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Abstract

We present a model that describes pedestrians trying to escape from a crowded room. This
model uses both physical and social forces in an ODE to calculate the velocity and location of the
pedestrians. We show the existence and uniqueness of classical solutions to the chosen model.
As an intermediate step, we non-dimensionalize the ODEs in the model to reduce the number of
parameters used and to gain insight into the model. As the final step, we present a few numerical
simulations. The results obtained from these simulations include, but are not limited to, an expla-
nation of the influence of all parameters and recovering basic crowd patterns occuring in real-life
evacuations.

Keywords: Particle system, Panic, Social force model, ODE, Social physics, Complex systems,
Social dynamics, Statistical physics
MSC 2010: 82C22, 91D30
PACS: 02.70.-c, 05.10.-a, 05.20.Dd, 05.65.+b, 89.75.Kd, 89.75.Da, 89.75.Fb, 89.75.-k
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1 Introduction

1.1 Statistical physics

It is a grounded assumption that almost every law of nature has a statistical origin (Castellano,
Fortunato and Loreto [4]). Therefore Statistical Physics has become a discipline of Physics on its
very own. The applications don’t just stay inside the world of Physics. The diversity of fields that
uses Statistical Physics includes but is not limited to Biology and Computer Science. For this, the
interest of many physicists towards this field has grown much the last years. In the context of this
thesis Statistical Physics is specifically useful to upgrade models that describe human behavior.

1.2 Social dynamics

Physical modeling of systems describing human behavior has been done for many years [12].
The models describing human behavior, such as death rates or migration statistics, have been
around for quite some time. These massive systems cancel out the observed ’errors’ of individual
persons. The quantitative results obtained from these models have come to the result of under-
standing the complex situations induced by these models.
Looking at individual behavior is a concept that is relatively new. The change from some kind of
philosophical view towards these models to actually describing them physically has been really
revolutionary. This change has mostly begun thanks to Statistical Physics.
Because most of the physical models use fairly simple objects such as atoms and molecules, the
behavior of the whole system is well known (at least for not so many such objects or at continuum
scales): for example the laws of conservation of energy and the laws of conservation of momen-
tum hold. These laws don’t hold for systems that use more complex objects like humans. The
dynamics of a single human is nearly impossible to predict. And even if this would be possible,
the interactions between humans are still much more complicated than the interactions between
simple objects. Therefore the modeling of social particles such as humans results in a possible
unwanted simplification of the real problem.
Now two problems arise:

� Defining the microscopic model,

� Pulling out results that result in a macroscopic model able to capture patterns of large
crowds.

These are very hard tasks, because of the fact that the Social Physics models are mostly still
too much simplified to describe real life social systems sufficiently. But Statistical Physics is a
lifesaver here. Macroscopic models mostly do not depend on the small details in the microscopic
models. The adding of statistics to the agents in the microscopic model is the best solution to our
problems. Now the microscopic models can be described by using only the simplest, most basic
properties of the agents.

1 Crowd behavior while escaping a panic-filled room
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1.3 Pedestrian systems

One of the fields in social dynamics is the field of pedestrian systems. This field is a fairly young
one. Scientists are interested in this field only since the 1950s, when Hankin and Wright [3] em-
pirically studied it.
The article where the first ‘physical model’ about pedestrian systems is presented, is by Hen-
derson’s [11]. Henderson remarked the analogy between pedestrian flows and flows in fluids or
gases. He measured pedestrian flows based on the Navier-Stokes equations. The big flaw in this
model is the lack of human behavior, such as the social repulsion to prevent collisions. Therefore
many physical laws couldn’t be applied in a straightforward manner.
This is the reason why microscopic models have become more and more popular in the last
decade. These microscopic models can be divided into two main groups: models based on cel-
lular automata and the social force models.
The cellular automata models are discrete models, both in time and space. The system area is
divided into cells. These cells are occupied or not, and at each time step, a pedestrian can move
to a cell that is adjacent to its current cell. This motion is based on biased random walk. The
problem with these models is the lack of exactness due to the discreteness of the space.
The social force models assume various kinds of social forces, such as social repulsion forces
from one pedestrian to another, or social attraction forces from the exit of a room to the pedes-
trian, or attraction forces to groups of friends. These social forces, in combination with physical
forces, describe a pedestrian system. The social force model by Helbing, Farkas and Vicsek [6]
is a revolutionary one. The actual forces between the pedestrians and obstacles (other pedestri-
ans, walls, et caetera) are computed, which results in a more exact model.
In this bachelor thesis, we discuss the model by Helbing, Farkas and Vicsek [6]. We first present
the model. After that, we check the model for mathematical correctness, that means that we
prove the existence and uniqueness of a classical solution. The model will then be checked qual-
itatively and quantitatively by means of simulation.

This bachelor project belongs to the context drawn by [2] [7] [8] [9] [10].
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2 Model description

In this section, we describe the pedestrian escape model. We state the differential equations that
describe the change in velocity and location and we explain the parameters and variables. [6]
The model described in this section is referred to as (P ) in the rest of the paper.
Let n be the number of pedestrians walking in a room � D R2 as described by the following
system of differential equations:

mi
dvi

dt
D mi

v0
i .t/e

0
i .t/� vi .t/
�

C
X

j 6Di

fi j C
X

W

fiW ; (2.1)

vi .0/ D 0; (2.2)
dri

dt
D vi .t/; (2.3)

ri .0/ D ri;0; (2.4)

where i 2 f1; : : : ; ng.
The unknown variables in this system are the velocity of pedestrian i at time t vi .t/ and the
location of pedestrian i at time t ri .t/. These unknowns need to be calculated to see the evolution
in space and velocity of the pedestrians.
The explanation of the parameters is as follows.

� mi > 0 the mass of pedestrian i ([M])1,

� v0
i .t/ > 0 the preferred speed of pedestrian i (

�
LT�1�),

� he0
j .t/ii 2 R2 the average direction of the neighbours j of i in a certain radius Ri ([1]),

� ei .t/ 2 R2 the original direction of pedestrian i ([1]),

� p 2 [0; 1] the panic parameter, the higher it is, the more pedestrian i adapts to the environ-
ment ([1]),

� e0
i .t/ 2 R2 the final direction of pedestrian i , e0

i .t/ D

h
.1�p/ei .t/Cphe0

j .t/ii
i


h
.1�p/ei .t/Cphe0

j .t/ii
i

2

([1]),

� vi .t/ 2 R2 the current velocity of pedestrian i (
�
LT�1�),

� � > 0 the reaction time ([T ]). This is the characteristic time of the exponential convergence
of a pedestrian’s current velocity vector vi .t/ to the pedestrian’s preferred velocity vector
v0

i e0
i .t/.

