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Abstract

Selective laser sintering (SLS) is a high-resolution additive manufacturing fabrication
technique. To fully understand the process, we developed a computational model, using
the �nite element method, to solve the �ow problem of sintering two viscoelastic particles.
The �ow is assumed to be isothermal and the particles to be in a liquid state, where their
rheology is described using the Giesekus and XPP constitutive models. In this work, we
assess the parameters that de�ne this problem, such as the initial geometry, the Deborah
number, and other dimensionless parameters present in the rheological models. In par-
ticular the conformation tensor is considered, which is a measure for the polymeric strain
and plays an important role in the crystallization kinetics of semicrystalline polymers like
polyamide 12, usually used in SLS.

1 Introduction
Sintering can be described as the process where material particles are fused together by
heat or pressure, without fully melting the material. Materials like metals, ceramics,
glass, and polymers can be used in this process. In viscous sintering, capillary forces act
to minimize the surface area, where the surface tension is the driving force of the �ow.
Sintering of polymer powder is the basis of selective laser sintering (SLS), an additive
manufacturing technique. SLS is a professional fabrication technique, since it enables the
production of almost any shape or geometry. To fully exploit the possibilities, we need to
understand the sintering process and the accompanying material aspects in detail.

Frenkel [13] was the �rst to give an analytical solution for the shape evolution of
two spherical particles during coalescence. This model uses a mechanical energy balance,
where the work done by the surface tension is in balance with the work done by viscous
dissipation, and is limited by the early stages of sintering. Eshelby [11] corrected this
model for continuity, assuming biaxial extensional �ow. Pokluda et al. [27] improved the
corrected model by taking the change in particle radius into account. To describe the
sintering of viscoelastic particles, Bellehumeur et al. [4] extended Frenkel’s approach with
the steady-state Upper-Convected Maxwell (UCM) constitutive model, and Scribben et
al. [30] continued this work by describing the transient viscoelastic coalescence of two
particles using UCM.

Hopper [18] found an analytical solution for the time evolution of viscous planar �ow
in a region bounded by a smooth closed curve, driven by surface tension. His work
includes the coalescence of two equally sized cylinders. Richardson [28] extended this for
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geometries of two unequal cylinders. The work of Crowdy [7] gives exact solutions for
the surface evolution of planar multiply-connected domains, including geometries with
di�erent particle sizes and pores.

Bellehumeur et al. [3] conducted sintering experiments using di�erent commercial ro-
tational molding grade resins of high-density polyethylene and linear low-density polyethy-
lene. Hopper’s model predicted the experimental data well, but underestimated the time
required for the completion of coalescence. From experiments with acrylic resins, Mazur
and Plazek [26] found that models based on Newtonian viscous �ows underestimate the
initial coalescence rate for this type of polymer, since in the early sintering stages the
deformation is quasi-elastic. Scribben et al. [30] compared their transient UCM model
with experiments on isotactic polypropylenes and showed that the model improves the
accuracy at short time scales, but does not decrease the error at long time scales.

Towards the computational modeling of viscous sintering, Ross et al. [29] developed a
dynamic model of the sintering process of an in�nite line of cylinders using the �nite ele-
ment method. The boundary element method was applied by Kuiken [23] to simulate how
a moderately curved initial two-dimensional shape transforms itself into a circle, and Van
de Vorst [31] used this method to solve a two-dimensional Stokes problem for multiply-
connected domains in which the pores can shrink and disappear. Martínez-Herrera and
Derby [24] used the �nite element method to assess the two-dimensional viscous sintering
of particles with di�erent initial ratios of particle radii. Three-dimensional modeling is
done by Jagota and Dawson [21, 22] using the �nite element method, assuming axisymme-
try. Furthermore, both Van de Vorst [32] and Martínez-Herrera and Derby [25] extended
their original two-dimensional models to axisymmetric problems. Zhou and Derby [37]
developed a fully three-dimensional �nite element model for viscous sintering. Hooper et
al. [17] developed a model using the �nite element method to study the sintering of vis-
coelastic particles using the UCM model. In their work, the initial conditions are chosen
to be the quasi-steady-state velocity pro�le, compatible pressure and extra-stress �elds,
obtained by solving the conservation equations with all time derivatives set to zero while
holding the boundary �xed.

In this work, we study the �ow problem of the sintering of polymeric particles with a
fully transient viscoelastic �nite element method. We assess the importance of the initial
geometry, the Deborah number, and other dimensionless parameters present in both the
Giesekus and the eXtended Pom-Pom constitutive model, all in an axisymmetric geometry
of two spherical particles.

