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Introduction

Kinetic theory of fluids is concerned with a generalized phase-space description of
molecular flow to account for fluid dynamics that do not conform to continuum models
[24]. Continuum models of fluid dynamics, e.g. the Euler and Navier-Stokes equations,
inherently assume that the flow is dominated by inter-molecular collisions [92]. In
phase-space, the continuum description corresponds to either equilibrium states, e.g.
the Euler equations, parameterized by the fluid density, velocity and temperature; or
near-equilibrium states, e.g. the Navier-Stokes-Fourier equations, that additionally
account for the heat flux. However, deviations from equilibrium violate the continuum
assumption and consequently invalidate continuum models.

In kinetic theory, the non-equilibrium description of rarefied monatomic fluid dy-
namics is based on the Boltzmann equation that governs a one-molecule phase-space
distribution [24]. By virtue of its structural properties, namely Galilean invariance,
entropy dissipation and conservation of mass, momentum and energy, the Boltzmann
equation also encapsulates all conventional macroscopic flow models in the sense that
its limit solutions correspond to solutions of the compressible Euler and Navier–Stokes
equations [8, 37], the incompressible Euler and Navier–Stokes equations [44, 69], the
incompressible Stokes equations [70] and the incompressible Navier–Stokes–Fourier
system [68]; see [92] for an overview. Conversely, the Boltzmann equation defines the
ideal gas limit, with Boltzmann-Grad scaling, of multi-molecular Newtonian dynamics
[48]. Moreover, the Boltzmann equation is uniquely suited to describe flows in the
transitional molecular/continuum regime and the corresponding rarefaction effects, by
virtue of its inherent characterization of deviations of the velocity distribution from
local equilibrium.

Applications in which rarefaction effects play a significant role in the fluid behavior
include flows under hypobaric conditions and/or on very small scales. The former
condition is for instance encountered in many technological processes that need to
account for near-vacuum conditions, such as semi-conductor photo-lithography machines
or in high-altitude aerodynamics of space vehicles. The latter condition typically occurs
in flow in porous media or in micro- and nano-scale devices that are ubiquitous on
account of the perpetual trend towards miniaturization in technology. This makes the
ability to perform reliable computer simulations of flow problems in rarefied regimes
increasingly relevant in science and technology. The Boltzmann equation also provides
a prototype for kinetic models in many other applications that require a description
of the collective behavior of large ensembles of small particles, for instance, in semi-

vii



conductors [57], in plasmas and fusion and fission devices [79] and in dispersed-particle
flows such as in fluidized-bed reactors [87, 89, 88].

Numerical approximation of the Boltzmann equation poses a formidable challenge, on
account of its high dimensional setting: for a problem in D spatial dimensions, the one-
particle phase-space is 2D dimensional. The corresponding computational complexity
of conventional discretization methods for (integro-)differential equations, such as
finite-element methods with uniform meshes, is prohibitive. Numerical approximations
of the Boltzmann equation have been predominantly based on particle methods, such
as the Direct Simulation Monte Carlo (DSMC) method [15, 16]. Convergence proofs
for these methods [106] however convey that their computational complexity depends
sensitively on the Knudsen number, and the computational cost becomes prohibitive
in the fluid-dynamical limit. Moreover, from an approximation perspective, DSMC
can be inefficient, because it is inherent to the underlying Monte-Carlo process that
the approximation error decays only as n� 1

2 as the number of simulation molecules, n,
increases; see, for instance, [62, Thm. 5.14]. Efficient computational modeling of fluid
flows in the transitional molecular/continuum regime therefore remains an outstanding
challenge.

A deterministic approximation technique for the Boltzmann equation is the method
of moments [47, 67, 96, 2, 1]. The method of moments represents a general statistical
approximation technique which identifies parameters of an approximate distribution
based on its moments [74]. Application of the method of moments to the Boltzmann
equation engenders a system of evolution equations for the moments (weighted averages)
of the phase-space distribution.

Intrinsic to the method of moments is an approximation of the moment-closure
relation that completes the evolution equation for the moments. Moment-closure ap-
proximations for the Boltzmann equation were originally conceived by Grad [47]. Grad’s
closure relies on an expansion of the one-particle distribution in Hermite polynomials.
For a linear Boltzmann equation extended with exogenous forcing, it has been shown
that the distribution in Grad’s moment equations converges to the distribution of the
underlying kinetic model as the order of the moment approximation tends to infinity,
and to the solution of a corresponding drift-diffusion model in the macroscopic limit,
i.e. as the Knudsen number tends to zero [93]. However, Grad’s moment systems are
impaired by the potential loss of hyperbolicity [21, 101]. Levermore [67] has developed
a moment-closure procedure based on constrained entropy minimization, similar to
Dreyer’s maximum-entropy closure in extended thermodynamics [32]. The entropy
minimization procedure formally leads to an exponential closure. Levermore’s mo-
ment systems retain the fundamental structural properties of the Boltzmann equation,
viz., conservation of mass, momentum and energy, Galilean invariance and entropy
dissipation. Moreover, the moment systems formally constitute a hierarchy of symmet-
ric hyperbolic systems. It was later shown by Junk [58], however, that Levermore’s
moment-closure procedure is impaired by a realizability problem, in that there exist
moments for which the minimum-entropy distribution is non-existent. Another fun-
damental complication, pertaining to the implementation of moment systems based
on exponential closure, is that the resulting formulation requires the evaluation of
moments of exponentials of polynomials of, in principle, arbitrary order. It is generally
accepted that the derivation of closed-form expressions for such moments is intractable,
and accurate approximation of the moments is a notoriously difficult problem; see, for
instance, [65].
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Moment systems can be conceived of as Galerkin approximations, in velocity depen-
dence, of the Boltzmann equation in renormalized form [2, 1] where larger moment
systems correspond to refined subspaces. By virtue of the hierarchical structure of
the considered subspaces, moment systems form a multiscale hierarchy of models that
bridge the transitional molecular/continuum flow regime. For suitable choices of the
renormalization map, moment systems are symmetric hyperbolic and are well-posed in
the corresponding sense [72]. The symmetric hyperbolic structure of moment systems
puts the full arsenal of approximation techniques for this class of problems at our dis-
posal, in particular, (goal-)adaptive finite-element methods based on a-posteriori error
estimates [50]. By virtue of their Galerkin form and their inherent hierarchical structure,
moment systems are ideally suited to (goal-oriented) model adaptivity. Goal-oriented
a-posteriori error-estimation and adaptivity exploit the Galerkin approximation to
construct approximation spaces that yield an optimal approximation of a particular
functional of the solution (goal or target functional). The Galerkin form of moment
methods enables the construction of accurate a-posteriori error estimates, while the
hierarchical structure provides an intrinsic mode of refinement.

Alternatively, the proposed adaptive moment method can be classified as a hetero-
geneous multiscale method of type A; see [38]. Multiscale methods of type A introduce
a decomposition of the spatial domain into a subset where a macroscopic (or coarse,
simple) model suffices, and a complementary subset where a microscopic (or fine,
sophisticated) description is required. Hence, one can envisage an adaptive moment
method that introduces an element-wise domain decomposition strategy where, locally,
different levels of the moment hierarchy are used to approximate the solution to the
Boltzmann equation. The goal-adaptive algorithm provides an automated strategy for
model refinement such that an optimal approximation of the solution of the Boltzmann
equation is obtained for the goal functional under consideration.

Aim and objectives

The aim of this dissertation is

to create a paradigm for goal-adaptive moment-system
hierarchies for multiscale approximations of the Boltz-
mann equation in which the Galerkin structure of the
moment-closure is used to derive a-posteriori estimates
of the error in the functional of interest.

We develop, analyze and implement a Galerkin methodology in which the hierarchical
rank of the moment-system is locally adapted to generate an optimal approximation
to a functional of the solution of the Boltzmann equation. To this end, we identify the
following sub-objectives:

1. formulation of a suitable hierarchy of moment-systems, which is well-posed, while
retaining the fundamental properties of the underlying Boltzmann equation;

2. development of a stable finite-element approximation of the moment-systems;
3. derivation of a-posteriori error estimates and the development of an adaptive

refinement strategy.
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By virtue of the entropy dissipation property that we seek to retain in our moment-
systems, a suitable notion for well-posedness is provided by symmetric hyperbolicity [72].
Moreover, the numerical approximation of symmetric hyperbolic systems is facilitated by
finite-element methodologies, such as the discontinuous Galerkin finite element (DGFE)
method [10]. However, to enable steady-state computations and the development
of goal-adaptive algorithms and error estimates for the moment-systems we require
that the finite-element approximation of the moment-systems admit a computable
linearization [49]. For example, discontinuous Galerkin finite-element formulations of
symmetric hyperbolic systems must be equipped with a numerical flux function (or
approximate Riemann solver), e.g. according to Godunov’s scheme [42], Roe’s scheme
[90], or Osher’s scheme [84]. However, these numerical flux functions generally depend
in an intricate manner on the left and right states via the eigenvalues and eigenvectors
of the flux Jacobian, Riemann invariants, etc., which impedes differentiation of the
resulting finite-element form.

Dissertation overview

The remainder of this dissertation is organized as follows.
Chapter 1 provides a general introduction to a kinetic description of rarefied

fluid flow and a context for subsequent theory. To that end, a standard derivation
of the Boltzmann equation from multi-molecular Newtonian dynamics is presented
to account for the multiscale nature of the rarefied fluid flow. Then, we survey the
standard structural properties of the Boltzmann equation that are to be retained in
the moment-system approximation.

Chapter 2 introduces a generalized setting of the moment-closure problem that
encapsulate as special cases the moment-closures of Grad [47] and Levermore [67]. We
establish a novel framework for the generalized moment-closure problem, based on
’�divergences, that leads to a hierarchy of tractable symmetric hyperbolic systems
which retain the fundamental structural properties of the Boltzmann equation. In
this chapter it is shown that the moment-systems can be conceived of as Galerkin
approximation, in velocity dependence, of the Boltzmann equation in renormalized
form. This chapter is based on: M.R.A. Abdelmalik and E.H. van Brummelen. "Moment
closure approximations of the Boltzmann equation based on ’-divergences". In: Journal
of Statistical Physics 164.1 (2016), pp. 77–104.

Chapter 3 presents a Galerkin finite-element approximation of the Boltzmann
equation that is based on the moment-system approximation in velocity dependence
derived in Chapter 2 and a DGFE approximation in position dependence. We present
a new upwind numerical flux function that is based on a new class of moment-closure
approximations. The upwind nature of the proposed flux ensures entropy dissipation of
the approximation scheme. This chapter is based on: M.R.A. Abdelmalik and E.H. van
Brummelen. "An entropy stable discontinuous Galerkin finite-element moment method
for the Boltzmann equation". In: Computers and Mathematics with Applications 72.8
(2016), pp. 1988–1999.

Chapter 4 presents a derivation of a-posteriori error estimates for the DGFE
moment approximation of the steady Boltzmann equation. We devise an adaptive
algorithm that targets elements with the largest contributions to the error estimate of

x



the goal functional in a manner that exploits inter-element cancellation errors. This
chapter is based on: M.R.A. Abdelmalik and E.H. van Brummelen. "Error estimation
and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann
equation". In: Computer Methods in Applied Mechanics and Engineering submitted
(2016).

Chapter 5 presents a space-time DGFE moment approximation of the Boltzmann
equation. The implicit nature of the space-time approximation provides robust and
efficient algorithms for the approximation of the Boltzmann equation. In this chapter we
also modify the moment-closure relation of Chapter 2 to facilitate the implementation
of multi-dimensional problems.

We close this dissertation with Chapter 6 which presents a discussion of the
presented results, as well as some suggestions for further research.
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Chapter 1
Background

Abstract This chapter introduces a kinetic description of rarefaction in dilute
monatomic fluids. We present a mathematical account of the multi-scale nature of
the fluid description – namely, the relation between a molecular-based description, a
corresponding statistical kinetic description and a macroscopic continuum description.
We also survey the salient properties of the kinetic equations to provide context for
the subsequent theory.

To motivate the Boltzmann model for the description of rarefied flow, section 1.1
presents a standard derivation of the Boltzmann equation from a Newtonian system
of hard spheres [24, 25, 48]. We conclude section 1.1 with a survey of the standard
structural properties of the Boltzmann equation [24, 25]. Section 1.2 generalizes the
properties of the Boltzmann equation to a wider class of kinetic systems, to provide
context for subsequent approximation theory. Finally, section 1.3 presents a concluding
discussion.

1.1 From Newtonian mechanics to the Boltzmann equation

This section studies the qualitative behavior of molecular systems of hard spheres that
undergo binary elastic collisions, as the number of molecules diverges. We are interested
in the description of such molecular systems as the number of molecules diverges.
The principal tool is a limiting process in which the ratio of the mean-free-path to
macroscopic dimensions is held fixed while the gas becomes rarefied. In the limit,
the effect of collisions on the evolution of the gas remains finite and is given by the
Boltzmann equation.

1



1.1.1 The Liouville equation

Assume a system of n molecules labeled by integers i 2 f1; : : : ; ng, with velocities
vi 2 RD and positions xi in a fixed D-dimensional spatial domain 
 � RD. We
construct a 2Dn-dimensional phase-space � , in R2Dn, from all xi and vi, and denote
by Z and Fn(t; Z) a representative point in � and a probability density function defined
on � , respectively. Note that Z comprises zi � (xi;vi) defined in 2D-dimensional
phase-spaces i.

Consider the evolution of the system of n identical molecules of mass m governed by

x00j (t) = � 1
m

nX

j: i6=j

r�(xi � xj) (1.1)

where � is some sufficiently smooth interaction potential such that �r�(xi � xj) is
the force exerted by molecule j on molecule i. In the sequel we will consider molecules
modeled as hard spheres of diameter �, i.e.

�(y) = 0; for jyj > �: (1.2)

To prescribe boundary conditions we let

�i;j = xi � xj
jxi � xj j

; (1.3)

and say that two molecules at xi and xj , with jxi�xj j = �, are in an in-going collision
configuration if their corresponding velocities vi and vj satisfy �i;j � (vi � vj) < 0, in a
grazing configuration if �i;j �(vi�vj) = 0 or out-going configuration if �i;j �(vi�vj) > 0.
We prescribe reflection conditions at the molecular boundaries: if 9j 6= i such that
jxi � xj j = � then

�vi = vi � �i;j � (vi � vj)�i;j (1.4a)
�vj = vj + �i;j � (vi � vj)�i;j ; (1.4b)

where �vi and �vj denote in-going pre-collision velocities. It is noteworthy that (1.4) only
accounts for binary inter-molecular collisions. However, it can be shown that the set of
configurations that are led to a collision involving more than two molecules, a grazing
collision or to a cluster point of collision instants is of measure zero in phase-space
[25]. Moreover, it follows from (1.4) that the collisions conserve momentum and kinetic
energy:

�vi + �vj = vi + vj (1.5a)
j�vij2 + j�vj j2 = jvij2 + jvj j2 (1.5b)

For hard sphere dynamics (1.2), the evolution (1.1) describes a flow of molecules at
constant velocity along straight lines in between collisions. Furthermore, Liouville’s
theorem [24] asserts that Fn(t; Z) is constant along the characteristic trajectories
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x0i(t) = vi; (1.6a)
v0i(t) = 0; (1.6b)

and that Fn(t; Z) is conserved and governed by the Liouville equation

@tFn +
nX

i=1

vi � @xiFn = 0; (1.7)

defined on the domain

fZ 2 
n � RnD : 8i 6= j; jxi � xj j > �g (1.8)

with boundary conditions Fn(t; �Z) = Fn(t; Z), in the sense that on the part of the
boundary such that jxi � xj j = �

Fn(t; : : : ;xi; �vi; : : : ;xj ; �vj ; : : :) = Fn(t; : : : ;xi;vi; : : : ;xj ;vj ; : : :); (1.9)

where pre- and post-collision velocities are related by (1.4).

Remark 1.1. The boundary condition in (1.9) is understood in the sense of the equality
of fluxes of Fn on the molecular boundaries and that collisions conserve phase-space
volume; for more details see [25].

1.1.2 The BBGKY hierarchy

It is noteworthy that the evolution of (1.7) is equivalent to (1.1) in the sense that the
n-molecular Liouville equation (1.7) considers super-positions of all n trajectories. For
systems of interest to this work such as fluid flow, the magnitude of the number of
degrees of freedom n renders the numerical approximation of (1.7) intractable [25].
Instead, the remainder of this section derives a reduced and tractable description of
fluid flow. To this end, we introduce the domain

D�s � f(zs+1; : : : ; zn) : 8k2fs+1;:::;ng 6= i2f1;:::;ng; jxk � xij > �g; (1.10)

where D�s implicitly depends on z1; : : : ; zs, and denote by F�s the marginals of order s
of Fn,

F�s (z1; : : : ; zs) =
Z

D�s
Fn(Z)

nY

k=s+1

dzk: (1.11)

From the assumed identity1 of the n molecules we conclude that Fn(z1; : : : ; zn) is
symmetric in its arguments. Therefore, the functional form of F�i is independent of
any particular choice of i molecules.

To derive reduced equations that describe the evolution of the s-marginal distribution,
we integrate the Liouville equation over the domain D�s and separate the terms in the
sum appearing in (1.7) with index i � s from i > s:

1 more precisely, we assume that for all permutations p of f1; : : : ; ng, Fn(t; Z) satisfies
Fn(t; zp(1); : : : ; zp(n)) = Fn(t; z1; : : : ; zn)
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@tF�s +
sX

i=1

Z

D�s
@xi � (viFn)

nY

k=s+1

dzk +
nX

i=s+1

Z

D�s
@xi � (viFn)

nY

k=s+1

dzk = 0; (1.12)

where the first term of (1.12) follows from

@tF�s = @t
Z

D�s
Fn

nY

k=s+1

dzk =
Z

D�s
@tFn

nY

k=s+1

dzk: (1.13)

To account for the dependence of D�s on xi, we denote a sphere in 
 of radius � by S�
and rewrite terms of the first sum using the Leibniz rule:

Z

D�s
@xi � (viFn)

nY

k=s+1

dzk = vi � @xiF
�
s +

nX

k=s+1

I

S�
F�s+1vi � �

k;i dSk dvk; (1.14)

where �k;i denotes the outer normal to the domain jxk � xij < � and dSk denotes the
surface element on the sphere jxk � xij = �. We rewrite the second sum using Gauss’s
theorem of divergence assuming that the contributions from @
 vanish2:

nX

i=s+1

Z

D�s
@xi � (viFn)

nY

k=s+1

dzk = �
sX

i=1

nX

k=s+1

I

S�
F�s+1vk � �

k;i dSk dvk: (1.15)

Remark 1.2. Implicit to the identities in (1.12)–(1.15) is the assumption that the
integrals over D�s exist and that Fn is sufficiently smooth to admit the Gauss formula
and permit the interchange of integration and differentiation with respect to non-
integrated variables.

Collecting the results in (1.14) and (1.15) into (1.12) leads to the so-called BBGKY
hierarchy:

@tF�s +
sX

i=1

vi � @xiF
�
s = (n� s)

sX

i=1

I

S�
F�s+1Vi � �

i dS dv�; (1.16)

where Vi = v��vi, �i = (x��xi)=� and we have taken into account that the integrals
in the last members of the right hand sides of (1.14) and (1.15) are invariant to the
index k. We remark that (1.16) describes the evolution of the s-marginal distribution
function in a hierarchical manner. The evolution of the s-marginals are governed by the
transport operator on the left-hand side of (1.16), while the right hand side describes
the interaction with the remaining n�s molecules [25]. Therefore, (1.16) is not a closed
equation for F�s .

To elucidate the contributions to the collision process, consider a decomposition of
the domain of the right-hand side of (1.16) to the hemispheres of receding molecules
S+
i and approaching molecules S�i , defined by Vi � �i > 0 and Vi � �i < 0, respectively.

Using the boundary condition (1.9) we can rewrite (1.16) as

@tF�s +
sX

i=1

vi � @xiF
�
s = (n� s)�D�1

sX

i=1

Z

S2

� �F�s+1 � F
�
s+1
�
jVi � �ij dS dv�; (1.17)

2 this is the case if for example we consider either specular reflection or periodic conditions on @
.
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where �F�s+1 := F�s+1(�z1; : : : ; �zs+1) on S+
i .

1.1.3 The Boltzmann hierarchy

To derive a model for fluids we allow the number of molecules n in 
 to diverge. To
that end, we denote by V
 the volume of 
, and introduce the macroscopic length
scale

�macro = V
1
D

 (1.18)

and the inter-molecular spacing

�mol =
�
V

n

� 1
D

: (1.19)

We say a fluid is perfect or ideal when �=2� �mol � �macro, in the sense that

njSD�1
2 j

��
2

�D
� V
 and n� 1; (1.20)

where jSD�1
2 j is the volume of a unit sphere. We also introduce the so-called mean

free path, a measure of the distance a molecule travels between collisions. A molecule
traveling a distance �mfp sweeps a cylinder of radius �=2 with hemispheres on each
end. A collision becomes likely when the volume of the cylinder becomes equal to �Dmol.
For an ideal gas we may neglect the contribution of the hemispheres and approximate
the volume of the cylinder by jSD�2

1 j(�=2)D�1�mfp, where jSD�2
2 j is the area of a unit

circle, i.e.
�mfp = V


njSD�2
2 j

��
2

�D�1 : (1.21)

We consider (1.17) in the so-called Boltzmann-Grad limit [25]: as n diverges we
assume that

m! 0; such that nm = constant;
� ! 0; such that n�D�1 = constant:

(1.22)

The former constraint states that as the mass m of each molecule vanishes, the total
mass of the system remains constant. Therefore, the distribution function f�s = nmF�s ,
as well as all macroscopic observables of f�s , scale as O(1) in the limit. The latter
constraint states that as the size of the molecules vanishes the mean free path (1.21)
is held constant in the limit. Consequently, in the limit the fluid is ideal in the sense
of (1.20) since n�D ! 0. In this Boltzmann-Grad limit, (1.17) yields the so-called
Boltzmann hierarchy:

@tFs +
sX

i=1

vi � @xiFs = c
sX

i=1

Z

S+

� �Fs+1 � Fs+1
�
jVi � �ij dS dv�; (1.23)

where we have replaced n�D�1 by a constant c and have dropped the index � from F�s .
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1.1.4 The Boltzmann equation

To close the Boltzmann hierarchy (1.23), we impose the molecular chaos assumption
[25, 24],

Fs(t; z1; : : : ; zs) =
sY

i=1

F1(t; zi): (1.24)

Equation (1.24) states that all of the molecules are statistically independent. Substitut-
ing (1.24) into (1.23) verifies that the one-molecule marginal satisfies the Boltzmann
equation:

@tf +
DX

j=1

vj � @xjf = Q(f); (1.25)

where (1.25) is written in terms of the mass density f , the summation convention
applies to repeated indices and Q(f) is the so-called Boltzmann collision operator for
hard spheres:

Q(f) = c
Z

S+

� �f �f� � ff�
�
jVi � �ij dS dv�; (1.26)

where �f = f(�z), �f� = f(�z�) and f(z�) = f�. We remark that the question of convergence
of solutions of the BBGKY hierarchy (1.17) in the Boltzmann-Grad limit (1.22) to the
Boltzmann hierarchy (1.23) where the solution is chaotic (1.24) and the one-molecule
marginal satisfies the Boltzmann equation (1.25) remains open. However, partial results
provide convergence proofs for short time [25], or for a particular initial datum given by
a rare cloud in vacuum [25], or for the convergence to the linear Boltzmann equation
[18, 19].

1.1.4.1 Properties of the Boltzmann equation

We conclude this section by discussing some of the formal structure of the Boltzmann
equation (1.25). This structure follows from the properties of the collision operator,
namely, Galilean symmetry, entropy dissipation and conservation of mass, momentum
and energy.

The Boltzmann collision operator (1.26) is Galilean invariant, i.e. Q commutes with
translations and rotations. In particular, for all vectors u 2 RD and all orthogonal
tensors O : RD ! RD, we define the translation transformation Tu(f) and the rotation
transformation TO(f) by:

(Tuf)(v) = f(t;x;u� v); (1.27a)
(TOf)(v) = f(t;x;O�v) (1.27b)

with O� the Euclidean adjoint of O. Note that the above transformations act on the
v-dependence only. It follows from the definition of Q in (1.26) that if f(t;x;v) satisfies
the Boltzmann equation (1.25), then for arbitrary u 2 RD and arbitrary orthogonal
O : RD ! RD, so do f(t;x� ut;v � u) and f(t;O�x;O�v):
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Q(Tuf) = TuQ(f); (1.28a)
Q(TOf) = TOQ(f) (1.28b)

The symmetries (1.28) imply that (1.25) complies with Galilean invariance [60].
Macroscopic observables are constructed as spatio-temporal densities from the phase-

space density f . Mass, momentum and energy densities of the fluid are respectively
given as

� =
Z

RD
f(t;x;v) dv; (1.29a)

�u =
Z

RD
vf(t;x;v) dv; (1.29b)

�juj2 + 2�� =
Z

RD
jvj2f(t;x;v) dv (1.29c)

where �(t;x) is the mass density, u(t;x) is the bulk velocity and �(t;x) is the specific
internal energy of the fluid. To confirm that solutions of the Boltzmann equation locally
conserves mass, momentum and energy we compute the velocity moments of (1.25):

Z

RD
�
�
@tf + @xjvjf

�
dv =

Z

RD
�Q(f) dv (1.30)

for every � = �(v) and f = f(v) such that the integrals in (1.30) make sense. Note
that from (1.28) and (1.4) it follows that the measure dS dv� dv on S � RD � RD is
invariant under the transformations

(v�;v) 7! (v;v�); (1.31a)
(v�;v) 7! (�v�; �v); (1.31b)
(v�;v) 7! (�v; �v�): (1.31c)

Using the transformations in (1.31) we can rewrite the right-hand side of (1.30) [24]:
Z
�Q(f) dv

= 1
4

Z Z Z
(�(v) + �(v�)� �(�v)� �(�v�))

� �f �f� � ff�
�
jVi � �ij dS dv� dv: (1.32)

From (1.32) it follows that velocity moments of the collision operator vanish when

�(v) + �(v�) = �(�v) + �(�v�): (1.33)

The conditions for elastic binary collisions (1.5) imply that the functions �0(v) = 1,
�i(v) = vi (i = 1; 2; : : : ; D) and �D+1(v) = jvj2 satisfy (1.33). Moreover, if �(v) is
assumed to be continuous, then (1.33) is satisfied if and only if

� 2 spanf1; v1; v2; : : : ; vD; jvj2g; (1.34)

see [24] for the proof. Therefore, solutions of the Boltzmann equation (1.25) comply
with the local conservation of mass, momentum and energy, respectively
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@t
Z

RD
f dv + @xj

Z

RD
vjf dv = 0; (1.35a)

@t
Z

RD
vf dv + @xj

Z

RD
vjvf dv = 0; (1.35b)

@t
Z

RD
jvj2f dv + @xj

Z

RD
vj jvj2f dv = 0: (1.35c)

To derive global conservation laws we integrate (1.35) over the temporal domain (0; te)
and the spatial domain 
 in the absence of contributions of boundary terms

Z




Z

RD
f(te;x) dx =

Z




Z

RD
f(0;x) dx; (1.36a)

Z




Z

RD
vf(te;x) dx =

Z




Z

RD
vf(0;x) dx; (1.36b)

Z




Z

RD
jvj2f(te;x) dx =

Z




Z

RD
jvj2f(0;x) dx; (1.36c)

corresponding to the global conservation of mass, momentum and energy, respectively.
A distinguishing feature between the Liouville equation (1.7) and the Boltzmann

equation (1.25) is the time-reversibility of the former and the time-irreversibility of
the latter. The time-reversibility of solutions of the Liouville equation follow from the
fact that if F (t;xi;vi) is a solution to (1.7) then so is F (�t;xi;�vi). Conversely, the
time-irreversibility of the Boltzmann equation follows from the existence of a Lyapunov
function in time for solutions of (1.25). To elucidate the existence of a Lyapunov
function, consider (1.30) with � = log(f); using the chain rule and the conservation of
mass we write the so-called local entropy dissipation law

@t
Z

RD
f log(f) dv + @xj

Z

RD
vjf log(f) dv =

Z

RD
log(f)Q(f) dv � 0; (1.37)

where the inequality follows from (1.32):
Z

RD
log(f)Q(f) dv = 1

4

Z Z Z
log
�
ff�
�f �f�

�� �f �f� � ff�
�
jVi ��ij dS dv� dv � 0: (1.38)

A Lyapunov function, denoted by H(t), for solutions of (1.25) is provided by integrating
(1.37) over the spatial domain 
 in the absence of contributions of boundary terms

dtH(t) = dt
Z




Z

RD
f log(f) dv dx � 0: (1.39)

The global dissipation law (1.39) implies that H(t) is a non-increasing function of
time. We say that solutions of (1.25) are in equilibrium when equality in (1.39) and
(1.37) is attained. Equilibrium distributions therefore conform to (1.34) implying that
log(f) 2 spanf1; v1; : : : ; vD; jvj2g and may be written in the so-called Maxwellian form
parameterized by mass, momentum and energy

M�;u;�(t;x;v) = �(t;x)
(2��(t;x))D2

exp
�
�
jv � u(t;x)j2

2�

�
: (1.40)
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Therefore, (1.39) conveys the time-irreversibility of non-equilibrium solutions of (1.25).