1We indicate by [8] the dimension of the quantity 8 in the system fT; L ;Mg.
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Let us briefly explain what the model does:

The first part mi
v0

i .t/e
0
i .t/�vi .t/
� of (2.1) models the tendency of pedestrian i to go in the preferred

direction as much as possible.
The forces on pedestrian i by another pedestrian j is given by the following equations.

fi j .ri ; r j ; vi ; v j / VD fsocial.ri ; r j /C fpushing.ri ; r j /C f f r iction.ri ; r j ; vi ; v j /

fsocial.ri ; r j / VD A exp
�

ri j � di j

B

�
ni j

fpushing.ri ; r j / VD kg
�
ri j � di j

�
ni j

f f r iction.ri ; r j ; vi ; v j / VD �g
�
ri j � di j

�
1vt

j i ti j

with

� A > 0 the social repulsion force (
�
M LT�2�),

� B > 0 the radius of the comfort zone ([L]),

� ri j VD ri C r j sum of radii of pedestrians i and j ([L]),

� di j VD
ri � r j


2 distance between the two centers of pedestrians i and j ([L]),

� ni j VD
ri�r j

di j
D

 
n1

i j
n2

i j

!

the unit vector pointing from j to i ([1]),

� g .x/ VD
�

x; x > 0
0; x � 0 ,

� k > 0 the pushing coefficient (
�
M L�1T�1�),

� � > 0 the kinetic friction (
�
MT�2�),

� ti j VD

 
�n2

i j
n1

i j

!

the tangential direction of the velocity ([1]),

� 1vt
j i VD .v j � vi / � ti j the tangential velocity difference (

�
LT�1�).

The forces on pedestrian i by a wall W is given by the following equations.

fiW .ri ;W; vi / VD fsocial.ri ;W /C fpushing.ri ;W /� f f r iction.ri ;W; vi /;

fsocial.ri ;W / VD A exp
�

ri � diW

B

�
niW ;

fpushing.ri ;W / VD kg.ri � diW /niW ;
f f r iction.ri ;W; vi / VD �g.ri � diW /1vt

i tiW ;

with

� diW > 0 distance between the center of pedestrian i and the wall W ([L]),

� niW the unit vector pointing from the wall W to pedestrian i , see Figure 2.1 ([1]),

� tiW the tangential direction of the velocity in the wall’s direction, see Figure 2.1 ([1]),

� 1vt
i VD vi � tiW the tangential velocity difference (

�
LT�1�).
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Figure 2.1: The normal and tangential direction to a wall.

Furthermore, the initial speed vi .0/ D 0 for all i 2 f1; : : : ; ng, so the pedestrians are not moving.

The initial location of the pedestrians ri;0 D
�

r1
i;0

r2
i;0

�
is in the room, so ri;0 2 [0; RW ]� [0; RH ].

Also, the gate, located in the middle of the right wall, has length RG .
We distinguish two cases of area of sight in this paper, with and without smoke. If the room is
smoky, the pedestrians can see either rsee D 10 m or rsee D 5 m far (so they don’t necessarily
see the exit from the starting point ri;0). If the room is smokeless, the pedestrians can see the
exit from the starting point ri;0, so rsee D C1.
You see the shape of the room in Figure 2.2.

Figure 2.2: The shape of the room.

5 Crowd behavior while escaping a panic-filled room
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3 Existence and uniqueness of solutions to (P )

In this section, we check the solvability of model (P ) . We use the Picard-Lindelöf Theorem (see
Theorem 1) [16] which is a theorem that ensures us that the solution to an ODE is existent and
unique. Note that this is possible because the functions in our model are not singular. If singular-
ities would be present, then another concept of solutions is needed here.

Theorem 1. Picard-Lindelöf Theorem
Consider the ODE

y0.t/ D f.y.t/; t/; y.t0/ D y0; t 2 [t0 � �; t0 C � ] :

Suppose f.y.t/; �/ 2 C .[t0 � �; t0 C � ] ;Rn/ and f.�; t/ 2 Lip .[t0 � �; t0 C � ] ;Rn/. Then, for some
value � 2 .0; � /, there exists a unique solution y.t/ to the ODE within the range [t0 � �; t0 C �].

To check whether the model is correct, we have to check two things,

� Existence of the solution,

� Uniqueness of the solution.

To prove existence and uniqueness of the solution of (2.1) to (2.4) we use Picard-Lindelöf Theo-
rem (Theorem 1).

Theorem 2. The model (P ) given by the ODEs (2.1) to (2.4) with the parameters chosen as
follows have a unique and existing solution.

� mi > 0 for all i ,

� v0
i > 0 for all i ,

� p 2 [0; 1],

� vi;0 D 0 for all i ,

� ri;0 2 [0; RW ]� [0; RH ] for all i ,

� � > 0,

� A > 0,

� B > 0,

� ri > 0 for all i ,

� k > 0,

6 Crowd behavior while escaping a panic-filled room
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� � > 0,

� RG > 2 maxi .ri /.

Proof. The functions

h.t; vi .t// D
v0

i e0
i .t/� vi .t/
�

C
1

mi

X

j 6Di

fi j C
1

mi

X

W

fiW

h�.t; ri .t// D vi

is defined on .0;C1/ � R2. To be able to apply the Picard-Lindelöf Theorem (Theorem 1), we
have to verify that h and h� are continuous in t , that h is Lipschitz continuous in vi .t/ and that h�
is Lipschitz continuous in ri .t/.
First, we’re going to check if h is continuous in t .

e0
i .t/ continuous in t

vi .t/ continuous in t

�
)

v0
i e0

i .t/� vi .t/
�

continuous in t (I)

ri � r j continuous in t ) ri j�di j
B continuous in t
ex continuous in x

�
) e

ri j�di j
B continuous in t (i)

ni j D
ri�r j

di j
continuous in t

(i)

)

) Ae
ri j�di j

B ni j continuous in t (ii)

ri j � di j continuous in t
g.x/ continuous in x

�
) g.ri j � di j / continuous in t ) kg.ri j � di j /ni j continuous in t (iii)

x � y continuous in x; y
ti j continuous in t

v j � vi continuous in t

9
=

;
) 1vt

j i continuous in t ) �g.ri j � di j /1vt
j i ti j continuous in t (iv)

(ii)
(iii)
(iv)

9
=

;
)

1
mi

X

j 6Di

fi j continuous in t (II)

Analogous for
1

mi

X

W

fiW (III)

(I)
(II)

(III)

9
=

;
) h.t; vi .t// continuous in t

Choose an arbitrary T > 0, then K VD maxfkvi .t/k2 jt � T g.
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Now we need to prove that there is an M such that kh.t; vi /k2 � M .

v0

i e0
i � vi

�


2

�
v0

i
�

e0
i


2
C

1
�
kvik2 �

1
�

�
v0

i C K
�
DV 81

fi j


2 �
Ae

ri j�di j
B ni j


2
C
kg.ri j � di j /ni j


2 C

�g.ri j � di j /..v j � vi / � ti j /ti j


2

� Ae
ri jC2K T

B
ni j


2 C kg.

ri j � di j


2/
ni j


2 C �g.

ri j � di j


2/
v j � vi


2

ti j
2

2

� Ae
ri jC2K T

B C k.ri j C 2K T /C �.ri j C 2K T /.
v j


2 C kvik2/

� Ae
ri jC2K T

B C .k C 2K�/.ri j C 2K T / DV 82

kfiWk2 �
Ae

ri�diW
B niW


2
C kkg.ri � diW /niWk2 C k�g.ri � diW /.vi � tiW /tiWk2

� Ae
riC2K T

B C .k C K�/.ri j C 2K T / DV 83

) kg.t; vi /k2 � 81 C
X

j 6Di

82

mi
C
X

W

83

mi

� 81 C
n82

mi
C
jW j83

mi
DV M

We prove that h� is continuous in t . Therefor we remark that vi is continuous in t , therefore h� is
continuous in t .
Choose an arbitrary T � > 0, then K � VD max fkri .t/k2 jt � T �g.
We need to show that there exists an M� such that kh�.t; ri /k2 � M�. Choose M� VD max fkvi .t/k2 jt � T �g,
then kh�k2 � M�.
Now we prove that h is Lipschitz continuous in vi . This is trivial for all of the terms in (2.1) except
for .v j � vi / � ti j .