2 Problem description

We consider two evenly sized liquid polymer particles, that are initially connected to each
other by a neck. The initial geometry 
t=0 is given in Figure 1. The outer surface of the
geometry is �, with n the outwardly directed unit normal vector. The geometry is assumed
to be axisymmetric, where the axial coordinate is denoted by z and the radial coordinate
by r, using the convention (z; r). The symmetry axis is given by �sym. The radii of the
particles R, together with the initial contact radius yn de�ne the initial geometry. To
avoid discontinuities in the slope of the interface, the parameter Rn = R � (yn=R)3 [17]
rounds o� the neck region. Due to the round o� by Rn, the real initial contact radius
becomes yt=0 = yn +w. These two liquid particles will merge into one larger sphere with
radius R�nal, determined by the initial volume of the geometry, under the in�uence of the
surface tension prescribed on surface �.
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Figure 1: Geometry 
t=0 of the two liquid polymer particles.

3 Governing equations

3.1 Balance equations and constitutive models
The �ow behavior of the sintering process of polymer particles as introduced in the pre-
vious section, assuming an isothermal �ow, can be described using the momentum and
mass balance. We assume the �uid to be incompressible, leading to the following set of
equations

�
Du
Dt

= r � � + �geg in 
; (1)

r � u = 0 in 
; (2)

where D( )=Dt denotes the material derivative, � is the �uid density, u the �uid velocity, �
the Cauchy stress tensor, and g and eg the magnitude and direction of gravity, respectively.
For the Newtonian constitutive equation, the Cauchy stress tensor is

� = �pI + �
�
ru+ (ru)T

�
: (3)

Herein, p is the pressure and � the viscosity. For viscoelastic �uids, the Cauchy stress
tensor can be written as

� = �pI + �s
�
ru+ (ru)T

�
+ � ; (4)

with the viscoelastic extra-stress tensor � written in the conformation tensor form

� = G(c� I); (5)

where �s is the solvent viscosity and G the modulus. For the Giesekus constitutive equa-
tion, the evolution of the conformation tensor c is described by

�
O
c + c� I + �(c� I)2 = 0: (6)

Herein,
O
( ) = D( )=Dt� (ru)T � ( )� ( ) �ru denotes the upper-convected derivative, � the

relaxation time, and � the material parameter de�ning the amount of anisotropy. For the
XPP model [33], the evolution of the conformation tensor c is given by

O
c + 2

exp[�
p

tr(c)=3� 1]
�s

�
1�

3
tr(c)

�
c+

1
�

�
3c

tr(c)
� I

�
= 0; (7)
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where � = 2=q with q the number of arms at the end of the backbone, �s the relaxation
time for the stretch, and � the relaxation time of the backbone orientation.

The conformation tensor c is, besides the velocity u and pressure p, the third unknown
to be solved as a function of position and time.

3.2 Interface tracking
The motion of the surface � is tracked in a Lagrangian way, where the velocity of the
surface is de�ned as

dx�

dt
= u: (8)

Herein, x� is the function that maps the curvilinear coordinates onto the spatial coordi-
nates of the surface, and u is the material velocity at the surface �.

3.3 Boundary conditions
Along the surface � of the �uid, as shown in Figure 1, a constant surface tension 
 is
prescribed using a Neumann boundary condition

� � n = rs � (
Is)� poutn on �: (9)

Herein, rs is the surface gradient operator, Is = I � nn the second-order unit surface
dyadic tensor, and the outside pressure pout. For more complex interfacial rheology, the
current framework can be adjusted [2]. In the following, we assume pout = 0. To impose
symmetry, the velocity in radial direction at the symmetry axis �sym is set to zero

ur = 0 on �sym: (10)

Finally, the origin (0; 0) is �xed to prevent rigid body motion along the z-axis

uz = 0 at (0; 0): (11)

Furthermore, to solve the system for a viscoelastic �uid, we initially apply a zero polymer
stress to the system by prescribing ct=0 = I.

