EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Problem solving using process algebra considered insightful

Citation for published version (APA):
Groote, J. F., & de Vink, E. P. (2017). Problem solving using process algebra considered insightful. (Computer
science reports; Vol. 1702). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2017

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Feb. 2025

https://research.tue.nl/en/publications/20c8551b-6e20-4786-bcfe-a7eac4bdb603

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Problem solving using process algebra
Considered insightful

J.F. Groote and E.P. de Vink

17/02

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra
prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 17-02
Eindhoven, June 2017

Problem solving using process algebra
considered insightful

J.F. Groote and E.P. de Vink

Department of Mathematics and Computer Science, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Email: {J.F.Groote, E.P.d.Vink}R@tue.nl

Abstract

Process algebras with data, such as LOTOS, PSF, FDR, and mCRLZ2, are very suitable to model
and analyse combinatorial problems. Contrary to more traditional mathematics, many of these
problems can very directly be formulated in process algebra. Using a wide range of techniques,
such as behavioural reductions, model checking, and visualisation, the problems can subsequently
be easily solved. With the advent of probabilistic process algebras this also extends to problems
where probabilities play a role. In this paper we model and analyse a number of very well-known
— yet tricky — problems and show the elegance of behavioural analysis.

1 Introduction

There is great joy in solving combinatorial puzzles. Numerous books have appeared describing those
[10, 29]. And although some of the puzzles are easy to solve once properly understood, they are real
brain teasers for most people.

Many of these puzzles are about behaviour. Classical mathematics and logic hardly provides an
effective context to solve such problems systematically. This is apparent if one considers classical
analysis. But also fields like graph theory, combinatorics, combinatorial optimisation, probability
theory, and even logic all require a translation of the problem to the mathematical domain that is
generally not completely straightforward.

This is where process algebras come in. Process algebras are very suited to describe the be-
haviour often present in the puzzles mentioned. In the last decades numerous tools have been
developed to provide insight in the behaviour denoted in a process algebra expression as it quickly
became clear that the behaviour described in such an expression can be rather intricate. This gave
rise to hiding of actions, behavioural reductions, various visualisation techniques, as well as modal
logics to express and validate properties about behaviour.

The early 1970s can be seen as the period when process algebra was born. Both Milner and
Beki¢ wrote a treatise expressing that actions were important to study behaviour [2, 21, 23]. It
was the seminal work of Milner in 1981 that put process algebras on the map [24]. This had quite
some effect. For instance Hoare presented CSP in 1978 as an advanced programming language [17],
whereas he presented it in 1985 as a process algebra [18]. The work on CSP has been developed
into the impressive family of tools, FDR, that are based on failure divergence refinement [27, 11].

The work on CCS also inspired the design of the language LOTOS [20] as a language to model
communication services and protocols. A major role in its development was played by the Technische
Hogeschool Twente (now Twente University) first in the completely formal standardisation of the
language, with Brinksma as main editor, and later in activities to build tools around it. Notable are
the extensive formal specifications of standard protocols, but also of manufacturing systems, that
were developed at the time [5, 6, 28]. A toolset that stemmed from this period, today still capable of
analysing LOTOS specifications, and which has become quite powerful throughout the years, is the
CADP toolset [9]

The Algebra of Communicating Processes ACP was developed in Amsterdam [3, 4] around the
same time. In order to model practical systems first PSF (Protocol Specification Formalism) was
designed [22], which was followed by the simpler formalism pCRL [15], later renamed to mCRLZ2,
which was also directed towards analysis of practical specifications [14]. All these LOTOS-like
formalisms use data based on abstract equational datatypes. mCRL2 also supports time and these
days also probabilities.

An important feature of mCRL2 is the support for modal logics in the form of the modal mu-
calculus with time and data, which are very useful to investigate properties of the described be-
haviour. Temporal logic, with the operators [F] and [P], stems from [26]. Pnueli pointed to the
applicability of formal logics to analyse behaviour [25]. For mCRL2 we are using the modal mu-
calculus which is essentially Hennessy-Milner logic [16] with fixed points [19]. An alternative is
the use of linear time logic (LTL [25]) or computational tree logic (CTL [7]), but these are far less
expressive than the modal mu-calculus [12].

In this paper we show process algebraic models of a number of well-known mathematical puzzles.
Most people find them hard to solve when they are confronted with them for the first time. We show
that the puzzles can straightforwardly be modelled into process algebra and using the standard
analysis tools, such as behavioural reduction, model checking, and visualisation, the solutions to
these puzzles are easy to obtain.

The major observation is that process algebra is an industrious mathematical discipline in itself
due to its capacity to understand worldly phenomena. Traditionally, there is a tendency to think
that process algebras, or more generally formal methods, are intended to analyse software, proto-
cols, and complex distributed algorithms. But the application to examples as in this paper shows
that process algebra has an independent stand.

