Inferential iterative learning control: internal stability and performance aspects

Citation for published version (APA):

Document status and date:
Published: 01/01/2014

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Inferential Iterative Learning Control: Internal Stability and Performance Aspects
Joost Bolder¹, Tom Oomen¹, Sjirk Koekebakker², Maarten Steinbuch¹
¹ Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology group, The Netherlands
² Océ Technologies, P.O. Box 101, 5900 MA Venlo, The Netherlands

1 Background inferential control

In many physical systems, the variables that define the performance cannot be measured directly. This may for instance stem from constraints on sensor cost, or from physical limitations in sensor placement. The performance has to be inferred from the measured variables with models, and is therefore inherently determined by model accuracy, see [1] for inferential control in the process industry, and [2] for identification and robust inferential control of mechatronics systems.

2 Application in printing systems

An example of a system where the performance cannot be measured directly is the Medium Positioning Drive (MPD) in a wide-format printer [3], see Fig. 1. In this system, the measured variable is the motor position, and performance is defined as the paper position at the carriage. The carriage holds the printheads. The dynamics of the MPD cause differences between the measured and performance variables.

Recently, a sensor has been introduced that can measure the performance directly, but offline in a batch-to-batch fashion, see Fig. 1. This measurement is therefore not suited for traditional real-time feedback control. However, it is well-suited for batch-wise control strategies such as Iterative Learning Control (ILC) [4].

3 From traditional feedback to inferential iterative learning control structures

A conventional control structure where performance variables \(y \) are distinguished from measured variables \(z \) is depicted in Fig. 2. The objective of a feedback controller is to achieve tracking in the measured variable \(e_y \), where the objective of the ILC is to achieve tracking in the performance variable \(e_z \), by updating the control signal \(f \). The ILC and feedback controller have conflicting objectives in this extended configuration, as is illustrated with the example simulation presented in Fig. 3.

The objective is to analyze this control setting in terms of stability and performance. Furthermore, existing inferential control structures are extended with ILC to provide a solution to the conflicting objectives.

This work is supported by Océ Technologies, Venlo, The Netherlands

References