1.2 Generalized structure for kinetic equations

In this section the structure of the Boltzmann collision operator (1.26) is generalized
to a wider class of kinetic equations to provide a general framework for subsequent
approximation theory. It is shown that the generalized structure provides a connection
between kinetic theory and the macroscopic fluid dynamics described by the Euler and
Navier-Stokes equations [67].

To account for a wider class of kinetic systems, we consider an abstraction of the
hard sphere collision operator (1.26) in the Boltzmann equation (1.25). We study the
evolution of f governed by,

@tf + vi@xif = C(f) (1.41)

where the collision operator f 7! C(f) acts only on the v = (v1; : : : ; vD) dependence of f
locally at each (t;x). Similar to the hard sphere collision operator f 7! Q in (1.26), the
abstract collision operator f 7! C is assumed to possess certain symmetry, conservation
and dissipation properties, viz., invariance under Galilean transformations, conservation
of mass, momentum and energy, and dissipation of appropriate entropy functionals.
We assume that the abstract collision operator C satisfies the same invariance relations
(1.28) and the same conservation laws (1.35) as the hard sphere collision operator
Q. However, we assume a generalizations of the entropy dissipation property (1.37).
These fundamental properties are treated in further detail below. Our treatment of
the conservation and symmetry properties is standard (see, for instance, [67]) and is
presented merely for coherence and completeness. For the entropy-dissipation property,
we consider a generalization of the usual (relative) entropy to ’-divergences [28], to
enable an exploration of the moment-closure problem in an extended setting.

1.2.1 Conservation and invariance properties

To elaborate the conservation properties of the collision operator, let h�i denote inte-
gration in the velocity dependence of any scalar, vector or matrix valued measurable
function over D-dimensional Lebesgue measure. A function  : RD ! R is called a
collision invariant of C if

h C(f)i = 0 8f 2 D(C); (1.42)

where D(C) � L1(RD;R�0) denotes the domain of C. Equation (1.41) associates a
scalar conservation law with each collision invariant:

@th fi+ @xihvi fi = 0 (1.43)

We require that f1; v1; : : : ; vD; jvj2g are collision invariants of C and that the span of
this set contains all collision invariants, i.e.
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h C(f)i = 0 8f 2 D(C) ,  2 spanf1; v1; : : : ; vD; jvj2g =: I : (1.44)

As in (1.29), we infer that the moments hfi, hvifi and hjvj2fi, correspond to the
mass density, the (components of) momentum-density and energy-density, respectively.
Accordingly, the conservation law (1.43) implies that (1.41) conserves mass, momentum
and energy. Note that the conservation laws in (1.43) are equivalent to those in (1.35).
Therefore, we assume that solutions of (1.41) with the abstract collision operator C,
satisfy the same conservation laws as the hard sphere Boltzmann equation with collision
operator Q.

It is assumed that the abstract collision operator C possesses the same Galilean
symmetries (1.28) as the hard sphere collision operator Q, i.e.

C(Tuf) = TuC(f); (1.45a)
C(TOf) = TOC(f) (1.45b)

The symmetries (1.45) imply that (1.41) complies with Galilean invariance, i.e. if
f(t;x;v) satisfies the Boltzmann equation (1.41), then for arbitrary u 2 RD and
arbitrary orthogonal O : RD ! RD, so do f(t;x� ut;v � u) and f(t;O�x;O�v).

1.2.2 Dissipation properties

The entropy dissipation property of C is considered in the extended setting of [67,
Sec. 7] which considers a generalized definition of an entropy for the abstract collision
operator C and a corresponding generalized notion for equilibrium distributions. We
consider the following definition: a convex function � : R0 ! R is called an entropy
density for C if

h�0(f) C(f)i � 0 8f 2 D(C); (1.46)

with �0(f) the derivative of �(f), and if for every f 2 D(C) the following equivalences
hold:

C(f) = 0 , h�0(f) C(f)i = 0 , �0(f) 2 I (1.47)

Relation (1.46) implies that C dissipates the local entropy h�(�)i, which leads to
an abstraction of Boltzmann’s H-theorem for (1.41), asserting that solutions of the
Boltzmann equation (1.41) satisfy the local entropy-dissipation law:

@th�(f)i+ @xihvi�(f)i = hC(f) �0(f)i � 0 : (1.48)

The functions h�(f)i, hvi�(f)i and h�0(f) C(f)i are referred to as entropy density,
entropy flux and entropy-dissipation rate, respectively. The first equivalence in (1.47)
characterizes local equilibria of C by vanishing entropy dissipation. By virtue of (1.44),
the second equivalence indicates that the form of such local equilibria is given by

f = (�0)�1( );  2 I (1.49)

For spatially homogeneous initial data, f0, equations (1.46) and (1.47) suggest that
equilibrium solutions, feq, of (1.41) are determined by:
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feq = arg min
�
h�(f)i : f 2 D(C); hf i = hf0 ig; (1.50)

Equation (1.50) identifies equilibria as minimizers3 of the entropy, subject to the
constraint that the invariant moments are identical to the invariant moments of the
initial distribution.

As opposed to the standard setting of the hard sphere Boltzmann equation in section
1.1.4.1, we will admit distributions that vanish on sets with nonzero measure. To
accommodate such distributions, we introduce an auxiliary non-negativity condition on
the collision operator, in addition to (1.46) and (1.47). The non-negativity condition
insists that C(f) cannot be negative on zero sets of f :

C(f)
��
RDnsupp(f) � 0 (1.51)

Condition (1.51) encodes that the collision operator cannot create locally negative
distributions. It can be verified that (1.51) holds for a wide range of collision operators,
including the BGK operator [14], the multi-scale generalization of the BGK operator
introduced in [67], and all collision operators that are characterized by a (non-negative)
collision kernel.

1.2.3 Divergence-based entropies

The standard definition of entropy corresponds to a density f 7! f log f , possibly
augmented with f where  2 I is any collision invariant. It is to be noted that for
MaxwelliansM, i.e. distributions of the form

M(v) :=M(%;u;T )(v) := %
(2�RT )D2

exp
�
�
jv � uj2

2RT

�
(1.52)

for some (%;u; T ) 2 R>0 � RD � R>0 and a certain gas constant R 2 R>0, it holds
that logM 2 I . Therefore, the relative entropy hf log (f=M)i of f with respect to
some suitableM is equivalent to hf log fi in the sense of dissipation characteristics.
The physical interpretation of the entropy hf log fi, due to Boltzmann [20], is that
of a measure of degeneracy of macroscopic states, i.e. of the number of microscopic
states that are consistent with the macroscopic state as described by the one-particle
marginal, f . In the context of information theory, Shannon [95] showed that for discrete
probability distributions, the density f 7! f log f is uniquely defined by the postulates
of continuity, strong additivity and the property that m�(1=m) < n�(1=n) whenever
n < m. These postulates ensure that for discrete probability distributions the entropy
yields a meaningful characterization of information content and, accordingly, rationalize
an interpretation of entropy as a measure of the uncertainty or, conversely, informa-
tion gain pertaining to an observation represented by the corresponding probability
distribution [55].

3 We adopt the sign convention of diminishing entropy.
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Kullback and Leibler [64] generalized Shannon’s definition of information to the
abstract case and identified the divergence4

DKL(�1j�2) =
Z
f1 log(f1=f2) d� (1.53)

as a distance between mutually absolutely continuous measures �1 and �2, both
absolutely continuous with respect to the measure � with Radon–Nikodym derivatives
f1 = d�1=d� and f2 = d�2=d�. The Kullback–Leibler divergence characterizes the mean
information for discrimination between �1 and �2 per observation from �1. Noting that
the Kullback–Leibler divergence (1.53) coincides with the relative entropy of f1 with
respect to f2, the relative entropy hf log(f=M)i can thus be understood as a particular
measure of the divergence of the one-molecule marginal relative to the reference (or
background) distributionM. The Kullback–Leibler divergence was further generalized
by Csiszár [28] and Ali et. al. [5], who introduced a general class of distances between
probability measures, referred to as ’-divergences, of the form:

D’(�1j�2) =
Z
f2 ’(f1=f2) d� (1.54)

where ’ is some convex function subject to ’(1) = ’0(1) = 0 and ’00(1) > 0. Note that
the Kullback–Leibler divergence corresponds to the specific case ’KL(�) = (�) log(�).

In this work, we depart from the standard (relative) entropy for (1.41) and instead
consider entropies based on particular ’-divergences. These ’-divergences generally
preclude the usual physical and information-theoretical interpretations, but still provide
a meaningful entropy density in accordance with (1.46) and (1.47). We consider moment-
closure approximations based on the minimization of such generalized entropies. In the
standard setting, the moment-closure procedure is based on the Kullback-Leibler diver-
gence (1.53) [67], similar to the maximum-entropy closure in extended thermodynamics
[32], leading to an exponential closure. Such a moment-closure procedure is impaired by
a realizability problem [58], in that there exist moments for which the minimum-entropy
distribution is non-existent. Moreover, the fluxes in the entropy-based moment systems
may become arbitrarily large in the vicinity of (local) equilibria. Furthermore, the
exponential form of the closure severely complicates the implementation of numerical
algorithms for moment systems since the derivation of closed-form expressions for such
moments is intractable, and accurate approximation of the moments is a notoriously
difficult problem; see, for instance, [65]. The considered ’-divergences yield a setting
in which entropy-minimization based moment-closure approximations to (1.41) are not
impaired by non-realizability, exhibit bounded fluxes, and are numerically tractable.

Remark 1.3. Implicit to our adoption of ’-divergence-based entropies is the assumption
that such entropies comply with (1.46) and (1.47) for a meaningful class of collision
operators. It can be shown that the class of admissible collision operators includes the
BGK operator [14]:

Cbgk(f) = ���1(f � Ef ) (1.55)

where � 2 R>0 is a relaxation time and E(�) corresponds to the map f0 7! feq defined
by (1.50). The Kuhn–Tucker optimality conditions associated with (1.50) convey that

4 The conventional definition of Kullback–Leibler divergence according to (1.53) is historically
incorrect, as Kullback and Leibler in fact referred to the symmetrization of (1.53) as the “divergence”.
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�0(Ef ) 2 I and, therefore, h�0(Ef )(f � Ef )i = 0. The dissipation inequality (1.46) then
follows from the convexity of �(�):

h�0(f) CBGK(f)i = ���1
��0(f)� �0(Ef )
�
(f � Ef )

�
� 0 (1.56)

Moreover, because equality in (1.56) holds if and only if f = Ef , the condition
h�0(f) Cbgk(f)i = 0 implies that f = Ef , which in turn yields Cbgk(f) = 0 and
�0(f) 2 I . The equivalences in (1.47) are therefore also verified. A similar result holds
for the multi-scale generalization of the BGK operator introduced in [67]; see Appendix
2.A.

1.2.4 Hydrodynamic limits

We conclude this section by deriving macroscopic fluid descriptions, namely compressible
Euler and Navier-Stokes equations, from kinetic equations attributed with conservation
of mass, momentum and energy, Galilean invariance and dissipation of an entropy such
that the corresponding equilibrium distribution conforms to a Maxwellian (1.52). To
that end we consider an asymptotic expansion of f that solves (1.41) in re-scaled form.
The derivation of the compressible Euler equations require properties that follow from
the nonlinear equation (1.41), while additional assumptions are made on the collision
operator C for the derivation of the compressible Navier-Stokes equations.

Consider re-scaled solutions of the Boltzmann equation (1.41) of the form

f(t;x;v) = f�(t̂; x̂;v); with (t̂; x̂) = (�t; �x); (1.57)

where we take � to be the so-called Knudsen number,

� = �mfp

�macro
; (1.58)

a measure of rarefaction of the fluid flow. The re-scaled Boltzmann equation (1.41)
reads

@t̂f� + vj@x̂jf� = 1
�
C(f�) (1.59)

where we assume that
�� 1 (1.60)

to derive a continuum description of fluid dynamics. To that end, we consider a
Chapman-Enskog expansion of f� in powers of �:

f�(t̂; x̂;v) =
X

k�0

�kgk[h if�i(t̂; x̂)](v) for i = 0; 1; : : : ; D;D + 1: (1.61)

where  0 = 1,  j = vj (j 2 f1; : : : ; Dg),  D+1 = jvj2 and h if�i denotes the vector of
invariant moments. The notation f [�](v) designates a v dependent quantity that is
also a function of �(t̂; x̂) and x̂-derivatives of �(t̂; x̂). We aim to derive fluid dynamic
equations governing the evolution of the invariant moments from the leading order
terms in (1.61).
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Remark 1.4. We implicitly assume that the coefficients gk in (1.61) are smooth and
rapidly decaying for jvj ! 1.

Constraints for the expansion (1.61) follow from the conservation of moments h if�i in
the sense that h if�i satisfy the formal system of conservation laws of the form (1.43):

@t̂h if�i+ @x̂j hvj if�i = 0: (1.62)

Note that the system of conservation laws (1.62) is not closed since it provides 3 relations
between 3(1 +D) independent variables viz. the densities h f�i and flux components
hvi f�i. Closure of (1.62) would correspond to a system of macroscopic conservation
laws that govern the evolution of the fluid density, momentum and energy. The closure
of (1.62) corresponding to the compressible Euler and Navier-Stokes equations are
obtained by substituting (1.61) into (1.59) and comparing the leading order coefficients
of �.

The leading order terms yield

C(g0) = 0 =) g0[h if�i(t̂; x̂)](v) =M(f�) (1.63)

where M(f�) is the local Maxwellian conforming to (1.52) with the same invariant
moments as f�:

h iM(f�)i = h if�i: (1.64)

Therefore, the leading order conservation laws (1.62) formally satisfy

@t̂h iM(f�)i+ @x̂j hvj iM(f�)i = 0 up to O(�): (1.65)

Neglecting higher order coefficients of �, (1.65) reduces to the compressible Euler
equations [67]

@t�+rx � (�u) = 0 (1.66a)
@t(�u) +rx � (�u
 u0 + ��Id) = 0 (1.66b)

@t(�juj2 +D��) +rx � (�juj2u+ (D + 2)��u) = 0: (1.66c)

The first correction to (1.63) is governed by

@t̂g0 + @x̂jg0 = ��1C
�
g0 + �g1 +O(�2)

�
+O(�)

=) @t̂ logM(f�) + @x̂j logM(f�) = LM(f�)(g1) +O(�); (1.67)

where L is the linearized collision operator:

LM(g) = 1
M

@�C(M+ �g)
���
�=0

: (1.68)

In general, the solvability of (1.67) for g1 is not guaranteed. However, it can be shown
that under the following assumptions (1.67) conforms to the Fredholm alternative [91]:

i. ker(LM)� rng(LM) = HM, where HM is a Hilbert space with an inner product
weighted withM,

ii. LM is self adjoint,
iii. LM(g) = 0 if and only if g 2 ker(LM) = I ,

14



iv. LM satisfies the Fredholm alternative;

consequently,

g1[h if�i(t̂; x̂)](v) = L�1 �@t̂ logM(f�) + @x̂j logM(f�)
�
: (1.69)

The next correction to the compressible Euler equations (1.65) is

@t̂h iM(f�)i+ @x̂j hvj iM(f�)i+ �@x̂j hvj ig1[h if�i(t̂; x̂)](v)i = 0
up to O(�2): (1.70)

Neglecting higher order coefficients of �, (1.70) reduces to the compressible Navier-Stokes
equations [67]

@t�+rx � (�u) = 0 (1.71a)
@t(�u) +rx � (�u
 u+ ��Id) = �rx �� (1.71b)

@t(�juj2 +D��) +rx � (�juj2u+ (D + 2)��u) = �rx � (�u+ q); (1.71c)

where the stress tensor is denoted by � and heat flux by q:

� = !
�
rxu+ (rxu)> � 1

D
Idrx � u

�
(1.72a)

q = rx� (1.72b)

written in terms of the viscosity ! = !(�; �) and heat conduction  = (�; �). It is
noteworthy that ! and  are defined in terms of the collision operator. For the hard
sphere collision operator (1.26) there holds

!(�) = !0�
1
2 ; (1.73a)

(�) = 0�
1
2 ; (1.73b)

where !0 and 0 are positive constants.

Remark 1.5. The closure relation in (1.72) represents Fourier’s law of heat conduction
[43] for q and the Newtonian stress tensor for a compressible fluids that satisfies Stokes
hypothesis [98] for �.

Higher order corrections to the compressible Navier-Stokes may be formally derived
from subsequent terms in (1.61). The second-order correction to the compressible Euler
equations is a system known as the Burnett equations; further corrections have also
been computed and are known as the super-Burnett equations. However these further
corrections to the Navier-Stokes system are, in general, not well posed.

Remark 1.6. To derive the compressible Euler and compressible Navier-Stokes equa-
tions using the Chapman-Enskog procedure we implicitly assumed that equilibrium
distributions conform to Maxwellians (1.52). However, this assumption can be moder-
ated in the sense that one may derive the compressible Euler and the incompressible
Navier-Stokes via the Chapman-Enskog procedure using equilibrium distributions that
are only attributed with isotropy and Galilean invariance [71].
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1.3 Conclusions

In this chapter we derived the Boltzmann equation from multi-molecular Newtonian
dynamics. It was shown that the Boltzmann equation defines the ideal gas limit, with
Boltzmann-Grad scaling, of multi-molecular Newtonian dynamics governed by binary
hard sphere collisions with the molecular chaos assumption. The derivation conveys that
the Boltzmann equation describes low density fluids with arbitrarily large deviations
from equilibrium.

We also surveyed the structural properties of the Boltzmann equation and considered
a generalization of these properties to a wider class of kinetic systems. It was shown that
these generalized properties are sufficient to derive continuum models as hydrodynamic
limits in the Chapman-Enskog procedure. We require the retainment of these salient
properties in our approximations in the following chapters.
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Chapter 2
Moment closure hierarchies

Abstract This chapter is concerned with approximations of the Boltzmann equation
based on the method of moments. We propose a generalization of the setting of the
moment-closure problem from relative entropy to ’-divergences and a corresponding
closure procedure based on minimization of ’-divergences. The proposed description
encapsulates as special cases Grad’s classical closure based on expansion in Hermite
polynomials and Levermore’s entropy-based closure. We establish that the generaliza-
tion to divergence-based closures enables the construction of extended thermodynamic
theories that avoid essential limitations of the standard moment-closure formulations
such as potential loss of hyperbolicity and singularity of flux functions at local equi-
librium. The divergence-based closure leads to a hierarchy of tractable symmetric
hyperbolic systems that retain the fundamental structural properties of the Boltzmann
equation.

Introduction

In this chapter we consider alternative moment-closure relations for the Boltzmann
equation, based on approximations of the exponential function derived from truncations
of its standard limit definition, exp(�) = limn!1(1+�=n)n. It is to be noted that closure
relations derived from a series-expansion definition of the exponential have received
scant attention before, e.g. by Brini and Ruggeri [22]. Our motivation for considering the
limit definition instead of the series-expansion definition for constructing the moment
closures is based on the direct availability of a corresponding inverse relation for higher
order approximations. We propose a generalization of the setting of the moment-closure
problem from Kullback–Leibler divergence [64] (i.e relative entropy) to the class of
’-divergences [28]. The considered ’-divergences constitute an approximation to the
Kullback–Leibler divergence in the vicinity of (local) equilibria. It will be shown that the
approximate-exponential closure relation can be derived via constrained minimization
of a corresponding ’-divergence. The proposed description encapsulates as special
cases Grad’s closure relation and Levermore’s entropy-based closure relation. The

This chapter is based on: M.R.A. Abdelmalik and E.H. van Brummelen. "Moment closure approxi-
mations of the Boltzmann equation based on ’-divergences". In: Journal of Statistical Physics 164.1
(2016), pp. 77–104.
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corresponding moment systems are symmetric hyperbolic and tractable, in the sense
that the formulation only requires the evaluation of higher-order moments of Gaussian
distributions. Furthermore, the moment systems dissipate a ’-divergence relative to a
suitable reference distribution, analogous to the dissipation of relative entropy of the
Boltzmann equation, provided that the collision operator dissipates the corresponding ’-
divergence. We will show that the class of collision operators that dissipate appropriate
’-divergences includes the standard BGK [14] and generalized BGK [67] operators.

The remainder of this chapter is organized as follows. Section 2.1 introduces concepts
relevant to moment systems. We will establish that moment systems can alternatively
be construed as Galerkin subspace approximations of the Boltzmann equation in
renormalized form, and review the conventional moment closures of Grad [47] and
Levermore [67] and their shortcomings in this setting. Section 2.2 presents a novel
tractable moment closure relation based on ’-divergence minimization. It will be
shown that the corresponding closed system of moment equations are well-posed
and retain the structural features of the Boltzmann equation. To investigate the
approximation properties of the new moment-system approximation and the most
important implementation aspects, viz. solution of the minimization problem and
integration of moments of the resulting approximate distribution, section 2.3 considers
elementary one-dimensional numerical experiments. Finally, section 2.4 presents a
concluding discussion.

2.1 Moment systems

Moment systems are approximations of the Boltzmann equation based on a finite
number of velocity-moments of the one-particle marginal. An inherent aspect of moment
equations derived from (1.41) is that low-order moments are generally coupled with
higher-order ones, and consequently a closed set of equations for the moments cannot
be readily formulated. Therefore, a closure relation is required.

2.1.1 General derivation and the moment-closure problem

To derive the moment equations from (1.41) and elaborate on the corresponding
moment-closure problem, let M denote a finite-dimensional subspace of D-variate
polynomials and let fmi(v)gMi=1 represent a corresponding basis. Denoting the column
M -vector of these basis elements by m, it holds that the moments fhmifigMi=1 of the
one-particle marginal satisfy:

@thmfi+ @xihvimfi = hmC(f)i (2.1)

It is to be noted that we implicitly assume in (2.1) that f resides in

F :=
�
f 2 D(C) :

f � 0;mf 2 L1(RD); vmf 2 L1(RD;RD); mC(f) 2 L1(RD)
for all m 2M

	
(2.2)

18



almost everywhere in the considered time interval (0; T ) and the spatial domain 
.
This assumption has been confirmed in specific settings of (1.41) but not for the general
case; see [67, Sec. 4] and the references therein for further details.

The moment-closure problem pertains to the fact that (2.1) provides only M
relations between (2 +D)M independent variables, viz., the densities hmifi, the flux
components hvimifi and the production terms hmiC(f)i. Therefore, (1+D)M auxiliary
relations must be specified to close the system. Generally, moment systems are closed
by expressing the fluxes and production terms as a function of the densities. Moment
systems are generally closed by constructing an approximation to the distribution
function from the densities and then evaluating the fluxes and production terms for
the approximate distribution. Denoting by M � RM a suitable class of moments, a
function F : M ! F must be specified such that F realizes the moments in M, i.e.
hmF(�)i = � for all � 2 M, and F(hmfi) constitutes a suitable (in a sense to be
made more precise below) approximation to the solution f of the Boltzmann equation
(1.41). Approximating the moments in (2.1) by � � hmfi and replacing f in (2.1) by
the approximation F(�), one obtains the following closed system for the approximate
moments:

@t�+ @xihvimF(�)i = hmC(F(�))i: (2.3)

The closed moment system (2.3) is essentially defined by the polynomial subspace,
M , and the closure relation, F . A subspace/closure-relation pair (M ;F) is suitable
if the corresponding moment system (2.3) is well posed and retains the fundamental
structural properties of the Boltzmann equation (1.41) as described in section 1.2, viz.,
conservation of mass, momentum and energy, Galilean invariance and dissipation of an
entropy functional. Auxiliary conditions may be taken into consideration, e.g. that the
fluxes and production terms can be efficiently evaluated by numerical quadrature.

2.1.2 Reinterpretation via renormalization and Galerkin
approximation

Moment systems can alternatively be conceived of as Galerkin subspace-approximations
of the Boltzmann equation (1.41) in renormalized form. This Galerkin-approximation
interpretation can for instance prove useful in constructing error estimates for (2.3)
and in deriving structural properties. In addition, the Galerkin-approximation inter-
pretation conveys that smooth functionals of approximate distributions obtained from
moment systems, such as velocity moments, generally display superconvergence under
hierarchical-rank refinement, in accordance with the Babuška–Miller theorem; see [7]
and also section 2.3.

We consider the subspace M and introduce a function � : M ! F , referred to as
a renormalization map. Denoting by V ((0; T ) � 
; M ) a suitable class of functions
from (0; T )�
 into M , the moment system (2.3) can be recast into the Galerkin form:

Find g 2 V
�
(0; T )�
; M )

�
:



m@t�(g)

�
+


mvi@xi�(g)

�
=


mC(�(g))

�

8m 2M ; a.e. (t;x) 2 (0; T )�
: (2.4)
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To elucidate the relation between (2.3) and (2.4), we associate to the renormalization
map � : M ! F a function F� : D(F�) ! F such that F�(�) = �(g�) with g�
according to hm�(g�)i = �. The domain D(F�) is implicitly restricted to moments
� 2 RM that can be realized by some g 2M . The equivalence between the Galerkin
formulation (2.4) and the moment system (2.3) now follows immediately by noting
that fmigMi=1 constitutes a basis of M and inserting g� for g in (2.4).

The Galerkin form (2.4) facilitates a unified treatment of moment-closure systems. In
the remainder of this section we review the celebrated moment closures of Levermore [67]
and Grad [47] in the context of the Galerkin form (2.4), to provide a basis for the
subsequent divergence-based moment closures in section (2.2). We note that other
closure relations exist, e.g. based on Pearson distributions [102]. However, these closures
do not generally possess a hierarchical structure, i.e. the renormalization map for these
closures is non-generic and specifically connected to a particular subspace M , and are
outside the scope of this treatise.

2.1.3 Levermore’s entropy-based moment closure

The moment-closure relation of Levermore [67] is essentially characterized by the
renormalization map:

�L(�) = exp(�) (2.5)

For this closure relation, a subspace M is considered to be admissible if it satisfies:

1) I �M ;
2) M is invariant under the actions of Tu and TO;
3) Mc := fm 2M : hexp(m)i <1g has a nonempty interior in M .

The first condition insists that M contains the collision invariants, which ensures
that the moment system imposes conservation of mass, momentum and energy. These
conservation laws must be obeyed if any fluid-dynamical approximation is to be
recovered. The second condition dictates that for all m 2 M , all u 2 RD and all
orthogonal tensors O it holds that m(u� (�)) 2M and m(O�(�)) 2M . This condition
ensures that the moment system exhibits Galilean invariance. As argued by Junk [60],
rotation and translation invariant finite dimensional spaces are necessarily composed of
multivariate polynomials. The third condition requires that M contains functions m
such that �(m(�)) is Lebesgue integrable on RD. For �(�) = exp(�) and M composed
of multivariate polynomials, this condition implies that the highest-order terms in any
variable in M must be of even order. The subset Mc then corresponds to a convex cone,
consisting of all polynomials in M for which the highest-order terms in any variable
are of even order and have a negative coefficient. One can infer that exp(�) maps Mc
to distributions with bounded moments and fluxes, i.e. g 2Mc implies jhm�(g)ij <1
and jvm�(g)ij <1 for all m 2M .

In [67] the moment-closure relation associated with (2.5) is derived by minimization
of the entropy with density �L(f) := f log f � f , subject to the moment constraint.
Specifically, considering any admissible subspace M , Levermore formally defines the
closure relation � 7! FL(�) according to:
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FL(�) := arg min
f2F

�
hf log f � fi : hmfi = �

	
(2.6)

To elucidate the fundamental properties of the closure relation (2.6), we consider
an admissible subspace M and we denote by D the collection of all f 2 F that
yield moments � = hmfi for which the minimizer in (2.6) exists. The operator
FL(hm(�)i) : D ! I is idempotent and its image I � D admits a finite-dimensional
characterization. In particular, it holds that log I coincides with the convex cone Mc.
The idempotence of the operator FL(hm(�)i) and its injectivity in D imply that (2.6)
corresponds to a projection. This projection is generally referred to as the entropic
projection [51]. A second characterization of (2.6) follows from the following sequence
of identities, which holds for any f 2 F such that hmfi = � and all Maxwellian
distributions,M = exp( ) with  2 I :

hf log(f=M)i = hf(log f� )i = hf log f�fi+hf(1� )i = hf log f�fi+� �� (2.7)

for some � 2 RM . Noting that � � � is independent of f , one can infer from (1.53) and
(2.7) that FL according to (2.6) is the distribution in F that is closest to equilibrium
in the Kullback–Leibler divergence, subject to the condition that its moments hm(�)i
coincide with �. Similarly, it can be shown that FL according to (2.6) minimizes
hf log fi subject to hmfi = �. Therefore, the information interpretation of the entropy
hf log fi (see section 1.2) enables a third characterization of (2.6), viz. as the least-biased
distribution given the information hm(�)i = � on the moments.