.v j � vi / � ti j � .v j � v�i / � ti j


2 D
.v�i � vi / � ti j


2

�
v�i � vi


2

ti j


2 D
v�i � vi


2 ;

so h is Lipschitz continuous in vi .
h� is constant in ri , so h� is Lipschitz continuous in ri .
Then, because of Theorem 1, model (P ) has exactly one solution vi D vi .t/ defined for

jt � t0j � T1 � minfT; K=Mg

and passing through the point .0; 0/ and exactly one solution ri D ri .t/ defined for

jt � t0j � T2 � minfT �; K �=M�g

and passing through the point .0; ri;0/.
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4 Non-dimensionalization

In this section, we non-dimensionalize (2.1) - (2.4) to get more insight in the time and length
scales entering the model. We also reduce the number of parameters used in (2.1) - (2.4).

4.1 Background

We’re going to non-dimensionalize (2.1) - (2.4) with the help of the algorithm described in the
paper by Curtis, David Logan and Parker [15]. To reduce the number of parameters used as
much as possible, we use the Buckingham Pi Theorem:

Theorem 3. Buckingham Pi Theorem
Let L be a law on V compatible with T . Then there exists frames e such that T .ek/ D 0 for

k D r C 1; : : : ;m, and for any such frame we have Le D Rr
C � QLe for some QLe � Rm�r

C .

mi
dvi

dt
D mi

v0
i .t/e

0
i .t/� vi .t/
�

C
X

j 6Di

fi j C
X

W

fiW ; (4.1)

dri

dt
D vi ; (4.2)

with

fi j D A exp
�

ri j � di j

B

�
ni j C kg.ri j � di j /ni j C �g.ri j � di j /1vt

j i ti j ;

fiW D A exp
�

ri � diW

B

�
niW C kg.ri � diW /niW � �g.ri � diW /1vt

i tiW :

We rewrite (4.1) and (4.2) so that we can apply the theorem:

�mi
dvi;x

dt
C mi

v0
i .t/e

0
i;x .t/� vi;x .t/
�

C
X

j 6Di

fi j;x C
X

W

fiW;x D 0; (4.3)

�mi
dvi;y

dt
C mi

v0
i .t/e

0
i;y.t/� vi;y.t/
�

C
X

j 6Di

fi j;y C
X

W

fiW;y D 0; (4.4)

dri;x

dt
� vi;x D 0; (4.5)

dri;y

dt
� vi;y D 0; (4.6)

9 Crowd behavior while escaping a panic-filled room
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with

vi D
�
vi;x
vi;y

�
;e0

i D

 
e0

i;x
e0

i;y

!

; fi j D
�

fi j;x
fi j;y

�
;

fiW D
�

fiW;x
fiW;y

�
;ni j D

�
ni j;x
ni j;y

�
; ti j D

�
ti j;x
ti j;y

�
;

niW D
�

niW;x
niW;y

�
;tiW D

�
tiW;x
tiW;y

�
; ri D

�
ri;x
ri;y

�
:

As we see in (4.3) to (4.6), the number of variables and freely chosen parameters is 28. The
three fundamental dimensions in (4.3) to (4.6) are q1 VD time VD T , q2 VD length VD L and
q3 VD mass VD M . Then the Buckingham Pi Theorem (Theorem 3) tells us that the resulting
dimensionless equation should have exactly 25 variables and freely chosen parameters.

4.2 Non-dimensionalizing (4.3) and (4.4)

We use the algorithm proposed in the paper by Curtis, David Logan and Parker [15].
We’re going to non-dimensionalize (4.3) first.
Now we’re going to rename the variables and parameters in (4.3):

Q1 VD mi ; Q2 VD vi;x ; Q3 VD t; Q4 VD v0
i ;

Q5 VD e0
i;x ; Q6 VD �; Q7 VD A; Q8 VD ri j ;

Q9 VD di j ; Q10 VD B; Q11 VD ni j;x ; Q12 VD k;
Q13 VD �; Q14 VD 1vt

j i ; Q15 VD ti j;x ; Q16 VD ri ;

Q17 VD diW ; Q18 VD niW;x ; Q19 VD 1vt
i ; Q20 VD tiW;x :

Now (4.3) is as follows.

f .Q/ D �Q1
d Q2

d Q3
C Q1

Q4Q5 � Q2

Q6
C
X

j 6Di

�
Q7e

Q8�Q9
Q10 Q11 C Q12g.Q8 � Q9/Q11 C Q13g.Q8 � Q9/Q14Q15

�

C
X

W

�
Q7e

Q16�Q17
Q10 Q18 C Q12g.Q16 � Q17/Q18 � Q13g.Q16 � Q17/Q19Q20

�

D 0

The dimensions of the variables and parameters of (4.3) are as follows (with the dimension of Qn
equal to qa1;n

1 qa2;n
2 qa3;n

3 ).
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n a1;n a2;n a3;n
1 0 0 1
2 �1 1 0
3 1 0 0
4 �1 1 0
5 0 0 0
6 1 0 0
7 �2 1 1
8 0 1 0
9 0 1 0
10 0 1 0
11 0 0 0
12 �2 0 1
13 �1 �1 1
14 �1 1 0
15 0 0 0
16 0 1 0
17 0 1 0
18 0 0 0
19 �1 1 0
20 0 0 0

This results in a 3� 21-matrix A VD
�
am;n

�
:

A D

0

@
0 �1 1 �1 0 1 �2 0 0 0 0 �2 �1 �1 0 0 0 0 �1 0
0 1 0 1 0 0 1 1 1 1 0 0 �1 1 0 1 1 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

1

A
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Now we’re going to construct 5 j ’s, which are dimensionless parameters and variables.

52 VD Q1
2Q�1

4 D
vi;x

v0
i

53 VD Q�1
6 Q1

3 D
t
�

55 VD Q1
5 D e0

i;x

57 VD Q�1
1 Q�1

4 Q1
6Q1

7 D
A�

miv0
i

58 VD Q1
8Q�1

10 D
ri j

B

59 VD Q1
9Q�1

10 D
di j

B
511 VD Q1

11 D ni j;x

512 VD Q�1
1 Q�1

4 Q1
6Q1

10Q1
12 D

Bk�
miv0

i

513 VD Q�1
1 Q1

6Q1
10Q1

13 D
B��
mi

514 VD Q�1
4 Q1

14 D
1vt

j i

v0
i

515 VD Q1
15 D ti j;x

516 VD Q�1
10 Q1

16 D
ri

B

517 VD Q�1
10 Q1

17 D
diW

B
518 VD Q1

18 D niW;x

519 VD Q�1
4 Q1

19 D
1vt

i

v0
i

520 VD Q1
20 D tiW;x

The equivalent equation
h.Q1;52;53; Q4;55; Q6;57;58;59; Q10;511;512;513;514;515;516;517;518;519;520/ D 0
is given by

�
Q1Q4

Q6

d52

d53
C Q1

Q4.55 �52/
Q6

C
X

j 6Di

h
Q1Q4Q�1

6 57e58�59511 C Q1Q4Q�1
6 Q�1

10 512g.Q10.58 �59//511

CQ1Q�1
6 Q�1

10 513g.Q10.58 �59//Q4514515

i

C
X

W

h
Q1Q4Q�1

6 57e516�517518 C Q1Q4Q�1
6 Q�1

10 512g.Q10.516 �517//518

�Q1Q�1
6 Q�1

10 513g.Q10.516 �517//Q4519520

i
D 0:

Now we see that this equation is equivalent to

�.52;53;55;57;58;59;511;512;513;514;515;516;517;518;519;520/
D h.1;52;53; 1;55; 1;57;58;59; 1;511;512;513;514;515;516;517;518;519;520/ D 0:
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This results in the following equation.

