Batch-to-batch rational feedforward control

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1109/TMECH.2016.2625309

Document status and date:
Published: 01/04/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Batch-to-Batch Rational Feedforward Control: From Iterative Learning to Identification Approaches, With Application to a Wafer Stage

Lennart Blanken, Frank Boeren, Dennis Bruijnen, and Tom Oomen

Abstract—Feedforward control enables high performance for industrial motion systems that perform nonrepeating motion tasks. Recently, learning techniques have been proposed that improve both performance and flexibility to nonrepeating tasks in a batch-to-batch fashion by using a rational parameterization in feedforward control. This paper aims to unify these approaches through a single framework that provides transparent connections and clear differences between the alternatives. Experimental results on an industrial motion system confirm the theoretical findings and illustrate benefits of rational feedforward tuning in motion systems, including preactuation and postactuation.

Index Terms—Feedforward control, learning control, motion control.

I. INTRODUCTION

Feedforward control is an essential component in industrial motion systems, since it can compensate for known disturbances before these affect the system. The main performance improvement is typically achieved by using feedforward to compensate for the reference, see, e.g., [1]–[3]. Improvements in feedforward control are an important step toward meeting tightening industrial requirements on throughput and accuracy in next-generation industrial motion systems. The following requirements are imposed on feedforward control for next-generation motion systems:

R1) small servo error;
R2) high flexibility to nonrepeating tasks.

Requirement R1 is a common requirement for industrial motion systems. Requirement R2 is crucial since industrial motion systems often perform nonrepeating tasks. For example, wafer scanners perform varying motion tasks to control the wafer height during exposure [4], [5]. In semiconductor bonding equipment, systems perform varying tasks due to small corrections required in the pick and/or place location, see, e.g., [6] and [7]. Performance deterioration due to nonrepeating tasks restricts the achievable throughput, and is, therefore, typically not acceptable in industrial applications.

A common approach to feedforward control is model-based feedforward. Typically, a parametric model of the plant is identified and inverted for use in feedforward as in [2]. In [8], the inverse system is identified directly. However, the achievable performance strongly depends on the model quality and the accuracy of the model inversion [9]. Hence, R1 is often not sufficiently satisfied. Note that model-based feedforward approaches typically achieve R2. This is illustrated in Fig. 1.

Iterative learning control (ILC) [1] can significantly improve the performance of systems subject to repeating tasks. As a result, R1 is typically achieved. In ILC, the feedforward signal is determined in a batch-to-batch fashion, see, e.g., [10]. After each task, the feedforward signal for the next task is determined based on measured data and an approximate model of the system. However, extrapolation of the learned signal to other tasks often results in a significant performance deterioration, see, e.g., [11] and [12]. Hence, R2 is not achieved by ILC, see Fig. 1.

To meet R2, a segmented approach to ILC is presented in [13]. This approach is extended in [14], where the task is divided into subtasks that are learned separately. The use of such a signal library can be restrictive since tasks are required to consist of previously learned subtasks. Instead of learning subtasks, ILC
has been extended with basis functions in, e.g., [15] and [16]. The basis functions are used to parametrize the feedforward signal in terms of the motion task. This approach is further extended in [17], where a rational parametrization of the feedforward controller is introduced, which enables R1 and R2 for the generic class of linear rational systems. These recent developments in ILC are promising for motion control with nonrepeating tasks, yet require an approximate model of the system.

Recently, an alternative approach has been developed to batch-to-batch feedforward control that enables estimation of feedforward controllers based on measured data only, denoted iterative feedforward tuning. An approach for a rational parameterization is proposed [18], and results for a polynomial parametrization are presented in [19] and [20]. For the specific class of point-to-point motion tasks, an extension toward input shaping is presented in [21]. Interestingly, rational feedforward controllers can also be used to generate preactuation by means of stable inversion procedures, as will be experimentally demonstrated in this paper.

Although important theoretical steps have been made toward achieving R1 and R2 in batch-to-batch feedforward control, see Fig. 1, at present the connections and practical differences between various approaches are not yet fully established. The contribution of this paper is threefold. First, a unifying framework is proposed for batch-to-batch feedforward control. Second, it is shown that iterative feedforward tuning can be interpreted in the framework of norm-optimal ILC with basis functions, yet without the need for a model. Third, an experimental comparison is performed on an industrial motion system, illustrating differences in the achievable performance, and validating the proposed approach for pre-actuation. In fact, benefits of stable inversion are clearly observed in the experimental results. Related approaches include the use of such methods for decoupling, see, e.g., [22] and [23]. In contrast, input shaping is presented in [21].

This paper is organized as follows. In Section II, the notation is introduced. In Section III, a motivation is presented for the use of batch-to-batch parametrized feedforward control in view of requirements R1 and R2. In Section IV, a unifying framework is introduced for batch-to-batch feedforward control. Procedures for norm-optimal ILC and iterative feedforward tuning with rational parametrizations are proposed in Sections V and VI, respectively. In Section VII, an approach is investigated enabling preactuation and postactuation. In Section VIII, an experimental comparison is provided of the presented approaches to batch-to-batch feedforward control. Finally, conclusions are provided in Section IX.

II. PRELIMINARIES

Let $\mathbf{H}(z)$ denote a discrete-time, linear time-invariant (LTI), single-input, single-output (SISO) system. A positive definite matrix \mathbf{A} is denoted $\mathbf{A} > 0$. For a vector x, the weighted two norm is given by $\|x\|_W^2 = x^T W x$. The ith element of x is expressed as $x[i]$. The identity matrix of size n is denoted \mathbf{I}_n.

Signals are often assumed to be of length N. Given input and output vectors $u, y \in \mathbb{R}^{N \times 1}$. Let $h(t)$ be the impulse response vector of $\mathbf{H}(z)$. Then, the finite-time response of the possibly noncausal $\mathbf{H}(z)$ to input u is given by the truncated convolution

$$y[t] = \sum_{l=1}^{N} h(l) u[t-l],$$

where $0 \leq t < N$ and zero initial and final conditions are assumed, i.e., $u(0) = 0, y(t) = 0$ for all $t < 0$ and $t \geq N$. The finite-time convolution is denoted as

$$y = \begin{bmatrix} y[0] \\ y[1] \\ \vdots \\ y[N-1] \end{bmatrix} = \begin{bmatrix} h(0) & h(-1) & \ldots & h(1-N) \\ h(1) & h(0) & \ldots & h(2-N) \\ \vdots & \vdots & \ddots & \vdots \\ h(N-1) & h(N-2) & \ldots & h(0) \end{bmatrix} \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[N-1] \end{bmatrix}$$

with H the convolution matrix corresponding to $\mathbf{H}(z)$.