The exponential form of the renormalization map (2.5) can be derived straightfor-
wardly by means of the Lagrange multiplier method. Provided it exists, the minimizer
of the constrained minimization problem (2.6) corresponds to a stationary point of the
Lagrangian (f;�) 7! hf log f � fi+� � (�� hmfi). The stationarity condition implies
that log f �� �m vanishes, which conveys the exponential form f = exp(� �m). It is to
be noted that the Lagrange multipliers have to comply with an admissibility condition
related to integrability. In particular, � �m must belong to the convex cone Mc.

In [67] it is shown that moment systems with closure FL yield quasi-linear symmetric
hyperbolic systems for the Lagrange multipliers. Application of the chain rule to (2.3)
with FL(�) = exp(� �m) (with, implicitly, � = hm exp(� �m)i) yields:

A0(�)@�
@t

+
DX

i=1

Ai(�) @�
@xi

= s(�) (2.8)

with A0(�) = hm 
m exp(� �m)i, Ai(�) = hvim 
m exp(� �m)i and s(�) =
hm C(exp(� �m))i. The symmetry of Ai (i = 0; 1; : : : ; D) and the positive definiteness
of A0 are evident. By virtue of its quasi-linear symmetric hyperbolicity, the system
(2.8) is at least linearly well posed [67]. Moreover, under auxiliary conditions on the
initial data, local-in-time existence of solutions can be established; see, for instance,
[72].

Levermore’s moment systems retain the fundamental structural properties of the
Boltzmann equation. The conservation properties and Galilean invariance are direct
consequences of conditions 1. and 2. on the admissible subspaces, respectively. Dis-
sipation of the entropy h�L(�)i can be inferred from the Galerkin formulation (2.4),
noting that for (2.5) it holds that log �L(�) : M !M . Hence, if g complies with (2.4)
in conjunction with (2.5) then the following identity holds on account of Galerkin
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orthogonality:

h log �L(g) @t�L(g)i+ h log �L(g) vi@xi�L(g)i = hlog �L(g) C(�L(g))i (2.9)

The left-hand side of this identity coincides with @th�L(�(g))i + @xihvi�L(�L(g))i,
while the right-hand side equals hC(�L(g)) �0L(�L(g))i. For g according to (2.4), the
distribution �L(g) thus obeys the entropy dissipation relation (1.48) with entropy
density �L.

Levermore’s consideration of entropy-based moment-closure systems in [67], as well
as the above exposition, implicitly rely on existence of a solution to the moment-
constrained entropy minimization problem (2.6). It was however shown by Junk in the
series of papers [58, 59, 60] that for super-quadratic M the closure relation (2.6) is
impaired by non-realizability, i.e. a minimizer of (2.6) may be non-existent. Moreover,
the class of local equilibrium distributions generally lies on the boundary of the set
of degenerate densities. In [58], Junk also establishes that the flux hvim�L(g)i can
become unbounded in the vicinity of equilibrium, thus compromising well-posedness
of (2.8). The singularity of the fluxes moreover represents a severe complication for
numerical approximation methods; see also [75].

The realizability problem of Levermore’s entropy-based moment closure has been
extensively investigated; see, in particular, [58, 59, 60, 52, 94, 85]. In [60, 52, 85]
it has been shown that the set of degenerate densities is empty if and only if the
set f� 2 RM : m exp(� �m) 2 L1(RD;RM )g of Lagrange multipliers associated
with integrable distributions is open. This result implies that degenerate densities are
unavoidable for super-quadratic polynomial spaces, because the Lagrange multipliers
associated with equilibrium are then located on the boundary of the above set; see
also [52]. To bypass the realizability problem, Schneider [94] and Pavan [85] considered
the following relaxation of the constrained entropy-minimization problem:

arg min
f2F

fhf log f � fi : hmfi �� �g (2.10)

where the binary relation�� connotes that the highest order moments of the left member
are bounded by the corresponding moments of the right member. The relaxation of the
highest-order-moment constraints serves to accommodate that minimizing sequences
ffng � F subject to the constraint hmfni = � converge (in the topology of absolutely
integrable functions) to an exponential density with inferior highest-order moments;
see [58, 59, 94, 52, 85]. The analyses in [94, 85] convey that the relaxed minimization
problem indeed admits a unique solution, corresponding to an exponential distribution.
The exponential closure can therefore be retained if the closure relation is defined by
(2.10) instead of (2.6). It is to be noted however that the closure relation (2.10) does
not generally provide a bijection between the Lagrange multipliers and the moments.
Moreover, the aforementioned singularity of fluxes near equilibrium is also inherent to
(2.10).

Another formidable obstruction to the implementation of numerical approximations
of Levermore’s moment-closure systems are the exponential integrals that appear
in (2.3). The evaluation of moments of exponentials of super-quadratic polynomials
is generally accepted to be intractable, and accurate approximation of such moments
is algorithmically complicated and computationally intensive; see, in particular, [65,
Sec. 12.2] and [58, Sec. 6].
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2.1.4 Grad’s Hermite-based moment closure

In his seminal paper [47], Grad proposed a moment-closure relation based on a factor-
ization of the one-particle marginal in a Maxwellian distribution and a term expanded
in Hermite polynomials; see also [48, Sec. V]. The expansion considered by Grad writes:

f(t;x; c) �M(c)
nX

k=0

X

ik

1
k!a

(k)
ik (x; t)H (k)

ik (c); (2.11)

where c denotes peculiar velocity, ik = (i1; i2; : : : ; ik) is a multi-index with sub-indices
i(�) 2 f1; 2; : : : ; Dg, a

(k)
ik are the polynomial expansion coefficients and H (k)

ik are D-
variate Hermite polynomials of degree k:

H (k)
ik (x) = (�1)k

!(jxj)
@k!(jxj)

@xi1@xi2 � � � @xik
with !(s) = 1

(2�)d=2 exp(�s2=2): (2.12)

The Maxwellian in (2.11) can either correspond to a prescribed local or global
Maxwellian, or it can form part of the approximation; see [47, 48]. In the latter case,
the coefficients associated with invariant moments are fixed and it holds that a(0) = 1,
a(1)
i = 0 and a(2)

ii = 1. By virtue of the specific properties of Hermite polynomials,
moments of Grad’s approximate distribution (2.11) can be evaluated in closed-form.

The linear hull of the Hermite polynomials fH (k)
i g0�k�n coincides with the class of

D-variate polynomials of degree at most n. The Hermite polynomials in (2.12) do not
provide a basis of the polynomials, however, on account of linear dependence; evidently,
the Hermite polynomial in (2.12) is invariant under permutations of its indices. In [47],
uniqueness of the coefficients in (2.11) is restored by imposing auxiliary symmetry
conditions on the coefficients.

Grad’s moment systems can be conveniently conceived of as Galerkin approximations
of the Boltzmann equation in renormalized form in accordance with (2.4). For a
prescribed Maxwellian, the renormalization map simply corresponds to

�G(g) =Mg (2.13)

Incorporation of the Maxwellian in (2.11) in the approximation can be represented by
the alternative renormalization map:

�?G(g) = exp(�I g)�
�
1 + (Id��I )g

�
(2.14)

where �I : M 7! I denotes the orthogonal projection onto the space of collision
invariants and Id represents the identity operator. The embedding I � M implies
that �I M = I and (Id��I )M = M nI . Hence, the projection in (2.14) provides
a separation of M into I and its orthogonal complement.

It is notable that the renormalization maps (2.13) and (2.14) can be conceived of as a
linearization of Levermore’s exponential closure relation in the vicinity of a Maxwellian.
In particular, setting  = logM2 I , the following identities hold pointwise:

exp(g) = exp( ) exp(g� ) =M exp(g� ) =M
�
1 + (g� ) +O(jg� j2)

�
(2.15)

23



as (g �  )! 0. To derive the renormalization map (2.13) for a prescribed Maxwellian,
it suffices to note that 1 + g �  2M . To infer the renormalization map (2.14) if the
Maxwellian is retained in the approximation, we note that by setting  = �I g and
omitting the remainder in (2.15), we obtain (2.14).

For a prescribed global MaxwellianM, Grad’s moment systems dissipate the entropy
��2(f) := 1

2M(f=M� 1)2, provided that ��2 represents an entropy density for the
collision operator under consideration. It can for example be shown that ��2 is generally
a suitable entropy density for collision operators linearized about M (see [46]) and
for BGK collision operators. Dissipation of the entropy h��2i relative to the global
MaxwellianM can be directly inferred from the Galerkin formulation (2.4), by noting
that for the renormalization map �G in (2.13) it holds that:

�0�2(�G(g)) = �G(g)=M� 1 = g � 1 2M (2.16)

Hence, �0�2 resides in the test space M in (2.4) and dissipation of h��2i follows from
Galerkin orthogonality. The entropy h��2(f)i is associated with the ’�2-divergence
of f relative toM with ’�2(s) = 1

2 (s� 1)2; cf. (1.54). Grad’s moment-closure relation
can in fact be obtained by minimization of the ’�2 -divergence subject to the moment
constraints:

FG(�) = arg min
f2F

�

M’�2(f=M)

�
: hmfi = �

	
(2.17)

The minimization problem (2.17) is not impaired by the realizability problem inher-
ent to (2.6), because the moment functionals hm(�)i are continuous in the topology
corresponding to h��2i.

If the Maxwellian is retained in the approximation in accordance with the renor-
malization map (2.14), then an entropy for the corresponding moment systems can be
non-existent or its derivation is intractable. However, for any entropy density � for the
collision operator, the following identity holds by virtue of the Galerkin-orthogonality
property of � := �(g) in (2.4):

@th�(�)i+ @xihvi�(�)i = h(�0(�)�m)@t�i+ h(�0(�)�m)vi@xi�i
� h(�0(�)�m)C(�)i+ h�0(�)C(�)i (2.18)

for arbitrary m 2M . Equation (2.18) implies that solutions to Grad’s moment systems
dissipate any entropy h�i for the collision operator up to infm2M k�0(�(g))�mk, in
some suitable norm k � k. For example, introducing the condensed notation g0 = �I g,
g1 = (Id��I )g and the convex functional � : I �M nI ! R according to

�(g0; g1) = (g0 � 1)eg0(1 + g1) + eg0g1(1 + g1) (2.19)

the renormalization map in (2.14) corresponds to �(g) = eg0(1 + g1) and it holds that

d�(g0; g1) = (g0 + g1)eg0(1 + g1) dg0 + (g0 + 2g1)eg0 dg1

= (g0 + g1)(@g0� dg0 + @g1� dg1) + g1eg0 dg1 = (g0 + g1) d� + g1eg0 dg1 (2.20)

Considering that g0 + g1 2M , it follows from (2.18) that if � in (2.19) is an entropy
density for the collision operator, then Grad’s moment systems with renormalization
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map (2.14) dissipate � up to O(g1) as g1 vanishes (in some appropriate norm). Note
that g1 vanishes at equilibrium.

Grad’s moment-closure relation exhibits several fundamental deficiencies that may
cause breakdown of the physical and mathematical structure of the corresponding
moment system for large deviations from equilibrium. First, the expansion (2.11) admits
inadmissible, locally negative distributions. Second, if the Maxwellian is retained in
the approximation in accordance with (2.14), the corresponding moment systems are
generally non-symmetric and hyperbolicity is not guaranteed. It has been observed in [21,
101] that Grad’s moment-closure systems can indeed exhibit complex characteristics
and loss of hyperbolicity. Recently, regularization procedures have been introduced to
restore the hyperbolicity of Grad’s moment systems [23]. However, these regularizations
generally disrupt the conservation properties of the moment system.

2.2 ’-divergence-based moment closures for the Boltzmann
equation

2.2.1 Renormalizations based on deformed exponentials

In this section we present a novel moment-closure relation based on an approximation
of the exponential function. The considered approximation is derived from truncations
of the standard limit definition of the exponential exp(�) := limn!1(1 + (�)=n)n �
(1 + (�)=N)N . It is noteworthy that unlike the exponential function, in the limit as
v ! �1 the truncated exponential as well as its derivative do not vanish. The
former condition is needed to preserve the decay properties of the exponential function
while the latter condition is needed to preserve the same absolute maximum and
minimum as the exponential. Moreover, as opposed to the exponential function, the
truncated exponential can be negative if N is odd. Several approximations of the
exponential function that preserve the aforementioned properties of the exponential
have been proposed in the literature; see, for example, [103, 80, 61] and references
therein. These so-called deformed exponentials can generally serve to construct moment-
closure renormalization maps, with properties depending on the particular form of the
deformed exponential and the construction. In [103], Tsallis proposed the q-exponential:

gexpq(x) :=
�
1 + (1� q)x

�1=(1�q)
+ (2.21)

with q 6= 1 and (�)+ = 1
2 (�) + 1

2 j � j the non-negative part of a function extended by 0.
The q-exponential in (2.21) is related to the non-negative part of the truncated limit
definition of the exponential by 1� q = 1=N . We will consider renormalization maps of
the form

�N (g) =Mgexpq(g) =M
�

1 + g
N

�N
+

(2.22)

withM a prescribed distribution, e.g. a local or global Maxwellian. The renormalization
map �N can then be construed as an approximation to the exponential renormalization
map about the Maxwellian distributionM. We will establish that the moment-closure
distribution (2.22) can be derived as the minimizer of a modified entropy that ap-
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proximates the Kullback–Leibler divergence near M and that belongs to the class
of ’-divergences. In addition, we will show that the resulting moment system over-
comes the aforementioned deficiencies of Grad’s and Levermore’s moment systems,
while retaining the fundamental properties of the Boltzmann equation presented in
section 1.2.

The renormalization map (2.22) engenders the following moment-closure relation:

FN (�) :=Mgexpq(� �m) =M
�

1 + � �m
N

�N

+
(2.23)

where the moment densities � and the coefficients � are related by � = hmMgexpq(� �
m)i. Given a polynomial subspace M � I with a Galilean-group property (admis-
sibility conditions 1 and 2 in section 2.1.3), the moment system corresponding to
(2.22) conforms to (2.3) with, in particular, the moment-closure relation FN according
to (2.23).

2.2.2 Connection to closure relations of Levermore and Grad

To elucidate some of the characteristics of the renormalization map (2.22), we regard
it in comparison with the renormalization maps (2.5) and (2.13) associated with
Levermore’s exponential moment-closure relation and Grad’s moment-closure relation
with a prescribed Maxwellian prefactor, respectively.

To compare the renormalization map (2.22) to the renormalization map(2.5) as-
socaated with Levermore’s closure relation, we note that by virtue of the vector-
space structure of M � I , for an arbitrary Maxwellian distribution M it holds
that logM + M = M . Hence, for g 2 M , the renormalization map (2.5) can be
equivalently expressed as g 7! exp(logM + g). In the limit N ! 1, we obtain for
(2.22):

lim
N!1

�N (g) =M lim
N!1

�
1 + g

N

�N
+

=M exp(g) = exp(logM+ g) (2.24)

Equation (2.24) implies that in the limit N !1, the renormalization map in (2.22) co-
incides with the exponential renormalization map associated with Levermore’s moment-
closure relation. For finite N , the moments hm�N (g)i and fluxes hmv�N (g)i with
m; g 2 M correspond to piecewise-polynomial moments of the Gaussian distribu-
tion M. The evaluation of such moments is tractable (see remark 2.1 below), as
opposed to the evaluation of moments and fluxes for the exponential renormalization
map. In addition, for super-quadratic approximations M � I , the exponential renor-
malization map associated with Levermore’s closure can lead to singular moments
and fluxes in the vicinity of equilibrium, i.e. as g approaches I . The fundamental
underlying problem is the realizability problem; see section 2.1.3 and [58]. Accordingly,
one can form sequences fgng such that exp(gn)! I (in the L1 topology) while there
exist m 2 M such that jhm exp(gn)ij ! 1 or jhmv exp(gn)ij ! 1. One can infer
that due to the exponential decay of the prefactor M and the polynomial form of
the renormalization map in (2.22), moments and fluxes corresponding to (2.22) are
non-singular near equilibrium.
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To compare (2.22) to the renormalization map (2.13) corresponding to Grad’s
moment-closure relation with a prescribed Maxwellian prefactor, we note that by
virtue of the vector-space structure of M � I , it holds that 1 + M = M . Hence, for
g 2 M , the renormalization map (2.13) can be equivalently expressed as �G : g 7!
M(1 + g). Comparison of �N and �G then imparts that �1 = (�G)+, i.e. for N = 1
the renormalization map �N in (2.22) coincides with the non-negative part of the
renormalization in Grad’s closure, extended by zero. Therefore, the renormalization
map (2.22) avoids the potential negativity of the approximate distribution inherent to
Grad’s closure and corresponding loss of hyperbolicity.

Remark 2.1. Computing moments of the closure relation (2.22) involves computing the
roots of the polynomial � �m+N . In the multidimensional case, such roots may be
difficult to compute since the problem is under-determined and the roots may form
curves of, in principle, arbitrary shape. However, when � �m+N is of even maximal
degree and the highest order coefficients are of the same sign, subdivision schemes (see
for example [73] and references therein) may be used to approximate the positive part
of � �m + N since its zero sets are eiter empty or correspond to isolated points or
closed loops. For the following choice of subspace hierarchies, � �m + N is of even
maximal degree and the highest order coefficients are of the same sign

M = spanf1; v; jvj2g (2.25a)
M = spanf1; v; v _ v; v _ v _ v; jvj4g (2.25b)

...
M = spanf1; v; v _ v; v _ v _ v; v _ v _ v _ v; : : : ; jvj2kg (2.25c)

2.2.3 Conservation, invariance and dissipation properties

The moment system corresponding to (2.22) retains conservation of mass, momentum
and energy as well as Galilean invariance. The conservation properties can be directly
deduced from the Galerkin form (2.4) of the moment system, by noting that I is
contained in the test space M , in accordance with admissibility condition (1) in section
(2.1.3). Galilean invariance is an immediate consequence of admissibility condition 2.

Contrary to Levermore’s moment system, the moment system with renormalization
map (2.22) does not generally dissipate the relative entropy hf log (f=M)i, because
the inverse of �N (�) does not correspond to log(�) and, therefore, log �N (g) does not
generally belong to the test space M for g 2M ; cf. section 2.1.3. Under appropriate
conditions on the collision operator (see section 1.2), the moment system closed by
(2.22) does however dissipate a modified relative entropy. To determine a suitable
entropy function for the moment system with renormalization map (2.22) relative to
some global Maxwellian distribution,M, we observe that:

��1
N (�) = N

�
(�)
M

�1=N

�N (2.26)

provides an inverse of �N according to (2.22) on the support of �N . In particular, it
holds that:
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��1
N
�
�N (g)

�
=
(
g if g � �N
�N otherwise

(2.27)

The expression in (2.26) yields an approximation to the natural logarithm, corresponding
to the inverse of the approximation of the exponential function in (2.22) for g � �N .
This approximate logarithm is eligible as the derivative of an entropy density associated
with the moment system with renormalization (2.22). Defining the entropy density as

�N (f) = f
�

N2

1 +N

�
f
M

�1=N

�N
�

+M N
1 +N

(2.28)

it holds that �0N (�) = ��1
N (�). The constant in (2.28) has been selected such that �N (M)

vanishes. The entropy corresponding to (2.28) can be cast in the form of a relative
entropy associated with a ’-divergence, in accordance with (1.54). To this end, we
introduce

’N (�) = (�)
�

N2

1 +N
(�)1=N �N

�
+ N

1 +N
(2.29)

and note that �N (f) =M’N (f=M). Convexity of the function ’N and of the corre-
sponding entropy density �L follows by direct computation:

’00N (�) = (�)(1�N)=N (2.30)

Therefore, ’00N is strictly positive on R>0. Moreover, it holds that ’N (1) = 0. To establish
that solutions to the moment system with renormalization map (2.22) dissipate the
entropy corresponding to the density (2.28), we consider a solution �N (g) of the moment
system and note that the chain rule yields:

@t


�N (�N (g))

�
+ @xi



vi�N (�N (g))

�

=


�0N (�N (g)) @t�N (g)

�
+


�0N (�N (g)) vi@xi�N (g)

�
(2.31)

The velocity integral in the right member of (2.31) can be separated into contributions
from supp(�N (g)) and its complement, RD n supp(�N (g)). On supp(�N (g)) it holds
that �0N (�N (g)) = g. On its complement, g is strictly less than �N and it follows from
(2.22) that @t�N (g) and @xi(�N (g)) vanish. Equation (2.31) therefore implies:

@t


�N (�N (g))

�
+ @xi



vi�N (�N (g))

�
=


g @t�N (g)

�
+


g vi@xi�N (g)

�
(2.32)

Noting that g 2M , we infer from the Galerkin form of the moment system in (2.4)
and the fact that g coincides with �0N (�N (g)) on supp(�N (g)) that

@t


�N (�N (g))

�
+ @xi



vi�N (�N (g))

�
=


g C(�N (g))

�

=


�0N (�N (g)) C(�N (g))

�
+
Z

RDnsupp(�N (g))

�
g(v)� �0N (0)

�
C(0) dv (2.33)

If �N (�) according to (2.28) is an entropy density for the collision operator C under
consideration, then the first term in the ultimate expression in (2.33) is non-positive on
account of (1.46). The derivative of the entropy density in (2.28) satisfies �0N (0) = �N .
Moreover, because g < �N on RD n supp(�N (g)) and by virtue of the non-negativity
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condition on the collision operator according to (1.51), the second term in the ultimate
expression in (2.33) is also non-positive. Solutions of the moment system therefore
comply with a local entropy-dissipation relation analogous to (1.48):

@t


�N (�N (g))

�
+ @xi



vi�N (�N (g))

�
� 0 (2.34)

The entropy dissipation relation (2.34) extends to renormalization maps of the
form (2.22) with suitable non-uniform background distributions. For a non-uniform
distributionM, an additional contribution to the right hand side of (2.33) appears,
conforming to

D�
’N (�=M)� (1=M)’0N (�=M)

��
@tM+ vi@xiM

�E
(2.35)

with ’N according to (2.29). The production term in (2.35) indeed vanishes if M
corresponds to a global Maxwellian background distribution. However, (2.35) does not
generally disappear for non-uniform background distributions, which could disrupt the
entropy dissipation relation (2.34). Equation (2.35) conveys that the entropy dissipation
relation (2.34) is retained for suitable choices ofM, such as free streaming Maxwellian
distributions and solutions to the Vlasov equation; see also [1].

2.2.4 Derivation via ’-divergence minimization

The moment-closure relation (2.23) can be derived by minimization of the ’N -divergence
subject to the moment constraint; cf. the definition of Levermore’s closure relation
according to (2.6). Consider the constrained minimization problem:

FN (�) := arg min
f2F

n
h�N (f)i : hmfi = �

o

= arg min
f2F

n

M’N (f=M)

�
: hmfi = �

o
(2.36)

Formally, the solution to (2.36) can be obtained by the method of Lagrange multipliers.
The minimizer in (2.36) corresponds to a stationary point of the Lagrangian (f;�) 7!
h�N (f)i+� � (�� hmfi). The stationarity condition implies that �0N (f)�� �m = 0
and, on account of (2.26), that ��1

N (f) = � �m. It follows directly that the minimizer
in (2.36) is of the form FN (�) = �N (� �m) in conformity with (2.23).

As opposed to the entropy minimization problem (2.6) underlying Levermore’s closure
relation, the minimization problem (2.36) is well posed. Existence of a solution to the
minimization problem (2.36) can be deduced from results for generalized projections
for non-negative functions by Csiszár in [29]. In [29] it is shown that the minimization
problem

inf
�Z

f2(v)’
�
f1(v)=f2(v)

�
�(dv) : f1 2 X

�
(2.37)

over a constrained set of non-negative functions,
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X =
�
f :
Z
aj(v) f(v) �(dv) = �j ; j 2 J

�
(2.38)

for certain countable functions fajgj2J, possesses a minimizer belonging to X provided
that the following (sufficient) conditions hold:

1) X is a convex set of non-negative functions and the infimum in (2.37) is finite;
2) lims!1 ’0(s) =1;
3)
R
’�(�jaj(v)j)f2(v) �(dv) is finite for all � > 0 and j 2 J.

The function ’� in condition 3 corresponds to the convex conjugate of ’. Comparison
conveys that (2.36) conforms to (2.37)–(2.38) with f2 =M, �(�) Lebesgue measure
and fajgj2J a monomial basis of M . Convexity of the constrained distributions follows
from the linearity of the moment constraints. Finiteness of the infimum is ensured
by the fact that the infimum over the constrained set is bounded from below by the
infimum over the unconstrained set, and the latter attains its minimum of 0 for f =M.
The minimization problem (2.36) thus complies with condition 1. Compliance with
condition 2 follows from ’0N (s) = Ns1=N � N and lims!1 s1=N = 1. To verify
condition 3, we note that the convex conjugate of ’N is:

’�N (t) = sup
s2R�0

�
st� ’N (s)

�
= N

1 +N

��
1 + t

N

�N+1

+
� 1
�

(2.39)

Condition 2 therefore translates into the requirement that



M’�N

�
�jmj j

��
= N

1 +N

�
M
�

1 + �jmj j
N

�N+1

+
�M

�
(2.40)

is bounded. By virtue of the exponential decay of the prefactorM and the fact that
jmj jN+1 increases only polynomially, the expressions in (2.40) are indeed finite for
any � > 0. The minimization problem (2.36) therefore also satisfies condition 3. It is
notable that the minimization problem (2.6) pertaining to Levermore’s moment closure
satisfies conditions 1 and 2 but violates condition 3.

2.2.5 Symmetric hyperbolicity

To establish that the closure relation (2.23) leads to a symmetric-hyperbolic system, we
insert (2.23) into the generic form of moment systems (2.3), and note that application
of the chain rule and product rule leads to a system of the form (2.8) with:
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A0(�) =
�
m
mM

�
1 + � �m

N

�N�1

+

�
(2.41a)

Ai(�) =
�
vim
mM

�
1 + � �m

N

�N�1

+

�
(2.41b)

s(�) =
�
m C

�
M
�

1 + � �m
N

�N

+

��

�
�
m
�

1 + � �m
N

�N

+

�
@M
@t

+
DX

i=1

vi
@M
@xi

��
(2.41c)

The symmetry of A0; : : : ;AD is evident. Positive-definiteness of A0 follows from:

 �
�
m
mM

�
1 + � �m

N

�N�1

+

�
 =

�
( �m)2M

�
1 + � �m

N

�N�1

+

�
� 0 (2.42)

The inequality in (2.42) reduces to an equality if and only if  = 0 or � �m = �N .
The latter case is pathological, because � �m = �N implies that FN (�) = 0.

The second component of the production term s(�), i.e. the term representing the
contribution of @tM+ vi@xiM to the production, may cause blow up of solutions to
the hyperbolic system (2.3) with (2.41) in the limit t ! 1. Hence, the hyperbolic
character of (2.3) with (2.41) ensures stability of solutions only in finite time. IfM
corresponds to a global Maxwellian, then @tM+ vi@xiM vanishes and the stability
provided by hyperbolicity also holds in the ad-infinitum limit.

It is noteworthy that, as opposed to Grad’s moment-closure relation according
to (2.14), the background distribution M in our moment-closure relation (2.22) is
independent of the moments. The Gaussian in Grad’s closure relation (2.14) corresponds
to the local equilibrium distribution, which bears an implicit local dependence on the
moments. This dependence leads to asymmetry of the flux Jacobian and loss of
hyperbolicity of the corresponding Grad moment system. The pre-factorM in (2.22) is
independent of the moments, but can be (t;x)-dependent. Such (t;x)-dependence ofM
generally leads to contributions to the production term in the corresponding moment
system conforming to (2.41c), but does not compromise the symmetry and hyperbolic
character of the moment system. Let us note that in addition to the moment-closure
relation corresponding to (2.14), Grad also considered moment-closure relations with a
prescribed global or local Maxwellian in accordance with (2.13); see [48, §§28-30].