�
d52

d53
C55 �52

C
X

j 6Di

�
57e58�59511 C512g.58 �59/511 C513g.58 �59/514515

�

C
X

W

�
57e516�517518 C512g.516 �517/518 �513g.516 �517/519520

�
D 0

This is a completely dimensionless equation, so our goal is reached.
The translation back to our parameters results in the following equation.

�
�
v0

i

dvi;x

dt
C e0

i;x �
vi;x

v0
i

C
X

j 6Di

"
A�

miv0
i

e
ri j�di j

B ni j;x C
k� B
miv0

i
g.

ri j � di j

B
/ni j;x C

�� B
mi

g.
ri j � di j

B
/
1vt

j i

v0
i

ti j;x

#

C
X

W

"
A�

miv0
i

e
ri�diW

B niW;x C
k� B
miv0

i
g.

ri � diW

B
/niW;x �

�� B
mi

g.
ri � diW

B
/
1vt

i

v0
i

tiW;x

#

D 0:

Non-dimensionalizing (4.4) is analogous to non-dimensionalizing (4.3). The result is:

�
�
v0

i

dvi;y

dt
C e0

i;y �
vi;y

v0
i

C
X

j 6Di

"
A�

miv0
i

e
ri j�di j

B ni j;y C
k� B
miv0

i
g.

ri j � di j

B
/ni j;y C

�� B
mi

g.
ri j � di j

B
/
1vt

j i

v0
i

ti j;y

#

C
X

W

"
A�

miv0
i

e
ri�diW

B niW;y C
k� B
miv0

i
g.

ri � diW

B
/niW;y �

�� B
mi

g.
ri � diW

B
/
1vt

i

v0
i

tiW;y

#

D 0:

4.3 Non-dimensionalizing (4.5) and (4.6)

We use the algorithm proposed in the paper by Curtis, David Logan and Parker [15].
Let’s non-dimensionalize (4.5).
Now the variables in (4.5) need to be renamed:

Q1 VD ri;x ; Q2 VD t; Q3 VD vi;x :

The updated equation is as follows.

f .Q/ D
d Q1

d Q2
� Q3 D 0

The dimensions of the variables are as follows (with the dimension of Qn equal to qa1;n
1 qa2;n

2 ).

n a1;n a2;n
1 0 1
2 1 0
3 �1 1
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This results in a 2� 3-matrix A D
�
am;n

�
:

A D
�

0 1 �1
1 0 1

�

Now we’re going to construct a 5 j , which is a dimensionless variable.

51 VD d Q1
1d Q�1

2 Q�1
3 D

1
vi;x

dri;x

dt
The equivalent equation h.51; Q2; Q3/ D 0 is given by

Q3 .51 � 1/ D 0

Now we see that this equation is equivalent to

�.51/ D h.51; 1; 1/ D 0:

This results in the following equation.
51 � 1 D 0

This is a completely dimensionless equation, so our goal is reached.
The translation back to our variables results in the following equation.

1
vi;x

dri;x

dt
� 1 D 0

Non-dimensionalizing (4.6) is analogous to non-dimensionalizing (4.5). The result is:
1
vi;y

dri;y

dt
� 1 D 0:

4.4 Results of non-dimensionalization

The system of equations (4.3) to (4.6) has been reduced to the dimensionless (4.7) to (4.10).

�
�
v0

i

dvi;x

dt
C e0

i;x �
vi;x

v0
i
C
X

j 6Di

f �i j;x C
X

W

f �iW;x D 0; (4.7)

�
�
v0

i

dvi;y

dt
C e0

i;y �
vi;y

v0
i
C
X

j 6Di

f �i j;y C
X

W

f �iW;y D 0 (4.8)

dri;x

vi;xdt
� 1 D 0; (4.9)

dri;y

vi;ydt
� 1 D 0; (4.10)

with

f �i j;x D
A�

miv0
i

e
ri j�di j

B ni j;x C
k� B
miv0

i
g.

ri j � di j

B
/ni j;x C

�� B
mi

g.
ri j � di j

B
/
1vt

j i

v0
i

ti j;x ;

f �iW;x D
A�

miv0
i

e
ri�diW

B niW;x C
k� B
miv0

i
g.

ri � diW

B
/niW;x �

�� B
mi

g.
ri � diW

B
/
1vt

i

v0
i

tiW;x ;

f �i j;y D
A�

miv0
i

e
ri j�di j

B ni j;y C
k� B
miv0

i
g.

ri j � di j

B
/ni j;y C

�� B
mi

g.
ri j � di j

B
/
1vt

j i

v0
i

ti j;y;

f �iW;y D
A�

miv0
i

e
ri�diW

B niW;y C
k� B
miv0

i
g.

ri � diW

B
/niW;y �

�� B
mi

g.
ri � diW

B
/
1vt

i

v0
i

tiW;y :

The system (4.7) to (4.10) has 25 variables and parameters, as expected from the Buckingham
Pi Theorem (Theorem 3).
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5 Simulation of model (P )

5.1 Simulation set-up

In this section, the set-up and results of the simulation of model (P ) are shown. The influence of
the various parameters on the system are described, and the influence of some parameters are
thoroughly described in various cases.
Model (P ) was implemented in a program written in Java. The code discretizes (2.1) - (2.4).
This means dvi , dt and dri become 1vi , 1t and 1ri respectively. See Appendix A for the code
description.
The code has two features. Firstly it outputs many data about the system, including the time it
takes before every person has left the room (the so-called escape time). Secondly it can make
a movie, which shows the persons moving in the room and trying to get out. In Figure 5.1 and
Figure 5.2, we show snapshots of the movie attained solving (2.1) - (2.4).

Figure 5.1: n D 50, p D 0:7, t D 1:00.
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Figure 5.2: n D 50, p D 0:7, t D 20:00.

5.2 Value of parameters

In Figure 5.3 you can see the values of the parameters used in this simulation.
Inspired by the non-dimensionalization done in Chapter 4, we take the parameters A, k and �
depending on v0

i , mi , � and B.

