas3 Not enough data (<20) 

paod Not enough data (<20) 
aa Not enough data (<20) 

compul1 
 fibro Not enough data (<20) 

compul3 
 hernia Not enough data (<20) 

upept Not enough data (<20) 
hpylor Not enough data (<20) 
cirros Not enough data (<20) 
galsteen Not enough data (<20) 
schiz Not enough data (<20) 
depri 

 bipol 
 angst 
 menstru Not enough data (<20) 

comorbove 
 overigcomorb Not enough data (<20) 

laparovg 
 

  DATO - Verrichting  
datok 

 operateur 
 operateur2 
 asascore 
 ingreep 
 procok 
 techother 
 bandtype 
 bandtypother 
 bandtech 
 bandfix 
 sleebou Measured after 

sleetech Measured after 
andersnl Measured after 
afmtrans Measured after 
byintest Measured after 
byloopbili Measured after 
byloopali Measured after 
petclosed Measured after 
jejuclosed Measured after 
loopali Measured after 
loopcom Measured after 
benad Measured after 
cali Measured after 
filling  Measured after 
peropcomp Measured after 
peropcomlsetall Measured after 
comper Measured after 
combloe Measured after 
commilt Measured after 
comlev Measured after 
comvat Measured after 
comdood Measured after 
compl Measured after 
compchir Measured after 
aardcomchir Measured after 
aardcomchirnl Measured after 
algcompl Measured after 
aardcomalg Measured after 



aardcomalgnl Measured after 
icopname Measured after 
redic Measured after 
reintreq Measured after 
reinttyp Measured after 
anestreint Measured after 
letsel Measured after 
datont Measured after 
heropn Measured after 
datheropn Measured after 
redheropn Measured after 
datheropnont Measured after 
status Measured after 
datovl Measured after 
doodoorz Measured after 

  DATO - Follow-up 
folgewicht Used as output 
hypertbeter Measured after 
folhypmed Measured after 
folhypmedn Measured after 
diabbeter Measured after 
foldiahba1c Measured after 
foldiamed Measured after 
foloraal Measured after 
foloraaln Measured after 
folinsul Measured after 
folinsuln Measured after 
folinsuleh Measured after 
dyslipbeter Measured after 
foldyslipldl Measured after 
foldysliphdl Measured after 
foldysliptrig Measured after 
foldyslipratio Measured after 
foldyslipmed Measured after 
foldyslipmedn Measured after 
osasbeter Measured after 
foloesofadiag Measured after 
foloesofamed Measured after 
osasbeter_1 Measured after 
folcpap Measured after 
gewrbeter Measured after 
folcompl Measured after 
complsetall Measured after 
comploes Measured after 
complmaag Measured after 
complmeta Measured after 
complhep Measured after 
complband Measured after 
compland Measured after 
comploes1 Measured after 
comploes3 Measured after 
complmaag1 Measured after 
complmaag2 Measured after 
complmaag3 Measured after 
complmaag4 Measured after 
complmaag5 Measured after 

complmetadumpv Measured after 
complmetadumpl Measured after 
complmetadef Measured after 
complmeta2 Measured after 
complmeta3 Measured after 
complmeta4 Measured after 
complhep1 Measured after 
complhep2 Measured after 
complband1 Measured after 
complband2 Measured after 
complband3 Measured after 
complband4 Measured after 
compland1 Measured after 
compland2 Measured after 
compland3 Measured after 
compland4 Measured after 
folreint Measured after 
foldatreint Measured after 
folreinttyp Measured after 
folreinttoe Measured after 
folstatus Measured after 
foldatovl Measured after 
foldoodoorz Measured after 

  EZIS (PPOS) 
Rookt u? 

 Roken 
 Bent u eerder geopereerd? 
 Soort operatie en in welk 

jaar Free-text field 
Was u misselijk / moest u 
braken na de operatie 

 Heeft u krampende pijn op 
de borst bij inspanning of 
emoties? 

 Hoe vaak? 
 Heeft u een hartaanval 

doorgemaakt? 
 Heeft u hartkloppingen of 

een onregelmatige hartslag 
 Bent u onder behandeling 

bij een arts wegens hoge 
bloeddruk? 

 Heeft u een 
hartklepgebrek? 