3.4 Dimensionless equations
To scale the governing equations, we introduce characteristic constant values from the
problem parameters. We de�ne the characteristic length as xc = R, the characteristic
velocity as uc = 
=�0, the characteristic stress as �c = 
=R, the characteristic pressure
as pc = 
=R, and a characteristic time tc. Herein, �0 is the zero-strain rate viscosity, and
is de�ned as �0 = � for Newtonian �uids and �0 = �s + �p for viscoelastic �uids, where
�p = G� is the polymer viscosity. A dimensionless variable can be obtained by dividing
the original variable by the characteristic value, for example

x� =
x
xc

=
x
R
: (12)

The dimensionless variable is represented by an asterisk superscript.
Scaling the boundary condition of Eq. (8) leads to

dx��R
dt�tc

= u�
�0



: (13)

Since both sides are assumed to be of the same order of magnitude, a de�nition for the
characteristic time tc = R�0=
 follows and Eq. (13) reduces to

dx��
dt�

= u�: (14)
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Scaling the governing equations Eqs. (1)-(2) leads to

La
Du�

Dt�
= r� � �� + Bo eg in 
; (15)

r� � u� = 0 in 
; (16)

respectively. The two dimensionless numbers de�ning this �ow problem are the Laplace
number La = �
R=�2

0 , which is a ratio of the surface tension to the inertial forces, and
the Bond number Bo = �R2g=
, which is a measure of the gravity forces versus the
surface tension forces. Both these dimensionless numbers are negligibly small if we use
the material parameters of polyamide 12 (PA12) powder (Table 1), which is most often
used in SLS, i.e. La = O(10�8) and Bo = O(10�3). Eq. (15) reduces to

�r� � �� = 0 in 
: (17)

For the Newtonian case, the scaled Cauchy stress tensor Eq. (3) is

�� = �p�I +
�
r�u� + (r�u�)T

�
: (18)

Scaling the Cauchy stress tensor of viscoelastic �uids Eq. (4) leads to

�� = �p�I + �
�
r�u� + (r�u�)T

�
+ � �p; (19)

where � = �s=�0. In this work, we choose � = 0:01. The dimensionless description of Eq.
(6), the evolution of the conformation tensor c for the Giesekus constitutive equation, is

De
O
c + c� I + �(c� I)2 = 0: (20)

Besides the material parameter �, we �nd the Deborah number De = �
=(�0R) in Eq.
(20), which is a ratio of the time scale of the �uid response to that of the process. For
the XPP model, the dimensionless description of Eq. (7) is

De
O
c + 2� exp[�

p
tr(c)=3� 1]

�
1�

3
tr(c)

�
c+

�
3c

tr(c)
� I

�
= 0: (21)

The dimensionless groups in Eq. (21) are the Deborah number De as de�ned before, the
ratio between the relaxation time of the backbone orientation and that of the stretch
� = �=�s, and �, which depends on the number of arms q.

Table 1: Material properties of PA12 powder for SLS at T = 175 �C (melt).
Parameter Symbol Value
Density � O(840) kg=m3 [10, 36]
Viscosity �0 O(400)Pa � s [16]

Surface tension 
 O(0:03)N=m [16, 36]
Relaxation time � O(0:05) s [16]
Particle radius R O(3 � 10�5)m [16]

For the readability of this document, we omit the asterisks in the notation of the
dimensionless variables.
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4 Numerical method

4.1 Moving domain
To capture the motion of the moving domain 
, the position of the surface � is predicted
from previous time steps using

x̂n+1
� = xn�; (22)

for the �rst time step, and
x̂n+1

� = 2xn� � x
n�1
� (23)

for all subsequent time steps. Herein, x̂n+1
� is the prediction of the surface position for

time tn+1, and xn� and xn�1
� are the surface positions at time tn and tn�1, respectively.

Next, the displacement of the �uid mesh is calculated from the surface displacement
using a Laplace equation [34]. For the �rst time step, the mesh velocity in each node is
calculated using a �rst-order backwards di�erencing scheme,

un+1
m =

xn+1
m � xnm

�t
; (24)

whereas for subsequent time steps, a second-order backwards di�erencing scheme is used

un+1
m =

3
2x

n+1
m � 2xnm + 1

2x
n�1
m

�t
: (25)

Herein, un+1
m is the mesh velocity at time tn+1, and xn+1

m , xnm, and xn�1
m are the mesh

coordinates at time tn+1, tn, and tn�1, respectively.
Subsequently, the governing equations and boundary conditions are discretized on the

newly de�ned domain 
. The momentum and mass balance are multiplied with the test
functions v and q in the appropriate function spaces

(v;�r � �) = 0; for allv; (26)
(q;r � u) = 0; for all q: (27)

Note that (�; �) de�nes the inner product on 
. Using partial integration and Gauss’
theorem, we obtain