2.3 Numerical results for the 1D spatially homogeneous
Boltzmann-BGK equation

2.3.1 Test-case setup

To illustrate the elementary properties of the moment-system approximation (2.4) with
the divergence-based closure relation encoded by the renormalization map (2.22), this
section presents numerical computations for the spatially homogeneous Boltzmann-BGK
equation in 1D:
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@tf = ���1(f � Ef ) (2.43a)
f(0; v) = f0(v) (2.43b)

for some given initial distribution f0. The corresponding moment system writes:

@thmFN i = ���1
m(FN � EFN )
�

(2.44a)
FN (0; v) = (FN )0(v) (2.44b)

with FN according to (2.23) and (FN )0 defined by the minimization problem (2.36)
subject to the moments orresponding to the initial distribution:

(FN )0 := arg min
f2F

�
h�N (f)i : hmfi = hmf0i

	

=
�
f 2 F : f = �N (g); g 2M ; hmfi = hmf0i

	
(2.45)

The systems in (2.43) and (2.44) represent initial-value problems for the ordinary
differential equations (2.43a) and (2.44a). It can be verified by substitution that the
solutions of the initial-value problems in (2.43) and (2.44) are, respectively,

f(t; v) = e�t=�f0 +
�
1� e�t=�

�
Ef (2.46a)

FN (t; v) = e�t=� (FN )0 +
�
1� e�t=�

�
EFN (2.46b)

Indeed, noting that Ef = Ef0 is independent of t, for f(t; v) according to (2.46a) we
obtain:

@tf = ���1e�t=� (f0 � Ef ) = ���1(f � Ef ) (2.47)

in accordance with (2.43a). Moreover, one can infer that f(0; v) = f0(v) and, hence,
(2.46a) satifies (2.43). Similarly, it can be shown that (2.46b) complies with (2.44). The
constraints in the minimization problem in (2.45) impose Ef0 = E(FN )0 . Based on the
expressions for the solutions in (2.46), it then follows that:

f(t; �)�FN (t; �)
 = e�t=�

f0 � (FN )0
 (2.48)

in any suitable norm. Equation (2.48) conveys that the accuracy of the approximation
of f(t; �) by FN (t; �) at any time t > 0 depends exclusively on the accuracy of the
approximation of the initial condition f0 by (FN )0 according to (2.45). In the remainder
of this section we therefore restrict our considerations to numerical examples that
illustrate the approximation properties of ’N -divergence minimizers and to properties
of the projection problem (2.45).

We consider approximations of the distributions:

f1(v) = e� 1
2 (v�2)2

p
2�

+ e� 1
2 (v+2)2

p
2�

; (2.49a)

f2(v) = e� 1
2 (v�2)2

p
2�

+ e� 1
4 (v+2)2

p
4�

; (2.49b)

f3(v) = e�2(v�2)2

p
�=2

+ e� 4
3 v

2

p
3�=4

+ e�(v+2)2

p
�

(2.49c)
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by means of moment-constrained ’2-divergence minimizers in polynomial spaces of
increasing order. The distributions in (2.49), plotted in figure 2.1, correspond to
distributions of increasing complexity, viz., a symmetric bi-modal distribution, a
non-symmetric bi-modal distribution and a non-symmetric tri-modal distribution,
respectively.
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Fig. 2.1 Distributions f1 (left), f2 (center) and f3 (right) according to (2.49) and the corresponding
approximations with k = 3 (dotted), k = 6 (dash-dot) and k = 15 (dashed) moments1 obtained
from the moment-constrained ’-divergence minimization problem (2.45).

2.3.2 Numerical aspects

For the pre-factorM in the renormalization map (2.22) and, accordingly, in the relative
entropy h�2(f)i = hM’2(f=M)i associated with the ’2-divergence in (2.29), we select
the global equilibrium distribution Ef0 .

The approximation F2 := F i2 to f := fi is determined by the minimization problem
(2.45). Denoting by Mk = spanf1; v; : : : ; vk�1g the space of polynomials of degree
k � 1, the minimization problem in (2.45) with k � 3 moment constraints engenders
the nonlinear-projection problem:

F2 =M
�

1 + g
2

�2

+
; g 2Mk :

�
mM

�
1 + g

2

�2

+

�
=


mf
�

8m 2Mk (2.50)

Expanding g(v) = �ivi�1 = � �m(v), equation (2.50) corresponds to a nonlinear
algebraic system for the coefficients �. To evaluate the integrals in (2.44), we first
determine the roots of the polynomial (1 + � �m=2) and then establish the limits
of the positive parts to compute the corresponding contributions to the moments
of M(1 + � �m=2)2

+. The integrals in (2.50) are evaluated by applying a suitable
transformation of the integration variable and invoking the following rule:

1 The reported number of moments relates to the 1-dimensional case. For the same maximal
degree of the moments, the number of moments in multiple dimensions is generally significantly
larger, bounded from above by the dimension of D-variate polynomials of maximal degree k,
viz., (D + k)!=(k!D!).

33



Z v1

v0

e�v
2
vk dv = 1

2

�
�
�

1 + k
2

�
� �

�
1 + k

2 ; v2
1

��
sign1+k(v1)

�
1
2

�
�
�

1 + k
2

�
� �

�
1 + k

2 ; v2
0

��
sign1+k(v0) (2.51)

where �1 � v0 � 1 and �1 � v1 � 1 and � (�) and � (�; �) are the complete and
incomplete gamma functions respectively.

The coefficients � are extracted from the system (2.50 ) by means of the Newton
method. It is to be noted that (1 + g=2)2

+ is Fréchet differentiable with respect to g by
virtue of the fact that, evidently, changes in the sign of 1 + g=2 occur only at roots. A
consistent Jacobian for the tangent problems in the Newton method is provided by:

d
d�

�
mM

�
1 + � �m

2

�2

+

�
=
�
m
mM

�
1 + � �m

2

�

+

�
=: J(�): (2.52)

The Jacobian matrix J(�) in the right member of (2.52) can be identified as a
symmetric-positive definite matrix and, hence, the tangent problems in the Newton
method are well posed. The Jacobian is however of Hankel-type and it becomes
increasingly ill-conditioned as the number of moments increases; see for example [38,
97]. Consequently, the convergence behavior of the Newton process deteriorates for
higher-moment systems.

To illustrate the dependence of the convergence behavior of the Newton process on
the number of moments, figure 2.2 (left) plots the ratio of the 2-norm of the update
in the Newton process, k��k2, over the 2-norm of the solution vector, k�(n+1)k2,
versus the number of iterations for polynomial orders k = 7; 9; 11; 13 for the three
test distributions in (2.49). The ratio k��k2=k�(n+1)k2 can be conceived of as the
relative magnitude of the update vector. Figure 2.2 (right) plots an approximation of
the corresponding infinity-norm condition numbers, {1(�) = kJ(�)k1kJ�1(�)k1,
of the Jacobian matrices. The results in figure 2.2 convey that the condition number
increases significantly as the number of moments increases. For k = 7 the condition
number is approximately 103, while for k = 13 the condition number exceeds 105

and can even reach 1010. For high-order approximations, the convergence behavior of
the Newton process is generally slow and non-monotonous. However, in all cases the
relative update can be reduced to a tolerance of 10�4.

2.3.3 Approximation properties

To illustrate the approximation properties of the moment method with closure relation
(2.23), figure 2.3 (left) plots the L1(R)-norm of the relative error in the approximation
F i2 to the distribution fi (i = 1; 2; 3) according to (2.49) and figure 2.3 (right) the
corresponding relative error in the cosine moment,

err1 =
kfi �F i2kL1(R)

kfikL1(R)
; err2 = jhcos(�)fii � hcos(�)F i2ij

jhcos(�)fiij
; (2.53)

respectively. The cosine moment does not have any physical significance and only serves
to investigate the super-convergence properties of the approximation in accordance with
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Fig. 2.2 Convergence of the Newton process for the nonlinear projection problem (2.50) and
conditioning of the corresponding Jacobian matrices: (left) relative magnitude of the Newton
update, k��k2=k�(n+1)k2, versus the number of iterations for k = 7; 9; 11; 13 and for distributions
(2.49a) (top), (2.49b) (center) and (2.49c) (bottom); (right) corresponding 1-norm condition
numbers, {1(�(n)), of the Jacobian matrices according to (2.52).

the Babuška–Miller theorem [7]; see section 2.1. A non-polynomial moment has been
selected to examine the convergence behavior, because for any polynomial moment h�fii
with � 2Ml the approximation h�F i2i provided by the k-moment approximation F i2 is
exact for all k � l, on account of the constraints in (2.45).

Figure 2.3 (left) indicates that kfi �F i2kL1(R) converges exponentially with increas-
ing k, i.e., there exist positive constants C and � such that kfi � F i2kL1(R) � C��k.
In particular, � � 10�0:13 � 0:74 for the bi-modal distributions f1 and f2 and
� � 10�0:085 � 0:82 for the tri-modal distribution f3. Comparison of the left and
right panels in figure 2.3 conveys that the approximation of the cosine moment indeed
converges at a higher rate than the L1(R)-norm of the approximation itself. Figure 2.3
(right) conveys that the cosine moment converges at a rate of � � 10�0:58 � 0:26 for
both the bi-modal distributions f1; f2 and the tri-modal distribution f3.
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Fig. 2.3 Approximation properties of the moment method with closure relation (2.23): (left)
convergence of the relative error in the L1(R)-norm err1 according to (2.53) for f1; f2 and f3 in
(2.49); (right) corresponding convergence of the relative error in the cosine moment, err2.

In the moment-closure approximation (2.50) of the sample distributions (2.49), the
pre-factor has been selected as the global equilibrium (1.52) corresponding to each
sample distribution. These global equilibria can be determined explicitly, by virtue of
the availability of the underlying distributions. In general, however, the underlying
distribution is not explicitly available. The question that then imposes itself, is how the
pre-factor should be selected and how sensitive the approximation is with respect to
the pre-factor. In this context, it is important to note that the pre-factor,M, appears
in the moment-constrained ’-divergence minimization (2.36) as a background measure.
This background measure can be conceived of as prior information on the solution of
(1.41), locally at (t;x), before the information encoded in the moments is accounted for.
The solution to (2.36) can be understood as the corresponding posterior. In general,
any prior carries subjective or objective2 information. A subjective prior is more (mis-
)informative about the posterior than an objective one. A Maxwellian prior qualifies as
subjective for posteriors of the form (2.23), in view of the fact that the exponential
decay or growth of Maxwellians exceeds that of polynomials. Hence, the behavior of the
posterior (2.23) as jvj ! 1 is completely determined by the priorM, and not by the
information encoded in the moments. To illustrate the consequences of a misinformative
subjective prior, we reconsider the approximation of the sample distribution (2.49c)
by means of (2.50), in which the prior,M =M�3;u3+�u;T3 , corresponds to the global
equilibrium distribution in accordance with (2.49c), shifted by �u. Figure (2.4) plots
the relative error in the approximate distribution, err1 according to (2.53), versus the
shift, �u. The figure conveys that a shift in the pre-factor yields a detrimental effect on
the accuracy of the approximation. It is to be noted, however, that convergence under
k-refinement is retained.

If credible prior information is not available, it is more appropriate to select the
pre-factor in accordance with an objective prior, e.g. uniform (Lebesgue) measure.
Moreover, it is not sensible to construct high-rank moment systems based on unreliable
prior information. Instead, the hierarchy of the moment systems can be exploited to
update prior information, i.e. the pre-factor for each moment system beyond k = 3 can
be extracted from the solution to a lower-rank moment system. It is to be noted that a

2 The term objective is a misnomer since any prior will be subjective, but the term is often used to
refer to weakly informative priors
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Fig. 2.4 Illustration of the effect of a misinformative pre-factor on the approximation properties of
the moment method with closure relation (35): relative error (66) in the approximation of sample
distribution (62c) with a pre-factorM =M�3;u+�u;T3 corresponding to a shifted global equilibrium
distribution, for k = 3; 5; : : : ; 13.

pre-factor corresponding to a solution of the Euler equations corresponds to a specific
instance of such a hierarchical procedure.

2.4 Conclusion

To avoid the realizability problem inherent to the maximum-entropy closure relation
for moment-system approximations of the Boltzmann equation, we proposed a new
class of closure relations based on ’-divergence minimization. We established that
’-divergences provide a natural generalization of the usual relative-entropy setting of
the moment-closure problem. It was shown that minimization of certain ’-divergences
leads to suitable closure relations and that the corresponding moment-constrained
’-divergence minimization problems are not impaired by the realizability problem
inherent to minimization of the Kullback–Leibler divergence. Moreover, if the collision
operator under consideration dissipates a ’-divergence, then the corresponding minimal-
divergence moment-closure systems retain the fundamental structural properties of the
Boltzmann equation, namely, conservation of mass, momentum and energy, Galilean in-
variance, and dissipation of an entropy, sc. the ’-divergence. For suitable ’-divergences,
the closure relation yields non-negative approximations of the one-particle marginal.
Divergence-based moment systems are generally symmetric hyperbolic, which implies
linear well-posedness.

We inferred that moment systems can alternatively be conceived of as Galerkin
approximations of a renormalized Boltzmann equation. We considered moment systems
based on a renormalization map composed of Tsallis’ q-exponential. This renormalization
map is concomitant with a ’-divergence corresponding to the anti-derivative of the
inverse q-exponential, which yields a natural approximation to relative entropy. The
evaluation of moments of the q-exponential, elementary in numerical methods for the
corresponding moment system, is tractable, as opposed to the evaluation of moments of
exponentials of arbitrary-order polynomials, connected with maximum-entropy closure.
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Numerical results have been presented for the one-dimensional spatially homogeneous
Boltzmann-BGK equation. The nonlinear projection problem associated with the
moment-constrained ’-divergence minimization problems was solved by means of
Newton’s method. We observed that the condition number of the Jacobian matrices
in the tangent problems generally deteriorates as the number of moments increases.
Nevertheless, in all considered cases approximations up to at least 14 moments could be
computed. We observed that the q-exponential approximation converges exponentially
in the L1(R)-norm with increasing number of moments. Moreover, we demonstrated that
functionals of the approximate distribution display super convergence, in accordance
with the Babuška–Miller theorem for Galerkin approximations.
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2.A Generalized BGK collision operator

In [67], Levermore introduced a class of multiscale generalizations of the BGK collision
operator based on a finite sequence of increasingly constrained entropic projections of
the form (2.6). In particular, given an admissible space of polynomials M, consider a
sequence of nested subspaces fMkgKk=1 with M0 = E and strictly contained in M, i.e.
E = M1 � M2 � ::: � MK � M. For each k and f 2 F, let f 7! Fk(f) =: Fk be the
Mk-moments constrained entropic projection of f ,

Fk(f) := arg min
g2F

�
h�(g)i : hmgi = hmfi; 8m 2Mk

	
; (2.54)

with �(g) = g log g � g, under the assumption that (2.54) admits a solution for each k.
Based on the sequence of projections fFkgKk=1, one can define a multiscale relaxation
operator:

C(f) = ��K(f �FK)�
K�1X

k=1

�k(Fk+1 �Fk) (2.55)

with f�kgKk=1 an increasing sequence of positive relaxation rates depending on f . The
relaxation rate �k with k 2 f1; 2; : : : ;K � 1g constitutes the rate at which Fk+1 decays
to Fk, while �K is the rate at which f decays to FK . In [67] it is shown that the
Prandtl number can be controlled via the relaxation rates.

The above construction of the generalized BGK operator can be extended to
’-divergences. To this end, consider an arbitrary ’-divergence and let f 7! Fk(f) =: Fk
denote the corresponding divergence-minimization projection according to (2.54), i.e. Fk
is defined by (2.54) with �(�) =M’((�)=M). Based on the projections Fk, an extended
BGK operator can be defined analogous to (2.55). To establish that �0(�) = ’0((�=M)
corresponds to an entropy density for the generalized BGK operator, we first note that
the (strong) convexity of � implies:

(�0(s)� �0(t))(s� t)
�
� 0 (2.56)

for all s; t in the domain of � and equality in (2.56) holds if and only if s = t. Rearranging
the sum in (2.55) yields:

C(f) = ��1
�
f �F1��

K�1X

k=1

�
�k+1 � �k

��
f �Fk+1� (2.57)

From the minimization problem (2.54) we infer that for all k it holds that �0(Fk) 2Mk
and hm(f � Fk)i = 0 for all m 2 Mk. Hence, h�0(Fk)fi � h�0(Fk)Fki = 0 yields a
partition of zero for all k. From (2.57) and the aforementioned partition of zero, we
obtain
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�
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�
�k+1 � �k
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�0(f)

�
f �Fk+1��
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�
�0(f)� �0(F1)

��
f �F1��

�
K�1X

k=1

�
�k+1 � �k

�
�
�0(f)� �0(Fk+1)

��
f �Fk+1��

(2.58)

From �1 > 0 and �k+1 > �k (k = 1; : : : ;K � 1), and the convexity of �(�) according to
(2.56) we conclude that � and C satisfy the dissipation relation (1.46), i.e. h�0(f)C(f)i � 0
for all admissible f . To verify the second prerequisite relation between � and C, viz., the
equivalence of the statements in (1.47), we first observe that the implication (1.47)(i)
)(1.47)(ii) is trivial. To validate the reverse implication in (1.47), we note that (1.47)(ii)
in combination with the convexity of � according to (2.56) and the ultimate expression
in (2.58) implies that (�0(f)� �0(Fk))(f �Fk) vanishes almost everywhere for all
k = 1; : : : ;K. This, in turn, implies that f = F1 = � � � = FK . Condition (1.47)(i) then
follows directly from (2.57). To verify the implication (1.47)(ii) ) (1.47)(iii), we note
that Fk according to (2.54) satisfies �0(Fk) 2Mk for all k. Recalling that (1.47)(ii)
implies f = F1, we infer �0(f) 2 M1 = E in accordance with (1.47)(iii). Finally, the
reverse implication (1.47)(iii) ) (1.47)(ii) follows immediately from (2.57) and the
moment constraints in (2.54).
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Chapter 3
Entropy-stable DGFE moment method

Abstract This chapter presents a numerical approximation technique for the Boltz-
mann equation based on a moment-system approximation in velocity dependence
and a discontinuous Galerkin finite-element approximation in position dependence.
The closure relation for the moment systems derives from minimization of a suitable
’-divergence. This divergence-based closure yields a hierarchy of tractable symmetric
hyperbolic moment systems that retain the fundamental structural properties of the
Boltzmann equation. The resulting combined discontinuous Galerkin moment method
corresponds to a Galerkin approximation of the Boltzmann equation in renormalized
form. We present a new upwind numerical flux function that is based on a new class
of moment-closure approximations. The upwind nature of the proposed flux ensures
entropy dissipation of the approximation scheme. Numerical results are presented for a
one-dimensional test case.

Introduction

In this chapter we present a position-velocity Galerkin approximation method for the
Boltzmann equation, based on a moment-system approximation in velocity dependence
and a discontinuous Galerkin approximation in position dependence. To devise the
moment-closure relation, we consider a generalization of the setting of the moment-
closure problem from Kullback–Leibler divergence [64] to the class of ’-divergences [28,
2]. The derived moment-closure relation engenders non-negative distributions and
the corresponding moment systems are symmetric hyperbolic and tractable, in the
sense that the formulation only requires the evaluation of higher-order moments of
Gaussian distributions. The moment systems conserve mass, momentum and energy, and
moreover dissipate an appropriate ’-divergence, analogous to the dissipation of relative
entropy of the underlying Boltzmann equation, provided that the collision operator
dissipates the corresponding ’-divergence relative to a suitable reference distribution.
The moment systems correspond to Galerkin approximations of the Boltzmann equation
in renormalized form. For the discretization in position dependence, we consider a

This chapter is based on: M.R.A. Abdelmalik and E.H. van Brummelen. "An entropy stable
discontinuous Galerkin finite-element moment method for the Boltzmann equation". In: Computers
and Mathematics with Applications 72.8 (2016), pp. 1988–1999.
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discontinuous Galerkin finite-element method (DGFEM). We present a new numerical-
flux function for the DGFEM discretization, derived from the underlying renormalized
Boltzmann equation. We will show that the resulting DGFEM moment method method
is entropy stable.

Entropy-stable discretizations of moment systems for the Boltzmann equation
have been developed previously by LeTallec and Perlat [66] and Barth [9]. In [66] a
discretization technique has been constructed using the so-called half fluxes and by
splitting the Boltzmann equation and then taking moments. If exact velocity moments
are attainable, it is proved in [66] that the numerical scheme using upwinded half fluxes,
is entropy-stable and are guaranteed to have positive fluid density. In [66] Le Tallec
and Perlat consider a 4th order minimium-entropy moment-closure system, i.e. the
closure involves moments of exponentials of polynomials of fourth order, which are
generally intractable [65]. The intractability of the closure leaves the entropy-stability
of the scheme suspect, moreover, the extension to higher order moment-closure systems
becomes unclear. Barth in [9] constructed a DGFEM scheme using the so-called kinetic
Boltzmann moment system E-flux that utilizes mean value linearization via path
integration in state space. It was shown in [9] that if exact velocity integration is carried
out, the constructed scheme is entropy-stable and that the path integration can be
replaced by Gauss-Lobatto quadrature while retaining the aforementioned stability.
However, Barth’s DGFEM scheme was only applied to quadratic moment-closures
systems and the extension to super-quadratic moment-closure systems is not trivial since
it would involve the computation of moments of exponentials of, in principal, arbitrary
order. Consequently, if inexact integration is used, the entropy stability is suspect. In
contrast to the work by LeTallec and Perlat [66] and Barth [9], the proposed DGFEM
discretization is generally applicable to super-quadratic moment-closure systems.

The remainder of this chapter is organized as follows. Section 3.1 reintroduces the
moment-system approximation of the Boltzmann equation in velocity dependence and
the corresponding moment-closure relation. In section 3.2, we derive the DGFEM
formulation in position dependence, and we show that the resulting DGFEM moment
method is entropy stable. Section 3.3 illustrates the properties of the proposed DGFEM
moment method for a shock tube Riemann problem [27, 100]. Finally, section 3.4
presents a concluding discussion.

3.1 Moment-system hierarchies

Our semi-discretization of the Boltzmann equation with respect to the velocity depen-
dence is based on velocity moments of the one-particle marginal. An inherent aspect of
considering a finite number of moment equations derived from (1.41) is that low-order
moments are generally coupled to higher-order ones. Consequently, a closed set of
equations for the moments cannot be readily formulated, and a closure relation is
required. Closed moment systems can generally be conceived of as Galerkin-subspace
approximations of (1.41) in renormalized form.

To derive the moment equations from (1.41), let M denote a finite-dimensional
subspace of D-variate polynomials and let fmi(v)gMi=1 with M = dim M represent a
corresponding basis. Denoting the column M -vector of these basis elements by m, it
holds that the moments hmfi of the one-particle marginal satisfy:
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@thmfi+ @xihvimfi = hmC(f)i (3.1)

provided that f 2 F :=
�
f 2 D(C) : f � 0; mf 2 L1(RD); vmf 2 L1(RD;RD); mC(f) 2

L1(RD) 8m 2M
	
almost everywhere in the considered time interval (0; T ) and the

spatial domain 
. The provision f 2 F has been confirmed in specific settings of (1.41)
but not for the general case; see [67, Sec. 4]. The moment system (3.1) constitutesM re-
lations between (2 +D) RM -valued functions, viz. the density hmfi, the fluxes hvimfi
and the production term hmC(f)i, and is therefore not closed. Moment systems are
generally closed by constructing an approximation to the distribution function from
the densities and then evaluating the fluxes and production terms for the approximate
distribution. Denoting by M � RM a suitable class of moments, a function F : M! F
must be specified such that F realizes the moments in M, i.e. hmF(�)i = � for all
� 2M, and if f satisfies (1.41) then F(hmfi) constitutes a suitable (in a sense to be
made more precise below) approximation to f . Approximating the moments in (3.1)
by � � hmfi and replacing f in (3.1) by the approximation F(�), one obtains the
following closed system for the approximate moments:

@t�+ @xihvimF(�)i = hmC(F(�))i: (3.2)

The closed moment system (3.2) is essentially defined by the polynomial subspace, M ,
and the closure relation, F . A subspace/closure-relation pair (M ;F) is appropriate
if the corresponding moment system (3.2) is well posed and retains the fundamental
structural properties of the Boltzmann equation: conservation of mass, momentum and
energy, Galilean invariance and dissipation of an entropy functional. Further conditions
may be considered, e.g. that the fluxes and production terms can be efficiently evaluated
by means of numerical quadrature. The conservation properties and Galilean invariance
of (1.41) can generally be transferred to (3.2) by a suitable selection of the subspace M ,
namely that M contains the collision invariants I , and is closed under the actions
of Tu and TO (cf. (1.27a) and (1.27b)). Entropy dissipation must be ensured by the
closure relation, F .

We consider a moment-closure relation deriving from minimization of a ’-divergence
relative to a suitable background measure, subject to the moment constraints; see
also [2]. An example of the class of ’-divergences that we envisage is provided by:

’(s) = s
�

N2

N + 1s
1=N �N

�
+ N
N + 1 (3.3)

with N 2 N. We assume that the considered ’-divergence is strictly convex and repre-
sents an entropy for the collision operator. We denote by B a strictly positive background
distribution. We assume that B is independent of (t;x). However, this assumption can
be moderated. We consider the closure relation F : M! F according to:

F(�) = arg min
f2F

�

B ’(f=B)

�
: f 2 D(C); hmfi = �

	
(3.4)

Assuming that (3.4) admits a solution (see [2]), this solution can be characterized as
a stationary point of the Lagrangian (f;�) 7! hB ’(f=B)i+ � � (�� hmfi), where �
represents a Lagrange multiplier. The stationarity condition implies ’0(f=B)�� �m = 0
and, hence, the moment-closure relation:
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F(�) = B  (� �m) (3.5)

with  a suitable right inverse of ’0. In particular, we define

 (s) =
(

(’0)�1(s) if s > ’0(0)
0 if s � ’0(0)

(3.6)

By virtue of the strict convexity of ’, the derivative ’0 is an increasing function and the
inverse in (3.6) is uniquely defined. It is important to note that ’0 corresponds to a left
inverse of  on the support of F(�), i.e. on the closure of fv 2 RD : (’0)�1(� �m(v)) >
0g:

’0
�
 (� �m(v))

�
= � �m(v) for all v 2 cl

�
fv 2 RD : (’0)�1(� �m(v)) > 0g

�
(3.7)

For all v 2 suppc(F(�)), it holds that that  (� �m(v)) = 0 but generally ’0(0) 6=
��m(v). To establish that under suitable boundary conditions, the moment system (3.2)
with closure relation (3.5) dissipates the relative entropy with density f 7! hB ’(f=B)i,
we will show that if F := F(�) satisfies (3.2) then

d
dt

Z






B ’(F=B)

�
+
Z

@




vnB ’(F=B)

�
� 0 (3.8)

where vn = v � n with n the exterior unit normal vector on @
. To this end, we first
note that by the chain rule, we have:

d
dt

Z






B ’(F=B)

�
+
Z

@




vnB ’(F=B)

�

=
Z




�
@t


B ’(F=B)

�
+ @xi



viB ’(F=B)

��
=
Z



(T1 + T2) (3.9)

with

T1 =


’0(F=B)

�
@tF + vi@xiF

��

T2 =

�
’(F=B)� (F=B)’0(F=B)

��
@tB + vi@xiB

��

On account of ’0(F=B) = � �m on supp(F) and (3.2), we obtain for the first term:

T1 =


(� �m)(@tF + vi@xiF)

�
+
Z

suppc(F)
(’0(0)� � �m)(@tF + vi@xiF)

=


(� �m) C(F)

�
+
Z

suppc(F)
(’0(0)� � �m)(@tF + vi@xiF)

=


’0(F=B) C(F)

�
+
Z

suppc(F)
(’0(0)� � �m)(@tF + vi@xiF � C(F))

(3.10)

The first term in the ultimate expression in (3.10) is non-positive under the standing
assumption that f 7! hB’(f=B)i represents an entropy for the collision operator in
accordance with (1.46). Moreover, on the zero set suppc(F) it holds that ’0(0) �
� �m(v), @tF+@xiF = 0, and C(F) � 0. The latter inequality follows directly from the
non-negativity condition (1.51). Hence, T1 is non-positive. The second term, T2, in the
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right member of (3.9) vanishes because the background distribution B is independent
of (t;x).

It is noteworthy that the entropy-dissipation inequality (3.8) can be extended to
non-uniform background distributions. The entropy-dissipation inequality holds, for
instance, if the background distribution is a locally Maxwellian flow [47, Appendix 2]
or a solution to the Vlasov equation, in which case @tB+ vi@xiB = 0. Let us also allude
to the fact that the analysis in (3.9)-(3.10) relies on continuity of B’(F=B) in (x;v),
for otherwise the chain rule in (3.9) is invalid.