III. MOTIVATION

In this section, theoretical and experimental results are presented to show that standard ILC approaches can typically not achieve R2. Moreover, it is shown that by extending ILC with basis functions, R1 and R2 can be achieved simultaneously. This is the key motivation for this approach. As shown in the remainder of this paper, ILC with basis functions is a particular implementation of a batch-to-batch parametrized feedforward approach. Hence, the results in this section aim to motivate the use of a batch-to-batch parametrized feedforward approach.

The considered control setup is shown in Fig. 2, and consists of a stabilizing feedback controller C_{fb}, an unknown system P, and optionally a feedforward controller C_{ff}. A sequence of finite-time tasks is performed, denoted by index $j = 0, 1, 2, \ldots$. Furthermore, r^j denotes the reference, f^j the feedforward signal, y^j the measured output, v^j an unknown disturbance, and e^j the measured error in task j (resp. e^{j+1} in task $j+1$) given by

$$e^j \equiv S r^j - S P f^j - S v^j$$

(1)

$$e^{j+1} = S r^{j+1} - S P f^{j+1} - S v^{j+1}$$

(2)

with $S = (I + PC_{fb})^{-1}$. In Sections III-A and III-B, the inflexibility of ILC to nonrepeating tasks is demonstrated. This is
the key motivation to adopt the use of parametrized feedforward approaches in Section III-C.

A. Inflexibility of ILC to Nonrepeating Tasks

In a typical ILC approach, \(f^{j+1} \) is determined by using a frequency-domain or a time-domain ILC approach, see Appendix I and [1] and [25]. Their solutions can typically be expressed in an ILC update law, see, e.g., [1], of the form

\[
f^{j+1} = Q_f f^j + L_f e^j
\]

(3)

with robustness filter \(Q_f \) and learning filter \(L_f \). Detailed expressions for \(L_f \) and \(Q_f \) are presented in, e.g., [1]. A key assumption underlying (3) is that the system performs repeating tasks, i.e., \(r^{j+1} = r^j \forall j \). Violating this assumption can significantly affect the achievable performance, as is shown next.

Example 1: Inflexibility of ILC. Suppose that \(f^j = P^{-1} r^j \), \(Q = I \), \(v^j = 0 \), and \(r^{j+1} \neq r^j \). Substituting \(f^j = P^{-1} r^j \) into (1) gives \(e^j = 0 \). By using \(e^j = 0 \) and \(Q = I \) in (3), it follows that \(f^{j+1} = f^j \), i.e., the ILC update law in (3) is converged. Then, substitution of \(f^{j+1} = f^j = P^{-1} r^j \) into (2), and using \(v^j = 0 \), yields

\[
e^{j+1} = S(r^{j+1} - r^j).
\]

(4)

This shows that the performance in task \(j+1 \) can significantly deteriorate if \(r^{j+1} \neq r^j \), which compromises R2. Note that the achieved performance can become worse than by using feedback only, for example, if \(r^{j+1} = -r^j \).

B. Experimental Demonstration of Inflexibility of ILC

The assumption that \(r^{j+1} = r^j \) for all \(j \) is often violated in motion systems. For example, nonrepeating tasks are often encountered in wafer stages [13]. Next, the importance of a feedforward approach that incorporates flexibility with respect to nonrepeating tasks is experimentally illustrated on a wafer stage as used in Section VIII, shown in Fig. 3.

Example 2: Inflexibility of ILC (Experimental—Preview on Section VIII). The two reference trajectories considered in this experimental example are depicted in Fig. 3(a). The number of tasks is 14. Reference trajectory \(r_1 \) is used in tasks \(j = 0, 1, \ldots, 6 \), while \(r_2 \) is used in tasks \(j = 7, 8, \ldots, 13 \). The ILC approach in Appendix I is used, where the design guidelines follow [1]. The learned feedforward signal is not reinitialized when changing the reference. The results in Fig. 3(b) experimentally confirm that the performance with standard ILC significantly deteriorates when confronted with nonrepeating tasks due to considerable learning transients. Hence, R2 is not met.

These experimental observations match with earlier observations, see, e.g., [11], [12], and [26]. That is, direct application of standard ILC algorithms can lead to a significant performance deterioration when confronted with nonrepeating tasks.

C. Flexibility Through Parametrized Feedforward

Flexibility with respect to nonrepeating tasks is a key reason to introduce a parametrization for \(f^{j+1} \) in ILC, see, e.g., [6], [12], [15], and [16]. In such an approach, \(f^{j+1} \) is parameterized in terms of parameters \(\theta^{j+1} \), and the reference trajectory \(r^{j+1} \). Here, the following parametrization is used

\[
f^{j+1} = C_{ff}(\theta^{j+1})r^{j+1}.
\]

(5)

Detailed expressions for the feedforward controller \(C_{ff}(\theta^{j+1}) \) are given in Section IV-B. Essentially, the update law (5) aims to determine parameters \(\theta^{j+1} \), instead of a signal \(f^{j+1} \) as in (3). Similar to (3), the following update law is derived:

\[
\theta^{j+1} = Q\theta^j + L e^j
\]

(6)

where \(Q \) and \(L \) are robustness and learning filters, respectively.

The next example shows that flexibility against nonrepeating tasks can be obtained by using the update law (6).

Example 3: Flexibility through parameterized feedforward. Suppose that \(C_{ff}(\theta^j) = P^{-1}, Q = I, v^j = 0 \forall j \), and \(r^{j+1} \neq r^j \). Then, \(f^j \) parametrized as in (5) is equal to \(f^j = P^{-1} r^j \). Furthermore, substituting \(f^j = P^{-1} r^j \) into (1) and using \(v^j = 0 \) gives \(e^j = 0 \). Then from (6), it follows that \(\theta^{j+1} = \theta^j \), i.e., (6) is converged. As a result \(C_{ff}(\theta^{j+1}) = C_{ff}(\theta^j) \), which implies \(f^{j+1} = P^{-1} r^j \), and hence, (2) gives

\[
e^{j+1} = S(r^{j+1} - P r^j) = S(r^{j+1} - r^{j+1}) = 0
\]

(7)

for any \(r^{j+1} \). Comparing the result (7) with (4) shows that a parametrized ILC update law as in (6) can significantly enhance flexibility to nonrepeating tasks, hence enabling R2.

Next, the flexibility to nonrepeating tasks of a batch-to-batch parameterized feedforward approach is experimentally illustrated on the wafer stage that is used in Section VIII.