�
(rv)T;�

�
= (v;� � n)� ; for allv; (28)
(q;r � u) = 0; for all q: (29)

Herein, (�; �)� de�nes the inner product on �. The right-hand side of Eq. (28) can be
�lled using Eq. (9), which is rewritten using partial integration and Weatherburn’s surface
divergence theorem [35],

(v;� � n)� = �
�
(rsv)T; 
Is

�
� + ((rs � n)n; 
Is � v)� + (b; 
Is � v)@� ; for allv;(30)

where b = t�n is the binormal, and (�; �)@� de�nes the inner product on the boundary of
the surface @�, i.e. the locations where the surface � meet the symmetry axis �sym. Since
the surface tension always acts tangential to the surface, n � 
Is = 0. Furthermore, due
to the area being zero on @�, (b; 
Is � v)@� = 0. This leads to the following weak form

�
(rv)T;�

�
= �

�
(rsv)T; 
Is

�
� ; for allv; (31)

(q;r � u) = 0; for all q: (32)

Next, we enter the Cauchy stress tensor into the weak formulation of the momentum
balance. For the Newtonian �uid, the weak form is discretized according to the Galerkin
approach and becomes: Find u and p such that

�
(rv)T; 2�D

�
� (r � v; p) = �

�
(rsv)T; 
Is

�
� ; for allv; (33)

(q;r � u) = 0; for all q; (34)
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using appropriate spaces for u, p, v, and q. Herein, D = (ru + (ru)T)=2. For both
viscoelastic constitutive models, we employ the DEVSS-G scheme [15, 1, 5] for stability.
The SUPG method [6] and the log-conformation approach [12, 20] are used to describe
the evolution equation for the conformation tensor. The weak form becomes: Find u, p,
s, and G such that
�

(rv)T; 2�sD + �(ru�GT) + �
�
� (r � v; p) = �

�
(rsv)T; 
Is

�
� ; for allv;(35)

(q;r � u) = 0; for all q;(36)
�
d+ �(u� um) � rd;

Ds
Dt
� h

�
(ru)T; s

��
= 0; for alld;(37)

�
H;�ru+GT

�
= 0; for allH;(38)

using appropriate spaces for u, p, s, G, v, q, d, and H. Herein, s = log c, � is the
DEVSS-G parameter, � the SUPG parameter, um the mesh velocity, and h a function as
de�ned in Hulsen et al. [20]. For all simulations, the DEVSS-G parameter is chosen to be
� = �p and the SUPG parameter is � = h=(2U) with h the element size in the direction
of the velocity and U the local characteristic velocity. Note that we use an implicit stress
formulation, as introduced by D’Avino and Hulsen [9].

Finally, the surface position is corrected using a backward Euler scheme for the �rst
time step

xn+1
� � xn�

�t
= un+1; (39)

and a second-order backwards di�erencing scheme for all subsequent time steps,

3
2x

n+1
� � 2xn� + 1

2x
n�1
�

�t
= un+1; (40)

where the movement of the surface is Lagrange based according to Eq. (8).

4.2 Remeshing and projection
The mesh is generated using Gmsh [14], an open source mesh generator. The deformation
of the mesh is measured using the criterion as de�ned by Hu et al. [19]

f e1 = j log (Ae=Ae
0) j; (41)

f e2 = j log (Se=Se
0) j: (42)

Herein, Ae is the element area, Se = (Le
max)2 =Ae is the element aspect ratio, Le

max is the
maximum length of the sides of the element, and subscript 0 indicates the initial value.
Once the mesh is too deformed due to large deformations of the geometry, i.e. if either
f e1 > 0:2 or f e2 > 0:2, remeshing is performed using Gmsh while the coordinates of the
surface nodes are retained.

After remeshing, the �elds un, cn, cn�1, xn, and xn�1 on the new mesh are necessary
to solve the evolution equation for the conformation tensor. A projection problem is
solved to obtain these solutions on the new mesh. We consider the projection of the
velocity �eld u to illustrate the method: Field u is de�ned as uold =

P
i ’

old
i uoldi on the

old mesh, and similarly unew =
P
j ’

new
j unewj on the new mesh. Herein, ’i and ’j are

the shape functions, and ui and uj are the nodal values. To �nd the nodal values unewj ,
the following problem is solved

X

j

(�newk ; �newj )unewj =
X

i

(�newk ; �oldi )uoldi : (43)
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5 Validation