To demonstrate that the moment system (3.2) with closure relation (3.5) corresponds
to a symmetric hyperbolic system, we first reformulate (3.2) in terms of the Lagrange
multipliers. The constraints in (3.5) imply that � = hmB (� �m)i. Hence, we have

@t� = @thmB (� �m)i = hm (� �m)@tBi+A0(�)@t� (3.11)

with A0(�) = hm
mB 0(� �m)i. For the flux terms, we obtain

@xihvimB (� �m)i = hm (� �m)vi@xiBiu+Ai(�)@xi� (3.12)

with Ai(�) = hvim 
mB 0(� �m)i. By virtue of (3.11) and (3.12), the moment
system can be recast as the following quasi-linear system for the Lagrange multipliers:

A0(�)@�
@t

+
DX

i=1

Ai(�) @�
@xi

= s(�) (3.13)

with
s(�) =



mC(B (� �m))

�
�


m (� �m)(@tB + vi@xiB)i (3.14)

System (3.13) is symmetric hyperbolic if A0;A1; : : : ;AD are symmetric and A0 is
positive definite. The symmetry of A0;A1; : : : ;AD is evident. To corroborate the
positive definiteness of A0, we note that for any M -vector � there holds

� �A0(�)� =


(� �m)2B 0(� �m)

�
� 0 (3.15)

The inequality holds because each of the factors (��m)2, B and  0(��m) is non-negative.
For � 6= 0, the inequality in (3.15) is strict, because the roots of the polynomial � �m(v)
are confined to a set of measure zero, B is strictly positive by assumption, and  0 is
strictly positive on (’0(0);1). The matrix A0(�) is therefore indeed positive definite.
By virtue of its quasi-linear symmetric hyperbolicity, the system (3.13) is linearly well
posed. Moreover, under suitable conditions on the initial data, local-in-time existence
of solutions can be established [72]. It is to be noted that the term corresponding to
@tB+ vi@xiB in the production term according to (3.14) can cause blow up of solutions
to the hyperbolic system (3.13) in the limit t!1. Hence, the hyperbolic character
of (3.2) with closure relation (3.5) ensures stability of solutions only in finite time.
If the background distribution B is selected such that @tB + vi@xiB vanishes, then
the production term exhibits the usual dissipation properties corresponding to the
collision operator, and the stability provided by the symmetric-hyperbolic character of
the equations extends to the ad-infinitum limit.

The moment system (3.2) can alternatively be construed as a Galerkin subspace
approximation of the Boltzmann equation in renormalized form; see also [2]. This
Galerkin-approximation interpretation can for instance prove useful in constructing
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error estimates for (3.2) and in deriving structural properties. To elucidate the Galerkin
form of (3.2), we define the renormalization map � : M ! F according to �(g) = B (g)
and we observe that for all � 2 RM there exists a corresponding element g 2M such
that F(�) = �(g). In particular, g = � �m with � the Lagrange multipliers associated
with the constrained minimization problem (3.4). The moment system (3.2) can then
be recast into the Galerkin form:

Find g 2 L
�
(0; T )�
; M

�
:

@t


m�(g)

�
+ @xi



mvi�(g)

�
=


mC(�(g))

�

8m 2M a.e. (t;x) 2 (0; T )�
 (3.16)

where L
�
(0; T )�
; M

�
represents a suitable vector space of functions from (0; T )�


into M .

3.2 Spatial DGFE approximation

For the discretization of (3.2) with respect to the position dependence, we consider the
discontinuous Galerkin finite-element method [30]. Let H := fh1; h2; : : :g � R>0 denote
a strictly decreasing sequence of mesh parameters whose only accumulation point is 0.
Consider a corresponding mesh sequence T H, viz., a sequence of covers of the domain
by non-overlapping element domains � � 
. We impose on TH the standard conditions
of regularity, shape-regularity and quasi-uniformity with respect to H; see, for instance,
[30] for further details. For any h 2 H, we indicate by V h;p(
) the DG finite-element
approximation space of discontinuous element-wise D-variate polynomials of degree
� p:

V h;p(
) = fv 2 L2(
) : vj�(x) 2 spanfxp1
1 x

p2
2 � � �x

pD
D g; p1 + � � �+ pD � pg (3.17)

The p-dependence of V h;p is contextual and will generally be suppressed. We denote by

V h(
;M ) = V h(
)�M = f�1m1 + � � �+ �MmM : �i 2 V h(
)g (3.18)

the extension of V h to M -valued functions.
To facilitate the presentation of the DGFEM formulation, we introduce some further

notational conventions. For any h 2 H, we indicate by Ih = fint(@� \ @�̂) : �; �̂ 2
T h; � 6= �̂g the collection of inter-element edges, by Bh = fint(@� \ @
) : � 2 T hg the
collection of boundary edges and by Sh = Bh [ Ih their union. With every edge we
associate a unit normal vector �e. The orientation of �e is arbitrary except on boundary
edges where �e = nje. For all interior edges, let �e� 2 T h be the two elements adjacent
to the edge e such that the orientation of �e is exterior to �+. We define jump [[ � ]]e
and mean ff�gge operators according to:

[[v]]e =
(

(v+ � v�) if e 2 Ih

v+ if e 2 Bh
ffvgge =

(
(v+ + v�)=2 if e 2 Ih

v+ if e 2 Bh
(3.19)
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where v+ and v� refer to the restriction of the traces of vj�+ and vj�� to e. To derive the
DG formulation of the closed moment system (3.2), we note that for any w 2 [V h(
)]M
there holds:

X

�2T h

Z

�
w � @t�+

X

�2T h

Z

�
w � @xihvimF(�)i =

X

�2T h

Z

�
w � hmC(F(�))i: (3.20)

The second term in the left member of (3.20) can be recast into

X

�2T h

Z

�
w � @xihvimFi =

X

�2T h

Z

@�
w � hvimFi��i �

X

�2T h

Z

�
@xiw � hvimFi

=
X

e2Sh

Z

e
[[w]] � hv�mffFggi+

X

e2Ih

Z

e
ffwgg � [[hv�mFi]]

�
X

�2T h

Z

�
@xiw � hvimFi (3.21)

with �� the exterior unit normal vector to @� and v� = v ��. The first identity in (3.21)
follows from the product rule and integration by parts. The second identity results from
a rearrangement of terms. Implicit in the identities in (3.21) is the assumption that F is
sufficiently smooth within the elements to permit integration by parts and define traces
on @�. If, moreover, hv�mFi is continuous across the interior edges, then the second
term in the right member of (3.21) can be removed, and ffF(�)gg in the first term can
be replaced by any F̂(�+;��) subject to the consistency condition F̂(�;�) = F(�).
On boundary edges, the external moment vector �� is to be conceived of as exogenous
data in accordance with boundary conditions. It then holds that

[@t�;w] + a(�;w) = s(�;w) (3.22)

with

[@t�;w] =
X

�2T h

Z

�
w � @t� (3.23a)

a(�;w) =
X

e2Sh

Z

e
[[w]] �



v�mF̂(�+;��)

�
�
X

�2T h

Z

�
@xiw �



vimF

�
(3.23b)

s(�;w) =
X

�2T h

Z

�
w �


mC(F(�))

�
(3.23c)

is consistent with (3.2) in the sense that any solution to (3.2) that is sufficiently
regular in the aforementioned sense satisfies (3.22) for all w 2 [V h(
)]M . The DGFEM
approximation of (3.2) is obtained by replacing � in (3.22) by an approximation �h in
L (0; T ; [V h(
)]M ) according to:

Find �h 2 L (0; T ; [V h(
)]M ) :
[@t�h;w] + a(�h;w) = s(�h;w)

8w 2 [V h(
)]M a.e. t 2 (0; T ): (3.24)
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The edge distributions F̂ in (3.23b) must be constructed such that the consistency
condition F̂(�;�) = F(�) holds for all � 2 RM and that the formulation is stable in
some appropriate sense. We propose the upwind edge distribution:

F̂(�+;��) =
(
F(�+) if v� > 0
F(��) if v� � 0

(3.25)

We will show that this choice of the edge distribution ensures that the DGFEM
formulation (3.24) is entropy stable in the sense that the entropy-dissipation property
(3.8) of the moment system (3.2) with closure relation (3.5) transfers to the DGFEM
formulation. To facilitate the derivation of the entropy-dissipation property, we first
recast (3.24) into the equivalent form of a DGFEM/moment Galerkin approximation
of the renormalized Boltzmann equation according to (3.16):

Find gh 2 L (0; T ;V h(
;M )) :
Z






w@t�(gh)

�
+
X

e2Sh

Z

e



v� [[w]]�̂(gh+; gh�)

�
�
Z






(@xiw)vi�(gh)

�

=
Z






wC
�
�(gh)

��
8w 2 V h(
;M ) a.e. t 2 (0; T ) (3.26)

Our objective is to show that if gh satisfies (3.26), then (3.8) holds with F replaced
by �(gh). Note that in the boundary integral in (3.8), F must be replaced by �̂(gh+; gh�).
To condense the presentation, we assume a-priori that the background distribution B
is uniform in space and time. Similar arguments as in section 3.1 then convey

d
dt

Z






B ’(�h=B)

�
=
Z






gh@t�h

�
+
Z




Z

suppc(�h)
(’0(0)� gh)@t�h (3.27)

with the abridged notation �h := �(gh). Noting that gh(t) resides in V h(
;M ) a.e.
t 2 (0; T ), we can apply Galerkin orthogonality according to (3.26) to recast the first
term in (3.27) into:
Z






gh@t�h

�
= �

X

e2Sh

Z

e



v� [[gh]]�̂h

�
+
X

�2T h

Z

�



(@xigh)vi�h

�

+
X

�2T h

Z

�



ghC(�h)

�
(3.28)

with �̂h := �̂(gh+; gh�). The second term in (3.28) can be recast into

X

�2T h

Z

�



(@xigh)vi�h

�
=
X

e2Sh



v� [[gh�h]]

�
�
X

�2T h

Z

�



ghvi@xi�

h�
(3.29)

The second term in the right member of (3.29) can in turn be reformulated as
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X

�2T h

Z

�



ghvi@xi�

h�

=
X

�2T h

Z

�



’0(�h=B)vi@xi�h

�
�
X

�2T h

Z

�

Z

suppc(�h)
(’0(0)� gh)vi@xi�h

=
X

�2T h

Z

�
@xi


viB ’(�h=B)

�
�
X

�2T h

Z

�

Z

suppc(�h)
(’0(0)� gh)vi@xi�h

=
X

e2Sh



v� [[B ’(�h=B)]]

�
�
X

�2T h

Z

�

Z

suppc(�h)
(’0(0)� gh)vi@xi�h

(3.30)

Collecting the results in equations (3.27)-(3.30) and recalling that g = ’0(�(g)=B) on
the support of �, we obtain

d
dt

Z






B ’(�h=B)

�
+
Z

@




vnB ’(�̂h=B)

�
= TSh + TT h (3.31)

with

TSh =
X

e2Sh

D
v�
��
’0(�h=B)(�h � �̂h)�

�
B’(�h=B)� B’(�̂h=B)

���E

�
X

e2Sh

�� Z

suppc(�h)
v�(’0(0)� gh)(�h � �̂h)

��
(3.32a)

TT h =
X

�2T h

Z

�

Z

suppc(�h)
(’0(0)� gh)(@t�h + vi@xi�

h � C(�h))

+
X

�2T h

Z

�



’0(�h=B)C(�h)

�
(3.32b)

Let us note that [[B’(�̂h=B)]] in (3.32a) vanishes on interior edges by virtue of the
continuity of �̂h, and that its aggregated contribution coincides with the boundary
integral in the left member of (3.31). Similar arguments as in section 3.1 convey
that TT h � 0; cf. (3.10). To assess the contribution of TSh , we recall that �̂h = �h+
(resp. �̂h = �h�) if v� > 0 (resp. v� � 0). For v� > 0 it therefore follows that

��
’0(�h=B)(�h � �̂h)�

�
B’(�h=B)� B’(�̂h=B)

���

= �
�
’0(�h�=B)(�h� � �̂h)�

�
B’(�h�=B)� B’(�̂h=B)

��
(3.33)

From the convexity of B’((�)=B) we infer that for any �; �̂ 2 R:

’0(�=B)(� � �̂) � B’(�=B)� B’(�̂=B) (3.34)

Hence, for v� > 0 the jump term in the left member of (3.33) is non-positive. Similarly,
one can infer that the jump term is non-negative if v� � 0. The first term in TSh is
therefore non-positive. The contribution of each edge to the second term in TSh can be
decomposed as:
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�� Z

suppc(�h)
v�(’0(0)� gh)(�h � �̂h)

��

=
Z

suppc(�h+);v��0
v�(’0(0)� gh+)(�h+ � �h�)

�
Z

suppc(�h�);v�>0
v�(’0(0)� gh�)(�h� � �h+) (3.35)

It generally holds that ’0(0) � gh�; cf. (3.6). In the first term in (3.35) the domain
of integration is a subset of suppc(�h+) and accordingly �h+ vanishes. It then follows
from v� � 0 and �h� � 0 that this term is non-negative. In a similar manner, it can be
shown that the contribution of the second term in (3.35) is also non-negative. Both
terms in (3.32a) are therefore non-positive.

Remark 3.1. It is noteworthy that the aforementioned entropy stability proof is indepen-
dent of the order of the finite-element approximation, and the DGFEM approximation
is therefore entropy stable independent of the order of approximation. However, con-
vergence analysis for scalar and linear symmetrizable systems convey that higher-order
DGFEM requires the introduction of nonlinear stabilization and/or slope-limiting [53].

3.3 Numerical results

To illustrate the properties of the proposed discontinuous Galerkin finite-element
moment method (3.26), or equivalently (3.24), we present numerical experiments for
a one-dimensional shock-tube problem. Before doing so, the problem specification
and moment-system approximation must be completed by specifying the collision
operator and closure relation. We restrict ourselves here to the standard BGK collision
operator [14], viz. C(f) = ���1(f � Ef ) with Ef the local equilibrium, conforming to
(1.50), with the same invariant moments as f and ��1 a relaxation rate. We adopt the
relaxation parameter in accordance with the hard-sphere collision process of Bird [16]:
� = (5�=16)(2��=p)1=2 with � the mean free path. We identify the Knudsen number
with the mean free path divested of its units. The closure relation is defined by the
renormalization map:

�(g) = B
�

1 + g
N

�N

+
; (3.36)

where (�)+ = 1
2 (�)+ 1

2 j � j is the non-negative part of a function extended by 0 and N 2 N;
see [2] for further details on this closure relation. The corresponding ’-divergence based
entropy is f 7! hB’(f=B)i with ’ according to (3.3), i.e. (3.36) corresponds to the
solution of the constrained entropy-minimization problem (3.4) with ’ from (3.3). The
constrained entropy minimization problem is solved by means of a Newton iteration
procedure. (see [2] for further details) In [2] it is shown that the minimization problem
in (3.4) is well-posed for this entropy. Moreover, hB’(f=B)i corresponds to an entropy
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for the BGK operator in compliance with the dissipation relation (1.46); see also [2].
In the sequel, we set N = 2 1.

We regard Sod’s shock-tube problem on a spatial domain x 2 (�1; 1) and a time
interval t 2 (0; 0:1). This test case concerns a Riemann problem with discontinuous
initial data corresponding to a piecewise uniform Maxwellian distribution:

f(0; x; v) =
(
fL(v) =M(1;0;1)(v) for x � 0
fR(v) =M( 1

2 ;0;
2
5 )(v) for x > 0

(3.37)

cf. (1.52); see [76]. Two different approximations are considered. For the first approx-
imation we regard a uniform background distribution B = M(1;0;1). In the second
approximation the background distribution corresponds to the solution of the free-
transport equation with initial data (3.37), locally regularized near x = 0:

@tB + @xvB = 0 (3.38)

with

B(0; x; v) = B0(x; v)

=

8
><

>:

M(1;0;1)(v) for x � x0
x1�x
x1�x0

M(1;0;1)(v) + x�x0
x1�x0

M( 1
2 ;0;

2
5 )(v) for x0 < x < x1

M( 1
2 ;0;

2
5 )(v) for x � x1

(3.39)

with x1 = �x0 = 1
64 . The regularization near x = 0 serves to avoid complications

related to discontinuities in the background distribution; see section 3.1. The solution
to (3.38) is given by B(t; x; v) = B0(x� vt; v). The parameters �; p in the relaxation
parameter � are determined from fL in the initial distribution (3.37). It’s noteworthy
that a background measure can be conceived of as prior information on the solution of
(1.41), locally at (t;x), before the information encoded in the moments is accounted
for. The solution to (3.4) can be understood as the corresponding posterior. In general,
any prior carries subjective or objective2 information.A subjective prior is more (mis-
)informative about the posterior than an objective one. A Maxwellian prior qualifies
as subjective for posteriors of the form (3.5), in view of the fact that the exponential
decay or growth of Maxwellians exceeds that of polynomials.

We restrict ourselves here to finite-element approximation spaces of polynomial
degree p = 0, i.e. element-wise constant approximations in position dependence. For
the time-integration procedure, we apply the forward Euler scheme with a time step
that is sufficiently small to render the numerical results essentially independent of the
time step.

Figure 3.1 displays the evolution of the entropy
R





B ’(F=B)

�
for the 5-moment

system, i.e. for M spanned by f1; v; : : : ; v4g, for both the uniform and non-uniform
background distributions, for Knudsen numbers Kn 2 2:3�10f�2;0;+1g, and for uniform

1 For any N that is a finite integer, the implementation can be extended in a straightforward
manner. The computational work increases as N increases, on account of the fact that higher-order
moments of the background distribution B(t;x; v) must be calculated.
2 The term objective is a misnomer since any prior will be subjective, but the term is often used to
refer to weakly informative priors
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meshes with mesh width h 2 2f�7;:::;�10g. The results in figure 3.1 corroborate the
entropy-dissipation property of the DGFEM moment method. Observing that the
results for Knudsen numbers Kn 2 2:3 � 10f0;+1g are nearly identical, we infer that
in the corresponding highly rarefied and transition regimes the entropy dissipation is
dominated by the dissipation induced by the discontinuities in the DG approximation,
for the considered sequence of finite-element spaces. This is also evident from the
deviation between the graphs for distinct h. In the near continuum regime Kn =
2:3 � 10�2 and on sufficiently fine meshes, the effect of the discontinuities on the
entropy dissipation is less pronounced.
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Fig. 3.1 Evolution of the entropy
R





B’(F=B)

�
for the DGFEM 5-moment approximation,

for the uniform background distribution B = M(1;0;1) (left) and the non-uniform background
distribution in (3.39) (right), for Knudsen numbers Kn = 2:3� 10�2 (top), Kn = 2:3� 100 (center)
and Kn = 2:3� 10+1 (bottom), and for uniform meshes with mesh width h = 2�7 ( ), h = 2�8

( ), h = 2�9 ( ) and h = 2�10 ( ).
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Figure 3.2 presents the normalized heat flux according to

q? = �1=2p�3=2q (3.40)

with � = hfi as density, p = 1
2 h(u � v)2fi as pressure, q = h(v � u)3fi as heat flux

and u = hvfi=hfi as the macroscopic velocity, in the highly-rarefied regime (Kn =
2:3� 10+1) at t = 1=10, extracted from the DGFEM moment-method approximation
for M 2 f5; 7; 9g and mesh width h = 2�10, for both the uniform and non-uniform
background distribution. Let us note that heat transfer is a typical non-equilibrium
effect that is not represented by the conventional continuum model of gas dynamics,
viz. the Euler equations with ideal-gas closure. The results in figure 3.2 convey that
the approximation of the heat flux for the uniform background distribution is still
relatively sensitive to the number of moments that is applied in the approximation.
By virtue of the high Knudsen number, the background distribution (3.39) derived
from the Vlasov solution yields an accurate approximation to the actual solution of
the Boltzmann equation, which translates into very high accuracy of the corresponding
heat-flux approximation, virtually independent of the number of moments. It is to
be noted, however, that the accuracy of the heat-flux approximation pertaining to
the uniform background distribution in figure 3.2 (left) also compares favorably to
corresponding results in the literature for other closure relations; cf. for instance [76].
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Fig. 3.2 Heat flux q? according to (3.40) for Kn = 2:3 � 10+1 at t = 1=10, for the uniform
background distribution B = M(1;0;1) (left) and the non-uniform background distribution in (3.39)
(right), for M = 5 ( ), M = 7 ( ) and M = 9 ( ) moments and mesh width h = 2�8.

3.4 Conclusion

We have presented a Galerkin approximation method for the Boltzmann equation
based on the combination of moment-system approximation in velocity dependence and
discontinuous-Galerkin finite-element approximation in position dependence. For the
moment systems, we considered a closure relation that derives from the minimization
of a relative entropy corresponding to a ’-divergence. The background measure in
the relative entropy then appears as a factor in the approximation of the one-particle
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marginal. We established that for suitable background measures, the moment systems
retain the fundamental structural properties of the underlying Boltzmann equation,
viz., conservation of mass, momentum and energy, Galilean invariance and dissipation
of a relative entropy. Moreover, the divergence-based closure leads to a hierarchy of
tractable symmetric hyperbolic systems. The moment systems can alternatively be
conceived of as Galerkin approximations of the Boltzmann equation in renormalized
form.

For the discretization of the moment systems in position dependence, we considered
the discontinuous Galerkin finite-element method. The combined DGFEM moment
method can be construed as a Galerkin finite-element approximation of the Boltz-
mann equation in renormalized form, based on a tensor-product approximation space
composed of the DGFEM approximation space in position dependence and global
polynomials in velocity dependence. We introduced a new class of numerical flux
functions for the combined DGFEM moment method. This new numerical flux function
appears naturally in the setting of the renormalized Boltzmann equation as the upwind
distribution at the inter-element interfaces. We established that this upwind flux renders
the DGFEM moment method entropy stable, i.e. the entropy-dissipation property of
the moment systems transfers to the DGFEM formulation.

Numerical results were presented for a one-dimensional shock-tube problem in the
highly-rarefied, intermediate and near-continuum regimes. We considered two different
approximations: one based on a background distribution corresponding to a uniform
Maxwellian, and one based on a background distribution corresponding to a solution to
the Vlasov equation. The numerical results confirm the entropy-dissipation property of
the DGFEM moment method for both types of approximation. In the highly rarefied
regime, the approximation based on the Vlasov background distribution provides
excellent approximations of the heat flux, essentially independent of the number of
moments. The approximation corresponding to the uniform background distribution
yields very accurate results for the heat flux, that compare favorably to corresponding
results in the literature for other closure relations.
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Chapter 4
Goal-oriented error estimation and adaptivity

Abstract This chapter presents a-posteriori goal-oriented error analysis for a nu-
merical approximation of the steady Boltzmann equation based on a moment-system
approximation in velocity dependence and a discontinuous Galerkin finite-element
(DGFE) approximation in position dependence. We derive computable error estimates
and bounds for general target functionals of solutions of the steady Boltzmann equation
based on the DGFE moment approximation. The a-posteriori error estimates and
bounds are used to guide a model adaptive algorithm for optimal approximations of
the goal functional in question. We present results for one-dimensional heat transfer
and shock structure problems where the moment model order is refined locally in space
for optimal approximation of the heat flux.

Introduction

In [2, 1] it was shown that moment systems can be conceived of as Galerkin approxima-
tions, in velocity dependence, of the Boltzmann equation in renormalized form, where
larger moment systems correspond to refined subspaces. By virtue of the hierarchical
structure of the considered subspaces, moment systems form a hierarchy of models that
bridge the transitional molecular/continuum flow regime. For suitable choices of the
renormalization map, moment systems are symmetric hyperbolic and are well-posed in
the corresponding sense [72]. The symmetric hyperbolic structure of moment systems
moreover allows one to devise stable Galerkin approximations in position dependence
[9, 50].

By virtue of their Galerkin form and their inherent hierarchical structure, moment
systems are ideally suited to (goal-oriented) model adaptivity. Goal-oriented a-posteriori
error-estimation and adaptivity exploit the Galerkin approximation to construct finite-
element approximation spaces that yield an optimal approximation of a particular
functional of the solution (goal or target functional). Goal-oriented methods for mesh
refinement date back to the pioneering work of Becker and Rannacher [12, 13], Oden
and Prudhomme [82], Giles and Süli [41], Houston and Hartmann [50, 49], and Houston

This chapter is based on: M.R.A. Abdelmalik and E.H. van Brummelen. "Error estimation and
adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation". In:
Computer Methods in Applied Mechanics and Engineering submitted (2016).
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and Süli [54]. In addition to mesh adaptivity, goal-oriented approaches have also been
considered in the context of model adaptivity where the algorithm adapts between a
coarse and a fine model, such that the fine model is only applied in regions of the domain
that contribute most significantly to the goal functional in question. For examples of
goal-oriented model adaptivity, we refer to [83] for application of goal-oriented model
adaptivity to heterogeneous materials, to [11] for goal-oriented atomistic/continuum
adaptivity in solid materials, and to [105] for goal-oriented adaptivity between the
Stokes equations and the Navier-Stokes equations. The Galerkin form of moment
methods enables the construction of accurate a-posteriori error estimates, while the
hierarchical structure provides an intrinsic mode of refinement. In principle, the error
estimate can serve to guide simultaneous (anisotropic) mesh and moment refinement.
If the adaptive strategy is restricted to moment refinement only, i.e. the finite-element
approximation in position dependence is fixed, the adaptive procedure can be viewed
as a goal-oriented model-adaptive strategy [4] that adapts between the models in the
moment-system hierarchy to construct an optimal approximation to the goal function
in question.

The purpose of this chapter is to derive a-posteriori error estimates, measured in
terms of a certain target functional, for a position-velocity Galerkin approximation of
the steady Boltzmann equation. The Galerkin approximation is based on a moment-
system approximation in velocity dependence and a discontinuous Galerkin finite
element (DGFE) approximation in position dependence. We propose a goal-adaptive
refinement procedure that locally adapts the order of the moment system to locally
resolve rarefaction effects corresponding to their contribution to the error in the
quantity of interest. By only targeting regions with the largest contributions to the
error the model adaptive strategy yields an approximation that is quasi-optimal for
the goal-functional.

The proposed adaptive moment method can alternatively be classified as a heteroge-
neous multiscale method of type A; see [33]. Multiscale methods of type A introduce
a decomposition of the spatial domain into a subset where a macroscopic (or coarse,
simple) model suffices, and a complementary subset where a microscopic (or fine, so-
phisticated) description is required. The proposed adaptive moment method introduces
an element-wise domain decomposition strategy where, locally, different levels of the
moment hierarchy are used to approximate the solution to the Boltzmann equation.
The goal-adaptive algorithm provides an automated strategy for model refinement such
that an optimal approximation of the solution of the Boltzmann equation is obtained
for the goal functional under consideration.

The remainder of this chapter is organized as follows. Section 4.1 introduces the
Galerkin approximation of the stationary Boltzmann equation. We will present the
moment system as a Galerkin approximation, in velocity dependence, of the Boltzmann
equation in renormalized form. In space dependence we discretize the Boltzmann
equation using the discontinuous Galerkin finite-element method. Section 4.2 presents
the derivation of a-posteriori error estimates for the DGFE moment approximation.
In section 4.3 we devise an adaptive algorithm for the steady DGFE moment method
that exploits inter-element cancellation errors. In section 4.4 we apply the adaptive
algorithm to the heat transfer and shock structure Riemann problems [27, 100]. Finally,
section 4.5 presents a concluding discussion.
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4.1 A space-velocity Galerkin approximation

In this section we derive a position-velocity Galerkin approximation for the steady
Boltzmann equation in renormalized form. The Galerkin approximation is based on a
moment-system approximation in velocity dependence and a discontinuous Galerkin
approximation in position dependence. The moment system approximation and its
equivalence to a Galerkin approximation have been presented in [2, 1] and are repeated
here for completeness. For the space DGFE moment approximation we will use the
numerical flux derived in [1]. Although we restrict ourselves to steady problems in
this work, for transparency, we present the moment formulation in the time-dependent
setting.