 Krijgt u het benauwd als u 
helemaal plat ligt? 

 Heeft u astma / COPD? 
 Heeft u tuberculose gehad? 
 Heeft u een beroerte of 

halfzijdige verlamming 
doorgemaakt? 

 Heeft u suikerziekte 
(diabetes)? 

 Waar wordt dit mee 
behandeld? 

 Staat u onder controle van 
de trombosedienst? 

 



Heeft u een nierziekte? 
 Heeft u loszittende tanden 

of kiezen? 
 Heeft u behalve de 

aandoening waar u voor 
komt nog andere 
lichamelijke klachten? Free-text field 
Bent u het afgelopen jaar 
behandeld door een 
specialist? 

 Soort specialist Free-text field 
Behoort tot een der 
risicogroepen wat betreft 
AIDS of Hepatitis B? 

 Vink aan waar u 
overgevoelig voor bent 

 Heeft u epilepsie 
 Heeft u gebitsprothese? 
 Drinkt u meer dan 3 glazen 

alcohol per dag? 
 Heeft u longembolie 

gehad? 
 Heeft u trombose gehad? 
 Anamnese Free-text field 

Lichamelijk onderzoek Free-text field 
Aanvullend onderzoek Free-text field 
Gebruikt u regelmatig 
drugs? 

 Is er bij u een 
neurostimulator of 
pacemaker/ICD 
geimplanteerd? 

 Gebruikt u medicatie? 
 Welke medicatie Free-text field 

Lengte 
 Gewicht 
 BMI  
 

  EZIS (FYS-ACH-DIE-MPD-PPOS) 
Lengte (cm) 

 Gewicht (kg) 
 Maximaal gewicht 
 Detail gewicht: 
 Gecorrigeerd gewicht (kg) 
 Oorspronkelijk gewicht 
 Hoogste gewicht (kg) van 

het afgelopen half jaar 
 BMI  
 Oorspronkelijke BMI 
 RAND - fysiek 

functioneren 
 RAND - sociaal 

functioneren 
 RAND - rolbeperking 

(fysiek probleem) 
 RAND - rolbeperking 

(emotioneel probleem) 
 RAND - mentale 
 

gezondheid 
RAND - vitaliteit 

 RAND - pijn 
 RAND - algemene 

gezondheid 
 RAND - 

gezondheidsverandering 
 BAROS - Eigenwaarde 

score 
 BAROS - Fysiek score 
 BAROS - Sociaal score 
 BAROS - Werk score 
 BAROS - Sexueel score 
 BAROS - Fysiek 

verandering Measured after 
BAROS - Sociaal 
veranderding Measured after 
BAROS - Eigenwaarde 
verandering Measured after 
BAROS - Werk 
verandering Measured after 
BAROS - Sexueel 
verandering Measured after 
Tensie 

 Pols 
 Knijpkracht 

(voorkeurshand) 
 Stand knijpkrachtmeter 
 Knijpkracht 
 Sat. voor (%) Used to compute score 

HF voor Used to compute score 
Sat. na (%) Used to compute score 
HF na Used to compute score 
Borgscore*  

 MET** huidig 
 HF Vooraf Used to compute score 

HF P0 Used to compute score 
HF P1 Used to compute score 
HF P3 Used to compute score 
Saturatie Vooraf Used to compute score 
Saturatie P0 Used to compute score 
Saturatie P1 Used to compute score 
Saturatie P2 Used to compute score 
Saturatie P3 Used to compute score 
HF P2 Used to compute score 
PV1 (=P0-P1) Used to compute score 
PV2 (=P1-P2) Used to compute score 
PV3 (=P2-P3) Used to compute score 
Score Shuttle Walk-Run 
test 

Not measured in 
analyzed time period 

Meting 1 (cmH2O) Used to compute score 
Meting 2 (cmH2O) Used to compute score 
Meting 3 (cmH2O) Used to compute score 
MIP waarde (cm H2O) 

 MIP voorspeld (%) 
 