Example 4: Flexibility through parameterized feedforward (Experimental—Continued). In this experimental example, a
specific implementation of (6) is applied to the industrial motion system of Fig. 5. Similar to Example 2, implementation details are omitted for clarity of exposition. The results in Fig. 3 illustrate the following.

1) The parametrized feedforward approach can effectively handle the change in the reference trajectory in task $j = 7$. These results indicate that a batch-to-batch parametrized feedforward approach can meet R2, as shown in Fig. 1. Note that for a single specific reference, standard ILC outperforms the parametrized approach.

2) The parametrized feedforward approach significantly improves performance compared to feedback only, confirming that batch-to-batch feedforward control sufficiently achieves R1, as in Fig. 1. Note that for a single specific reference, standard ILC outperforms the parametrized approach.

The presented theoretical and experimental examples indicate that a batch-to-batch parametrized feedforward approach as in (6) can achieve both R1 and R2, in contrast to standard approaches, such that a well-motivated choice can be made for the particular problem at hand.

IV. BATCH-TO-BATCH FEEDFORWARD FROM A SYSTEM IDENTIFICATION PERSPECTIVE

The goal in batch-to-batch feedforward control is to iteratively improve control performance by learning a feedforward controller C_{ff} from measured data in a batch-to-batch fashion. Essential for the achievable performance are: 1) the used batches of measured data; 2) the feedforward controller parameterization; and 3) the optimization criterion, which are the focus of Sections IV-A–IV-C, respectively. This typical system identification perspective on batch-to-batch feedforward control is illustrated in Fig. 4. On the basis of these aspects, an overview of approaches to batch-to-batch feedforward is provided in Section IV-D.

A. Measurement Data

To achieve high performance C_{ff} is optimized based on measured data. A sequence of finite-time tasks is performed under normal operating conditions. After each task, C_{ff} is updated based on batches of data before starting the next task. Here, data from a single task are used to update C_{ff} to facilitate presentation. Note that data from multiple tasks can be used, as in [27], based on similar algorithms as proposed in [28].

B. Feedforward Parameterization

To meet R2 in batch-to-batch feedforward control, f^j+1 is parameterized in terms of parameters θ^j+1 and r^j+1. As a result, nonrepeating tasks are explicitly taken into account in f^j+1. Many batch-to-batch feedforward approaches fit into this framework, including: basis tasks [13], [14], polynomial basis functions [15], [16], [20], [29], joint input shaping and feedforward [21], and rational basis functions [17], [18].

In this paper, the following rational parameterization is adopted, which encompasses rational and polynomial basis functions. The feedforward, see Fig. 2, is given by $f^j+1 = C_{ff}(\theta^j+1)r^j+1$ as in (5), where $C_{ff}(\theta^j+1)$ is defined next.

Definition 1: The feedforward controller $C_{ff}(\theta)$ parameterized in terms of a rational basis c_{rat} is given by

$$c_{rat} = \left\{ C_{ff}(\theta) \left| C_{ff}(\theta) = B(\theta)^{-1}A(\theta), \quad \theta \in \mathbb{R}^{n_a+n_b} \right. \right\}$$

where

$$A(\theta) = \sum_{i=1}^{n_a} \psi_i \theta[i], \quad B(\theta) = I + \sum_{i=n_a+1}^{n_a+n_b} \psi_i \theta[i].$$

Here, ψ_i is the convolution matrix corresponding to the polynomial basis function $\psi_i(z)$. The underlying transfer function $C_{ff}(z, \theta)$ of $C_{ff}(\theta)$ can be constructed as $C_{ff}(z, \theta) = B^{-1}(z)A(z, \theta)$ where $A(z, \theta) = \sum_{i=1}^{n_a} \psi_i(z)\theta[i]$ and $B(z, \theta) = I + \sum_{i=n_a+1}^{n_a+n_b} \psi_i(z)\theta[i]$. Furthermore, let $\Psi = [\Psi_A, \Psi_B]$ with $\Psi_A = [\psi_1, \ldots, \psi_{n_a}]$ and $\Psi_B = [\psi_{n_a+1}, \ldots, \psi_{n_a+n_b}]$.

Remark 1: Note that a polynomial parameterization c_{pol} is recovered by setting $B(\theta) = I$ in Definition 1. Furthermore, parameterization c_{rat} is a direct extension of joint input shaping and feedforward, explained in detail in [21].

C. Criterion

Based on measured data from previous tasks and a feedforward parameterization, the aim after task j of each approach to batch-to-batch feedforward control is to determine

$$\theta^j+1 = \arg\min_{\theta^j+1} V(\theta^j+1)$$

where the criterion $V(\theta^j+1)$ depends on the selected approach. Typically, $V(\theta^j+1)$ is selected as some norm of the predicted error \hat{e}^j+1 in task $j + 1$, see, e.g., [16] and [25]. Given SP, the error propagation from task j to $j+1$ is written as

$$\hat{e}^j+1(\theta^j+1) = e^j + SP(C_{ff}(\theta^j)r^j - C_{ff}(\theta^j+1)r^j+1).$$

D. Overview of Approaches

In Sections IV-A–IV-C, the ingredients are provided for batch-to-batch feedforward in a system identification perspective, see Fig. 4. This section provides an overview of the con-
sidered approaches to determine θ^{i+1}. This paper focuses on measured data from a single task and parameterization C_{rat}.

In Sections V and VI, norm-optimal ILC and iterative feedforward tuning approaches are presented for C_{rat}, respectively. In each section, the corresponding criterion $V(\theta^{i+1})$ is defined and a solution algorithm for (8) is provided. The solutions for θ^{i+1} are interpreted in terms of the ILC update law as in (6) as follows:

$$\theta^{i+1} = Q\theta^i + L \hat{e}^j$$ (10)

with robustness matrix $Q \in \mathbb{R}^{(n_a+n_b)\times(n_a+n_b)}$ and learning matrix $L \in \mathbb{R}^{(n_a+n_b)\times N}$.

V. NORM-OPTIMAL ILC WITH A RATIONAL BASIS

In Section IV, three ingredients to batch-to-batch feedforward control are defined. In this section, a norm-optimal ILC approach is pursued for rational parametrization C_{rat}, as in [17]. This is a specific algorithm for the computation of θ^{i+1}, see Fig. 4. The corresponding criterion is defined next.

Procedure 1: Iterative scheme for rational ILC optimization.

Given a model \hat{SP} of SP and initial estimate θ^0, set the task index $j = 0$ and perform the following sequence of steps.

1) Construct $C_{ff}(\theta^j)$, perform task j, and measure e^j.