Hopper [18] derived an analytical solution for the time evolution of a creeping viscous
incompressible planar �ow in a �nite region, bounded by a smooth closed curve and driven
by surface tension only. One of the geometries gives the exact solution of the coalescence of
two equal cylinders. To validate our model, we simulated the two-dimensional equivalent
of the axisymmetric problem as described before with R = 1=

p
2 and yn = 0:075. We

used the Newtonian constitutive equation with � = 1 and 
 = 1 for the simulations. The
results of the contact radius y in time t of the FEM calculations (meshes M1 to M4 in
Table 2) are compared to Hopper’s solution, and are shown in Figure 2. Note that the
dimensionless time and contact radius are scaled using R�nal = 1 instead of R, and that
Hopper’s dimensionless time is set to t = 0 if the contact radius y = 0:075 + w. As a
demonstration of the remeshing procedure discussed in Section 4.2, the dynamic evolution
of meshes M1 and M4 are shown in Figure 3.

Table 2: Mesh resolution of di�erent surface meshes used in the convergence study.
Mesh hcoarse h�ne number of nodes on the surface
M1 1.05 0.015 59
M2 0.7 0.01 67
M3 0.35 0.005 119
M4 0.175 0.0025 223

Figure 2: The evolution of the contact radius y in time t of two equal cylinders, obtained
by FEM analyses with di�erent surface meshes and by the analytical solution of Hopper [18],
with the initial contact radius y = 0:075 + w at time t = 0.
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(a) (b)

Figure 3: Dynamic evolution of the sintering process at times t = [0; 0:5; 1; 2; 4] for M1 (a)
and M4 (b).

The FEM simulations are performed on four di�erent meshes to study mesh conver-
gence, as given in Table 2. The relative L2-error of the contact radius y is determined
from 23 measurements in time interval 0 � t � 3:8375 (red dots in Figure 2), de�ned as

"y =

�P23
k=1(yhk � y

�
k)2
� 1

2

�P23
k=1(y�k)2

� 1
2

; (44)

where yh is the solution of one of the meshes given in Table 2 and y� is the analytical
solution. The convergence plot is shown Figure 4. The convergence of the error of the
contact radius is third-order, which is as expected from the second-order elements. We
will continue using the h-values of the �nest mesh M4 in the rest of the work.
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Figure 4: Mesh convergence for the contact radius y.

6 Results

6.1 E�ect of the initial geometry
From the governing equations of the Newtonian constitutive behavior follows that the
initial geometry and con�guration are the only factors which a�ect the �ow. To analyze
the in�uence of di�erent initial contact radii, we de�ne four geometries: R = 1 and
yn = [0:125; 0:25; 0:4; 0:5]. Without loss of generality, we set the viscosity � = 1 and the
surface tension 
 = 1. The results are shown in Figure 5, where the contact radius y is
depicted in time t.

Figure 5: The evolution of the contact radius y in time t of two equal spheres with di�erent
initial contact radii yn = [0:125; 0:25; 0:4; 0:5], using the Newtonian constitutive equation.

Subsequently, we shift the graphs of yn = 0:25, yn = 0:4, and yn = 0:5 in time such
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that the initial contact radii coincide with the curve of yn = 0:125. The results are given
in Figure 6, in which we see that all lines overlap. This indicates that the shape evolution
of the contact radius y is independent of the �ow history, if the round o� parameter
Rn = R� (yn=R)3 [17] is used.

Figure 6: The evolution of the contact radius y in time t of two equal spheres with di�erent
initial contact radii yn = [0:125; 0:25; 0:4; 0:5], using the Newtonian constitutive equation.
The lines of yn = 0:25, yn = 0:4, and yn = 0:5 are shifted in time such that the initial contact
radii coincide with the graph of yn = 0:125.

Next, we keep the initial contact radius constant yn = 0:4 and we change the round o�
parameter Rn = [R� (yn=R)3; (R=2)� (yn=R)3; (R=4)� (yn=R)3]. The results are given
in Figure 7, where the contact radius y is depicted in time t. Since all curves coincide, we
can conclude that the in�uence of the round o� parameter Rn on the shape evolution of
the contact radius y is negligible.
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Figure 7: The evolution of the contact radius y in time t of two equal spheres with initial
contact radius yn = 0:4 and di�erent round o� parameter Rn = [R � (yn=R)3; (R=2) �
(yn=R)3; (R=4)� (yn=R)3], using the Newtonian constitutive equation.