Appendix C

Standard blood tests performed at
screening Bariatrics
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Lab code Variable Lab code Variable
1 BHE001 Hemoglobin 24 BCH004 Cholesterol
2 BHE000 Hematrocrit 25 BHD000 HDL-cholesterol
3 BER002 Erytrocytes 26 BCH014 Cholesterol/HDL ratio
4 BMC000 MCH 27 BLD002 LDL-cholesterol
5 BMC002 MCV 28 BPR012 Prothrombine time
6 BTR006 Thrombocytes 29 BHE030 Hemoglobin A1c
7 BLE001 Leukocytes 30 BIN000 Insulin
8 BGL003 Glucose 31 BCP002 C-peptide
9 BBI001 Bilirubin 32 BPA016 Parathormone
10 BAS002 ASAT 33 BTS003 TSH
11 BAL015 ALAT 34 BFT004 FT4**
12 BLD004 LD 35 BCO017 Cortisol
13 BAL014 Allkalic phospatase 36 BIJ001 Iron
14 BGT001 Gamma GT 37 BFE006 Ferritin
15 BUR002 Urea 38 BFO000 Folic acid
16 BKR000 Creatinine 39 BZI003 Zinc*
17 BKR015 Creatinine clearance 40 BMA002 Magnesium
18 BKA000 Potassium 41 BVI023 Vitamin A*
19 BNA001 Sodium 42 BVI031 Vitamin B1
20 BCA006 Calcium 43 BVI004 Vitamin B6
21 BFO002 Phosphate 44 BVI030 Vitamin D
22 BAL002 Albumin 45 BVI028 Vitamin B12
23 BCR002 CRP 46 BME009 Methylmalonic acid (MMA) ***

* Omitted from lab panel from 01-01-2015
** Only measured in case of abnormal TSH
*** Calculated based on vitamin B12
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Appendix D

Scatterplots BAROS scores
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Appendix E