2) Determine θ^{j+1} with the following iterative scheme.

 a) Set $k = 0$ and initialize $\theta^{(i)} = \theta^j$.

 b) Construct $L_{ILC.(k)}$ and $Q_{ILC.(k)}$ with $\theta^{(i)}$.

 c) Determine $\theta^{(i+1)} = Q_{ILC.(k)}\theta^j + L_{ILC.(k)}\hat{e}^j$.

 d) Until a stopping condition is met, set $k \rightarrow k + 1$ and return to 2b). Else, return to 2a).

3) Set task index $j \rightarrow j + 1$ and return to 1).

Definition 2: The criterion for norm-optimal ILC with basis functions is given by

$$V(\theta^{i+1}) = ||\hat{e}^{i+1}(\theta^{i+1})||_{I_{ILC}}^2$$ (11)

where $W > 0$ is a user-defined weighting matrix and $\hat{e}^{i+1}(\theta^{i+1})$ is the predicted error in task $j + 1$.

This criterion can be directly extended by including weights on the feedforward signal as in, e.g., [16] and [25]. To facilitate presentation, the basic form (11) is used.

The solution to (8) for this approach with criterion (11), formulated as an ILC update law, is given by

$$\theta^{i+1} = Q_{ILC.(k)}\theta^j + L_{ILC.(k)}\hat{e}^j$$ (12)

where index k denotes the kth computational iteration within the calculation of θ^{i+1}. Next, expressions are provided for $Q_{ILC.(k)}$ and $L_{ILC.(k)}$, and attention is given to important aspects in the computation of θ^{i+1}. The learning matrices are

$$L_{ILC.(k)} = \begin{bmatrix} \frac{Q\hat{e}^{i+1}(\theta^{i+1})}{\theta^{i+1}} \end{bmatrix}^T W_{ILC}(\theta^{i+1})^{-1} \begin{bmatrix} \frac{Q\hat{e}^{i+1}(\theta^{i+1})}{\theta^{i+1}} \end{bmatrix} + W B^{-1}(\theta^{i+1}) B^{-1}(\theta^i)$$

and a solution algorithm for (8) is provided. The solutions for θ^{i+1} are interpreted in terms of the ILC update law as in (6) as follows:

$$\theta^{i+1} = Q\theta^i + L \hat{e}^j$$ (10)

where 0 denotes a zero matrix. A proof of (12) is provided in Appendix II. In view of (9), $\hat{e}^{i+1}(\theta^{i+1})$ is given by

$$\hat{e}^{i+1}(\theta^{i+1}) = B^{-1}(\theta^{i+1})\hat{e} - \Phi_{ILC}(\theta^{i+1})\theta^{i+1}$$ (13)

with $\hat{e}^j = e^j + \hat{SP} f^j$ and regression matrix

$$\Phi_{ILC}(\theta^{i+1}) = B^{-1}(\theta^{i+1}) \begin{bmatrix} I_{n_a} & 0 \\ 0 & -I_{n_b} \end{bmatrix}$$ (14)

Three key observations are made. First, both $Q_{ILC.(k)}$ and $L_{ILC.(k)}$ use the approximate model \hat{SP} of SP. Second, if $B(\theta) = I$, i.e., C_{pol} is used, then (12) forms an analytic solution. Third, if C_{rat} is used, (11) is in general nonlinear in θ^{i+1}, requiring an iterative solution in (12). Typically, Procedure 1 is invoked, which is based on (12)–(14).

Summarizing, a solution algorithm is provided for norm-optimal ILC with a rational parametrization, achieving R1 and R2. Note that a model \hat{SP} is required to apply Procedure 1.

VI. IV-BASED ITERATIVE FEEDFORWARD TUNING WITH A RATIONAL BASIS

The developments in ILC regarding basis functions described in Section V are promising for motion control, yet require an approximate model of SP. Recently, an approach to batch-to-batch feedforward control is presented in [20] based on instrumental variables (IV), see, e.g., [30]. In this approach, the feedforward update is based on measured data only. This key difference potentially improves the convergence properties of the algorithm compared to norm-optimal ILC with basis functions, see Section VIII-C for experimental results.

In Section VI-A, the need for a model \hat{SP} is eliminated. However, the immediate and naive implementation of this approach suffers from a closed-loop identification problem. This is the main motivation to adopt IV-based approaches in iterative feedforward tuning. In Section VI-B, an IV-based approach is presented to iterative feedforward tuning for parameterization C_{rat} and interpreted in an ILC framework. Throughout, a standard assumption is imposed on ψ [31]; ψ is given by $\psi = H \varepsilon$, where H is monic and $\varepsilon^j \sim N(0, \lambda^2)$.

A. Eliminating the Need for an Approximate Model

In this section, the need for an approximate model of the system is eliminated by using measured data only. This relies on the observation, derived in [29], that

$$y^j = (C_{fb} + C_{ff}(\theta^j))SP^j + Se^j$$
is equivalent to

\[(C_{fb} + C_{ff}(\hat{\theta}^{j}))^{-1} y^j = SPr^j\] \hspace{1cm} (15)

when assuming \(y^j = 0\). Based on (15), measured data can be used to estimate \(SPr\), eliminating the need to use \(S\). By replacing \(SPr\) with (15) in \(\Phi_{ILC}\), (13) can be rewritten to

\[\hat{e}^{j+1}(\theta^{j+1}) = B^{-1}(\theta^{j+1})\hat{e}^j - \Phi_{IV}(\theta^{j+1})\hat{y}^{j+1}\] \hspace{1cm} (16)

with \(\hat{e}^j = e^j + C_{ff}(\theta^j)C^{-1}y^j\), \(C = C_{fb} + C_{ff}(\theta^j)\), and

\[\Phi_{IV}(\theta^{j+1}) = B^{-1}(\theta^{j+1})\left[\Psi_A C^{-1}y^j, -\Psi_B \hat{e}^j\right].\]

Comparing (17) with (14) shows that \(\Phi_{IV}\) is fully based on measured data, while \(\Phi_{ILC}\) contains an approximate model \(S\). The gradient of (16) with respect to \(\theta^{j+1}\) becomes

\[\frac{\partial \hat{e}^{j+1}(\theta^{j+1})}{\partial \theta^{j+1}} = B^{-1}(\theta^{j+1})\left[-\Psi_A, \Psi_B C_{ff}(\theta^{j+1})\right] C^{-1}y^j.\] \hspace{1cm} (18)

Using (17) and (18) enables the estimation of rational feedforward controllers, as in (12), based on measured data only. However, a detailed analysis reveals that the presence of noise, i.e., \(v^j\), in fact introduces a closed-loop identification problem, see, e.g., [20] and [32]. As a consequence, biased estimates are obtained. To eliminate the closed-loop identification problem, a connection is proposed in [20] between IV identification techniques, see, e.g., [30], and iterative feedforward tuning.