Furthermore, the curvature � at point (0; y) at the surface of the neck is shown in time
t for di�erent round o� parameter Rn = [R� (yn=R)3; (R=2)� (yn=R)3; (R=4)� (yn=R)3]
in Figure 8. Following Dantzig and Tucker [8], the curvature is calculated from the contour
curve r = g(z) of surface �, using

� =
1
R1

+
1
R2

; (45)

with R1 and R2 the two principal radii of curvature

R1 =
(1 + g02)3=2

g00
; (46)

R2 = �g
p

1 + g02: (47)

Herein g0 = dg=dz and g00 = d2g=dz2. From the curvature, the Laplace pressure pL
can be calculated using pL = 
�, which is equal to the radial component of the Cauchy
stress tensor �rr at the surface. From Figure 8 follows that the curvature � at point
(0; y) increases with respect to the initial geometry until it reaches a maximum value
and subsequently decreases. This holds for all di�erent values of the round o� parameter
Rn = [R�(yn=R)3; (R=2)�(yn=R)3; (R=4)�(yn=R)3]. This behavior is depicted in Figure
9, where the contour line r = g(z) of the two particles is shown at times t = [0; 0:08; 0:2],
using Rn = R� (yn=R)3. Herein, t = 0:08 is the time at which the curvature � reaches its
maximum value. From this, we can conclude that the choice of the round o� parameter
Rn strongly in�uences the evolution of curvature and therefore the evolution of the local
stresses in the material.
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Figure 8: The evolution of the curvature � in time t of two equal spheres with initial contact
radius yn = 0:4 and di�erent round o� parameter Rn = [R�(yn=R)3; (R=2)�(yn=R)3; (R=4)�
(yn=R)3], using the Newtonian constitutive equation.

(a) (b)

Figure 9: The contour plot of r = g(z) at time t = [0; 0:08; 0:2] with initial contact radius
yn = 0:4 and round o� parameter Rn = R � (yn=R)3, using the Newtonian constitutive
equation (a), and a zoom of the neck region (b).

6.2 E�ect of the rheology

Keeping the initial geometry constant, we assess the e�ect of the rheological model on the
�ow behavior of the system. We use a geometry of two equal particles R = 1 with initial

13



contact radius yn = 0:4 and round o� parameter Rn = R�(yn=R)3. We set the zero-shear-
rate viscosity �0 = 1, solvent viscosity �s = 0:01, and surface tension 
 = 1. First, the
Deborah number is changed by varying the relaxation time � = [0:01; 0:1; 0:5; 1], resulting
in Deborah numbers De = [0:01; 0:1; 0:5; 1], respectively. The results are shown in Figure
10, where the contact radius y is depicted in time t, using the Giesekus constitutive model
with � = 0:1.

Figure 10: The evolution of the contact radius y in time t for di�erent Deborah number
De = [0:01; 0:1; 0:5; 1], using the Giesekus model with � = 0:1. The result of the Newtonian
behavior is included as well.

With increasing Deborah number, the initial increase in contact radius between t = 0
and t = 0:05 gets larger. By keeping the viscosity constant and varying the relaxation
time, the modulus is changed G = �p=� = [100; 10; 2; 1], respectively. Initially,

O
c = 0,

and from this follows that c = B and � = G(B � I); where B is the Finger tensor.
Since � scales with 
=R, which is kept constant, the Finger tensor B has to increase
for decreasing modulus G. Consequently, the initial deformation increases for increasing
Deborah number as shown in Figure 10. The deformation is not completely instantaneous,
because �s > 0. From t = 0:05 onwards, the shape transition gets slower for increasing
Deborah number. From simulations follows that the same behavior holds for the XPP
constitutive model.

In Figure 11, the curvature � at point (0; y) at the surface of the neck is shown in
time t for di�erent Deborah number De = [0:01; 0:1; 0:5; 1], using the Giesekus model
with � = 0:1. As is shown for the Newtonian constitutive behavior, the curvature � at
point (0; y) increases with respect to the initial geometry until it reaches a maximum
value and subsequently decreases for all di�erent values of the Deborah number De =
[0:01; 0:1; 0:5; 1] as well. The maximum value of the curvature � and the time t of the
maximum depend on the value of the Deborah number De.
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Figure 11: The curvature � at point (0; y) at the surface of neck in time t for di�erent Deborah
number De = [0:01; 0:1; 0:5; 1], using the Giesekus model with � = 0:1. The result of the
Newtonian behavior is included as well.