Variables used for feature seleection
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Variable # missing % missing Anwers possible
SurgeryType 0 0,0 Sleeve/Bypass
Gender 0 0,0 male/female
AgeSurgery 0 0,0 Numeric
Alcohol 0 0,0 Yes/No
Hypertension 0 0,0 Yes/No
HypertensionMedication 0 0,0 Yes/No
HypertensionAmountMedication 0 0,0 Yes/No
Diabetes 0 0,0 Yes/No
DiabetesMedication 0 0,0 Yes/No
DiabetesMedOral 0 0,0 Yes/No
DiabetesAmountMedOral 0 0,0 Yes/No
DiabetesInsulin 0 0,0 Yes/No
DiabetesAmountInsulin 0 0,0 Yes/No
DiabetesInsulinUnits 0 0,0 Yes/No
Dyslipidemia 0 0,0 Yes/No
DyslipidemiaMedication 0 0,0 Yes/No
DyslipidemiaAmountMedication 0 0,0 Yes/No
OSAS 0 0,0 Yes/No
GERD 0 0,0 Yes/No
GERDMedication 0 0,0 Yes/No
CPAP 0 0,0 Yes/No
JointPain 0 0,0 Yes/No
OtherComorb 0 0,0 Yes/No
ComorbVascular 0 0,0 Yes/No
ComorbPulmonary 0 0,0 Yes/No
ComorbCardiac 0 0,0 Yes/No
ComorbDigestive 0 0,0 Yes/No
ComorbHepatobilary 0 0,0 Yes/No
Psych 0 0,0 Yes/No
DVT 0 0,0 Yes/No
HeartValveAnomaly 0 0,0 Yes/No
Myocardinfarct 0 0,0 Yes/No
CoronaryAnomaly 0 0,0 Yes/No
CardiacArrhythmia 0 0,0 Yes/No
COPD 0 0,0 Yes/No
PulmonaryFibrosis 0 0,0 Yes/No
PulmonaryResection 0 0,0 Yes/No
Depression 0 0,0 Yes/No
BipolarAnxietyDisorder 0 0,0 Yes/No
AnxietyDisorder 0 0,0 Yes/No
LaparotomyUpperStomach 0 0,0 Yes/No
Smoke 0 0,0 Yes/No/Stopped
PacksYear 0 0,0 Numeric
AlcoholUnits 0 0,0 Numeric
INR (PT) 0 0,0 Yes/No
di↵erentiele telling 0 0,0 Yes/No
Weight 1 0,1 Numeric
Height 1 0,1 Numeric
BMI 1 0,1 Numeric
Gewicht 1 0,1 Numeric
Lengte 1 0,1 Numeric
hematocriet 1 0,1 Numeric
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hemoglobine 1 0,1 Numeric
ASAscore 3 0,2 Numeric
MaxGewicht 3 0,2 Numeric
Gebitsprothese 4 0,2 Yes/No
kreatinine klaring (MDRD) 6 0,3 Numeric
ureum 6 0,3 Numeric
kreatinine 6 0,3 Numeric
natrium 6 0,3 Numeric
glucose 7 0,4 Numeric
kalium 7 0,4 Numeric
CRP 8 0,4 Numeric
leukocyten 8 0,4 Numeric
trombocyten 8 0,4 Numeric
bilirubine totaal 9 0,5 Numeric
ASAT 9 0,5 Numeric
albumine 10 0,5 Numeric
ALAT 10 0,5 Numeric
MCV 10 0,5 Numeric
calcium 10 0,5 Numeric
calcium gecorr.alb 10 0,5 Numeric
Surgeon 11 0,6 Surgeon ID
gamma GT 11 0,6 Numeric
alkalische fosfatase 11 0,6 Numeric
LD 11 0,6 Numeric
erytrocyten 11 0,6 Numeric
MCH 11 0,6 Numeric
protrombine tijd 12 0,6 Numeric
fosfaat 12 0,6 Numeric
cholesterol 13 0,7 Numeric
ferritine 14 0,7 Numeric
folaat 14 0,7 Numeric
vitamine B12 14 0,7 Numeric
ijzer 15 0,8 Numeric
cholesterol/HDL ratio 15 0,8 Numeric
vitamine D (25-OH vit D) 15 0,8 Numeric
hemoglobine A1c (IFCC) 15 0,8 Numeric
triglyceriden 15 0,8 Numeric
HDL-cholesterol 15 0,8 Numeric
Benauwd bij platliggen 15 0,8 Yes/No
Hartkloppingen 15 0,8 Yes/No
Hartaanval in verleden 15 0,8 Yes/No
Hartklepgebrek 15 0,8 Yes/No
Hoge bloeddruk 15 0,8 Yes/No
Kramp borst bij inspanning/emoties 15 0,8 Yes/No
Nierziekte 15 0,8 Yes/No
Suikerziekte 15 0,8 Yes/No
Astma/COPD 15 0,8 Yes/No
Tuberculose 15 0,8 Yes/No
Toezicht trombosedienst 15 0,8 Yes/No
Epilepsie 15 0,8 Yes/No
Loszittende tanden of kiezen 15 0,8 Yes/No
Eerder geopereerd 15 0,8 Yes/No
Beroerte/Halfzijdige verlamming 15 0,8 Yes/No
In behandling bij specialist 15 0,8 Yes/No
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DiastolicBP 16 0,8 Numeric
SystolicBP 16 0,8 Numeric
Parathormoon 16 0,8 Numeric
vitamine B6 16 0,8 Numeric
vitamine B1 16 0,8 Numeric
magnesium 23 1,2 Numeric
C-peptide 24 1,2 Numeric
LDL-cholesterol 24 1,2 Numeric
insuline 25 1,3 Numeric
Risicogroep AIDS/Hepatitis B 25 1,3 Yes/No
Zink 30 1,5 Numeric
Vitamine A 32 1,6 Numeric
TSH 38 1,9 Numeric
Longembolie 41 2,1 Yes/No
Trombose 43 2,2 Yes/No
cortisol 46 2,3 Numeric
MIPvoorspeld 304 15,4 Numeric
EigenwaardeScore 349 17,7 Numeric
FysiekScore 349 17,7 Numeric
SociaalScore 349 17,7 Numeric
WerkScore 432 21,9 Numeric
Misselijk/braken na eerdere operatie 438 22,2 Yes/No
BKR017 461 23,4 Numeric
Buikomvang 468 23,8 Numeric
SexueelScore 473 24,0 Numeric
methylmalonzuur 608 30,9 Numeric
FysiekFunctioneren 610 31,0 Numeric
SociaalFunctioneren 610 31,0 Numeric
AlgemeneGezondheid 611 31,0 Numeric
pijn 611 31,0 Numeric
vitaliteit 611 31,0 Numeric
MentaleGezondheid 612 31,1 Numeric
gezondheidsverandering 613 31,1 Numeric
RolBeperkingFysiek 613 31,1 Numeric
RolBeperkingEmotioneel 616 31,3 Numeric
Pols 646 32,8 regular/irregular
Drugs 951 48,3 Yes/No
MaxWeight 1081 54,9 Numeric
Neurostimulator/pacemaker/ICD 1106 56,2 Yes/No
Medicatie 1107 56,2 Yes/No
HeartRate 1309 66,5 Numeric
chloride 1447 73,5 Numeric
lymfocyten 1470 74,7 Numeric
basofielen 1471 74,7 Numeric
neutrofielen 1471 74,7 Numeric
eosinofielen 1471 74,7 Numeric
monocyten 1471 74,7 Numeric
amylase 1543 78,4 Numeric
pH 1548 78,6 Numeric
soortelijke massa 1553 78,9 Numeric
eiwit 1554 78,9 Numeric
glucose 1554 78,9 Numeric
ketosto↵en 1554 78,9 Numeric
bezinking erytrocyten 1566 79,5 Numeric
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leukocyten 1570 79,7 Numeric
erytrocyten (Hb) 1572 79,8 Numeric
bilirubine in urine 1572 79,8 Numeric
nitriet 1572 79,8 Numeric
fT4 (vrij T4) 1603 81,4 Numeric
homocysteine 1615 82,0 Numeric
MIPwaarde 1620 82,3 Numeric
CK 1631 82,8 Numeric
bilirubine geconjugeerd 1731 87,9 Numeric
uraat 1769 89,8 Numeric
BHE016 1811 92,0 Numeric
temperatuur 1815 92,2 Numeric
base excess 1819 92,4 Numeric
pO2 1819 92,4 Numeric
sO2 1819 92,4 Numeric
pCO2 1819 92,4 Numeric
bicarbonaat 1819 92,4 Numeric
pH 1819 92,4 Numeric
standaard bicarbonaat 1819 92,4 Numeric
eiwit totaal 1838 93,3 Numeric
CK-MB 1840 93,4 Numeric
hCG (+ beta-subunits) 1840 93,4 Numeric
transferrine 1840 93,4 Numeric
bacterien 1841 93,5 Numeric
transferrineverzadiging 1846 93,8 Numeric
Vitamine A 1849 93,9 Numeric
reticulocyten 1852 94,1 Numeric
APTT 1854 94,2 Numeric
kreatinine in urine 1862 94,6 Numeric
Hoe vaak kramp borst? 1865 94,7 >1x per month/>1x per