Variable/parameter Value
mi � UNIF(70,90) kg (see Definition 1)
v0

i 0.8 ms�1

� 0.5 s
A 30 N

2ri � N (0.7,0.02) m (see Definition 2)
B 0.8 m
k 50000 kg�s�2

� 2400 kg�(ms)�1

RH 15 m
RW 15 m
RG 0.8 m

Figure 5.3: Value of parameters

Definition 1. Continuous uniform distribution
The continuous uniform distribution UNIF.a; b/ is a distribution with pdf

f .xI a; b/ D
� 1

b�a for x 2 [a; b]
0 for x =2 [a; b]

Definition 2. Normal distribution
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The normal distribution N .�; � 2/ is a distribution with pdf

f .xI�; � 2/ D
1

p
2�� 2

exp
�
�
.x � �/2

2� 2

�
:

5.3 Influence of parameters

5.3.1 The mean mass of a pedestrian i mi

When the mean mass of a pedestrian i mi increases, the effect of the forces fi j and fiW de-
creases. This is because the people rush through everything then.
When the mass of one pedestrian i mi increases, this person is most likely out of the room very
fast. He rushes through everything, so he is out very soon.
The reason there isn’t one m such that for all i mi D m is that otherwise the system can come in
an equilibrium. This means at least two people near the exit exert exactly the same force on each
other. This results in an escape time of C1.

5.3.2 The reaction time �

The physical meaning of the reaction time � is how fast a pedestrian can react to change, to go
in his preferred direction as much as possible. The larger the reaction time � gets, the less the
pedestrian goes in the preferred direction. This means the person experiences greater effects
from the forces fi j and fiW .

5.3.3 The social repulsion force A

When the social repulsion force A increases, the pedestrians are repelled by other people more.
This results in pedestrians being more uniformly distributed over the room. The pedestrians are
influenced by the repulsion towards other pedestrians more than they are influenced by the desire
to go out of the room. This obviously results in higher escape times.

5.3.4 The mean radius of a pedestrian i ri

When the mean radius of a pedestrian i ri increases, the pedestrians can’t go out of the gate
as easy as before. This results in higher escape times. When the mean radius of a pedestrian
i ri becomes larger than RG

2 , the pedestrians can’t leave the room anymore, so the escape time
becomes C1.
The reason there isn’t one r such that for all i ri D r is that otherwise the system can come in an
equilibrium. This means at least two people near the exit exert exactly the same force on each
other. This results in an escape time of C1.

5.3.5 The radius of the comfort zone B

When the radius of the comfort zone B becomes larger, the pedestrians are more comfortable
with other pedestrians nearby. This means the social repulsion becomes smaller, so the pedes-
trians cluster more.
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5.3.6 The pushing coefficient k

When the pushing coefficient k increases, the ’bump’ when two pedestrians walk into each other
becomes more intense. This results in a system that is highly kinetic, the pedestrians’ change in
vi becomes larger.

5.3.7 The kinetic friction �

When the kinetic friction � decreases, the people can move next to each other more easily. The
movement next to each other becomes smoother.

5.3.8 The room height RH

Varying the room height RH has really straightforward effects. If RH gets larger, the room get
larger, so the pedestrians have more space to move around. Furthermore, the people need to
averagely walk farther than in a smaller room. Also, in a smoky room, the people can look as far
as always, so they see the exit later. That’s why the pedestrians need to depend on the other
pedestrians more, because they can possibly see the exit.

5.3.9 The room width RW

The effects of varying the room width RW are the same as varying the room height RH .

5.3.10 The gate size RG

Increasing the gate size RG decreases the escape time. This is because more pedestrians can
escape the room at the same time. Decreasing the gate size RG has the opposite effect. When
the gate size RG becomes smaller than 2ri , the diameter of pedestrian i , this pedestrian cannot
escape the room, so the escape time becomes C1.
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5.4 Results

5.4.1 Organization of simulation scenarios

In this section, we thoroughly test the influence of some parameters. These parameters are n, v0
i

and p. We test these parameters in four scenarios:

� In Scenario 1, the pedestrians try to escape a room with clear air. This means they can
see the exit from the start, so rsee D C1 m. Because they see the exit from the start, the
pedestrians don’t need to depend on the other pedestrians to find the exit, so p D 0. The
preferred speed v0

i is 0:8 ms�1, which is the preferred speed of a calm but steady escape.
The initial number of pedestrians inside the room n varies from 10 to 150, so from an almost
empty room to a very crowded room.

� In Scenario 2, the pedestrians also try to escape a room with clear air, so again rsee D C1
m. Because they see the exit from the start, the pedestrians don’t need to depend on the
other pedestrians to find the exit, so again p D 0. The initial number of pedestrians inside
the room n is 50, so this is a fairly uneventful room. The preferred speed v0

i varies from 0:5
ms�1 to 8 ms�1, so from a calm pace to an intense rush.

� In Scenario 3, the pedestrians try to escape a room with light smoke. This means they
can see only 10 m far, so rsee D 10 m. The preferred speed v0

i is 0:8 ms�1, which is
the preferred speed of a calm but steady escape. The effect of the panic p is tested for the
values of 0:1 to 0:9, so from almost no adapting to other pedestrians to almost only adapting
to other pedestrians and not thinking yourself. This effect is tested for the initial number of
pedestrians inside the room n varying from 10 to 150, so from an almost empty room to a
very crowded room.

� In Scenario 4, the situation is the same as in Scenario 3, except for the condition of the
smoke. The smoke is heavy in this simulation, so the pedestrians can only see 5 m far. This
means rsee D 5 m. The other parameters are the same, so v0

i D 0:8 ms�1, p varies from
0:1 to 0:9 and n varies from 10 to 150.

In the following subsections, we discuss the results of Scenario 1 to Scenario 4, measured in
various quantities:

� The escape time T , the time it takes for all the pedestrians to get out of the room,

� The escape flow F VD n
T , the number of pedestrians escaping per unit time,

� The mean velocity v, the mean velocity of the pedestrians inside the room. This is calculated
by adding up the magnitudes of the velocities of all pedestrians during every time step, and
dividing the result by the number of pedestrians and the number of time steps,

� The preferred speed portion � VD v
v0

i
, the mean velocity divided by the preferred velocity,

� The interaction quantity E , a quantity that measures the magnitude and occurrence of in-
teractions between pairs of pedestrians and a pedestrian and the wall. This is calculated
by each time step multiplying the distance moved by pedestrian i with the force exerted on
pedestrian i and adding these values for all pedestrians. The result is then divided by the
number of time steps,

� The mean interaction quantity OE VD E
n , the interaction quantity divided by the number of

pedestrians.
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5.4.2 Scenario 1: Clear air, varying n

In this scenario, the people are in a room with clear air, so they can see the exit from the start, so
rsee D C1. That way, they don’t have to depend on the other people, so p D 0. The preferred
speed v0

i D 0:8 ms�1.
In Figure 5.4, we see the escape time T of Scenario 1.

Figure 5.4: Scenario 1: The escape time T vs. n.

As we see in Figure 5.4, this escape time T grows linearly when the number of pedestrians n
grow. With T � 175 s for n D 150, this yields a very dangerous situation already, even when the
room’s air is clear.

In Figure 5.5, we see the escape flow F of Scenario 1.

Figure 5.5: Scenario 1: The escape flow F vs. n.

As we see in Figure 5.5, the escape flow F grows when the number of pedestrians n grow. This
is because the 15 m �15 m room needs to be crossed before the pedestrians can escape it. The
way is relatively longer for lower values of n.

In Figure 5.6, we see the mean velocity v of Scenario 1.
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Figure 5.6: Scenario 1: The mean velocity v vs. n.

As we see in Figure 5.6, the mean velocity v decreases when the number of pedestrians n in-
creases. This effect is caused by the fact that more people means more collisions, so the people
can’t go as fast as they want. The motion of pedestrians is hindered by the other pedestrians.