Furthermore, we assess the conformation tensor c, which is a measure for the poly-
meric strain in the system and plays an important role in the crystallization kinetics of
semicrystalline polymers like PA12. The dynamic evolution of the trace of the confor-
mation tensor tr(c), using the Giesekus constitutive model with � = 0:1 and De = 1, is
shown in Figure 12. For visualization, the color bar ranges from 3 to 8, but the values
locally exceed these numbers.

(a) (b) (c)

(d) (e)

Figure 12: Dynamic evolution of the trace of the conformation tensor tr(c) at t =
[0:01; 0:5; 1; 2; 5], using the Giesekus model with � = 0:1 and De = 1; note that the real
values locally exceed the values shown in the color bar (see Figure 13).

From Figure 12 can be seen that elevated polymeric strains are present throughout the
contact area between the two particles. This might lead to crystalline structures in large
parts of the system and in�uences the material characteristics of sintered products. The
trace of the conformation tensor tr(c) at point (0; y) at the surface of the neck in time
t for di�erent Deborah number De = [0:01; 0:1; 0:5; 1], using the Giesekus model with
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� = 0:1, is shown in Figure 13. The polymeric strain increases with increasing Deborah
number, and is negligibly small for De = 0:01.

Figure 13: The trace of the conformation tensor tr(c) at point (0; y) at the surface of neck in
time t for di�erent Deborah number De = [0:01; 0:1; 0:5; 1], using the Giesekus model with
� = 0:1.

Furthermore, decreasing the round o� parameter Rn leads to an increase in the poly-
meric strain, as shown in Figure 14 for di�erent Rn = [R � (yn=R)3; (R=2) � (yn=R)3],
using the Giesekus model with � = 0:1 and De = 0:1. Looking at a cross section of the
contact area between the two particles, as shown in Figure 15, where the trace of the
conformation tensor tr(c) is given versus the coordinate of the contact area (0; r) at time
t = 0:01 for di�erent Rn = [R � (yn=R)3; (R=2) � (yn=R)3], using the Giesekus model
with � = 0:1 and De = 1, we can conclude that the increase in polymeric strain is not just
a local e�ect. The �uctuations in the trace of the conformation tensor tr(c) disappear
if a �ner mesh is used. Although we possibly underestimate the polymeric strain in the
system, we continue using the round o� parameter Rn = R � (yn=R)3 in the remaining
part of this work.
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Figure 14: The trace of the conformation tensor tr(c) at point (0; y) at the surface of neck
in time t for di�erent round o� parameter Rn = [R � (yn=R)3; (R=2) � (yn=R)3], using the
Giesekus model with � = 0:1 and De = 0:1.

Figure 15: The trace of the conformation tensor tr(c) versus the coordinate of the contact area
(0; r) at time t = 0:01 for di�erent Rn = [R� (yn=R)3; (R=2)� (yn=R)3], using the Giesekus
model with � = 0:1 and De = 1.

In the Giesekus constitutive model, the anisotropy parameter � is, besides the Deb-
orah number De, another dimensionless parameter that determines the �ow behavior
of the system. The maximum values of the trace of the conformation tensor tr(c)
for di�erent Deborah number De = [0:01; 0:1; 0:5; 1] and anisotropy parameter � =
[0:1; 0:1875; 0:275; 0:3625; 0:45] are shown in Figure 16. The maximum values of the
trace of the conformation tensor tr(c) occur during the start-up of the �ow, which is
primarily driven by elastic e�ects. The elastic stresses are determined by the modulus
G and the strain. The anisotropy parameter � determines the non-linear relaxation and
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therefore � has only a small in�uence on the stresses during the start-up of te �ow.

Figure 16: The maximum value of the trace of the conformation tensor tr(c) for
di�erent Deborah number De = [0:01; 0:1; 0:5; 1] and anisotropy parameter � =
[0:1; 0:1875; 0:275; 0:3625; 0:45], using the Giesekus model.

In Figure 17, the three entries of the trace of the conformation tensor czz, crr, and c��
are shown separately for the highest value of the trace, using the Giesekus model with
De = 1 and � = [0:1; 0:1875; 0:275; 0:3625; 0:45]. The value of czz is smaller than 1,
which means that the polymer chains are compressed in axial direction. Furthermore, crr
is the highest value, which means that the polymer chains are stretched the most in the
radial direction. The value of c�� is in the order of 4, which is expected from the value of
the tangential component of the Finger tensor B�� = (yt=0:05=yt=0)2 � 4 at point (0; y)
at the surface of the neck.
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Figure 17: The three entries of the trace of the conformation tensor czz, crr, and c�� for
the maximum value of the trace for di�erent � = [0:1; 0:1875; 0:275; 0:3625; 0:45], using the
Giesekus model with De = 1.