4.1.1 Velocity discretization using moment-system
hierarchies

Our semi-discretization of the Boltzmann equation with respect to the velocity de-
pendence is based on velocity moments of the one-particle marginal. These velocity
moments are defined over RD, and therefore we regard finite dimensional approxima-
tions of f(t;x;v) in (1.41) that are integrable over RD in velocity dependence. To
that end, we consider a Galerkin subspace approximation of the Boltzmann equation
in renormalized form, where the renormalization maps to integrable functions. To
elucidate the renormalization, let M denote an M -dimensional subspace of D-variate
polynomials and let fmi(v)gMi=1 represent a corresponding basis. We consider the
renormalization map � : M ! mathscrF , where

F :=
�
f 2 D(C) : f � 0;mf 2 L1(RD);

vmf 2 L1(RD;RD); mC(f) 2 L1(RD) 8m 2M
	
: (4.1)

The moment system can then be written in the Galerkin form:

Find g 2 L
�
(0; T )�
; M

�
:

@t


m�(g)

�
+ @xi



mvi�(g)

�
=


mC(�(g))

�

8m 2M a.e. (t;x) 2 (0; T )�
 (4.2)

where L
�
(0; T ) � 
; M

�
represents a suitable vector space of functions from the

considered time interval (0; T ) and spatial domain 
 into M . The symmetry and
conservation properties are generally retained in (4.2) by a suitable selection of the
subspace M , namely that M contains the collision invariants I , and is closed under
the actions of Tu and TO; cf. (1.27a) and (1.27b). To retain entropy dissipation as
in (1.48), we consider a renormalization map and entropy function pair f�; �g that
are related by ��1(�) = �0(�). Entropy dissipation then follows directly from Galerkin
orthogonality in (4.2):

@t


�(�(g))

�
+ @xi



vi�(�(g))

�
=


�0(�(g))C(�(g))

�
� 0; (4.3)
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see [2, 1] for more details.
We consider a family of renormalization maps and corresponding entropy functions

according to

�(g) = B
�

1 + g
N

�N

+
�(f) = f

�
N2

1 +N

�
f
B

�1=N

�N
�

+ B N
1 +N

(4.4)

where (�)+ := 1
2 (�) + 1

2 j � j, N is a positive integer and B is some suitable background
distribution; see also [2]. One can infer that indeed ��1(�) = �0(�) and that � is
strictly convex on R>0. The entropy function in (4.4) corresponds to a relative entropy
associated with a ’-divergence [28] with respect to the background measure B. In
particular, it holds that �(f) = B ’(f=B) with ’ according to:

’(�) = (�)
�

N2

1 +N
(�)1=N �N

�
+ N

1 +N
(4.5)

The renormalization map g 7! �(g) corresponds to a divergence-based moment-closure
relation in the sense that it associates the following distribution with a given moment
vector � 2 RM :

arg min
�
hB ’(f=B)i : hmfi = �

	
(4.6)

i.e. the closure relation minimizes the divergence-based relative entropy subject to the
constraint that its moments coincide with the given moments �. It was shown in [2]
that the renormalization map (4.4) engenders well-posed moment systems.
Remark 4.1. Adoption of a ’-divergence-based entropy stipulates that this entropy
satisfies (1.46) and (1.47) for a meaningful class of collision operators subject to (1.51).
In [2] it is has been shown that the class of admissible collision operators includes the
BGK operator [14] and the multi-scale generalization of the BGK operator in [67].
Remark 4.2. It is noteworthy that in the limit N ! 1, the renormalization map
and corresponding entropy in (4.4) recover Levermore’s moment-closure relation [67],
viz. B exp(g), and the Kullback-Leibler divergence [64] relative to B, viz. hf log(f=B)i,
respectively; see [2] for more details.

4.1.2 The DGFE moment approximation

For the semi-discretization of (4.2) with respect to the position dependence, we consider
the discontinuous Galerkin finite-element method [30]. Henceforth we restrict ourselves
to the stationary problem corresponding to (4.2). Let H := fh1; h2; : : :g � R>0 denote
a strictly decreasing sequence of mesh parameters whose only accumulation point is 0.
Consider a corresponding mesh sequence T H, viz., a sequence of covers of the domain
by non-overlapping element domains � � 
. We impose on T H the standard conditions
of regularity, shape-regularity and quasi-uniformity with respect to H; see, for instance,
[30] for further details. To introduce the DGFE approximation space, let Pp(�) denote
the set of D-variate polynomials of degree at most p in an element domain � � RD.
For any h 2 H, we indicate by V h;p(
) the DGFE approximation space:

V h;p(
) = fg 2 L2(
) : gj�(t;x) 2 Pp(�); 8� 2 T hg; (4.7)
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and by V h;p(
;M ) the extension of V h;p(
) to M -valued functions:

V h;p(
;M ) = V h;p(
)�M = f�1m1 + � � �+ �MmM : �i 2 V h;p(
)g (4.8)

Let us note that for simplicity we have assumed that the dimension of the moment
space M = dim(M ) is uniform on T h. However, this assumption is non-essential and
can be dismissed straightforwardly, i.e. the (dimension of the) moment space can be
selected element-wise. This in fact provides the basis for the model-adaptive strategy
in section 4.3, which assigns different moment orders K� to the elements � 2 T h.

To facilitate the presentation of the DGFE formulation, we introduce some further
notational conventions. For any h 2 H, we indicate by Ih = fint(@� \ @�̂) : �; �̂ 2
T h; � 6= �̂g the collection of inter-element edges, by Bh = fint(@� \ @
) : � 2 T hg
the collection of boundary edges and by Sh = Bh [ Ih their union. With every edge
we associate a unit normal vector �e. The orientation of �e is arbitrary except on
boundary edges where �e = nje. For all interior edges, let �e� 2 T h be the two elements
adjacent to the edge e such that the orientation of �e� = ��e is exterior to �e�. We
define the edge-wise jump operator according to:

[[v]] =
(

(v+�+ + v���) if e 2 Ih

(v � vB)�e if e 2 Bh
(4.9)

where v+ and v� refer to the restriction of the traces of vj�+ and vj�� to e. To
derive the DGFE formulation of the closed moment system (4.2), we note that for any
 2 V h;p(
;M ) there holds

X

�2T h

Z

�
h @xivi�(g)i =

X

�2T h

Z

�
h C(�(g))i (4.10)

Using the product rule and integration by parts, (4.10) can be reformulated in weak
form. The left member of (4.10) can be recast into

X

�2T h

Z

�
h @xivi�(g)i =

X

�2T h

Z

@�
h vi ��i �(g)i �

X

�2T h

Z

�
hvi� @xi i

=
X

e2Sh

Z

e
hv � [[ �̂(g; v�)]]i �

X

�2T h

Z

�
hvi� @xi i (4.11)

where in the second equality �(g) is replaced by any �̂(g; v�) in compliance with the
consistency condition:

[[�(g)]] = 0 ) �̂(g; v�) = �(g) (4.12)

Implicit in the identity in (4.11) is the assumption that � is sufficiently smooth
within the elements to permit integration by parts and define traces on @�. The edge
distribution �̂(g; v�) is defined edge-wise and on each edge e it depends on g only via
g�, viz. the restrictions of the traces of gj�� to e. The function v � [[ �̂(g; v�)]] in the
ultimate expression in (4.11) can be conceived of as an upwind-flux weighted by the
jump in  . It is to be noted that the domain of both the upwind-flux and the jump
[[ ]] is e�RD. On boundary edges, the external distribution corresponds to exogenous
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data in accordance with boundary conditions. Hence, any stationary solution to (4.2)
that is sufficiently regular in the aforementioned sense satisfies

a(g; ) = s(g; ) 8 2 V h;p(
;M ) (4.13)

with

a(g; ) =
X

e2Sh

Z

e
hv � [[ �̂(g; v�)]]i �

X

�2T h

Z

�
hvi�(g) @xi i (4.14a)

s(g; ) =
X

�2T h

Z

�
h C(�(g))i (4.14b)

The DGFE discretization of (4.2) is obtained by replacing g in (4.13) by an approxima-
tion gh;pM in V h;p(
;M ) according to:

Find gh;pM 2 V h;p(
;M ) : a(gh;pM ; ) = s(gh;pM ; ) 8 2 V h;p(
;M ) (4.15)

The edge distributions �̂ in (4.14a) must be constructed such that the consistency
condition (4.12) holds and that the formulation (4.15) is stable in some appropriate
sense. We select the upwind edge distribution [1]:

�̂(g; v�) =
(
�(g+) if v�+ > 0
�(g�) if v�� > 0

(4.16)

In [1] it was shown that for suitable collision operators, (4.16) leads to an entropy
stable formulation.

4.2 Goal-oriented a-posteriori error estimation

If interest is restricted to a particular functional of the solution of (1.41), the combined
hierarchical and Galerkin structure of (4.15) may be used to derive an estimate of
the error in the approximation of the goal functional. In this section we will derive
a computable a-posteriori goal-oriented error estimate for (4.15). We first present a
formulation of the linearization of the DGFE moment system (4.15), which then serves
as a basis for a computable a-posteriori error estimate in dual-weighted-residual (DWR)
form [12].

We restrict ourselves to estimation of the modeling error that is incurred by limiting
the dimension of the moment approximation in velocity dependence. We take the
vantage point that the finite-element approximation space in position dependence
V h;p(
) in (4.15) is fixed and that M belongs to a nested sequence of moment spaces
I �M0 �M1 � � � � � V , where V corresponds to a suitable closed normed vector
space, and such that the sequence Mk is asymptotically dense in V , i.e. for all g 2 V
and all � > 0 there exists a number k� 2 Z�0 such that infgk2Mk kg � gkkV < � for all
k � k�. Assuming that (4.15) is well posed if M is replaced by V and denoting the
corresponding solution by gh;pV , we are concerned with the error J(gh;pM )� J(gh;pV ) in
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the value of a goal functional J : V h;p(
;V )! R evaluated at the approximation gh;pM
according to (4.15) for some finite-dimensional moment space M � V .

The considered error estimate is based on linearization of (4.15) at the approximation
gh;pM . We denote by

a0 : V h;p(
;V )! (V h;p(
;V )� V h;p(
;V ))�

s0 : V h;p(
;V )! (V h;p(
;V )� V h;p(
;V ))�

the Fréchet derivatives of the semi-linear forms a and s, respectively, with (�)� the
topological dual of (�). In particular, it holds that:

a0[g](�g; ) =
X

e2Sh

Z

e
hv � [[ �̂0[g](�g; v�)]]i �

X

�2T h

Z

�
hvi�0(g)�g @xi i (4.17a)

s0[g](�g; ) =
X

�2T h

Z

�
h C0(�(g))�0(g)�gi (4.17b)

where �̂0[g]( � ; v�) represents the Fréchet derivative of �̂(g; v�):

�̂0[g](�g; v�) =
(
�0(g+)�g+ if v�+ > 0
�0(g�)�g� if v�� > 0

Considering an approximation gh;pM 2 V h;p(
;M ) to gh;pV , the error �g = gh;pV � gh;pM
satisfies:

a0[gh;pM ](�g;  )� s0[gh;pM ](�g;  ) = �Res[gh;pM ]( ) + o
�
k�gkL1(
;V )

�

8 2 V h;p(
;V ) (4.18)

as k�gkL1(
;V ) ! 0, where Res : V h;p(
;V ) ! (V h;p(
;V ))� is the residual func-
tional according to:

Res[g]( ) = a(g; )� s(g; ) (4.19)

and k�gkL1(
;V ) = supfk�g(x; �)kV : x 2 
g.
We denote the Fréchet derivative of the target functional under consideration by

J 0 : V h;p(
;V )! (V h;p(
;V ))�. In particular, if J(�) is given by

J(g) =
Z



h|
(g)i+

Z

@


Z

vn>0
|@
(g) (4.20)

where |
 : R! R and |@
 : R! R are (possibly nonlinear) functions then

J 0[g](�g) =
Z



h|0
(g) �gi+

Z

@


Z

vn>0
|0@
(g) �g (4.21)

To derive an estimate of the error in the target functional associated with the approxi-
mation gh;pM , we introduce the linearized dual or adjoint problem:
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Find z 2 V h;p(
;V ) :

a0[gh;pM ](�g; z)� s0[gh;pM ](�g; z) = J 0[gh;pM ](�g) 8�g 2 V h;p(
;V ) (4.22)

The dual solution z in (4.22) serves to construct an estimate of the error in the goal
functional in dual-weighted-residual form [12] according to:

J(gh;pM )� J(gh;pV ) = �J 0[gh;pM ](�g) + o
�
k�gkL1(
;V )

�

= s0[gh;pM ](�g; z)� a0[gh;pM ](�g; z) + o
�
k�gkL1(
;V )

�

= Res[gh;pM ](z) + o
�
k�gkL1(
;V )

�
(4.23)

as k�gkL1(
;V ) ! 0. The second identity in (4.23) follows from (4.22). The third
identity follows from (4.18). The DWR error estimate is obtained by ignoring the
o(k�gkL1(
;V )) terms in the final expression in (4.23).

To elucidate the error estimate according to (4.23), we note that (4.22) can be
regarded as an approximation to the mean-value linearized dual problem:

Find �z 2 V h;p(
;V ) :

�a(gh;pM ; gh;pV ; �g; �z)� �s(gh;pM ; gh;pV ; �g; �z) = �J(gh;pM ; gh;pV ; �g)
8�g 2 V h;p(
;V ) (4.24)

with

�a(gh;pM ; gh;pV ; �g; �z) =
Z 1

0
a0[�gh;pV + (1� �)gh;pM ](�g; �z) d� (4.25a)

�s(gh;pM ; gh;pV ; �g; �z) =
Z 1

0
s0[�gh;pV + (1� �)gh;pM ](�g; �z) d� (4.25b)

�J(gh;pM ; gh;pV ; �g) =
Z 1

0
J 0[�gh;pV + (1� �)gh;pM ](�g) d� (4.25c)

For the mean-value linearized dual solution according to (4.24), the following (exact)
error representation holds:

J(gh;pM )� J(gh;pV ) = Res[gh;pM ](�z) (4.26)

However, the mean-value linearized dual problem (4.24) depends on gh;pV and, accord-
ingly, equation (4.26) does not provide a computable a-posteriori estimate. In the
error estimate (4.23), the mean-value linearized dual problem has been replaced by the
linearized dual problem (4.22), at the expense of a linearization error o(k�gkL1(
;V ))
as k�gkL1(
;V ) ! 0.

In practice, the dual problem (4.22) cannot be solved exactly and must again be ap-
proximated by a finite-element/moment approximation. By the Galerkin orthogonality
property of gh;pM in (4.15), it holds that Res[gh;pM ]( ) vanishes for all  2 V h;p(
;M ).
Hence, for the dual solution in (4.22) an approximation space V h;p(
;M�) must be
selected such that M� � M . More precisely, in the actual error estimate, the dual
solution z is replaced by an approximation zh;pM� according to:

62



Find zh;pM� 2 V
h;p(
;M�) :

a0[gh;pM ](�g; zh;pM�)� s
0[gh;pM ](�g; zh;pM�) = J 0[gh;pM ](�g)

8�g 2 V h;p(
;M�) (4.27)

Typically, if the moment space M is composed of polynomials up to order K, then the
refined space M� is selected such that it comprises all polynomials up to order K + 1
or K + 2.

Remark 4.3. The linearization that underlies the linearized dual problem (4.27) can
also serve in a Newton procedure to solve the nonlinear primal problem (4.15).

Remark 4.4. It is important to mention that the linearization of the semi-linear form
(4.14a) is significantly facilitated by basing the numerical flux on the upwind distribution
according to (4.16). Alternatively, a discontinuous Galerkin approximation of (4.2) can
be constructed by first evaluating the velocity integrals and then introducing a DGFE
approximation of the resulting symmetric hyperbolic moment system. Such a DGFE
formulation must then be equipped with a numerical flux function (or approximate
Riemann solver), e.g. according to Godunov’s scheme [42], Roe’s scheme [90] or Osher’s
scheme [84]. However, these numerical flux functions generally depend in an intricate
manner on the left and right states via the eigenvalues and eigenvectors of the flux
Jacobian, Riemann invariants, etc., which impedes differentiation of the resulting
semi-linear form. Determing the derivative of the upwind distribution in (4.16) and, in
turn, of the semi-linear form (4.14a) is a straightforward operation.

Remark 4.5. Implicit to the error representation in (4.23) is the assumption that the
nonlinear primal problem (4.15) and the linearized dual problem (4.22) are well posed.
A rigorous justification of this assumption is technical and beyond the scope of this
work. Let us mention however that (4.2) represents a symmetric hyperbolic systems
and, hence, provided with suitable auxiliary conditions it is linearly well posed for
sufficiently smooth solutions [72]. In particular, the linearized system corresponds
to a Friedrichs system [39]. Accordingly, the linearization of (4.15) corresponds to
a DGFE approximation of a Friedrichs system equipped with a proper upwind flux.
Discontinuous Galerkin approximations of Friedrichs systems are generally well posed;
see, for instance, [36, 34, 35]. Well-posedness of the linearized adjoint problem (4.27)
follows directly from well-posedness of the corresponding linearized primal problem;
see [77, proposition A.2].

4.3 Goal-oriented adaptive algorithm

The computable error estimate (4.23) can be used to direct an adaptive algorithm
following the standard SEMR (Solve ! Estimate ! Mark ! Refine) process; see
for instance [31, 104, 81]. The marking step comprises a decomposition of the error
estimate (4.23) into local element-wise contributions, and a subsequent marking of
elements that provide the dominant contributions to the error. To enhance the efficiency
of the adaptive algorithm, we consider a marking strategy that accounts for cancellation
effects. The refinement process consists in locally raising the number of moments in
the elements that have been marked for refinement. By repeated application of SEMR,
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the adaptive algorithm aims to adapt the number of moments locally in each element
to obtain an optimal approximation to the quantity of interest.

By virtue of the local nature of the discontinous Galerkin approximation in position
dependence, the element-wise decomposition of the error estimate according to the
ultimate expression in (4.23) is straightforward. Denoting by f��;i(x;v)g a basis of
the approximation space V h;p(
;M�) for the dual solution such that the support of
each function ��;i is confined to the element � 2 T h, it holds that

Res[gh;pM ](zh;pM�) =
X

�2T h

X

i2I�

Res[gh;pM ](��;i)��;i
| {z }

��

(4.28)

where I� is an index set corresponding to element � 2 T h and ��;i are the weights of
zh;pM� relative to f��;i(x;v)g. Indeed, the error contributions f��g are directly associated
with the elements.

Conventionally, to mark elements for refinement an upper bound for the error
estimate (4.23) is constructed based on the absolute value of �� and the triangle
inequality: ���Res[gh;pM ](zh;pM�)

��� �
X

�2T h
j��j (4.29)

see, for instance, [50, 49, 54]. Elements are then marked for refinement according to their
contribution j��j to the upper bound, e.g., following the Dörfler marking strategy [31],
which selects a minimal set of elements T h� � T h such that:

X

�2T h�

j��j � c
X

�2T h
j��j (4.30)

for some c 2 (0; 1]. However, previous work for first order hyperbolic systems [50,
49] suggests that the upper bound provided by the triangle inequality may not be
sharp due to the loss of inter-element cancellations. Error estimates that account for
inter-element cancellations have been scantly investigated [26]. In this work we aim
to exploit such cancellation errors. To that end, we decompose T h according to the
sign of the local error indicators �� relative to the error estimate

P
�2T h �� according

to T h = T h+ [ T h� where

T h+ =
�
� 2 T h : sgn (��) = sgn

� X

�2T h
��
��

(4.31a)

T h� =
�
� 2 T h : sgn (��) 6= sgn

� X

�2T h
��
��

(4.31b)

That is, the elements in T h+ (resp. T h� ) are those whose local error contribution increases
(resp. decreases) j

P
�2T h ��j. We propose to mark a minimal set of elements T h� � T h+

such that ����
X

�2T h�

��
���� � c

����
X

�2T h
��
���� (4.32)
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for some c 2 (0; 1]. To elucidate the manner in which this approach accounts for
inter-element cancellations, we note that the proposed marking strategy in (4.32) may
be equivalently understood as selecting elements in T h+ with the largest (in magnitude)
error contributions from the complement of the the largest (in cardinality) subset of
elements in T h+ of which the contribution can be cancelled against the aggregated
contribution of elements in T h� . More precisely, denoting by eT h+ � T h+ a maximal set
of elements such that ���

X

�2eT h+

��
��� �

���
X

�2T h�

��
��� (4.33)

it holds that
���Res[gh;pM ](zh;pM�)

��� =
����
X

�2eT h+

�� +
X

�2T h+ neT h+

�� +
X

�2T h�

��
����

=
X

�2eT h+

j��j+
X

�2T h+ neT h+

j��j �
X

�2T h�

j��j �
X

�2T h+ neT h+

j��j (4.34)

Hence, the aggregated error contributions of the elements in T h+ n eT h+ yield an upper
bound to the error estimate. The set of marked elements T h� corresponds to the smallest
subset (in cardinality) of T h+ n eT h+ such that (4.32) holds. Hence, one can conceive
of the proposed marking strategy in (4.32) as a procedure that first accounts for
inter-element cancellations and subsequently applies a Dörfler-type marking to the
remaining elements.

The SEMR algorithm based on (4.32) is summarized in Algorithm 1. One first
defines a sequence of moment spaces fMrgr2Z�0 and fMr�gr2Z�0 for the primal and
dual problems, respectively. It must hold that Mr� � Mr to avoid that the error
estimate vanishes due to Galerkin orthogonality; see section 4.2. Next, the element-
wise hierarchical rank of the moment-system approximation is initialized at the basic
level r� = 0. In the iterative process, one first constructs the (possibly non-uniform)
approximation spaces for the primal and dual problem, viz.

V h;p
�

; fMr�g

�
=
�
g 2 V h;p(
;V ) : gj� 2 Pp(�;Mr�)

	
(4.35)

and likewise for the dual problem, and then solves the nonlinear primal problem
(4.15) and the linearized dual problem (4.27) for the approximate primal and dual
solutions. Based on the approximate dual solution and the residual corresponding to the
approximate primal solution, the error contributions �� can be computed and the error
estimate est can be assembled. If the estimate satisfies the prescribed tolerance, then
the algorithm terminates. Otherwise, the algorithm proceeds by marking a minimal
set of elements T h� following the Dörfler marking with cancellations in (4.32). In these
marked elements, the approximation is refined by incrementing the hierarchical rank of
the moment approximation.

It is noteworthy that the adaptive algorithm admits a reinterpretation as a type-A
heterogeneous multiscale method (HMM) [33]. Multiscale methods of type A introduce a
decomposition of the spatial domain into a region where a microscopic description based
on a sophisticated model is required, and a complementary region where a macroscopic
description based on a simple model suffices. The adaptive strategy in Algorithm 1
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1: define M0;M1;M2; : : : . sequence of primal moment spaces
2: define M0� �M0;M1� �M;M2� �M2; : : : . sequence of dual moment spaces
3: set r� = 0 for all � 2 T h . initialize element-wise moment rank
4: set tol > 0 . define tolerance
5: loop
6: solve nonlinear primal problem (4.15) for gh;pM 2 V h;p

�

; fMr�g

�
. solve

7: solve linearized dual problem (4.27) for zh;pM�
2 V h;p

�

; fMr��g

�

8: determine element-wise error indicators �� according to (4.28)
9: determine error estimate est =

P
�2T h �� . estimate

10: if est < tol then
11: break
12: else
13: mark a minimal subset of elements T h� according to (4.32) . mark
14: for � 2 T h� do
15: r�  r� + 1 . refine
16: end for
17: end if
18: end loop

Algorithm 1: The SEMR algorithm for goal-oriented element-wise model refinement of
the moment-system approximation.

forms an automatic partitioning of the domain 
 into subregions (corresponding to
collections of elements) on which models of different levels of sophistication are applied,
viz. the moment systems associated with the different hierarchical ranks of the moment
spaces M0;M1;M2; : : : Instead of two models, i.e. one microscopic model and one
macroscopic model, the moment systems furnish a sequential hierarchy of models. The
SEMR procedure in Algorithm 1 fully automates the domain decomposition strategy
and model selection in such a manner that a (quasi-)optimal approximation of the
quantity of interest is obtained.

If the baseline moment space M0 coincides with the collision invariants I and the
background distribution B is appropriately chosen, then the lowest rank model in the
sequence corresponds to the Euler equations. On the other hand, the approximation
provided by the sequence of moment-system approximations converges (formally) to
the solution of the underlying Boltzmann equation as the hierarchical rank is refined,
i.e. as r !1. The goal-adaptive DGFE moment approximation hence implements a
type-A hierarchical HMM for combining the Euler equations (macroscale model) and
the Boltzmann equation (microscale model), as suggested in [33, Sec. 2.3.2].

4.4 Numerical results

To illustrate the properties of the proposed goal-oriented model-adaptive strategy in
section 4.3 for the discontinuous Galerkin finite-element moment method (4.15), we
present numerical experiments for heat transfer and shock-structure problems in one
dimension; see, for example, [40].

The problem specification and moment-system approximation must be completed
first by specifying the collision operator and closure relation. We restrict ourselves here
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to the standard BGK collision operator [14], viz.

C(f) = ��1(Mf � f) (4.36)

whereMf denotes the local equilibrium Maxwellian (1.52) having the same invariant
moments as f and ��1 is a relaxation rate. We adopt the relaxation parameter in
accordance with the hard-sphere collision process of Bird [16]

� = (5�=16)(2��=p)1=2 (4.37)

with � the mean free path. We consider discontinuous Galerkin finite-element approxi-
mation spaces of polynomial degree p = 0, i.e. element-wise constant approximations
in position dependence. To solve the DGFE approximation (4.15) we use a Newton
procedure based on the linearized DGFE approximation in (4.18). To illustrate the
usefulness of the adaptive procedure in capturing non-equilibrium flow phenomena, in
the sequel, the goal-oriented adaptive algorithm considers the average of the heat flux

J(g) =
Z






(v � U)3�(g(x; v))

�
dx; (4.38)

as the quantity of interest. In all cases we choose a greedy refinement strategy and set
the refinement fraction in (4.32) to c = 1, i.e. all elements that remain after cancellations
have been accounted for are refined.

4.4.1 Heat Transfer Problem

The first test case pertains to the so-called heat transfer problem [40]. This test case is
set on a unit interval 
 = (0; 1). We consider full accommodation boundary conditions
at the left and right boundaries of the domain, with boundary data corresponding to
uniform Maxwellian distributions with different temperatures:

fht(v) =
(
M(�ht

l ;0;�
ht
l )(v) x = 0; v > 0

M(�ht
r ;0;�ht

r )(v) x = 1; v < 0
(4.39)

The left and right boundary densities, �ht
l and �ht

r , respectively, are determined from
the mass impermeability condition:

Z

vn<0
vnfht(v) dv +

Z

vn>0
vn�(g(v)) dv = 0 (4.40)

Condition (4.40) imposes that the entering and exiting mass fluxes on @
 cancel.
For this problem we consider the renormalization map (4.4) with N = 1. Note

that for any N > 0, the resulting moment-system is non-linear due to the non-
linearity of the collision operator (4.36) and the non-linearity of the renormalization
map (4.4). We consider a spatially non-uniform background distribution Bht(x; v) =
M(�ht(x);0;�ht(x))(v) where
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�ht(x) = �ht
l + (�ht

r � �
ht
l )x; (4.41a)

�ht(x) = (�ht
l + �ht

r )=(2�ht(x)) (4.41b)

It is noteworthy that �ht(x) and �ht(x) can be conceived of as continuum approxima-
tions satisfying [17]:

�ht(0) = �ht
l ; �ht(1) = �ht

r and d
dx

1
�ht

d�ht

dx
= C (4.42)

for some constant C. The adaptive algorithm is initiated with a uniform moment
approximation that includes moments up to order K� = 4. The dual solution is
approximated based on (4.27) using a moment approximation that is refined by raising
the order in each element to K�� = K� + 2. We consider the heat transfer problem
with Knudsen number 10�3 and �ht

l = 1 and �ht
r = 1:2�ht

l . The domain is covered with
a uniform mesh with 103 elements.

Figure 4.1 presents the error jJ(gh;pM )� J(gh;pref)j with respect to a reference result
J(gh;pref) based on a spatially uniform approximation with moments up to order K� =
14. Figure 4.1 also displays the error estimate, j

P
� ��j, the upper bound including

cancellations according to the ultimate expression in (4.34). Moreover, we plot the
conventional upper bound of the error estimate based on the triangle inequality
according to (4.29). The left panel plots the aforementioned error estimates and bounds
versus the number of degrees of freedom under uniform refinement in the number of
moments for K� 2 f4; 6; 8; 10; 12g. The right panel displays the corresponding results
for the goal-adaptive approximation obtained by means of Algorithm 1. The results in
figure 4.1 convey that under uniform refinement, 8� 103 additional degrees of freedom
are required to achieve a relative error of 10�6 in the heat flux (4.38). The goal-adaptive
refinement strategy only requires 50 additional degrees of freedom to achieve the same
accuracy. These results hence provide a clear indication of the efficiency gain that can
be obtained by the goal-oriented adaptive-refinement process. It is to noted that the
moment order in the adaptive approximation has locally reached K� = 12 in the final
approximation; see also figure 4.2.

Comparison of the upper bounds in figure 4.1 confirms that the proposed upper
bound in (4.34) is sharper than the standard triangle inequality (4.29), which illustrates
the effect of cancellations. In particular, the deviation between the bounds becomes
more pronounced as the approximation is refined and the number of moments increases,
both for the uniform approximation and for the goal-adaptive approximation.

To illustrate the spatial distribution of the moment refinement in the goal-adaptive
approximation, figure 4.2 plots the order of the moments in every element in the final
step of the adaptive algorithm. In addition, figure 4.2 displays the upwind distributions
�̂(gh;pfM�g; v�) on the left and right boundaries and at the element interface in the
center of the spatial domain. The results in figure 4.2 show that most of the moment
refinements occur in the regions near the boundaries. This can be attributed to the
fact that the solution exhibits large jumps at the domain boundaries, as indicated
by the plots of �̂(gh;pfM�g; v�). These jumps represent non-equilibrium effects due to
incompatibility of the solution with the Maxwellian equilibrium distributions at the
boundary.

To further elucidate the refinement pattern in figure 4.2, figure 4.3 displays the
approximation of the primal distribution �(gh;pfM�g) (top) and the dual distribution
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Fig. 4.1 Error in the goal-functional according to (4.38) (solid), goal-oriented error estimate
(dashed), error bound including cancellations (dotted) and conventional error bound (dash-dot)
for the heat transfer problem versus the number of degree of freedom, for uniform moment-order
refinement (left) and goal-adaptive refinement by Algorithm 1 (right).