In Figure 5.7, we see the interaction quantity E of Scenario 1.

Figure 5.7: Scenario 1: The interaction quantity E vs. n.

As we see in Figure 5.7, the interaction quantity E grows fast when the number of pedestrians n
increase. This is because the interactions grow both in quantity and in quality as n grows; pedes-
trians come across more other pedestrians and pedestrians experience a higher force working
on them.
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In Figure 5.8, we see the mean interaction quantity OE of Scenario 1.

Figure 5.8: Scenario 1: The mean interaction quantity OE vs. n.

As we see in Figure 5.8, the mean interaction quantity OE grows linearly when the number of
pedestrians n increases.
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5.4.3 Scenario 2: Clear air, varying v0
i

In this scenario, the pedestrians also try to escape a room with clear air, so again rsee D C1 m.
Also p D 0. The initial number of pedestrians inside the room n is 50. The preferred speed v0

i
varies from 0:5 ms�1 to 8 ms�1, so from a calm pace to an intense rush.
In Figure 5.9, we see the escape time T of Scenario 2.

Figure 5.9: Scenario 2: The escape time T vs. v0
i .

As we see in Figure 5.9, there is a clear drop in the escape time T for the preferred velocity
v0

i equal to 1 ms�1. When the preferred velocity v0
i increases after 1 ms�1, the escape time T

increases as well. This is the so-called ’faster-is-slower ’ effect. Due to the uncontrollable urge to
rush to the exit, the pedestrians don’t look to each other anymore, so they bash into each other.
That way, the exit is clogged very fast, so the pedestrians can’t escape very fast.
These results are in accordance with the results in the paper by Helbing, Farkas and Vicsek [6],
Figure 1c.

In Figure 5.10, we see the escape time T in twenty runs of simulation of Scenario 2.

Figure 5.10: Scenario 2: Various runs of the escape time vs. v0
i .

As we see in Figure 5.10, for the preferred velocity v0
i low, the variance of the escape time T is

low (the blue *). For v0
i high, the variance of the escape time T is high (the red *).

These results are in accordance with the results in the paper by Helbing, Farkas and Vicsek [6],
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Figure 1b.

In Figure 5.11, we see the mean velocity v of Scenario 2.

Figure 5.11: Scenario 2: The mean velocity v vs. v0
i .

As we see in Figure 5.11, the mean velocity v grows as the preferred velocity v0
i grows. Com-

bining the results in Figure 5.9 and in Figure 5.11 makes that we know that with v0
i in the higher

regions of values, the pedestrians move fast on their spot.

In Figure 5.12, we see the preferred speed portion � of Scenario 2.

Figure 5.12: Scenario 2: The preferred speed portion � vs. v0
i .

As we see in Figure 5.12, for v0
i D 1 ms�1, the pedestrians can walk almost as fast as they want

to. The effect of this is seen in Figure 5.9, where we see that the pedestrians escape the room
faster with v0

i D 1 ms�1.
These results are in accordance with the results in the paper by Helbing, Farkas and Vicsek [6],
Figure 1d.

In Figure 5.13, we see the interaction quantity E of Scenario 2.
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Figure 5.13: Scenario 2: The interaction quantity E vs. v0
i .

As we see in Figure 5.13, the interaction quantity E is unpredictable. Varying the preferred
velocity v0

i doesn’t seem to influence the total energy E .
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5.4.4 Scenario 3: Light smoke, varying n and p

In this scenario, the pedestrians try to escape a room with light smoke. This means rsee D 10 m.
The preferred speed v0

i is 0:8 ms�1. The effect of the panic p is tested for the values of 0:1 to 0:9,
so from almost no adapting to other pedestrians to almost only adapting to other pedestrians and
not thinking yourself. This effect is tested for the initial number of pedestrians inside the room n
varying from 10 to 150, so from an almost empty room to a very crowded room.
We see the escape time T in Figure 5.14, in Figure 5.15 and in Figure 5.16.

Figure 5.14: Scenario 3: The escape time T vs. n and p.

As we see in Figure 5.14, if we fix the panic parameter p, the escape time T increases linearly
when the number of pedestrians n increases. For case where the number of pedestrians n low,
the panic parameter p plays a large role. The pedestrians have a much lower escape time T
when the panic parameter p is higher. This means they need to pay attention to the other pedes-
trians more. For n in the higher regions, the influence of p is much lower.

Figure 5.15: Scenario 3: The escape time T vs. p with n D 10.

As we see in Figure 5.15, if we fix n D 10, the panic parameter p has a huge effect of the es-
cape time T . If the number of pedestrians n is low, the pedestrians have to depend on the other
pedestrians. Otherwise they will find the exit much slower (see the first kink).
While varying p we see 3-scales behavior. We suspect that the 3-scales behavior appearing in
Figure 5.15 are finite-size effects. It would be interesting to study the effects by means of non-
dimensionalization techniques.
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Figure 5.16: Scenario 3: The escape time T vs. p with n D 150.

As we see in Figure 5.16, if we fix n D 150, the panic parameter p doesn’t have a big effect on
the escape time T . It seems the strategy to get out of a crowded room as fast as possible is to
totally not pay attention to other pedestrians or to pay intense attention to other pedestrians.

In Figure 5.17, we see the escape flow F of Scenario 3.

Figure 5.17: Scenario 3: The escape flow F vs. n and p.

As we see in Figure 5.17, the escape flow F is nearly the same for every value for p in the higher
regions of n. When the value of n is low however, the escape flow is dramatically low for p is low.
The pedestrians almost don’t escape.
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In Figure 5.18, we see the mean speed v of Scenario 3.

Figure 5.18: Scenario 3: The mean speed v vs. n and p.

As we see in Figure 5.18, the mean speed v decreases when the number of pedestrians n in-
creases. This is because there are more interactions in that situation, so the pedestrians can’t
go as fast as they want to be. The panic parameter p doesn’t have much influence on the mean
speed v.

In Figure 5.19, we see the interaction quantity E of Scenario 3.

Figure 5.19: Scenario 3: The interaction quantity E vs. n and p.

As we see in Figure 5.19, the interaction quantity E obviously increases when the number of
pedestrians n increases. The quality and quantity of collisions increase, so E increases. The
higher the panic parameter p is, the higher the interaction quantity E becomes. This is because
with higher values of p, the pedestrians move in the same direction more, so there will be more
collisions between pedestrians.
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In Figure 5.20, we see the mean interaction quantity OE of Scenario 3.

Figure 5.20: Scenario 3: The mean interaction quantity OE vs. n and p.

As we see in Figure 5.20, if we fix p, the mean interaction quantity OE increases linearly. The
mean interaction quantity OE increases when p increases.
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5.4.5 Scenario 4: Heavy smoke, varying n and p

In this scenario, the pedestrians try to escape a room with heavy smoke. This means rsee D 5 m.
The preferred speed v0

i is 0:8 ms�1. The effect of the panic p is tested for the values of 0:1 to 0:9,
so from almost no adapting to other pedestrians to almost only adapting to other pedestrians and
not thinking yourself. This effect is tested for the initial number of pedestrians inside the room n
varying from 10 to 150, so from an almost empty room to a very crowded room.
We see the escape time T of Scenario 4 in Figure 5.21, in Figure 5.22 and in Figure 5.23.

Figure 5.21: Scenario 4: The escape time T vs. n and p.

