Help, I gained weight during surgery!

Citation for published version (APA):

Document license:
Unspecified

Document status and date:
Published: 26/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Help, I gained weight during surgery!
Perioperative volume status modelling to prevent hypo- and hypervolemia in surgery

Tilai T. Rosalina*, Wouter Peeters, R. Arthur Bouwman1, H. Erik Korsten**, Rick Bezemer², Marc R. van Sambeek³, Frans N. van de Vosse*, Peter H.M. Bovendeerd*
*Eindhoven University of Technology, ¹Catharina Hospital Eindhoven, ²Philips Research

Introduction
During major surgery patients can lose large amounts of blood. To correct for this fluid loss, intravenous fluids are administered. Currently the goal is to restore normal hemodynamic values. A serious side effect of this treatment is fluid overload and edema formation¹.

Whereas young patients can easily handle this fluid overload, elderly patients are at risk of developing hypoxia and organ failure⁴. This is an increasingly important problem, due to increased life expectancy.

Aim
Create a tool to provide more insight in the fluid balance of patients experiencing severe blood loss compensated by fluid administration, eventually to be used in clinical decision making.

Methods
The novelty of this project will be to combine a fluid distribution model with models of the cardiovascular and respiratory system.

A suitable fluid distribution model was found in literature, published by Gyenge et al (1999)⁵. The proposed model setup is shown in figure 3.

Figure 3: Schematic overview of the the proposed interaction of fluid distribution-, cardiovascular-, renal and pulmonary modules.

Preliminary results
Preliminary results are comparable to experimental data by Watenpaugh et. al.⁶

With the model we can provide extra information about the other compartments. In the figure below the effect of an infusion of 2.1 L saline in 30 minutes is shown.

Figure 4: Results of the Watenpaugh simulation: fluid input (A), output (B), model and experimental volume changes in the plasma (C) and extra model signals (D-F)

Conclusion
The model by Gyenge et al. is capable of simulating the complex fluid distribution. To investigate the effect of fluid therapies and hemorrhage this model must be extended with cardiovascular and pulmonary compartments, especially considering regulation.

References