week/rarely
albumine in urine 1877 95,3 Numeric
lactaat 1884 95,7 Numeric
troponine-T 1889 95,9 Numeric
volume urine 1890 96,0 Numeric
kreatinine in urine 1897 96,3 Numeric
UAM016 1901 96,5 Numeric
bicarbonaat 1904 96,7 Numeric
pH 1904 96,7 Numeric
temperatuur 1904 96,7 Numeric
base excess 1905 96,7 Numeric
pO2 1905 96,7 Numeric
pCO2 1905 96,7 Numeric
standaard bicarbonaat 1905 96,7 Numeric
glucose 1906 96,8 Numeric
sO2 1906 96,8 Numeric
natrium 1906 96,8 Numeric
hemoglobine 1907 96,9 Numeric
kalium 1907 96,9 Numeric
BOE001 1908 96,9 Numeric
chloride 1912 97,1 Numeric
BFS002 1912 97,1 Numeric
eiwit totaal in 24u urine 1913 97,2 Numeric
calcium ionen 1913 97,2 Numeric
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FIO2 1914 97,2 Numeric
lactaat 1915 97,3 Numeric
natrium in urine 1915 97,3 Numeric
fibrinogeen 1915 97,3 Numeric
D-dimeren 1916 97,3 Numeric
Leukocyten 1916 97,3 Numeric
LH 1917 97,4 Numeric
IgA 1918 97,4 Numeric
carboxyhemoglobine 1918 97,4 Numeric
glucose 1919 97,5 Numeric
eiwit totaal/kreatinine 1919 97,5 Numeric
kalium 1919 97,5 Numeric
zuurstoftoediening 1919 97,5 Numeric
methemoglobine 1919 97,5 Numeric
natrium 1920 97,5 Numeric
calcium ionen 1920 97,5 Numeric
erytrocyten 1920 97,5 Numeric
anion gap 1921 97,6 Numeric
albumine/kreatinine 1921 97,6 Numeric
hemoglobine 1921 97,6 Numeric
ANA 1922 97,6 Numeric
eiwit totaal in 24u urine 1923 97,7 Numeric
glucose nuchter 1924 97,7 Numeric
soortelijke massa 1924 97,7 Numeric
albumine in 24u urine 1927 97,9 Numeric
albumine in 24u urine 1929 98,0 Numeric
Bacterien 1929 98,0 Numeric
Plaveiselepitheel 1929 98,0 Numeric
carboxyhemoglobine 1931 98,1 Numeric
chloride 1932 98,1 Numeric
methemoglobine 1932 98,1 Numeric
erytrocytencylinders 1932 98,1 Numeric
NT-proBNP 1935 98,3 Numeric
FIO2 1935 98,3 Numeric
screening urine 1936 98,3 Numeric
C-troponine-I 1938 98,4 Numeric
eiwit totaal in urineportie (kwantitatief) 1939 98,5 Numeric
totaal CO2 1941 98,6 Numeric
glucose 1942 98,6 Numeric
zuurstoftoediening 1947 98,9 Numeric
Glucose (capillair) 1950 99,0 Numeric
ureum in urine 1953 99,2 Numeric
Borgscore 1968 100,0 Numeric
Knijpkracht 1968 100,0 Numeric
KnijpkrachtVoorkeurshand 1968 100,0 Left hand/Right hand
ShuttleWalkRunScore 1968 100,0 Numeric
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Appendix F