Fig. 4.2 Order of moment approximation in the computational domain for the goal-adaptive
approximation of the solution to the heat transfer problem with zooms of the regions near the
boundaries. The inserted panels display the upwind distribution according to (4.16).
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zh;pfM��g (bottom) in the final step of the adaptive algorithm. The dual solution assigns
most weight to the regions near the boundaries. In combination with the fact that large
residuals occur near the boundaries on account of incompatibility of the boundary data
with the solution (see figure 4.2), the error contributions �� are mostly localized in the
vicinity of the boundaries.

(a) Primal distribution �(gh;pM )

(b) Dual solution zh;pM�

Fig. 4.3 Goal-adaptive approximation of the primal distribution �(gh;pfM�g
) for the heat transfer

problem (top) and corresponding approximate dual solution zh;pfM��g
(bottom) in the final step of

the adaptive algorithm.
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4.4.2 Shock Structure Problem

The second test case that we consider pertains to the so-called shock-structure prob-
lem [40] on a spatial domain 
 = (�40�; 40�). This test case concerns a Riemann
problem with boundary data corresponding to uniform Maxwellian distributions:

fss =
(
M(�ss

l ;u
ss
l ;�

ss
l )(v) x = �40�; v > 0

M(�ss
r ;uss

r ;�ss
r )(v) x = 40�; v < 0

(4.43)

where the density, mean velocity and temperature on both sides of the shock are related
by the Rankine-Hugoniot conditions [45]:

�ss
r = �ss

l
( + 1)Ma2

2 + ( � 1)Ma2 (4.44a)

�ss
r = �ss

l
�l
�r

2Ma2 � ( � 1)
 + 1 (4.44b)

uss
l = Ma

q
�ss
l (4.44c)

uss
r = uss

l
2 + ( � 1)Ma2

( + 1)Ma2 (4.44d)

with Ma denoting the Mach number and  = 1 + 2=n the so-called adiabatic exponent
for a perfect gas whose molecules have n degrees freedom [45]. For this problem we
consider the renormalization map (4.4) with N = 2 and a background distribution
Bss(x; v) =M(�ss(x);uss(x);�ss(x))(v) that derives from the boundary data in (4.44) as:

�ss(x)
�ss
l

= X(x) + uss
l
uss
r

�
1�X(x)

�
= uss

l
uss(x) (4.45a)

�ss(x)
�ss
l

= �ss
l

�ss(x)

�
X(x) + �ss

r
�ss
l

uss
l
uss
r

�
1�X(x)

��

+ 
3

�
�ss
l

�ss(x)

�2�
1� uss

r
uss
l

�2

Ma2�1�X(x)
�
X(x) (4.45b)

with the interpolation function

X(x) = 1
2 �

1
2 tanh

�
2x
40�

�
(4.46)

Let us mention that the interpolation function in (4.46) has been chosen such that
for x = �40� (resp. x = 40�) it holds that X(x) is close to 0 (resp. close to 1),
but it is otherwise arbitrary. The background distribution Bss(x; v) is understood as
a local Maxwellian approximation of a distribution that interpolates the boundary
data (4.44) using the interpolation function X(x), similar to the so-called Mott-Smith
approximation [6, 45].

The adaptive algorithm is initiated with a spatially uniform moment approximation
of degree K� = 4. The linearized dual problem is approximated using a moment
approximation that is refined by locally raising the order to K�� = K� + 4. In this case
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we opt to apply K�� = K� + 4 instead of K�� = K� + 2 to improve the accuracy of the
error estimate. The dual solution exhibits non-smooth behavior near the boundaries
and, accordingly, insufficient resolution in velocity dependence leads to an inferior error
estimate.

We consider the shock structure problem with Mach number Ma = 1:4 and mean free
path � = 3:67�10�3. The computational domain is covered with a uniform mesh of 1250
elements. Figure 4.4 shows the error jJ(gh;pfM�g) � J(gh;pref)j relative to the reference
result J(gh;pref) based on a spatially uniform approximation with moments up to order
K� = 12. In addition, the figure displays the error estimate, the upper bound including
cancellations according to the ultimate expression in (4.34) and the conventional
upper bound (4.29). The left panel presents the results for uniform refinement in the
number of moments for K� 2 f4; 6; 8; 10g. The right panel presents results for the
goal-adaptive approximation. Figure 4.4 shows that for the shock structure problem,
uniform refinement requires more than 7500 additional degrees of freedom to reduce
the relative error to 10�7. The adaptive strategy only requires 616 additional degrees
of freedom to reach the same relative error. The results reaffirm that significant gains
in efficiency can be obtained by means of the goal-adaptive refinement strategy. It
may be noted that for the considered shock-structure test case, the conventional error
bound derived from the triangle inequality (4.29) is very loose, while the bound (4.34)
that accounts for cancellations is sharp relative to the error estimate.

Fig. 4.4 Error in the goal-functional according to (4.38) (solid), goal-oriented error estimate
(dashed), error bound including cancellations (dotted) and conventional error bound (dash-dot) for
the shock-structure problem versus the number of degree of freedom, for uniform moment-order
refinement (left) and goal-adaptive refinement (right).

The final spatial distribution of the moment orders generated by the goal-adaptive
algorithm is displayed in figure 4.5. One can observe that the goal-adaptive algorithm
introduces most of the moment refinements near the boundaries and, in particular, near
the right boundary. To elucidate the refinement pattern, the top and bottom panels in
figure 4.6 display the approximation of the primal solution and of the dual solution,
respectively, in the final step of the adaptive algorithm. Figure 4.6 indicates that the
distribution �(gh;pfM�g) exhibits non-equilibrium behavior in the neighborhood of the
shock which is located near the center of the domain. At further distances from the
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shock, including the vicinity of the boundary, the distribution is close to equilibrium.
The dual solution on the other hand manifests boundary layers near the left and right
boundaries.

Fig. 4.5 Order of moment approximation in the computational domain for the goal-adaptive
approximation of the solution to the shock-structure problem, including zooms of the regions near
the boundaries. .

A more detailed view of the origin of the moment-order refinement pattern in
figure 4.5 is provided by figures 4.7 and 4.8. Figure 4.7 displays the components of
the element-wise error indicators in (4.28), viz. Res[gh;pM ](��;i) and ��;i, in the initial
approximation, i.e. for K = 4 and K� = 8. For the considered one-dimensional test case
and piecewise constant DGFE approximation, the basis functions ��;i(x; v) correspond
to monomials in velocity dependence of order i supported on the element � 2 T h:

��;i(x; v) =
(
vi if x 2 �
0 otherwise

i 2 f0; 1; : : : ;K��g (4.47)

Each ��;i represents the corresponding weight of the approximate dual solution. Let us
note that in figure 4.7 we have omitted the terms of order � 4 because Res[gh;pM ](��;i)
vanishes for i � 4 on account of Galerkin orthogonality; see section 4.2. The moments
of the residual in figure 4.7 (left) are indeed largest in the region where the largest
deviations from equilibrium occur, viz. in the neighborhood of the shock. The coefficients
of the dual solution in figure 4.7 (right) however indicate that the contribution of this
region to the quantity of interest is negligible. Instead, the goal functional is most
sensitive to errors in the neighborhood of the boundaries. Multiplication of the weighted
residuals Res[gh;pM ](��;i) and the dual coefficients ��;i and summation within each
element yields the element-wise error indicators �� as depicted in figure 4.8. Figure 4.8
indicates that despite the fact that non-equilibrium effects are most prominent in the
center of the domain near the shock, the largest contribution to the error in the goal
quantity originates near the boundaries. The elements in the vicinity of the boundary
thus qualify for refinement. The red interval in figure 4.8 indicates the region that is
marked for refinement after cancellations have been accounted for.
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(a) Distribution �(gh;pfM�g
)

(b) Dual solution zh;pfM��g

Fig. 4.6 Goal-adaptive approximation of the primal distribution �(gh;pfM�g
) for the shock-structure

problem (top) and corresponding approximate dual solution zh;pfM��g
(bottom) in the final step of

the adaptive algorithm.
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Fig. 4.7 Plots of the weigted residuals Res[gh;pM ](��;i) (left) and corresponding dual coefficients
��;i (right) versus the centroids of the elements � 2 T h in the first step of the goal-adaptive
algorithm for the shock-structure problem.
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Fig. 4.8 Plot of the error indicators �� in (4.28) versus the element centroids in the first step of
the adaptive algorithm for the shock structure problem. The red interval indicates the region where
moment refinement is introduced.

4.5 Conclusion

In this work we introduced a new goal-oriented a-posteriori error analysis and an
adaptive-refinement strategy for numerical approximation of the steady Boltzmann
equation. The approximation is based on a combination of moment-system approxima-
tion in velocity dependence and discontinuous-Galerkin finite-element approximation
in spatial dependence. We considered a moment-closure relation derived from the mini-
mization of a divergence-based relative entropy. The combined DGFE moment method
can be construed as a Galerkin finite-element approximation of the Boltzmann equation
in renormalized form, based on a tensor-product approximation space composed of
the DGFE approximation space in position dependence and global polynomials in
velocity dependence. We introduced a numerical flux for the DGFE scheme based on
the position-velocity upwind distribution in the DGFE moment approximation.

The goal-oriented a-posteriori error estimate that we considered is of the usual
dual-weighted residual form, furnished with a linearized dual problem. By virtue of
the selected upwind-distribution-based numerical flux, the prerequisite linearization
is straightforward independent of the moment order. To enhance the efficiency of the
adaptive algorithm, we introduced a marking strategy that accounts for cancellations of
error contributions between elements, as opposed to the conventional marking strategies
based on error bounds derived from the triangle inequality. The refinement strategy
in the adaptive algorithm is based on local, element-wise increments of the moment-
system order. The proposed adaptive strategy for the Boltzmann equation exploits
the Galerkin form of the DGFE moment method and the hierarchical character of the
moment-system approximation.

We presented numerical results for two one-dimensional test cases, viz. a heat-transfer
and a shock-structure problem. For these test cases we considered a goal functional
corresponding to the heat flux. We generally observed good agreement between the
goal-oriented error estimate and the actual error. Moreover, the proposed upper bound
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that accounts for cancellations was found to be sharp relative to the error estimate,
in contrast to the standard triangle-inequality-based bound. The numerical results
demonstrate that the goal-adaptive refinement procedure provides a highly efficient
approximation of the quantity of interest, relative to uniform moment refinement.

The proposed adaptive moment method can be interpreted as a heterogeneous
multiscale method (HMM) of type A that introduces a domain decomposition into
regions where models of different levels of sophistication are applied, where the various
models corresponding to different members of the moment-system hierarchy. The
goal-oriented adaptive-refinement strategy performs the domain decomposition and
the selection of the local models in a fully automated and optimal manner.
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Chapter 5
Entropy-bounded space-time DGFE moment
method

Abstract This chapter presents a time-implicit numerical approximation of the Boltz-
mann equation based on a moment-system approximation in velocity dependence and
a discontinuous Galerkin finite-element (DGFE) approximation in time and position
dependence. The implicit nature of the DGFE moment method in position and time
dependence provides a robust numerical algorithm for the approximation of solutions
of the Boltzmann equation. The closure relation for the moment systems derives from
minimization of a suitable ’�divergence. This divergence-based closure yields a hierar-
chy of tractable symmetric hyperbolic moment systems that retain the fundamental
structural properties of the Boltzmann equation. The resulting combined DGFE mo-
ment method corresponds to a Galerkin approximation of the Boltzmann equation in
renormalized form. We propose a renormalization map that facilitates the approxima-
tion of multidimensional problems. Moreover, it is shown that the space-time-velocity
DGFE moment method is entropy bounded. Numerical results for the lid-driven cavity
benchmark test case is presented to illustrate the approximation properties of the new
DGFE moment-method

Introduction

In this chapter we present a time-position-velocity Galerkin approximation method
for the Boltzmann equation, based on a moment-system approximation in velocity
dependence and a discontinuous Galerkin approximation in time and position depen-
dence. To devise the moment-closure relation, we consider a generalization of the
setting of the moment-closure problem from the Kullback–Leibler divergence [64] to the
class of ’-divergences [28, 2]. Moment-closure approximations based on ’�divergences
have been considered before in [2, 1]. However, for multidimensional problems the
implementation of the moment-closure proposed in [2, 1] would involve multivariate
polynomial root finding. Finding the root of a multivariate polynomial is generally an
under-determined problem and algorithms to approximate such roots are computa-
tionally expensive [73]. We propose a modification of the moment-closure relation in
[2, 1] that facilitates the implementation for multidimensional problem by admitting
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distributions that are non-negative in the tails1(in a sense to be made more precise),
but may be locally negative otherwise. It is shown that the corresponding moment
systems are symmetric hyperbolic, and tractable in the sense that the formulation only
requires the evaluation of higher-order moments of Gaussian distributions. Similar to
the moment systems in [2, 1], we propose moment systems that conserve mass, momen-
tum and energy, and moreover dissipate an appropriate ’-divergence, analogous to the
dissipation of relative entropy of the underlying Boltzmann equation, provided that
the collision operator dissipates the corresponding ’-divergence relative to a suitable
reference distribution. The moment systems correspond to Galerkin approximations
of the Boltzmann equation in renormalized form. For the discretization in time and
position dependence, we consider a space-time discontinuous Galerkin finite-element
(DGFE) method using the upwind edge distribution function (4.16) corresponding to
the entropy stable flux function (3.25). We show that the resulting DGFE moment
method is entropy bounded.

The remainder of this chapter is organized as follows. Section 5.1 presents the
moment system as a Galerkin approximation, in velocity dependence, of the Boltzmann
equation in renormalized form. In section 5.2 we present a space-time discretization
of the Boltzmann equation using the discontinuous Galerkin finite-element method.
Moreover, we show that the proposed DGFE moment method is entropy bounded.
Section 5.3 applies the proposed DGFE moment method to the 2-dimensional lid-driven
cavity test case. Finally, Section 5.4 presents a concluding discussion.

5.1 Moment-system hierarchies

In this section we derive a velocity Galerkin approximation for the Boltzmann equation
in renormalized form. The Galerkin approximation is based on a moment-system
approximation in velocity dependence. In contrast to the moment system approximation
in [2, 1], we consider moment-closure approximations that may be locally negative.

Our semi-discretization of the Boltzmann equation with respect to the velocity
dependence is based on velocity moments of the one-particle marginal. These velocity
moments are defined over RD, and therefore we regard finite dimensional approximations
of f(t;x;v) in (1.41) that are integrable over RD in velocity dependence. To that
end, we consider a Galerkin subspace approximation of the Boltzmann equation in
renormalized form, where the renormalization maps to integrable functions. To elucidate
the renormalization, let M denote anM -dimensional subspace of D-variate polynomials
and let fmi(v)gMi=1 represent a corresponding basis. We consider the renormalization
map � : M ! F , where

F :=
�
f 2 D(C) :

mf 2 L1(RD);vmf 2 L1(RD;RD); mC(f) 2 L1(RD);
8m 2M

	
(5.1)

1 The tails of a distribution is an imprecise term commonly used in literature in reference to regions
across the distribution that are far from the mean.
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It is noteworthy that in comparison to the ’�divergence based renormalization maps
considered in [1], (5.1) is not restricted to non-negative maps. The moment system can
then be written in the Galerkin form:

Find g 2 L
�
(0; T )�
; M

�
:

@t


m�(g)

�
+ @xi



mvi�(g)

�
=


mC(�(g))

�

8m 2M a.e. (t;x) 2 (0; T )�
 (5.2)

where L
�
(0; T ) � 
; M

�
represents a suitable vector space of functions from the

considered time interval (0; T ) and spatial domain 
 into M . The usual symmetry
and conservation properties of the Boltzmann equation are generally retained in (5.2)
by a suitable selection of the subspace M , namely that M contains the collision
invariants I , and is closed under the actions of Tu and TO; cf. (1.27a) and (1.27b). To
retain entropy dissipation as in (1.48), we consider a renormalization map and entropy
function pair f�; �g that are related by ��1(�) = �0(�). Entropy dissipation then follows
directly from Galerkin orthogonality in (5.2):

@t


�(�(g))

�
+ @xi



vi�(�(g))

�
=


�0(�(g))C(�(g))

�
� 0; (5.3)

see [2, 1] for more details.
The work in [2, 1] considered a family of renormalization maps according to

�+(g) = B
�

1 + g
N

�N

+
(5.4)

where (�)+ := 1
2 (�) + 1

2 j � j represents the positive part of (�), N is a positive integer and
B is some suitable background distribution. Note that the Galerkin approximation in
(5.2) implies that g is polynomial in velocity dependence and (5.4) implies that

supp(�+(g)) � fv 2 RD : 1 + g(v)=N > 0g: (5.5)

Therefore, computing velocity moments of (5.4) involves computing the roots of the
polynomial 1 + g=N . In the multi-dimensional (multi-variate) case, such roots may be
difficult to compute since the problem is under-determined and the roots may form
curves of, in principle, arbitrary shape.

To facilitate the approximation of multidimensional problems, we consider a modifi-
cation of renormalization map (5.4) that admits locally negative distributions. It is to
be noted that the actual solution to the Boltzmann equation represents a probability
density and, hence, it is inherently non-negative. However, it is not strictly necessary
to retain this property in the numerical approximation. In this work we restrict our
attention to subspace hierarchies of even maximal degree where the highest order
coefficients are of the same sign:
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M = spanf1; v; jvj2g (5.6a)
M = spanf1; v; v _ v; v _ v _ v; jvj4g (5.6b)

...
M = spanf1; v; v _ v; v _ v _ v; : : : ; v _ v _ v _ : : : _ v| {z }

2k�1 times

; jvj2kg (5.6c)

Therefore, the zero sets of (1+g=N) 2 L((0; T )�M ) are either empty or correspond to
isolated points or closed loops. We show that such attributes of the roots of 1+g=N allow
us to construct velocity bounds that contain the zero set of 1 + g=N and consequently,
outside the velocity bounds, 1 + g=N is either strictly positive or strictly negative. We
consider renormalization maps that retains (1 + g=N)N within the velocity bounds
containing the zero set of 1 + g=N and that are extended by (1 + g=N)N+ outside the
velocity bounds. That is, we aim to construct a renormalization map that suppresses
negative tails.

To construct renormalization maps that suppress negative tails, we derive velocity
bounds containing the zero set of a polynomial (1 + g=N) 2 L((0; T )�
; M ), where
M constitutes the class of polynomials of even maximal degree whose highest order
coefficients are negative; see the subspaces in (5.6).

We consider a 2-dimensional example where we express 1 + g=N in terms of the
monomial basis mi constituting M :

1 + g(t;x;v)
N

�
M�1X

i=1

�i(t;x)mi(v1; v2) + �M (t;x)jvjM ; (5.7)

with �1; : : : ; �M denoting space-time dependent coefficients, �M � 0 and M denoting
an even integer. Note that 1 + g=N > 0 as jvj ! 1 if �M > 0. We aim to express the
velocity bounds in question as a circle with radius r in velocity space. To that end, we
use polar coordinates v1 = r cos� and v2 = r sin� to transform (5.7):

1 + g(t;x; r cos�; r sin�)
N

�
M�1X

i=1

�i(t;x)mi(r cos�; r sin�) + �M (t;x)rM : (5.8)

We seek r̂ such that 8r > r̂ we have the following bound

M�1X

i=1

�i(t;x)mi(r cos�; r sin�) + �M (t;x)rM � 0 8�: (5.9)

To that end, we note that r > 0 and that the range of cos(�) and sin(�) is [�1; 1]. Hence,
for each term in (5.8) it holds that

j�imi(r cos�; r sin�)j = j�i(r cos�)a(r sin�)bj � j�ijrarb = j�ijmi(r; r) (5.10)

where a and b are non-negative integers. Therefore, if we select r̂ as the largest positive
root of the uni-variate polynomial:
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M�1X

i=1

j�ijmi(r̂; r̂)� j�M jr̂M = 0; (5.11)

then (5.9) holds for all r > r̂. Indeed, for �M � 0 the following inequalities hold

M�1X

i=1

�imi(r cos�; r sin�) + �MrM �
M�1X

i=1

j�ijmi(r; r)� j�M jrM

�
M�1X

i=1

j�ijmi(r̂; r̂)� j�M jr̂M = 0; (5.12)

where the first inequality follows from (5.10). Therefore, the problem of obtaining a
bound for the radius in velocity space that contains the zero sets of 1 + g=N may be
reduced to a 1-dimensional root finding problem.

Remark 5.1. Such an algorithm to derive an upper bound may be extended to 3-
dimensions in a straightforward manner using the spherical coordinate transformation
v1 = r sin� cos#, v2 = r sin� sin# and v3 = r cos�. Therefore, one could compute a
bounding sphere in velocity space.

Remark 5.2. Analogously, one may also derive a lower bounding radius �r that is the
smallest positive real root of

j�M j�rM = �j�ijmi(�r; �r): (5.13)

such that 8r < �r we have

�imi(r cos�; r sin�) + �MrM � 0 8�: (5.14)

All of the remaining positive real roots of (5.11) and (5.13) provide radii of concentric
circles which define regions that contain the zero sets of 1 + g=N . These localized
intervals in velocity space may be exploited by subdivision schemes to approximate
multidimensional moments of �+(g) according to (5.4).

We propose a family of renormalization maps and corresponding entropy functions
according to

�(g) = B
�

1 + g
N

�N

�
(5.15a)

�(f) = f
�

N2

1 +N

�
f
B

�1=N

�N
�

+ B N
1 +N

(5.15b)

where N is an odd integer and

(�)� :=
(

(�); if (v1 � r̂) ^ : : : ^ (vD � r̂)
1
2 (�) + 1

2 j � j; otherwise
(5.16)

i.e. we suppress regions outside a bounding box defined by (v1 � r̂) ^ : : : ^ (vD � r̂).
For odd N , one can infer that indeed ��1(�) = �0(�) and that � is strictly convex on R
since
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�00(�) = 1
(�)N�1

N
> 0 (5.17)

The entropy function in (5.15b) corresponds to a relative entropy associated with a
’-divergence [28] with respect to the background measure B. In particular, it holds
that �(f) = B ’(f=B) with ’ according to:

’(�) = (�)
�

N2

1 +N
(�)1=N �N

�
+ N

1 +N
(5.18)

Remark 5.3. It is noteworthy that since we consider distributions that may be locally
negative, the entropy in (5.15b) is a convex function � : R ! R as opposed to the
assumption � : R0 ! R in (1.46).

The renormalization map g 7! �(g) corresponds to a divergence-based moment-
closure relation in the sense that it associates the following distribution with a given
moment vector � 2 RM :

arg min
�
hB ’(f=B)i : hmfi = �

	
(5.19)

i.e. the closure relation minimizes the divergence-based relative entropy subject to the
constraint that its moments coincide with the given moments �.

Remark 5.4. Adoption of a ’-divergence-based entropy stipulates that this entropy
satisfies (1.46) and (1.47) for a meaningful class of collision operators subject to (1.51).
In [2] it is has been shown that the class of admissible collision operators includes the
BGK operator [14] and the multi-scale generalization of the BGK operator in [67].

Remark 5.5. It is noteworthy that in the limit N ! 1, the renormalization map
and corresponding entropy in (5.15) recover Levermore’s moment-closure relation [67],
viz. B exp(g), and the Kullback-Leibler divergence [64] relative to B, viz. hf log(f=B)i,
respectively; see [2] for more details.

To demonstrate that the moment system (5.2) with closure relation (5.15a) corre-
sponds to a symmetric hyperbolic system, we first let

G(g) =
�

1 + g
N

�N

�
(5.20)

and therefore we can write �(g) = BG(g). We then note that g 2 L((0; T )�M ) and
therefore, we can express g � �(t;x) �m(v) and reformulate (5.2) in terms of the
unknown coefficients �(t;x). Hence, we have

@thmBG(� �m)i = hmG(� �m)@tBi+A0(�)@t� (5.21)

with A0(�) = hm
mBG0(� �m)i. For the flux terms, we obtain

@xihvimBG(� �m)i = hmG(� �m)vi@xiBiu+Ai(�)@xi� (5.22)

with Ai(�) = hvim 
mBG0(� �m)i. By virtue of (5.21) and (5.22), the moment
system can be recast into the following quasi-linear system for the Lagrange multipliers:
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A0(�)@�
@t

+
DX

i=1

Ai(�) @�
@xi

= s(�) (5.23)

with
s(�) =



mC(BG(� �m))

�
�


mG(� �m)(@tB + vi@xiB)i (5.24)

System (5.23) is symmetric hyperbolic if A0;A1; : : : ;AD are symmetric and A0 is
positive definite. The symmetry of A0;A1; : : : ;AD is evident. To corroborate the
positive definiteness of A0, we note that for any M -vector � there holds

� �A0(�)� =


(� �m)2BG0(� �m)

�
� 0 (5.25)

The inequality holds because each of the factors (� �m)2 and B is non-negative, and

G0(g) =
�

1 + g
N

�N�1

�
� 0 for odd integers N: (5.26)

For � 6= 0, the inequality in (5.25) is strict, because the roots of the polynomial
� �m(v) are confined to a set of measure zero, B is strictly positive by assumption,
and G0 is strictly positive on (’0(0);1), i.e. there exists a region in R on which G0 is
strictly positive. The matrix A0(�) is therefore indeed positive definite. By virtue of its
quasi-linear symmetric hyperbolicity, the system (5.23) is linearly well posed. Moreover,
under suitable conditions on the initial data, local-in-time existence of solutions can be
established [72].

Remark 5.6. It is to be noted that the term corresponding to @tB + vi@xiB in the
production term according to (5.24) can cause blow up of solutions to the hyperbolic
system (5.23) in the limit t!1. Hence, the hyperbolic character of 5.2 with closure
relation (5.15a) ensures stability of solutions only in finite time. If the background
distribution B is selected such that @tB + vi@xiB vanishes, then the production term
exhibits the usual dissipation properties corresponding to the collision operator, and
the stability provided by the symmetric-hyperbolic character of the equations extends
to the ad-infinitum limit.

5.2 The DGFE moment approximation

In this section we complete the space-time-velocity Galerkin approximation for the
Boltzmann equation using the discontinuous Galerkin approximation in position and
time dependence. We show that using the numerical flux derived in [1] the resulting
space-time DGFE moment approximation is entropy bounded.

For the semi-discretization of (5.2) with respect to the time and position de-
pendence, we consider the discontinuous Galerkin finite-element method [30]. Let
H := fh1; h2; : : :g � R>0 denote a strictly decreasing sequence of mesh parameters
whose only accumulation point is 0. Consider a corresponding mesh sequence T H,
viz., a sequence of covers of the domain by non-overlapping element domains � � 
.
We impose on T H the standard conditions of regularity, shape-regularity and quasi-
uniformity with respect to H; see, for instance, [30] for further details. To introduce
the DGFE approximation space, let Pp(�) denote the set of D-variate polynomials of
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degree at most p in an element domain � � RD and by In �]tn; tn+1[ the nth time
interval, with n 2 Z�0. For any h 2 H, we indicate by V h;p((0; T ) � 
) the DGFE
approximation space:

V h;p((0; T )�
) = fg 2 L2((0; T )�
) : gj��In 2 Pp(�� In); 8� 2 T hg; (5.27)

and by V h;p((0; T )�
;M ) the extension of V h;p((0; T )�
) to M -valued functions.
Note that functions in V h;p((0; T )�
) are piece-wise constant in time.