In the XPP constitutive model, both the ratio between the relaxation time of the
backbone orientation and that of the stretch � and the number of arms q are dimension-
less parameters de�ning the rheological behavior of the system, apart from the Deborah
number De. In Figures 18 and 19, the maximum values of the trace of the conforma-
tion tensor tr(c) for di�erent Deborah number De = [0:01; 0:1; 0:5; 1] are shown for
� = [1; 2; 4; 6; 8; 10; 12], with q = 2, and q = [2; 4; 6; 8; 10; 12], with � = 2, respectively.
Both the relaxation time ratio � and the number of arms q in�uence only the results with
the highest Deborah numbers De = [0:5; 1]. With increasing ratio �, the relaxation time
of the stretch �s decreases with respect to the relaxation time of the backbone orientation
�. Therefore, the polymers are harder to stretch and the maximum value of the trace
of the conformation tensor tr(c) decreases. Increasing the number of arms q leads to an
increase in the relaxation time of the stretch �s. Since the polymer chains are easier to
stretch, the maximum value of the trace of the conformation tensor tr(c) increases with
increasing number of arms q. This e�ect is visible only for the number of arms q < 6.
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Figure 18: The maximum value of the trace of the conformation tensor for di�erent Debo-
rah number De = [0:01; 0:1; 0:5; 1] and ratio between the relaxation time of the backbone
orientation and that of the stretch � = [1; 2; 4; 6; 8; 10; 12], using the XPP model with q = 2.

Figure 19: The maximum value of the trace of the conformation tensor for di�erent Deborah
number De = [0:01; 0:1; 0:5; 1] and number of arms q = [2; 4; 6; 8; 10; 12], using the XPP
model with � = 2.

7 Conclusions
We developed a numerical model to study the basics of the sintering process of polymer
powder for additive manufacturing (SLS). The isothermal �ow is solved using the �nite
element method for �uids following Newtonian, Giesekus, and XPP constitutive behavior
on an axisymmetric geometry of two spherical particles, initially connected by a neck with
a certain radius.
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The computational model has been validated with the analytical solution as described
by Hopper [18], which gives the time evolution of a creeping viscous incompressible planar
�ow of a �nite region, bounded by a smooth closed surface and driven by surface tension.
Furthermore, convergence towards the analytical solution is shown for di�erent surface
mesh sizes, where the mesh with the smallest elements gives the best match and is used
for all following simulations.

For Newtonian �uids, the shape transition depends only on the initial geometry, as
can be concluded from the dimensionless description of the problem. From simulations
where the radii of the spheres are kept constant and the initial neck radius is changed,
we can conclude that the shape evolution of the contact radius is independent of the �ow
history if the round o� parameter Rn = R� (yn=R)3 [17] is used. Changing the round o�
parameter has no visible e�ect on the shape evolution of the contact radius, but strongly
in�uences the evolution of the curvature of the surface and local stresses in the system.

Furthermore, we assessed the e�ect of di�erent dimensionless numbers in both the
Giesekus and XPP constitutive model on shape and conformation tensor. With respect
to the shape transition of the system, we found that increasing the Deborah number, i.e.
increasing the relaxation time while keeping the viscosity unchanged, leads to a decrease
in modulus and subsequently to an increase in initial deformation. Furthermore, the
curvature of the surface in the neck region, where the two particles are connected, increases
in time until it reaches a maximum value, after which it decreases. This behavior is shown
for all di�erent values of the Deborah number as well as for the Newtonian constitutive
model. The conformation tensor, which is a measure for the polymeric strain, plays an
important role in the crystallization kinetics of semicrytalline polymers. The dynamic
evolution of the trace of the conformation tensor showed that elevated polymeric strains
are present throughout the contact area between the two particles, in�uencing the material
characteristic of sintered products. Decreasing the round o� parameter Rn leads to an
increase of polymeric strain. The anisotropy parameter in the Giesekus model shows
negligible e�ect on the maximum value of the trace of the conformation tensor. The
relaxation time ratio and the number of arms in the XPP model in�uence only the results
with higher values of the Deborah number. Decreasing the relaxation time ratio and
increasing the number of arms both increase the relaxation time of the stretch, leading to a
higher maximum value of the polymeric strain. Note that we possibly underestimated the
polymeric strain in the system, since we used the round o� parameter Rn = R� (yn=R)3

[17].
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