Scatterplots of the lab results
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Appendix G

Data visualisations
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Figure G.1: Scatterplot of the maximum weight ever recorded and the weight loss after one year

Figure G.2: Scatterplot of the heart rate
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Figure G.3: Scatterplot of the systolic and diastolic blood pressure

Figure G.4: Scatterplot of the waist circumference
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Appendix H

Sequential forward feature selection

First iteration

During the first iteration, MATLAB creates the first model with the test set, for example using only the
first variable:

1. 1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0

Then, the root mean squared error of the resulting model is calculated to determine the performance of
the model using the features in this subset. This root mean squared error is then saved. After this, the
second model is created, for example:

2. 0 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0

Again, the root mean squared error is calculated and saved. MATLAB keeps creating these models until
all features are selected once.

Second and following iterations

The model created in the previous iteration with the lowest error is selected and used. When for example
the fourth model of the first iteration had the lowest error, MATLAB will for example consider the
following models in the second iteration:

1. 1 0 0 1 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0

2. 0 1 0 1 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0

3. . . .

Again, the model with the lowest root mean squared error is selected for the next iteration. The algorithm
stops when the addition of another feature does not lower the model’s error or when the model contains
20 features to avoid the curse of dimensionality.
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Appendix I

Statistical examination of modeling
sets
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All models have been trained on slightly di↵erent subsets of the data to maximize the number of patient
records used. These subsets are assumed to be representative for the bariatric population of the Catharina
Hospital. To test whether this assumption holds, several independent t-tests have been performed on
the values of the complete data set compared to the di↵erent subsets. In table I.1 the outcomes of these
t-tests are summarized. The (sub)sets in this table correspond with the sets displayed in figure 4.33. The
tests reveal that some significant di↵erences exist. The violation of this assumption may lead to models
that do not perform optimal on data from the complete data set. Especially the subset used for feature
selection seems to di↵er from the complete data set. This could lead to impaired performance of the
models trained with features selected based on this set.
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Appendix J

Decision tree based on variables as
used by random classification forest
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Appendix K

Variables selected for each model
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Base model First-order FIS (DE) Zero-order FIS First-order FIS Regression forest Classification forest
Age x x
Surgery type x x
BMI x x
Max. weight x x
Waist circumference x
Hypertension x
Diabetes x x x
Dyslipidemia x
ASAT x
Vitamin B6 x
Creatinine x
MCH x
Glucose x x x
C-peptide x
Urea x x
CKD-EPI x x x x
Calcium x
Cholesterol x
HDL-Cholesterol x
LDL-Cholesterol x x x
HbA1c x x x x
Parathormone x
Ferritin x
Vitamin B1 x
HbA1c/Insulin ratio x
CRP x x
Sodium x
Erythrocytes x x
Bilirubin x
Hematocrit x
Hemoglobin x
Triglycerides x
Role limitations (emotional) (RAND-36) x
Self-esteem (BAROS) x
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Appendix L