B. IV-Based Rational Iterative Feedforward Tuning

The goal in instrumental variable-based iterative feedforward tuning is to obtain unbiased estimates \(\theta^{j+1}\) for \(C_{ff}\), using only measured data. To this purpose, a modification is proposed to criterion (11). It turns out that the minimizing argument to the modified criterion in fact minimizes (11). The criterion for IV-based feedforward tuning is defined next.

Definition 3: The criterion in instrumental variable-based iterative feedforward tuning is given by

\[V(\theta^{j+1}) = \|Z\hat{e}^j(\theta^{j+1})\|_{W}^2\] \hspace{1cm} (19)

with instrumental variables \(Z \in \mathbb{R}^{N \times (n_u + n_s)}\), \(W > 0\) a user-defined weighting matrix, and \(\hat{e}^{j+1}(\theta^{j+1})\) as in (16).

The proposed solution, recast to the form of (10), is

\[\theta^{j+1}_{(k+1)} = Q_{IV,(k)}\theta^j + L_{IV,(k)}e^j\] \hspace{1cm} (20)

where

\[L_{IV,(k)} = \left[Z W \Phi_{IV}(\theta^{j+1}_{(k)})\right]^{-1} Z W B^{-1}(\theta^{j+1}_{(k)}) B^{-1}(\theta^j)\]

\[Q_{IV,(k)} = L_{IV,(k)} B(\theta^j) \Phi_{IV}(\theta^j) \left[I_{n_u} 0 0 -I_{n_s}\right]\]

with \(\Phi_{IV}(\theta^{j+1})\) defined in (17). A proof of (20) is provided in Appendix III. Three key observations are made. First, both \(Q_{ILC,(k)}\) and \(L_{ILC,(k)}\) do not require a model \(S\). Second, if \(B(\theta) = I\), i.e., \(C_{pol}\) is used, then (20) is an analytic solution. Third, if \(C_{rat}\) is used, (19) is in general nonlinear in \(\theta^{j+1}\), requiring an iterative solution in (20).

With solution (20), unbiased estimates are obtained when \(Z\) is chosen correlated with \(r\) and uncorrelated with \(v^j\). The remaining freedom in the design of \(Z\) can be used to achieve optimal accuracy of the estimates, see [18] for a detailed analysis. The following instruments are proposed:

\[Z^\top(\theta^{j+1}_{(k)}) = C^{-1}_{ff} \left[-C_{ff}(\theta^{j+1}_{(k)}) \Psi_{B} \Psi_{B} \right]\] \hspace{1cm} (21)

with \(C_{(k)} = C_{fb} + C_{ff}(\theta^{j+1}_{(k)})\). Similar to \(\Phi_{IV}(\theta^{j+1}_{(k)})\), (21) depends on \(\theta^{j+1}_{(k)}\). An iterative scheme is invoked to refine (21), as in, e.g., [33], which can be straightforwardly included in the iterative scheme that is already required to determine \(\theta^{j+1}\) for \(C_{rat}\). The iterative scheme is presented in Procedure 2. For \(C_{pol}\), i.e., \(B(\theta) = I\), the scheme provided in [20] is recovered.

Procedure 2: Iterative scheme for rational IV-based feedforward optimization

Given an initial estimate \(\theta^0\), set the task index \(j = 0\) and perform the following sequence of steps.

1) **Construct** \(C_{ff}(\theta^j)\), **task** \(j\), and **measure** \(e^j, y^j\).

2) **Determine** \(\theta^{j+1}\) with the following iterative scheme:
 a) **Set** \(k = 0\) and **initialize** \(\theta^{j+1} = \theta^j\).
 b) **Construct** \(Z(\theta^{j+1}_{(k)})\), \(L_{IV,(k)}\) and \(Q_{IV,(k)}\) with \(\theta^{j+1}_{(k)}\).
 c) **Determine** \(\theta^{j+1}_{(k+1)} = Q_{IV,(k)}\theta^j + L_{IV,(k)}e^j\).
 d) **Until** a stopping condition is met, **set** \(k \rightarrow k + 1\) and **return to** 2b). Else, **set** \(\theta^{j+1} = \theta^{j+1}_{(k+1)}\).

3) **Set task index** \(j \rightarrow j + 1\) and **return to** 1).

Interestingly, it is shown in [33] that, when using instruments (21), the minimizing argument to (19) approximately minimizes (11) upon convergence of the iterative procedure. In other words, the obtained estimates minimize the two norm of the predicted error, which motivates the use of (19) in combination with (21) in batch-to-batch feedforward control.

In Sections V and VI, approaches are presented to construct rational feedforward controllers. In the next section, a procedure is proposed that essentially enables precalculation by means of rational feedforward controllers.

VII. STABLE INVERSION

In this section, a stable inversion approach is presented to determine \(f^{j+1}\) for a rational feedforward parametrization. This approach relies on the assumption that \(r\) is known beforehand and is bounded, which is a typical assumption in motion systems. Let \(\theta^{j+1}\) be determined according to update laws (12) or (20). Then, \(C_{ff}(\theta^{j+1})\) follows from Definition 1 together with the underlying transfer function \(C_{ff}(z, \theta^{j+1})\).

If \(C_{ff}(z, \theta^{j+1})\) is unstable, a bounded \(f^{j+1}\) cannot be constructed when filtering forward in time. Next, a stable inversion approach is investigated to deal with unstable \(C_{ff}(z, \theta^{j+1})\). Start by decomposing \(f^{j+1}\) into

\[f^{j+1} = C_{ff}^*(z, \theta^{j+1})i^{j+1} + C_{II}^*(z, \theta^{j+1})i^{j+1}\]

where \(C_{ff}^*(z, \theta^{j+1})\) and \(C_{II}^*(z, \theta^{j+1})\) contain the stable and unstable dynamics, respectively. By means of stable inversion
the unstable dynamics \(C_{\text{ff}}^{\text{un}} \) are filtered in backward time with suitable boundary conditions. Detailed state-space expressions for \(C_{\text{ff}}^{\text{st}} \) and \(C_{\text{ff}}^{\text{un}} \) are given in [20, Appendix A], see also [34] for further details. As a result, a bounded \(f^{i+1} \) is computed.

The key benefit of stable inversion for feedback is that preactuation is possible through \(C_{\text{ff}}^{\text{un}} \), i.e., the feedback starts before the motion task. Simulation results have indicated that preactuation can potentially improve performance, see, e.g., [34]–[36]. In this paper, the benefits of stable inversion are demonstrated on the motion system in Fig. 5. Pre- and postactuation are clearly observed in Fig. 8.