To facilitate the presentation of the DGFE formulation, we introduce some further
notational conventions. For any h 2 H, we indicate by Ih = fint(@� \ @�̂) : �; �̂ 2
T h; � 6= �̂g the collection of inter-element edges, by Bh = fint(@� \ @
) : � 2 T hg
the collection of boundary edges and by Sh = Bh [ Ih their union. With every edge
we associate a unit normal vector �e. The orientation of �e is arbitrary except on
boundary edges where �e = nje. For all interior edges, let �e� 2 T h be the two elements
adjacent to the edge e such that the orientation of �e is exterior to �+. We define the
edge-wise jump and mean operators according to:

[[c]] =
(

(c+ � c�) if e 2 Ih

(c� cB) if e 2 Bh
; ffcgg =

(
1
2 (c+ + c�) if e 2 Ih
1
2 (c+ cB) if e 2 Bh

(5.28)

where c+ and c� refer to the restriction of the traces of cj�+ and cj�� to e. To derive
the DGFE formulation of the closed moment system (5.2), we note that for any
 2 V h;p((0; T )�
;M ) there holds

X

n

X

�2T h

Z

��In
h @t�(g)i+

X

n

X

�2T h

Z

��In
h @xivi�(g)i

=
X

n

X

�2T h

Z

��In
h C(�(g))i (5.29)

Using the product rule and integration by parts, (5.29) can be reformulated in weak
form. The summands of the first term of the left hand side of (5.29) can be recast into
Z

��In
h @t�(g)i =

Z

�
h (tn+1

� )�(g(tn+1
� ))�  (tn+)�(g(tn�))i �

Z

��In
h� @t i (5.30)

where tn+ and tn� denote the one-sided limit to tn from above and below, respectively.
Implicit to the identity (5.30) is the assumptions that � is sufficiently smooth within
the time interval to permit integration by parts. The terms in the second sum in the
left hand side of (5.29) can be recast into

Z

��In
h @xivi�(g)i =

Z

@��In
h vi ��i �̂(g; v�)i �

Z

��In
hvi� @xi i (5.31)

where �(g) is replaced by any �̂(g; v�) in compliance with the consistency condition:

[[�(g)]] = 0 ) hvi��i �̂(g; v�)i = hvi��i �(g)i (5.32)
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Implicit in the identity in (5.31) is the assumption that � is sufficiently smooth
within the elements to permit integration by parts and define traces on @�. The edge
distribution �̂(g; v�) is defined edge-wise and on each edge e it depends on g only
via g�, viz. the restrictions of the traces of gj�� to e. The function  vi��i �(g) in the
ultimate expression in (5.31) can be conceived of as an upwind-flux weighted by the
jump in  since

X

�2T h

Z

@��In
h vi ��i �̂(g)i =

X

e2Sh

Z

e�In
hviff �̂(g; v�)��i ggi (5.33)

It is to be noted that the domain of both the upwind-flux and the jump [[ ]] is e�RD. On
boundary edges, the external distribution corresponds to exogenous data in accordance
with boundary conditions. Hence, any solution to (5.2) that is sufficiently regular in
the aforementioned sense satisfies

a(g; ) = s(g; ) 8 2 V h;p((0; T )�
;M ) (5.34)

with

a(g; ) =
X

n

X

�2T h

Z

�
h (tn+1

� )�(g(tn+1
� ))�  (tn+)�(g(tn�))i

+
X

n

X

�2T h

Z

@��In
h vi ��i �̂(g; v�)i

�
X

n

X

�2T h

Z

��In
h�(g) @t + vi�(g) @xi i

(5.35a)

s(g; ) =
X

n

X

�2T h

Z

�
h C(�(g))i (5.35b)

The DGFE discretization of (5.2) is obtained by replacing g in (5.34) by an approxima-
tion gh;pM in V h;p((0; T )�
;M ) according to

Find gh;pM 2 V h;p((0; T )�
;M ) :

a(gh;pM ; ) = s(gh;pM ; ) 8 2 V h;p((0; T )�
;M ) (5.36)

5.2.1 Entropy bounds

The edge distributions �̂ in (5.35a) must be constructed such that the consistency
condition (5.32) holds and that the formulation (5.36) is stable in some appropriate
sense. We select the upwind edge distribution [1]:

�̂(g; v�) =
(
�(g+) if v�+ > 0
�(g�) if v�� > 0

(5.37)
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In [1] it was shown that for suitable collision operators and renormalization maps,
(5.37) leads to an entropy stable semi-discrete DGFE moment approximation.

In contrast to [1] we aim to show that solutions of the fully discrete space-time
DGFE moment approximation (5.36) satisfy a total entropy bound
Z



hB’(�(g�(t0�))=B)i �

Z



hB’(�(g(tN� ;x))=B)i �

Z



hB’(�(g(t0�;x))=B)i (5.38)

where �(g�(t0�)) is the minimum total entropy state of the projected initial data

hm�(g�(t0�))i = 1
j
j

Z



hm�(g(t0�;x;v))i: (5.39)

To establish (5.38) we first note that only the normal component of �̂( � ; v�) contributes
to the interface integral (5.35a), i.e. the interface integrand can be recast into

D
 vi��i �̂(g; vi��i )

E
=
�
 vi��i ff�(g)gg � 1

2 jvi�
�
i j[[�(g)]]

�

= h vi��i ff�(g)ggi � 1
2

Z 1

0
h jvi��i j�

0(�g(�))�g0(�)i d�; (5.40)

where
�g(�) = (g+ � g�)� + g� (5.41)

and we have used the fundamental theorem of calculus in the second equality.
To show that solutions of (5.36) satisfy the total entropy bound (5.38) we first note

that both g and  belong to L((0; T )�M ). Therefore, we can express g � �(t;x) �m(v)
and  = w(t;x) �m(v), where m(v) is a vector constituting the basis functions of
M , w(t;x) and �(t;x) are vectors constituting the DGFE test and trial functions,
respectively. We express the numerical flux in (5.40) as

wjhmjvi��i �̂(� �m; v�)i = wjhmjvi��i ff�(� �m)ggi

�
1
2

Z 1

0
wjhjvi��i jmjmk�0(��(�) �m)i��0k(�) d�; (5.42)

where
��(�) = (�+ � ��)� + ��; (5.43)

and again we used the fundamental theorem of calculus. We use the result in Theorem
2 of [9] which asserts that if the numerical flux in (5.42) satisfies the so-called system
E-flux condition:

��0(�) � (hvi��im�̂(� �m; v�)i � hvi��im�(��(�) �m)i) � 0; 8� 2 [0; 1]; (5.44)

then the total entropy bound (5.38) is satisfied for solutions of (5.36).
In the remainder of this section we show that (5.44) is satisfied thereby establishing

entropy boundedness of solutions of (5.36) in the sense of (5.38). To that end note that
using (5.42) we may decompose the left hand side of (5.44) into three terms:
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��0(�) � (hvi��im�̂(� �m; v�)i � hvi��im�(��(�) �m)i)

= 1
2

��0(�) � (hvi��im�(�+ �m)i � hvi��im�(��(�) �m)i)

+ 1
2

��0(�) � (hvi��im�(�� �m)i � hvi��im�(��(�) �m)i)

�
1
2

Z 1

0
hjvi��i j(m � ��0(�))2�0(��(�) �m)i d�: (5.45)

where in the last term we used the fact that �0(�) = �+ � �� is independent of �; see
(5.43). The first term in the right hand side of (5.45) can be recast into

1
2�
0(�) � (hvi��im�(�+ �m)i � hvi��im�(��(�) �m)i)

= 1
2

Z 1

�
hjvi��i j(m � ��0(�))2�0(��(�) �m)i d�: (5.46)

The second term in the right hand side of (5.45) can be recast into

1
2

��0(�) � (hvi��im�(�� �m)i � hvi��im�(��(�) �m)i)

= �1
2

Z �

0
hjvi��i j(m � ��0(�))2�0(��(�) �m)i d�: (5.47)

Collecting the results in (5.46) and (5.47) into (5.45) yields

��0(�) � (hvi��im�̂(� �m; v�)i � hvi��im�(��(�) �m)i)

= �1
2

Z �

0
hjvi��i j(m � ��0(�))2�0(��(�) �m)i d� � 0; (5.48)

where the final inequality follows from the non-negativity of the arguments of the
integral. Note that �0(g) = B(1 + g=N)N�1 � for odd N ; see (5.15).

5.2.2 Linearization

It is noteworthy that the linearization of (5.36) is significantly facilitated by basing
the numerical flux on the upwind distribution according to (5.37). Alternatively, a
discontinuous Galerkin approximation of (5.2) can be constructed by first evaluating
the velocity integrals and then introducing a DGFE approximation of the resulting
symmetric hyperbolic moment system. Such a DGFE formulation must then be equipped
with a numerical flux function (or approximate Riemann solver), e.g. according to
Godunov’s scheme [42], Roe’s scheme [90] or Osher’s scheme [84]. However, these
numerical flux functions generally depend in an intricate manner on the left and right
states via the eigenvalues and eigenvectors of the flux Jacobian, Riemann invariants,
etc., which impedes differentiation of the resulting semi-linear form. Determining the
derivative of the upwind distribution in (5.37) and, in turn, of the weak form (5.36) is
a straightforward operation.
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In this section we derive the linearized DGFE approximation corresponding to (5.36)
to facilitate the application of iterative solution techniques for the nonlinear system
(5.36), such as Newton’s method.

To write the linearized weak formulation corresponding to (5.34) we denote by
a0g[r](�;  ) and s0g[r](�;  ) the Fréchet derivative of g ! a(g;  ) and g ! s(g;  ) for a
fixed  2 V h;p((0; T )�
;M ) and evaluated at some r 2 V h;p((0; T )�
;M ). It holds
that

a0g[r](�g; ) =
X

n

X

�2T h

Z

�
h (tn+1

� )�0(r(tn+1
� ))�g(tn+1

� )i

�
X

n

X

�2T h

Z

�
h (tn+)�0(r(tn�))�g(tn�)i

+
X

n

X

�2T h

Z

@��In
h vi ��i �̂

0
g[r](�g; v�)i

�
X

n

X

�2T h

Z

��In
h�0(r)�g @t + vi�0(r)�g @xi i

(5.49a)

s0g[r](�g; ) =
X

�2T h

Z

�
h C0(�(r))�0(r)�gi (5.49b)

and �̂0g[r](�; v�) denotes the Fréchet derivative of g ! �̂(g; v�) evaluated at some
r 2 V h;p((0; T )�
;M ):

�̂0g[r](�g; v�) =
(
�0(r+)�g+ if v�+ > 0
�0(r�)�g� if v�� > 0

(5.50)

A Newton algorithm may be constructed by iteratively updating an approximation
~g + �g with �g according to

a0g[~g](�g; )� s0g[~g](�g; ) = �a(~g; ) + s(~g; ): (5.51)

5.3 Numerical results

To illustrate the approximation properties of the DGFE moment approximation (5.36)
with the proposed renormalization map (5.15a) for , we compute the long-time solution
of the lid-driven cavity problem [56].

The problem specification and moment-system approximation must be completed
first by specifying the collision operator and closure relation. We restrict ourselves here
to the standard BGK collision operator [14], viz.

C(f) = ��1(Mf � f) (5.52)

whereMf denotes the local Maxwellian (1.52) having the same invariant moments
as f and ��1 is a relaxation rate. We consider a renormalization map conforming to
(5.15a) with N = 1 and where the background distribution corresponds
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B =Mf(tn�;x;v); (5.53)

i.e. B is the local Maxwellian at the previous time-step. Note that the background
distribution in (5.53) represents prior information that is available from the computation
of the solution at earlier times, i.e. the background distribution is not part of the
approximation. Therefore, (5.53) remains independent of the solution at time tn+1

� , as
opposed to Grad’s closure relation [47] with a variable background Maxwellian.

Consider a square computational domain with length L and the top wall moving
with a tangential x-direction velocity of 50 ms�1 and the remaining three walls are
stationary. All the walls have are set at a reference temperature Tref = 273 K. The
square cavity contains argon with the gas constant R = 208 J

kgK and an initial
temperature of Tref. For consistency with the DSMC solution [56], we follow [99] and
write the mean-free-path as

�mfp = �
�
�RT

2

� 1
2

: (5.54)

The Knudsen number is set by choosing the reference length L.
We consider a space-time discontinuous Galerkin finite-element approximation spaces

of polynomial degree p = 0, i.e. piecewise constant approximations in position and
time dependence. In velocity dependence we restrict ourselves to moment systems
with maximal degree 4. We solve the DGFE approximation (5.36) using the Newton
procedure (5.51) for each time-step. We use a time-step 7:25� and discretize position
using an unstructured grid comprised of 24; 084 elements.

The left and right panels of figures 5.1 and 5.2 show the magnitude of the velocity
and temperature contours, overlaid with velocity and heat flux streamlines, respectively,
for the resulting flow with Knudsen number 0:1. The velocity contours on the left
panels of figures 5.1 and 5.2 show velocity slip at the lid as a result of rarefaction [56].
Moreover, the temperature contours on the right panels of figure 5.1 and 5.2 show
a cold region in the top left corner which is attributed to expansion cooling, and a
hot region in the top right corner which is attributed to viscous heating [56]. The
streamlines in figure 5.1 show an anti-Fourier heat flux, i.e. heat flows from the cold
region to the hot region, in stark contrast with the continuum model provided by the
Navier-Stokes-Fourier theory [86].

Figure 5.2 shows the long-time solution at t = 101:5� when the residual has dropped
by, at least, 4 orders of magnitude. It is noteworthy that the results in figure 5.2 show,
qualitatively, good agreement with the DSMC solution in [56] and compare favorably
with the interpolative closure in [99].

5.4 Conclusion

In this work we introduced a new space-time-velocity Galerkin approximation method
for the Boltzmann equation based on a combination of the moment-system approxi-
mation in velocity dependence and a discontinuous Galerkin finite-element method in
position and time dependence. For the moment systems, we considered a renormaliza-
tion map that derives from the minimization of a ’-divergence. We established that for
suitable background measures, the moment systems retain the fundamental structural
properties of the underlying Boltzmann equation, viz., conservation of mass, momen-
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Fig. 5.1 Evolution of the moment-system, with maximal degree 4, solution of the lid-driven cavity
test case with Knudsen number 0:1. Left pane shows the Mach number contours overlaid with
macroscopic velocity streamlines and right pane shows the temperature contours overlaid with heat
flux streamlines.The results are plotted at time 7:25� (top), 14:5� (middle) and 21:75� (bottom).
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(a) Mach number contours overlaid with macro-
scopic velocity streamlines

(b) Temperature contours overlaid with heat flux
streamlines

Fig. 5.2 Long time solution, at t=101.5� , of the moment-system with maximal degree 4 for the
lid-driven cavity test case with Knudsen number 0:1.

tum and energy, Galilean invariance and dissipation of a relative entropy. Moreover,
the divergence-based closure leads to a hierarchy of tractable symmetric hyperbolic
systems.

For the space-time DGFE approximation of the moment-systems we used a numerical
flux based on the position-velocity upwind distribution. It was shown that the resulting
space-time DGFE moment method is entropy stable and entropy bounded. Moreover,
the linearization of the space-time DGFE moment approximation is significantly
facilitated by the choice of numerical flux, enabling the use of Newton methods to solve
the space-time DGFE moment systems.

We presented numerical results for a two-dimensional test case, viz. lid-driven cavity.
We generally observed good qualitative agreement between the computed solution
and reference DSMC results, and comparing favorably to corresponding results in the
literature for other closure relations.
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Chapter 6
Conclusions and recommendations

6.1 Conclusions

In this dissertation we developed a new model-adaptive methodology to optimally
approximate goal-functionals of solutions of the Boltzmann equation. To develop the
model-adaptive method we first derived well-posed moment-system hierarchies that
retain the fundamental properties of the Boltzmann equation. Next, we developed
a stable numerical approximation of the moment systems using the DGFE method.
Finally, we exploited the Galerkin structure of the combined DGFE moment method to
derive goal-oriented a-posteriori error estimates and develop model-adaptive algorithms
that yield (quasi-)optimal approximations of solutions of the Boltzmann equation.

To derive a suitable hierarchy of models that approximate the Boltzmann equation
in a multiscale manner, we proposed a new class of moment-closure hierarchies based
on ’�divergences. The moment closure approximation is based on a ’�divergence
minimization that avoids the realizability issues inherent in the standard maximum-
entropy closures. We showed that suitable choices of ’�divergences and collision
operators lead to tractable moment systems that are well-posed, in the sense of
symmetric hyperbolicity, while retaining the structural properties of the Boltzmann
equation, namely Galilean invariance, entropy dissipation and the conservation of mass,
momentum and energy.

We inferred that moment systems can alternatively be conceived of as Galerkin
approximations of the Boltzmann equation in renormalized form. The Galerkin-
approximation interpretation conveys that smooth functionals of approximate dis-
tributions obtained from moment systems, such as velocity moments, generally display
super-convergence under hierarchical-rank refinement. Our numerical results confirm
the superconvergence of moments. However, we observed that the moment systems
become increasingly ill-conditioned as the number of moments increases.

To numerically approximate solutions of the Boltzmann equation we presented a
Galerkmethod based on the combination of a ’�divergence based moment-system
approximation in velocity dependence and DGFE approximation in position dependence.
To complete the DGFE discretization we introduced a new class of numerical flux
functions for the combined DGFE moment method. This new numerical flux function
appears naturally in the setting of the renormalized Boltzmann equation as the upwind
distribution at the inter-element interfaces. We established that this upwind flux renders
the DGFE moment method entropy stable, i.e. the entropy-dissipation property of the
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moment systems transfers to the DGFE formulation. The entropy stability of the DGFE
moment method was corroborated in our numerical results. Moreover, the proposed
numerical flux significantly simplifies linearization, enabling the implementation of
Newton methods and goal-oriented a-posteriori error estimation.

To develop (quasi-)optimal algorithms that approximate steady solutions of Boltz-
mann equation we exploit the Galerkin form and the inherent hierarchical structure of
moment. We introduce a new goal-oriented a-posteriori error analysis and an adaptive-
refinement strategy for numerical approximation of the steady Boltzmann equation. The
presented numerical results show the significant potential for improved computational
efficiency in the numerical approximation of the Boltzmann equation.

We conclude that the presented moment method provides significant opportunities
for the hierarchical multiscale modeling of flows in the transitional molecular/continuum
regime. The symmetric hyperbolic nature of the moment systems puts the full arsenal
of approximation techniques for this class of problems, such as finite element or finite
volume methods, at our disposal. The numerical approximation of symmetric hyperbolic
moment-systems is aided further by the Galerkin form of the moment-closure. The
Galerkin formulation of the derived class of moment closures enables efficient implicit
implementations of kinetic numerical fluxes and standard boundary conditions for the
Boltzmann equation. Moreover, the Galerkin moment-closure approximation is in canon-
ical form for goal-oriented a-posteriori error estimation and the hierarchical structure
of the moment-systems provides a natural means of model refinement. The presented
numerical results confirm that the proposed adaptive moment method presents an
efficient heterogeneous multiscale method that introduces a domain decomposition into
regions where models of different levels of sophistication are applied, where the various
models corresponding to different members of the model hierarchy. The goal-oriented
adaptive-refinement strategy performs the domain decomposition and the selection of
the local models in a fully automated and optimal manner.

6.2 Recommendations

The adaptive moment hierarchies presented in this dissertation offer the basis for
a modeling framework for the multiscale description of kinetic systems. To further
exploit the developed framework in scientific, engineering and industrial applications we
propose addressing the challenges emerging in the numerical approximation of moment
systems.

The ’�divergence minimization problem leads to Jacobian matrices attributed with
increasing condition numbers for increasing hierarchical moment rank. Consequently,
the convergence of numerical solvers with increasing hierarchical rank may be sub-
optimal. A viable remedy to mitigate the increasing condition numbers is to develop
suitable preconditioners; see [3] for example.

Refinement of the moment system in hierarchical rank corresponds to higher order
polynomial approximation. Although we observed that moment systems benefit from
super-convergence of moments, the presence of local velocity features in the distribution,
such as discontinuities, generally impairs convergence of such higher order approxi-
mations of the underlying distribution function; see for example [2, 63]. This issue is
compounded with the fact that the hyperbolic nature of the moment systems generally
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renders discontinuous distributions at the boundaries of the computational domain. A
possible countermeasure is to use lower order piecewise polynomial approximations in
the vicinity of such local features; see for example [78].

To study physical phenomena the approximation of the collision process comes into
question. Efficient algorithms may be designed to numerically approximate physical
collision operators like the hard spheres collision operator (1.26). Alternatively, one
may propose modifications, such as the BGK and generalized BGK operators, that
capture properties and attributes of physical collision operator. The physical validity
of such modifications requires investigation.

The formulation of a boundary value problem for the moment systems requires
the specification of boundary conditions. The proposed DGFE moment method ad-
mits standard boundary conditions, namely reflection, accommodation or in-/out-flow
conditions. However, the study of physically meaningful and mathematically sound
boundary conditions for the moment systems and the Boltzmann equation remains
an open challenge. One may question the significance of higher-order moment systems
without a more relevant description of boundary conditions.

Practical implementation of the DGFE moment method may make use of current
technology for efficient computations of large systems. To numerically solve large
systems one may investigate the implementation of suitable parallel algorithms for
the DGFE moment method. By virtue of the locality of the DGFE discretization, the
DGFE method is well-suited for parallelization. For example one may utilize graphical
processing units for the computation of velocity integrals.

For higher order convergence of smooth solutions of DGFE moment systems, approx-
imations with higher order DGFE methods may be considered. Higher order DGFE
methods however suffer from spurious oscillations in the vicinity of steep gradients and
require nonlinear stabilization techniques. Entropy stability and boundedness is not
sufficient to ensure convergence of higher order approximations for the DGFE method.
Generally, the question of necessary and sufficient conditions for convergence of higher
order DGFE methods for nonlinear hyperbolic balance laws remains open. Addressing
the question of convergence remains challenging since the well-posedness theory for
such hyperbolic balance laws is still incomplete.

Finally, we note that the developed methodology and analyses in this work are useful
to other fields concerned with kinetic models, in particular, kinetic systems for which
moment methods have already shown promise. Important examples include the Vlasov-
Poisson equation and the Vlasov-Maxwell system in plasma physics, the Fokker-Planck
equation in radiative transfer and dispersed-particle flows, the Boltzmann-Poisson
equation in semiconductors and the Wigner equation for quantum transport. We
propose tailoring the presented adaptive moment method to approximate solutions of
such systems.
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Summary

Kinetic theory of fluids is concerned with a generalized phase-space description of
molecular flow to account for fluid dynamics that do not conform to continuum models.
Continuum models of fluid dynamics, e.g. the Euler and Navier-Stokes equations,
inherently assume that the flow is dominated by inter-molecular collisions. In phase-
space, the continuum description corresponds to either equilibrium states, e.g. the
Euler equations, parameterized by the fluid density, velocity and temperature; or
near-equilibrium states, e.g. the Navier-Stokes-Fourier equations, that additionally
account for the heat flux. However, deviations from equilibrium violate the continuum
assumption and consequently invalidate continuum models.

In kinetic theory, the non-equilibrium description of rarefied monatomic fluid dy-
namics is based on the Boltzmann equation that governs a one-molecule phase-space
distribution. By virtue of its structural properties, namely Galilean invariance, entropy
dissipation and conservation of mass, momentum and energy, the Boltzmann equa-
tion also encapsulates all conventional macroscopic flow models in the sense that its
limit solutions correspond to solutions of the compressible Euler and Navier-Stokes
equations, the incompressible Euler and Navier-Stokes equations, the incompressible
Stokes equations and the incompressible Navier-Stokes-Fourier system. Conversely,
the Boltzmann equation defines the ideal gas limit, with Boltzmann-Grad scaling, of
multi-molecular Newtonian dynamics. Moreover, the Boltzmann equation is uniquely
suited to describe flows in the transitional molecular/continuum regime and the corre-
sponding rarefaction effects, by virtue of its inherent characterization of deviations of
the velocity distribution from local equilibrium.

Applications in which rarefaction effects play a significant role in the fluid behavior
include flows under hypobaric conditions and/or on very small scales. The former
condition is for instance encountered in many technological processes that need to
account for near-vacuum conditions, such as semi-conductor photo-lithography machines
or in high-altitude aerodynamics of space vehicles. The latter condition typically occurs
in flow in porous media or in micro- and nano-scale devices that are ubiquitous on
account of the perpetual trend towards miniaturization in technology. This makes the
ability to perform reliable computer simulations of flow problems in rarefied regimes
increasingly relevant in science and technology. The Boltzmann equation also provides a
prototype for kinetic models in many other applications that require a description of the
collective behavior of large ensembles of small particles, for instance, in semi-conductors,
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in plasmas and fusion and fission devices and in dispersed particle flows such as in
fluidized-bed reactors.

Numerical approximation of the Boltzmann equation poses a formidable challenge,
on account of its high dimensional setting: for a problem in D spatial dimensions,
the one-particle phase-space is 2D-dimensional. The corresponding computational
complexity of conventional discretization methods for (integro-)differential equations,
such as finite-element methods with uniform meshes, is prohibitive.

Numerical approximations of the Boltzmann equation have been predominantly
based on particle methods, such as the Direct Simulation Monte Carlo (DSMC)
method. Convergence proofs for these methods however convey that their computational
complexity depends sensitively on the Knudsen number, and the computational cost
becomes prohibitive in the fluid-dynamical limit. Moreover, from an approximation
perspective, DSMC can be inefficient, because it is inherent to the underlying Monte-
Carlo process that the approximation error decays only as n� 1

2 as the number of
simulation molecules, n, increases. Efficient computational modeling of fluid flows
in the transitional molecular/continuum regime therefore remains an outstanding
challenge.

In this work we propose a deterministic approximation technique for the Boltzmann
equation based on the method of moments. The method of moments represents a general
statistical approximation technique which identifies parameters of an approximate
distribution based on its moments. Application of the method of moments to the
Boltzmann equation engenders a system of evolution equations for the moments
(weighted averages) of the phase-space distribution.

Moment systems can be conceived of as Galerkin approximations, in velocity de-
pendence, of the Boltzmann equation in renormalized form where larger moment
systems correspond to refined subspaces. By virtue of the hierarchical structure of
the considered subspaces, moment systems form a multiscale hierarchy of models that
bridge the transitional molecular/continuum flow regime. For suitable choices of the
renormalization map, moment systems are symmetric hyperbolic and are well posed
in the corresponding sense. The symmetric hyperbolic structure of moment systems
puts the full arsenal of approximation techniques for this class of problems at our dis-
posal, in particular, (goal-)adaptive finite-element methods based on a-posteriori error
estimates. By virtue of their Galerkin form and their inherent hierarchical structure,
moment systems are ideally suited to (goal-oriented) model adaptivity. Goal-oriented
a-posteriori error-estimation and adaptivity exploit the Galerkin approximation to
construct approximation spaces that yield an optimal approximation of a particular
functional of the solution (goal or target functional). The Galerkin form of moment
methods enables the construction of accurate a-posteriori error estimates, while the
hierarchical structure provides an intrinsic mode of refinement.

The aim of this dissertation is to create a paradigm for goal-adaptive moment-
system hierarchies for multiscale approximations of the Boltzmann equation in which
the Galerkin structure of the moment-closure is used to derive a-posteriori estimates of
the error in the functional of interest. We develop, analyze and implement a Galerkin
methodology in which the hierarchical rank of the moment-system is locally adapted
to generate an optimal approximation to a functional of the solution of the Boltzmann
equation. To this end, we identify the following sub-objectives:

1. formulation of a suitable hierarchy of moment-systems, which is well-posed, while
retaining the fundamental properties of the underlying Boltzmann equation;
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2. development of a stable finite-element approximation of the moment-systems;
3. derivation of a-posteriori error estimates and the development of an adaptive

refinement strategy.

Chapter 1 provides a general introduction to a kinetic description of rarefied fluid
flow and a context for subsequent theory. To that end, a standard derivation of the
Boltzmann equation from multi-molecular Newtonian dynamics is presented to account
for the multiscale nature of the rarefied fluid flow. Then, we survey the standard
structural properties of the Boltzmann equation that are to be retained in the moment-
system approximation.

Chapter 2 introduces a generalized setting of the moment-closure problem. We
establish a novel framework for the generalized moment-closure problem, based on
’-divergences, that leads to a hierarchy of tractable symmetric hyperbolic systems
which retain the fundamental structural properties of the Boltzmann equation. In
this chapter it is shown that the moment-systems can be conceived of as Galerkin
approximation, in velocity dependence, of the Boltzmann equation in renormalized
form. This chapter is based on: M.R.A. Abdelmalik and E.H. van Brummelen. "Moment
closure approximations of the Boltzmann equation based on ’-divergences". In: Journal
of Statistical Physics 164.1 (2016), pp. 77–104.

Chapter 3 presents a Galerkin finite-element approximation of the Boltzmann
equation that is based on the moment-system approximation in velocity dependence
derived in Chapter 2 and a DGFE approximation in position dependence. We present
a new upwind numerical flux function that is based on a new class of moment-closure
approximations. The upwind nature of the proposed flux ensures entropy dissipation of
the approximation scheme. This chapter is based on: M.R.A. Abdelmalik and E.H. van
Brummelen. "An entropy stable discontinuous Galerkin finite-element moment method
for the Boltzmann equation". In: Computers and Mathematics with Applications 72.8
(2016), pp. 1988–1999.

Chapter 4 presents a derivation of a-posteriori error estimates for the DGFE moment
approximation of the steady Boltzmann equation. We devise an adaptive algorithm
that targets elements with the largest contributions to the error estimate of the goal
functional in a manner that exploits inter-element cancellation errors. This chapter is
based on: M.R.A. Abdelmalik and E.H. van Brummelen. "Error estimation and adaptive
moment hierarchies for goal-oriented approximations of the Boltzmann equation". In:
Computer Methods in Applied Mechanics and Engineering submitted (2016).

Chapter 5 presents a space-time DGFE moment approximation of the Boltzmann
equation. The implicit nature of the space-time approximation provides robust and
efficient algorithms for the approximation of the Boltzmann equation. In this chapter we
also modify the moment-closure relation of Chapter 2 to facilitate the implementation
of multi-dimensional problems.

We close this dissertation with Chapter 6 which presents a discussion of the presented
results, as well as some suggestions for further research.
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