Modeling using balanced data

One possible factor resulting in poor performing models is the tendency for most bariatric patients to
have more or less the same amount of percentage total weight loss. This leads to an unbalanced data
set, in which most patients lose about the average %TWL of 30.9 percent. The models then only give
predictions around this average. This problem could be solved by balancing the data set. Therefore, in
this appendix, the e↵ect of using a balanced data set is studied. Since the first order fuzzy model and
the random regression forest are the best performing models in this study, these types of modeling will
also be used to assess the e↵ects of the balanced data set.

For both modeling approaches, the data set is first split in a train (75% of the data) and a test (25%) set.
The train set is then categorized based on percentage total weight loss in bins of equal width. From each
bin, the same amount of patient records is sampled (with replacement). These sampled patient records
are used to train the models on.

L.1 First-order fuzzy model

L.1.1 Creation of the fuzzy model

Figure L.1 gives a graphical overview of the usage of the data set for the development of the Takagi-
Sugeno first-order fuzzy model. As can be seen in this graph, all test sets are not balanced, which means
they reflect the original distribution. The train sets used for feature selection and modeling are balanced
as described before.

First, feature selection is performed using a sequential forward selection algorithm. The wrapper method
is first-order fuzzy modeling and the RMSE is minimized. The following features are selected:

1. Age (at time of surgery)

2. Surgery type

3. Weight

4. Hypertension

5. Diabetes

6. Maximum weight

103



Figure L.1: Graphical overview of the data (sub)sets used for fuzzy modeling.

Using tenfold cross-validation, the optimal number of clusters was determined. Models with 2 to 20
clusters were considered and evaluated based on their root mean squared error. The model containing 7
clusters had the lowest RMSE and was therefore selected. The consequences of the rules are as following:

• Cluster 1: Weight loss (in %) = 58.4 * Age + 3.1* Surgery type -176.4 * Weight + 1549.6 *
Hypertension - 261.4 * Diabetes - 337.0 * Maximum weight + 273.5

• Cluster 2: Weight loss (in %) = -155.5 * Age - 99.5 * Surgery type + 199.3 * Weight - 55.1 *
Hypertension + 1549.8 * Diabetes - 404.1 * Maximum weight + 367.5

• Cluster 3: Weight loss (in %) = 29.4 * Age - 3.4 * Surgery type - 522.8 * Weight - 3.1 * Hypertension
- 9.6 * Diabetes - 477.9 * Maximum weight + 47.9

• Cluster 4: Weight loss (in %) = -42.6 * Age - 3.2 * Surgery type + 153.3 * Weight + 17.2 *
Hypertension + 1905.5 * Diabetes - 261.3 * Maximum weight + 40.3

• Cluster 5: Weight loss (in %) = 177.0 * Age - 97.7 * Surgery type - 621.0 * Weight - 5.5 *
Hypertension + 2844.4 * Diabetes - 505.8 * Maximum weight + 323.3

• Cluster 6: Weight loss (in %) = -19.0 * Age - 6.6 * Surgery type + 17.1 * Weight + 7.8 * Hyper-
tension - 27.5 * Diabetes - 27.1 * Maximum weight + 67.4

• Cluster 7: Weight loss (in %) = -211.8 * Age - 43.9 * Surgery type + 596.2 * Weight - 14.2 *
Hypertension - 7449.8 * Diabetes - 423.7 * Maximum weight + 60.2

To use these formulae to calculate the expected total weight loss of new patients, the input data should
be normalized. When the patients su↵ers from diabetes or hypertension, the associated variables should
be filled in as ‘1’. If the patient will undergo sleeve gastrectomy, surgery type should be substituted by
’1’, in case of a gastric bypass procedure, the value of this variable should be ‘0’.