As we see in Figure 5.21, the results are somewhat unpredictable. Nevertheless, we still see the
panic parameter p has a big effect on the escape time T . For smaller values of n, the higher p
gets, the lower T gets. In the higher regions of n, this is still the case.
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Figure 5.22: Scenario 4: The escape time T vs. n and p.

Figure 5.23: Scenario 4: The escape time T vs. n and p.

As we see in Figure 5.22 and in Figure 5.23, if we fix either n D 10 or n D 150, the escape time
T is highly dependent on the panic parameter p. The optimal value for p is between 0:7 and 0:8.
The idea is to almost fully depend on other pedestrians, that way your escape time T is expected
to be the smallest.

In Figure 5.24, we see the escape flow F of Scenario 4.
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Figure 5.24: Scenario 4: The escape flow F vs. n and p.

As we see in Figure 5.24, the escape flow F increases when the number of pedestrians n in-
creases. The panic parameter p has as effect that the higher p gets, the higher the escape flow
F gets.

In Figure 5.25, we see the mean speed v of Scenario 4.

Figure 5.25: Scenario 4: The mean speed v vs. n and p.

As we see in Figure 5.25, both the number of pedestrians n and the panic parameter p have
influence on the magnitude of the mean speed v. The influence of p is that the higher it gets, the
higher v gets. If n increases, then v decreases.

In Figure 5.26, we see the interaction quantity E of Scenario 4.
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Figure 5.26: Scenario 4: The interaction quantity E vs. n and p.

As we see in Figure 5.26, the interaction quantity E depends both on the number of pedestri-
ans n and on the panic parameter p. The interaction quantity E increases when the number of
pedestrians n increases. More pedestrians means more interactions. When the panic parameter
p increases, the interaction quantity E also increases.

In Figure 5.27, we see the mean interaction quantity OE of Scenario 4.

Figure 5.27: Scenario 4: The mean interaction quantity OE vs. n and p.

As we see in Figure 5.27, the mean interaction quantity OE experiences the same influences as
the interaction quantity E .
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5.4.6 Comparison of Scenario 3 and Scenario 4

In this subsection, we compare Scenario 3, the escape from the room with light smoke, and Sce-
nario 4, the escape from the room with heavy smoke.

In Figure 5.28, we see the mean escape time T of Scenario 3 and Scenario 4, with the number
of pedestrians n D 10. The red line belongs to Scenario 3 and the blue line belongs to Scenario 4.

Figure 5.28: Comparison between Scenario 3 and Scenario 4, T vs. p, n D 10.

As we see in Figure 5.28, the escape time T is much higher in Scenario 4 than it is in Scenario
3. Furthermore, the panic parameter p seems to influence the system the same in both scenarios.

In Figure 5.29, we see the mean escape time T of Scenario 3 and Scenario 4, with the number
of pedestrians n D 150. The red line belongs to Scenario 3 and the blue line belongs to Scenario
4.

Figure 5.29: Comparison between Scenario 3 and Scenario 4, T vs. p, n D 150.

As we see in Figure 5.29, the escape time T is higher in Scenario 4 than it is in Scenario 3.
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Furthermore, the panic parameter p seems to influence the system in Scenario 4 more than p
influences the system in Scenario 3. For p � 0:7, the escape time T is only 50 apart.

5.4.7 Summary of results resembling real life observations

During all scenarios, the following results have been found. They resemble real life observations
perfectly.

� The arc-shaped group of pedestrians near the exit. When the pedestrians try to escape,
they want to get to the exit of the room as close as possible. This results in an arc-shaped
group of pedestrians near the exit.

� The ’faster-is-slower’ effect. When the pedestrians rush towards the exit, they will escape
slower than when the pedestrians walk towards the exit with a calm pace. This deadly
human behavior is very dangerous in emergency situations.

� The periodically escaping pedestrians. It is observed that when one pedestrians escapes,
almost always one or two other pedestrians also escape. This observation is caused by the
fact that most of the time two pedestrians push against each other near the exit, resulting in
the situation where neither of them can escape. When one of the two pedestrians escapes,
the other pedestrian escapes too.

� The difference in individual behavior and group behavior. When the pedestrians are in a
smoky room, and if they want to have the best chance of survival, they can best follow
other pedestrians around, because they are most likely either seeing the exit, or following
someone who is.
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6 Conclusion

6.1 Mathematical soundness of model (P )

(P ) is a pedestrian escape model. This model is checked for mathematical correctness, which
means that the system has exactly one classical solution. We show this by using the Picard-
Lindelöf Theorem (see Theorem 1).
We non-dimensionalize (2.1) to (2.4) using the algorithm described in Curtis, David Logan, and
Parker [15]. We reduce the number of parameters in (2.1) to (2.4) as much as possible. We show
this using the Buckingham Pi Theorem (Theorem 3).

6.2 Simulation

Our simulations recovered most of the work done by Helbing, Farkas and Vicsek in [6]. We tested
the influence of parameters, and discovered real-life situations.

6.2.1 Influence of parameters

The influence of all parameters except for the number of pedestrians n, the preferred speed v0
i ,

the seeing radius rsee and the panic parameter p is described in this subsection.

� When the mass mi of pedestrian i increases for all i , the effect of the forces fi j and fiW
decreases.

� When the reaction time � decreases, the pedestrians tend to move in the preferred direction.

� When the social repulsion force A increases, the pedestrians become more uniformly dis-
tributed over the room, which results in higher escape times.

� When the radius of pedestrian i ri increases, they can’t go out of the gate as easy as before.
This results in higher escape times.

� When the radius of the comfort zone B increases, the pedestrians will cluster more.

� When the pushing coefficient k increases, the impact when two pedestrians move into each
other is bigger.

� When the kinetic friction � increases, the people can’t move next to each other as easy as
before.
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� When the room height RH and/or the room width RW increase, then the effects are pretty
straightforward. If one of them increases or both of them increase, the pedestrians have
more space to move around. Also, the average distance to the exit is larger, so the escape
time increases. In a smoky room, the effects are bigger.

� When the gate size RG increases, more pedestrians can leave the room at the same time.

6.2.2 Description of various scenarios

In the first scenario, the pedestrians try to escape a room with clean air. This means they can
see the exit from the start, and they don’t have to depend on other people. The preferred speed
is that of a calm group. The initial number of pedestrians inside the room varies.
In the second scenario, the pedestrians also try to escape a room with clean air. The difference
between this scenario and the first scenario is that in this scenario the preferred speed varies,
and not the initial number of pedestrians.
In the third scenario, the pedestrians try to escape a room with light smoke. This means the
pedestrians can only see 10 m far. The preferred speed is again that of a calm group. The panic
parameter (the parameter that indicates how good the pedestrians follow each other) and the
initial number of pedestrians vary.
In the fourth scenario, the pedestrians again try to escape a room with smoke, but now this is
heavy smoke, so the pedestrians can only see 5 m far. The other conditions are the same as in
the third scenario.

6.2.3 Organization of the results

The influence of the varying parameters in the scenarios is tested with the following test quanti-
ties.