VIII. EXPERIMENTAL COMPARISON

In this section, the batch-to-batch feedforward approaches of Sections V and VI and the stable inversion procedure in Section VII are demonstrated on the industrial motion system, which is introduced in Section VIII-A. Table I lists the approaches that are experimentally compared. The following aspects are experimentally investigated.

1) The achievable performance with rational and polynomial feedforward is compared, see Section VIII-B.
2) The benefit of preactuation and postactuation for motion systems by means of stable inversion is investigated, see Section VIII-B.
3) The achievable performance of norm-optimal ILC and IV-based iterative feedforward tuning with rational bases is compared, see Section VIII-C.
4) The influence of the design of the instrumental variables on the achievable performance is demonstrated for IV-based iterative feedforward tuning, see Section VIII-D.

A. Experimental Setup

The considered next-generation wafer stage, see, e.g., [5], is shown in Fig. 5. The stage is controlled in all six motion degrees of freedom (DOFs), i.e., three translations and three rotations. The system is equipped with moving-coil permanent magnet planar motors that enable contactless operation, see [37] for the underlying principle. Laser interferometers enable subnanometer accuracy position measurements in all DOFs. All signals operate in discrete time with a sample time \(T_s = 1/2500 \) s. A stabilizing multivariable feedback controller is determined by means of sequential loop closing. The proposed feedforward approaches are applied to the main translational direction of motion. An identified frequency response function (FRF) of the corresponding system is shown in Fig. 5(c).

The control goal for the considered motion system is to minimize \(\|y^s - y^p\|^2 \), where \(y^s \) is the measured position of the system, and \(r \) is a fourth-order motion task with \(N = 1001 \), similar to those shown in Fig. 3(a) but with different constraints on the time derivatives. Unless stated otherwise, the basis functions used in polynomial parametrization \(C_{\text{pol}} \) are given by

\[
\Psi_A(z) = \frac{z-1}{zT_s}, \left(\frac{z-1}{zT_s} \right)^2, \left(\frac{z-1}{zT_s} \right)^3, \left(\frac{z-1}{zT_s} \right)^4, \left(\frac{z-1}{zT_s} \right)^5
\]

TABLE I

<table>
<thead>
<tr>
<th>Approach</th>
<th>Basis</th>
<th>Instruments</th>
<th>Z</th>
<th>VIII-B</th>
<th>VIII-C</th>
<th>VIII-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-based FF.</td>
<td>(C_{\text{rat}})</td>
<td>optimal, (21)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec. VI-B</td>
<td>(C_{\text{pol}})</td>
<td>optimal, (21)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-O ILC, Sec. V</td>
<td>(C_{\text{rat}})</td>
<td>suboptimal, (23) [19]</td>
<td>(\checkmark)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

corresponding with first- to fifth-order differentiators, as in, e.g., [20] and [38]. The corresponding parameters are denoted \(\theta = [\theta_A^\nu, \theta_A^\delta, \theta_A^\delta, \theta_A^\theta, \theta_A^\theta]^\top \). The rational parameterization \(C_{\text{rat}} \) in Definition 1 is given by

\[
\Psi_A(z) = \left[\frac{z-1}{zT_s}, \left(\frac{z-1}{zT_s} \right)^2, \left(\frac{z-1}{zT_s} \right)^3, \left(\frac{z-1}{zT_s} \right)^4, \left(\frac{z-1}{zT_s} \right)^5 \right]
\]

\[
\Psi_B(z) = \left[\frac{z-1}{zT_s}, \left(\frac{z-1}{zT_s} \right)^2, \left(\frac{z-1}{zT_s} \right)^3 \right]
\]

with \(\theta = [\theta_A^\nu, \theta_A^\delta, \theta_A^\delta, \theta_A^\theta, \theta_B^\theta, \theta_B^\theta]^\top \). The initial parameters are set to zero, except for \(\theta_A^\theta = 25 \).

B. Rational Versus Polynomial Feedforward

In this section, the influence is investigated of the feedforward parameterization on the performance. To this purpose,
The performance enhancement of rational feedforward contributes to the following effects.

1) The dominant performance improvement of rational feedforward compared to polynomial feedforward is achieved in the frequency range 180–220 Hz, see Fig. 6(c). The enhanced flexibility of the rational basis enables compensation for the first flexible mode of the plant, whereas this is not achieved by the polynomial basis. This high-frequency difference can also be observed in the estimates corresponding to higher order basis functions, see θ_{sA}^A and θ_{cA}^A in Fig. 7.

2) Fig. 8 demonstrates preactuation, used to prevent transient errors at the start of the motion task, and postactuation, used to reduce residual vibrations in the system. This feature is key for the potential performance improvement.

1) The rational parametrization improves performance by 50% compared to polynomial feedforward in terms of $\|e^f\|_2$, see Fig. 6(a).

2) Both procedures converge in a single task, see Fig. 6(a). This validates the use of (15) in update law (20).
of rational feedforward compared to polynomial feedforward. Resulting effects can be observed in Fig. 6(b).

To further improve performance, the following is proposed. 1) Fig. 6(b) and 6(c) indicates that a low frequent contribution up to 60 Hz is not compensated for by the feedforward. This is attributed to nonlinearities in the system and the cable slab between the fixed world and the stage, acting as a low-frequency disturbance. Note that these disturbances are reproducible, as is shown in Section III, and can thus be compensated for. The difference in low-frequent contribution is related to the parameters corresponding to low-order basis functions, see, e.g., \(\theta_A \) in Fig. 7.

C. Rational Feedforward: IV-Based Feedforward Tuning Versus Norm-Optimal ILC

In this section, norm-optimal ILC and IV-based feedforward tuning with rational bases are compared, see Sections V and VI. Fig. 5(c) depicts the model \(\hat{P} \) for ILC. The results are shown in Fig. 6(a). The following observations are made.

1) The ILC procedure requires multiple tasks to converge, whereas the IV-based procedure converges in a single task. This is due to the imperfect model \(\hat{S} \hat{P} \) used in (12). Consequently, the performance after one task is not yet optimal and needs to be further improved.

2) After convergence, both approaches achieve similar performance. This confirms the equivalence of criteria (11) and (19), as is argued in Section VI-B.