In this paper we use the language mCRL2, as we are acquainted with it, and it offers all we
need, namely the capacity to express behaviour, data structures, probabilities, and time (although
we do not exploit time here), and modal formulas. mCRL2 has a very rich toolset offering a whole
range of analysis methods, far more than we use for the examples in this article. In the following we
do not explain the tool or the formalism. For this we refer to [14] or the webpage www.mcr12.org.
The examples in this article are part of the mCRL2 distribution downloadable from this website.

2 The problem of the wolf, goat, and cabbage

A problem that is well-known, at least to the people in Western Europe, is the problem of the wolf,
the goat, and the cabbage: A traveller walks through stretched Russian woods together with a
friendly wolf, a goat, and a cabbage. Hungry and worn out, this companionship arrives at a river
that they must cross. There is a small boat only sufficient to carry our traveller and either the wolf,
the goat, or the cabbage. More than two do not fit. Crossing is complex as when left unsupervised by
the traveller, the wolf will eat the goat, while the goat will eat the cabbage. The question to answer
is whether it is possible to cross the river without the goat or the cabbage being eaten.

This problem is quite old. It already appeared in a manuscript from the eight century AD [1].
Dijkstra wrote one of his well-known EWDs addressing this problem [8]. The description in mCRL2
can be found in Table 1. The description uses two shores, left and right, which are essentially sets
of ‘items’, i.e. sets of wolf, goat, and/or cabbage, resting at that shore. The opposite shore is given by
a function opp. An update function is used to remove items from one side and add it to the other.

The behaviour of crossing the river is given by the process WGC. It has two parameters, namely
the shores s comprised of the sets of items at each side of the river, and the current position p of
the traveller. Observe that mCRL2 accommodates the use of data types such as sets which allows
to neatly describe the shores as a pair of sets containing items. The first two pairs of lines of the
WGC process express that if the wolf and the goat, or the goat and the cabbage are at the side
opposite of the traveller, something is eaten, expressed by the action is_eaten. The symbol §
indicates that the process stops after this action. Note that actions are typeset in a different font
for easy recognition.

sort Item =struct wolf | goat | cabbage;
Position = struct left | right;
Shores = struct shores(Set(Item), Set(Item));

map opp : Position — Position;
items : Shores x Position — Set(Item);

update : Shores x Position x Item — Shores;

var s,t:Set(Item);
i:Item;

eqn opp(left) =right, opp(right) = left;
items(shores(s,t),left) = s, items(shores(s,t),right) =t;
update(shores(s,t),right,i) = shores(s — {i},t + {i});
update(shores(s,t),left,i) = shores(s + {i},t — {i});

proc WGC(s:Shores, p : Position) =

{wolf, goat} < items(s,opp(p)) —
is_eaten(goat)-6 +

{goat, cabbage} < items(s,opp(p)) —
is_eaten(cabbage)-6 +

—({wolf, goat} < items(s,opp(p))) A ~({goat, cabbage} < items(s,opp(p))) —

move(opp(p))-WGC(s,opp(p)) +

Y i-Item -(i €items(s, p)) —
move(opp(p),i)-WGC(update(s,opp(p),i),opp(p)) +

items(s,right) = {wolf, goat, cabbage} —

done-0;

init WGC(shores({wolf , goat, cabbage}, @), left);

Table 1: An mCRL2 description of the problem of the wolf, the goat, and the cabbage

move(left,goat)

move(right,goat)

o~ R
move(right)
move(left) move(

()
move(left,wolf) move(right,cabbage)

move(left,goat)

ove(right
m0\(/’e€‘l t

mova&(le move(left

m’oc\geb(l;gg‘%fg ,wolf)

move(left,goat

Figure 1: The state space of the problem with the wolf, the goat and the cabbage

The third group of lines of the process expresses that the traveller can move to the other shore
alone, by performing the move action. To reduce the number of transitions somewhat, we only
allow this when no item can be eaten. The fourth group of lines expresses that the traveller can
transport one item from one shore to the other. The last group of lines states that if the complete
companionship arrives at the right shore, the action done can take place. Initially, the traveller,
wolf, goat, and cabbage are at the left shore.

As the state space of this behaviour is small, it can nicely be visualised. See Figure 1. At the
top we find the initial state, which is green. The goal state is coloured blue at the bottom. All states
where an action is_eaten can be done are coloured red. They go to the white deadlocked state. All
labels is_eaten are removed for readability. States where nothing is eaten are green, yellow, or
blue. It is easy to see that there are paths from the green to the blue state through yellow states by
moving counter clock wise through the graph. One of such paths is

move(right,goat) - move(left) -move(right,wolf) -move(left,goat) -
move(right,cabbage) - move(left) -move(right,goat) - done.

Inspection of the state space also reveals that there is one other essential solution to this problem,
namely one where the places of the wolf and the cabbage are exchanged. This is no surprise as
the wolf and the cabbage are have symmetrical roles. Note that it is also clear why this puzzle is
considered tricky. Each solution requires the counter intuitive step of moving the goat three times
across the river, an insight that requires humans to overcome their default mental set.