(a) The escape time T , the time it takes for all the pedestrians to get out of the room;

(b) The escape flow F VD n
T , the number of pedestrians escaping per unit time;

(c) The mean velocity v, the mean velocity of the pedestrians inside the room. This is calculated
by adding up the magnitudes of the velocities of all pedestrians during every time step, and
dividing the result by the number of pedestrians and the number of time steps;

(d) The preferred speed portion � VD v
v0

i
, the mean velocity divided by the preferred velocity;

(e) The interaction quantity E , a quantity that measures the magnitude and occurrence of in-
teractions between pairs of pedestrians and a pedestrian and the wall. This is calculated
by each time step multiplying the distance moved by pedestrian i with the force exerted on
pedestrian i and adding these values for all pedestrians. The result is then divided by the
number of time steps;

(f) The mean interaction quantity OE VD E
n , the interaction quantity divided by the number of

pedestrians.

6.2.4 Results of various scenarios

A summary of the results of scenarios 1 to 4 is described below (the scenario is denoted by the
number preceding the explanation and the test quantities are denoted by the letter preceding the
explanation).
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1(a) The escape time T grows linearly with the number of pedestrians n.

1(b) The escape flow F also grows with the number of pedestrians n.

1(c) Because of the increase of interactions, the mean velocity v decreases with the number of
pedestrians n.

1(e) The interaction quantity E grows very fast when the number of pedestrians n increases.

1(f) The mean interaction quantity OE grows linearly with the number of pedestrians n.

2(a) The escape time T is the lowest for the preferred velocity v0
i equal to 1 ms�1. When v0

i
is lower, the pedestrians move too slow to escape fast, and when v0

i is higher, the exit is
clogged too fast.

2(c) The mean velocity v grows with the preferred velocity v0
i .

2(d) The preferred speed portion � is the highest for the preferred velocity v0
i equal to 1 ms�1.

2(e) The interaction quantity E is not influenced by the preferred velocity v0
i .

3(a) If we fix n low, the escape time T is lower for higher values of the panic parameter p; the
pedestrians need to follow other pedestrians for the lowest possible escape time. If we fix n
high, the escape time T doesn’t depend on the panic parameter p very much.

3(b) If we fix n low, the escape flow F is higher for higher values of the panic parameter p. If we
fix n high, the escape flow F doesn’t depend on the panic parameter p.

3(c) The mean velocity v decreases when the number of pedestrians n increases. Also, the
panic parameter p doesn’t influence v.

3(e) The interaction quantity E increases when the number of pedestrians n increases. Also, E
increases with the panic parameter p.

3(f) The effects on the mean interaction quantity OE are the same as the effects on the interaction
quantity E .

4(a) If we fix n (low or high), the panic parameter p has massive effects on the escape time T .
The optimal value of p is around 0:75. Higher values of p have a better effect than lower
values of p.

4(b) If we fix n (low or high), higher values of p result in a higher escape flow F .

4(c) The higher p gets, the higher the mean velocity v gets. Also, the higher n gets, the lower
the mean velocity v gets.

4(e) When p or n increases, more interactions between pedestrians are present. Therefore the
interaction quantity E increases when p or n increases.

4(f) The effects on the mean interaction quantity OE are the same as the effects on the interaction
quantity E .

- We compare Scenario 3 and Scenario 4. The escape time T is higher for Scenario 4.
Furthermore, the effect of the panic parameter p is larger in Scenario 4, especially for
higher numbers of pedestrians n.
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6.2.5 Connections to real-life evacuation scenarios

The results obtained from the simulations of scenarios resemble the observations in the real
world. We will list the main results:

� The arc-shaped group of pedestrians near the exit. When the pedestrians try to escape,
they want to get to the exit of the room as close as possible. This typically results in an
arc-shaped group of pedestrians near the exit.

� The ’faster-is-slower’ effect. When the pedestrians rush towards the exit, they will escape
slower than when the pedestrians walk towards the exit with a calm pace. This deadly
human behavior is very dangerous in emergency situations.

� The periodically escaping pedestrians. It is observed that when one pedestrians escapes,
almost always one or two other pedestrians also escape. This observation is caused by the
fact that most of the time two pedestrians push against each other near the exit, resulting in
the situation where neither of them can escape. When one of the two pedestrians escapes,
the other pedestrian escapes too.

� The difference in individual behavior and group behavior. When the pedestrians are in a
smoky room, and if they want to have the best chance of survival, they can best follow
other pedestrians around, because they are most likely either seeing the exit, or following
someone who is.

6.3 Panic situations in real life

The situation where panic breaks out in an overcrowded place is very dangerous. You can hear
several stories in the news over the past few years where many lives have been lost due to panic.
In Dutch news, the New Years Eve disaster in bar ’De Hemel’ [13] was very bad. 5 percent of the
attendees died, and over two thirds suffered from serious burns.
Another example from the last few years is the Love Parade disaster in 2010 [5]. The Love Parade
is an electronic dance music festival in Duisburg. In 2010, many people were entering the only
entrance, a 240-meter tunnel. Too many people entered, and the entrance didn’t open in time.
That way, many persons were crushed between other people or between the walls and people.
21 people died and over 500 people were injured.
During the introduction week of the TU Eindhoven in 2013, there was the LichtIn party in the
‘Klokgebouw’ (see Figure 6.1). We can imagine what a disaster it would be if fire would have
broken out there.
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Figure 6.1: The LichtIn party in the ‘Klokgebouw’.

Many disasters like this happen. That’s why in this paper a model for crowds in panic is checked,
to give hints about the safest human behavior. Following these hopefully prevents these kind of
disasters in the future.

6.4 Future research

For future research, other shaped rooms can be investigated. Is a circular room better than a
rectangular one? How do pedestrians need to walk to minimize escape times? How optimal
is the use of exits when multiple exits are in the room? How do possible objects in the room
influence the escape times?
While varying p in the simulations we see 3-scales behavior. We suspect that the 3-scales
behavior appearing in Figure 5.15 are finite-size effects. It would be interesting to study the
effects by means of non-dimensionalization techniques.
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A Pseudocode description of the numerical
scheme used in Chapter 5

The pseudocode described in Algorithm 1 to Algorithm 3 is a simple representation of the code
used in the simulation program. The results of this simulation are described in Chapter 5.

Data: Time step dt ,
Pedestrian array P of length n.
Result: Escape time T .
Place n pedestrians inside the room;
while There are pedestrians inside the room do

forall the P [i] inside the room do
calcNextSpeed(P [i],dt);
calcNextLocation(P [i],dt);
if the location of P [i] is out of the room and P [i] didn’t go through the gate then

Set the location of P [i] to inside the room;
Set the speed of P [i] to 0 in the direction of the wall;

end
if the location of P [i] is out of the room and P [i] went through the gate then

Set the status of P [i] to out;
end

end
T  T C dt ;

end
return T ;

Algorithm 1: The description of the code used in the simulation.

Data: Pedestrian P with
Previous speed vP ,
Mass m P ,
Preferred speed vpre f ,
Preferred direction epre f ,

Reaction speed � ,
Time step dt .
Result: Updated speed vupdate.

vupdate  vP C dt
�
vpre f epre f�vP

� C
P

j 6Di fi j
m P

C
P

W fiW
m P

�
;

return vupdate;
Algorithm 2: The description of calcNextSpeed(P,dt).
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Data: Pedestrian P with
Previous location xP ,
Speed vP ,

Time step dt .
Result: Updated location xupdate.
xupdate  xP C vP � dt ;
return xupdate;

Algorithm 3: The description of calcNextLocation(P,dt).
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