The membership functions of this model can be found in figure L.2. This figure shows that the model
distinguishes clearly separated clusters, since the overlap in membership functions is low.
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Figure L.2: Membership functions of the first-order fuzzy model based on balanced data. Legend: cluster
1: dark blue, cluster 2: orange, cluster 3: yellow, cluster 4: purple, cluster 5: green, cluster 6: light blue,
cluster 7: red.

L.1.2 Performance of the fuzzy model

The first-order fuzzy model trained on the balanced set has a RMSE of 17.2 and an MAE of 11.2
percentage points. Both error measures are higher than those of the first-order fuzzy model trained on
the unbalanced data set (which has a RMSE of 8.5 and a MAE 6.7 percentage points). Figure L.3 explains
these increases: The scatterplot shows that the predictions of the model trained on balanced data fall
further from the reference line than the model trained on unbalanced data. The model trained on the
balanced data produces predictions in a wider range than the model trained on the unbalanced data,
therefore increasing the chances of larger errors.

Therefore, we can conclude that balancing the data set does not lead to a first-order fuzzy model with
lower error rates, allthough it does broaden the prediction range. Thus, balancing the data set does not
result in a better prediction model.
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Figure L.3: Scatterplot of the actual achieved against the predicted weight loss as predicted by the first-
order fuzzy model based on the balanced data. For comparison, the outcomes of the first-order fuzzy
model based on unbalanced data are displayed in grey.
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L.2 Random regression forest

L.2.1 Creation of the random regression forest

Figure L.4 gives a graphical overview of the usage of the data set for the development of the random
regression forest.

First, the minimum leaf sizes of the regression trees underlying the random forest should be determined.
The optimal leaf size is determined by comparing mean squared errors obtained by regression for various
leaf sizes. The Matlab function oobError computes MSE versus the number of grown trees. This proce-
dures shows that the best results are obtained when the leaf size is equal to 10 as indicated in figure L.5
by the yellow line.

Now that the optimal leaf size is estimated, a larger ensemble with 2000 trees is grown to estimate feature
importance. Matlab’s function OOBPermutedVarDeltaError stores the increase in MSE averaged over all
trees in the ensemble divided by the standard deviation taken over the trees, for each variable. The larger
this value, the more important the variable is for predicting the weight loss. To reduce the number of
necessary variables to predict the weight loss for new patients, all variables that have a importance that
is ≤ 0.0 are initially left out for analysis. Then, one-by-one the least important variable is dropped and
each time the MSE of the resulting model is computed. This process is iterated until omitting an extra
variable from the data set no longer results in decrease in the model’s mean squared error but increases
the error, which means the model is fitting to noise. The following variables are selected this way and
then used for growing the final random forest model with 2000 trees:

1. Age (at time of surgery)
2. Weight
3. BMI
4. Maximum weight
5. Physical score (BAROS)
6. Pain (RAND-36)
7. Role limitations due to emotional problems

(RAND-36)
8. Sexual score (BAROS)

9. Vitality (RAND-36)
10. Work score (BAROS)
11. ASAT
12. Cortisol
13. Insulin
14. Vitamin B1
15. Vitamin B12
16. Vitamin A
17. CKD-EPI

The importance of these variables in the final random forest is depicted in figure L.6. From this graph, it
can be concluded that especially age is an important predictor in this model. The other variables seem
more or less equally important.

L.2.2 Performance of the random regression forest

The random regression forest trained on the balanced set has a RMSE of 9.4 and an MAE of 7.3 per-
centage points. Both error measures are higher than those of the random regression forest trained on the
unbalanced data set (which has a RMSE of 8.4 and a MAE 6.7 percentage points). As can be observed
in figure L.7, the model trained on the balanced data produces predictions in a slightly wider range than
the model trained on the unbalanced data, but still its predictions are around the mean of 30.9%.

We can conclude that balancing the data set does not lead to a random regression forest with lower error
rates and hardly broadens the prediction range. Thus, balancing the data set does not result in a better
prediction model.
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Figure L.4: Graphical overview of the data sets for modeling.

Figure L.5: The e↵ect of lef size on the performance of the random regression forest trained on balanced
data.
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Figure L.6: The importance of the used variables in the random regression forest.

Figure L.7: Scatterplot of the actual achieved against the predicted weight loss as predicted by the random
regression forest based on the balanced data. For comparison, the outcomes of the random regression
model based on unbalanced data are displayed in grey.
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