D. Design of Instrumental Variables

In Sections VIII-B and VIII-C, the optimal instrumental variables (21) are used in the IV-based iterative feedforward tuning approaches. It is argued in Section VI-B that these instruments minimize \(\| e \|_2 \). In this section, it is demonstrated that the design of instrumental variables is indeed essential for the achievable performance. For clarity of exposition, the IV-based iterative feedforward tuning approach with parametrization \(C_{pol} \) is considered, see Section VI-B. A comparison is provided between optimal instruments \(Z_o \) (21) and suboptimal instruments \(Z_s \), that are initially used in [19] as

\[
Z_o^\top (\theta^{j+1}) = C_{(k)}^{-1} \Psi_A r \\
Z_s^\top = \Psi_A r. \tag{22} \tag{23}
\]

A fourth-order motion task \(r \) is performed with \(N = 1001 \), similar to those shown in Fig. 3(a) but with different constraints on the time derivatives. To emphasize the influence of \(Z \) on the achievable performance, the motion profile is less aggressive than \(r_3 \), as used in Sections VIII-B and VIII-C. This motivates the selection of basis functions

\[
\Psi_A(z) = \begin{bmatrix}
z - 1 \\
z T_s \end{bmatrix}, \begin{bmatrix}
z - 1 \\
z T_s
end{bmatrix}^2, \begin{bmatrix}
z - 1 \\
z T_s
end{bmatrix}^3, \begin{bmatrix}
z - 1 \\
z T_s
end{bmatrix}^4 .
\]

The following observations are made.

1) The proposed instruments \(Z_o \) improve performance by 50% compared to \(Z_s \) in terms of \(\| e \|_2 \), see Fig. 9(a) and 9(b);

2) The procedures require multiple tasks to converge, see Fig. 9(a).

The performance enhancement of \(Z_o \) and the multistep convergence are contributed to the following effects.

1) The compared to \(Z_s \), the instruments \(Z_o \) emphasize the servo error at frequencies where \(C_{(k)}^{-1} \) is relatively large, see (22) and (23). In Fig. 9(c), it is observed that the dominant performance improvement is indeed achieved in this frequency range. For optimal performance, \(C_{(k)}^{-1} \) should approximate \(\hat{S} \hat{P} \) at frequencies important for the servo error, see [18, Sec. IV] and [19, Sec. III].

2) The procedures require multiple tasks to converge due to a lack of excitation by \(r \). For the results in Section VIII-B, a more aggressive motion profile is performed leading to convergence in a single task.

Interestingly, the design of \(Z \) influences the resulting parameter estimates, which can be observed in the error signals.

1) The different frequency weighting by \(Z_o \) and \(Z_s \), see Fig. 9(c), result in different estimates \(\theta \). In Fig. 9(b), significant peaks are observed in the error signal for \(Z_s \) that correlate with the jerk, i.e., the third time derivative, of \(r \)
IX. Conclusion

In this paper, a framework is introduced for batch-to-batch feedforward control from a system identification perspective. Two approaches are investigated and compared for batch-to-batch learning of rational feedforward controllers: 1) norm-optimal ILC using a model and 2) IV-based iterative feedforward tuning using only measured data. Both approaches enable high performance and extrapolation capabilities for nonrepeating tasks. Experimental results on an industrial motion system validate the approaches, and illustrate benefits of rational feedforward: 1) improved performance with respect to polynomial feedforward and 2) possible preactuation and postactuation of the system by means of stable inversion.

Appendix I

Relations With Conventional Frequency-Domain and Time-Domain ILC Designs

In this appendix, conventional ILC schemes are described, see, e.g., [1] and [25], in both time and frequency domain, see, e.g., [39], and direct relations are provided with the proposed framework to batch-to-batch feedforward.

A. Conventional Frequency- and Time-Domain ILC Schemes

In frequency-domain ILC schemes, see, e.g., [1] and [39], the following general ILC algorithm is typically invoked:

$$f_{j+1} = Q(z)f_{j} + L(z)e_{j}$$ (24)

with robustness and learning filters $Q(z), L(z)$. For the design of $Q(z), L(z)$ and convergence of (24), see, e.g., [1] and [39].

A direct relation exists between conventional frequency- and time-domain ILC schemes, see [39]. In addition, very similar performance and robustness design issues are present, though handled through different design parameters, see, e.g., [40]. Consider the frequency-domain filters $Q(z), L(z)$ in (24), which can be described in matrix form as in Section II using the impulse responses. The update law (24) can be written as

$$f_{j+1} = Qf_{j} + Le_{j}$$ (25)

with Q and $L \in \mathbb{R}$ convolution matrices of appropriate dimensions corresponding to $Q(z)$ and $L(z)$. Theoretically, the Fourier transform bijectively connects the time-domain and frequency-domain designs. In that sense, conventional time-domain ILC schemes can be designed which are equivalent to conventional ILC schemes based on frequency-domain designs, see [39].

B. Relation of Conventional ILC With the Proposed Framework

Next, the relation is pointed out of conventional time- and frequency-domain ILC schemes with the proposed framework of Section IV, where solutions are expressed in the update law

$$\theta_{j+1} = Q\theta_{j} + Le_{j}$$

with robustness matrix $Q \in \mathbb{R}^{(n_{a} + n_{b}) \times (n_{a} + n_{b})}$ and learning matrix $L \in \mathbb{R}^{(n_{a} + n_{b}) \times N}$. Conventional ILC schemes, see, e.g., [1], [25] and (24), (25), consider the vector f_{j+1} as the optimization variable. This can directly be accommodated in the proposed framework by considering the elements of $f_{j+1} \in \mathbb{R}^{N \times 1}$ as optimization variables. This corresponds to

$$f_{j+1} = \Psi\theta_{j+1}$$

where $\theta_{j+1} \in \mathbb{R}^{N \times 1}$ and $\Psi = IN$. Note that here flexibility to nonrepeating tasks is in fact sacrificed for performance. That is, conventional frequency- and time-domain ILC schemes do not achieve R2, since f_{j+1} is not an explicit function of r_{j+1}.

Appendix II

Derivation of (12) and (13)

By using C_{rab} in Definition 1, and $B(\theta_{j+1}) = 1 + \Psi_{B}\theta_{j+1}$, \dot{e}_{j+1} in (11) can be written as

$$\dot{e}_{j+1}(\theta_{j+1}) = B^{-1}(\theta_{j+1})\dot{e}_{j} - \Phi_{ILC}(\theta_{j+1})\theta_{j+1}$$ (26)

where $\dot{e}_{j} = e_{j} + C_{fj}(\theta)S_{Pr}$, and

$$\Phi_{ILC}(\theta_{j+1}) = B^{-1}(\theta_{j+1})\left[\Psi_{A}\hat{S}_{Pr}, -\Psi_{B}\dot{e}_{j}\right]$$

Expression (26) can be used to solve (8). Any solution $\dot{\theta}_{j+1}$ to optimization problem (8) necessarily satisfies $\frac{\partial V(\dot{\theta}_{j+1})}{\partial \dot{\theta}_{j+1}} = 0$. Evaluating this condition for criterion (11) with (26) gives

$$\left(\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}}\right)^{T}W\left(B^{-1}(\theta_{j+1})\dot{e}_{j} - \Phi_{ILC}(\theta_{j+1})\theta_{j+1}\right) = 0$$ (27)

where the gradient of $\dot{e}_{j+1}(\theta_{j+1})$ is given by

$$\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}} = \left[\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{A}}, \frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{B}}\right]$$

with $\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{A}} = -B^{-1}(\theta_{j+1})\Psi_{A}\hat{S}_{Pr}$, and $\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{B}}$ given in (28).

$$\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{B}} = B^{-2}(\theta_{j+1})\left[-\Psi_{B}\dot{e}_{j} + \left(\Psi_{B}A(\theta_{j+1})\right)\hat{S}_{Pr} \right]$$

$$= B^{-2}(\theta_{j+1})\Psi_{B}A(\theta_{j+1})\hat{S}_{Pr}$$ (28)

From (27), it then follows

$$\dot{\theta}_{j+1} = \left[\left(\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{A}}\right)^{T}W\Phi_{ILC}(\theta_{j+1})\right]^{-1}\left[\left(\frac{\partial \dot{e}_{j+1}(\theta_{j+1})}{\partial \theta_{j+1}^{B}}\right)^{T}WB^{-1}(\theta_{j+1})\dot{e}_{j}\right]$$ (29)

where it is assumed that the inverse exists. It remains to write $\dot{\theta}_{j+1}$ as an explicit function of \dot{e}_{j} and $\dot{\theta}_{j}$. Similar to (26), it can be derived that

$$\dot{e}_{j} = B^{-1}(\theta)\dot{e}_{j} + \Phi_{ILC}(\theta)\left[I_{n_{a}} 0 \quad 0 -I_{n_{b}}\right]\dot{\theta}_{j}$$ (30)
where $\Phi_{\text{ILC}}(\theta)$ is defined in (14) and 0 denotes the zero matrix of appropriate dimensions. Combining (30) with (29) yields

$$\theta^{j+1} = Q_{\text{ILC}}\theta^j + L_{\text{ILC}}e^j$$

with

$$L_{\text{ILC}} = \left[\begin{array}{c} \left(\frac{\partial \xi^{j+1}(\theta^{j+1})}{\partial \theta^{j+1}} \right)^T \right] \begin{bmatrix} W \Phi_{\text{ILC}}(\theta^{j+1}) \end{bmatrix}^{-1} \left(\begin{array}{c} \left(\frac{\partial \xi^{j+1}(\theta^{j+1})}{\partial \theta^{j+1}} \right)^T \right) W B^{-1}(\theta^{j+1}) B^{-1}(\theta^j) \right)$$

$$Q_{\text{ILC}} = L_{\text{ILC}} B(\theta^j) \Phi_{\text{ILC}}(\theta^j) \begin{bmatrix} I_{n_s} & 0 \\ 0 & -I_{n_s} \end{bmatrix}.$$

APPENDIX III DERIVATION OF (20)

Any solution θ^{j+1} to optimization problem (8) satisfies the necessary condition for optimality $\frac{\partial V}{\partial \theta^{j+1}} = 0$. Evaluating this expression for criterion (19) with predicted error (16) gives

$$\left(Z \frac{\partial \xi^{j+1}(\theta^{j+1})}{\partial \theta^{j+1}} \right)^T W Z B^{-1}(\theta^{j+1}) \xi^j - \Phi_{\text{IV}}(\theta^{j+1}) \xi^j = 0.$$ (31)

Note that since $Z \in \mathbb{R}^{n_s \times N}$, the matrix $Z \frac{\partial \xi^{j+1}(\theta^{j+1})}{\partial \theta^{j+1}}$ is square. Therefore, the parameters θ^{j+1} are characterized by

$$\theta^{j+1} = \left[Z W \Phi_{\text{IV}}(\theta^{j+1}) \right]^{-1} Z W B^{-1}(\theta^{j+1}) \xi^j$$ (32)

where $\Phi_{\text{IV}}(\theta)$ is defined in (17) and 0 denotes the zero matrix of appropriate dimensions. Combining (32) with (31) yields

$$\theta^{j+1} = Q_{\text{IV}} \theta^j + L_{\text{IV}} \xi^j$$

with

$$L_{\text{IV}} = \left[Z W \Phi_{\text{IV}}(\theta^{j+1}) \right]^{-1} Z W B^{-1}(\theta^{j+1}) B^{-1}(\theta^j)$$

$$Q_{\text{IV}} = L_{\text{IV}} B(\theta^j) \Phi_{\text{IV}}(\theta^j) \begin{bmatrix} I_{n_s} & 0 \\ 0 & -I_{n_s} \end{bmatrix}.$$

REFERENCES

Lennart Blanken received the M.Sc. degree in mechanical engineering (cum laude) from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2015, where he is currently working toward the Ph.D. degree with the Control Systems Technology group, Department of Mechanical Engineering.

His research interests include centered on advanced feedforward control, learning control, repetitive control, and applications in industrial printing systems.

Frank Boeren received the M.Sc. degree in mechanical engineering (cum laude) from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2012, where he is currently working toward the Ph.D. degree with the Control Systems Technology group, Department of Mechanical Engineering.

His research interests include system identification for feedforward and feedback control, learning control, and applications in semiconductor equipment.

Mr. Boeren received the KIVI NIRIA (Royal Dutch Institution of Engineers) graduation award for the best M.Sc. thesis in mechanical engineering in 2012.

Dennis Bruijnen was born in The Netherlands on March 9, 1980. He received both the M.Sc. and the Ph.D. degrees in mechanical engineering from the Technische Universiteit Eindhoven, Eindhoven, The Netherlands, in 2003 and 2007, respectively.

In 2008, he joined Philips, Eindhoven. He is currently working as a Senior Control Technologist within Philips Innovation Services. His main areas of research are advanced control, robotics, high-precision systems, algorithms, and optimization.

Tom Oomen received the M.Sc. degree in mechanical engineering (cum laude) and Ph.D. degree from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2005 and 2010, respectively.

He held visiting positions at KTH, Stockholm, Sweden, and at the University of Newcastle, Callaghan, Australia. He is currently an Assistant Professor with the Department of Mechanical Engineering, Eindhoven University of Technology. His research interests include the field of system identification, robust control, and learning control, with applications in mechatronic systems.

Dr. Oomen received the Corus Young Talent Graduation Award in 2005. He is an Associate Editor on the IEEE Conference Editorial Board and IFAC Mechatronics.