For this puzzle we are lucky that the number of states is sufficiently small to be depicted. In
general this is not the case. Fortunately, modal formulas are a marvellous tool to investigate prop-
erties of behaviour. In this case we want to know whether there is a path from the initial state to a
state where the action done is possible, while no action is_eaten is possible in any of the states on
this path. In the modal mu-calculus as available in the mCRL2 toolset this is expressed by

pX .(((true)X v (done)true) A 7 (Ji:Item.is_eaten(i))true).

The use of the minimal fixed point guarantees that the action done must be reached in a finite
number of steps. The modality (true) says that an arbitrary action can be done. Checking this

Figure 2: An 1tsview visualisation of crossing a rope bridge and the game tic-tac-toe

formula instantly yields true confirming that the traveller can safely reach the other shore with all
the companions intact.

3 Crossing a rope bridge in the dark

The second problem is similar in nature to the first but not as well-known. Four people of different
age arrive at a rope bridge across a canyon in the night. They need to cross the bridge as quickly as
possible. Each person has its own time to cross the bridge, namely, 1, 2, 5, and 10 minutes. Unfortu-
nately, the bridge can only carry the weight of two persons simultaneously. To make matters worse,
they only carry one flashlight. Crossing without the flashlight is impossible. So, the flashlight needs
to be returned for others to cross. The question is to find the minimal time in which the group of
people can cross the bridge.

The problem is modelled in mCRL2 in Table 2. The location of each person is now given by a
function location : Person — Position. The function update construction is used to change a function.
The expression location[p — s] represents a new function which is equal to location except that
person p is now mapped to position s. The parameter ime records the total time to cross the bridge
and light_position keeps track of the place of the flashlight.

The behaviour consists of three summands, and is a direct translation of the problem. The first
summand expresses that if all people are at the far side, a ready action is done, reporting the time
to cross. The second summand expresses that one person crosses the bridge, and the third summand
indicates that two people move to the other side together.

Natural numbers in mCRL2 are specified using abstract data types and have no upper bound.
This means that the state space of this problem is infinite as there are inefficient crossing strategies
that can take arbitrarily large amounts of time. Although not strictly necessary, as mCRL2 is very
suitable to investigate infinite state spaces, it is generally a wise strategy to keep state spaces finite
and even as small as reasonably possible. Solving the problem naively, quickly leads to a crossing
time of 19 minutes. We therefore limit the maximal crossing time to 20 minutes and focus on in the
question whether crossing under 19 minutes is possible.

The generated state space is somewhat larger, namely 470 states and 1607 transitions, which
disallows inspection as an explicit graph. Fortunately, we can use the tool 1t sview, which can

sort Position = struct this_side | far_side;
Person =struet p1 | p2 | p3 | p4;

map travel_time: Person — N;
initial_location : Person — Position;
other_side : Position — Position;

max_time :N;

var p :Person;

eqn initial_location(p) = this_side;
travel_time(p1) = 1; travel_time(pg) = 2;
travel_time(ps) = 5; travel_time(p4) = 10;
other_side(this_side) = far_side;
other_side(far_side) = this_side;

max_time = 20;

proc X (light_position : Position, location : Person — Position, time :N) =
time < max_time AV p:Person.location(p) =~ far_side —
ready(time)-6 +
Zp:Person .
time < max_time A location(p) = light_position —
move(p,other_side(location(p)))-
X (other_side(light_position),
location[p — other_side(location(p))],
time + travel_time(p)) +
Zp,p’:Person .
p # p’ Atime < max_time A location(p) = light_position Alocation(p') = light_position —
move(p, p’,other_side(location(p)))-
X (other_side(light_position),
location[p — other_side(location(p))l[p’ — other_side(location(p'))],

time + max(travel_time(p),travel_time(p')));

init X (this_side,initial_location,0);

Table 2: The problem of crossing a rope bridge specified in mCRL2

visualise the structure of large transition systems [13], in some case up to millions of states. Pictures
made by 1t sview appear to be rather pointless pieces of art at first glance, but when investigated,
provide remarkable insight in the depicted behaviour.

The behaviour of crossing the rope bridge is depicted in Figure 2 at the left. The initial state is at
the top. The layering corresponds to the number of crossings of the bridge. The individually visible
states and structures that grow to the side of the picture indicate deadlocks, i.e., states where the
crossing time exceeds 20. For instance, the states at the end of the outward moving structure at the
top right indicate that the bound of 20 minutes can be exceeded in three crossings. The red disk
(the one but lowest) is the disk containing the action ready(17). There are no ready actions with a
lower argument. This indicates that the bridge can be crossed in 17 minutes.

ltsview is not the most efficient way to inspect which ready actions are possible. By searching
for actions while generating the state space it becomes immediately clear that the actions ready(17),
ready(19) and ready(20) are possible. A trace to ready(17) is

move(pg, p1,far_side) -move(p1,this_side) -move(py, ps3,far_side)-
move(pg,this_side) -move(pa, p1,far_side)-ready(17).

This trace shows why this puzzle is hard to solve. The idea to save time to let the two slowest
persons cross simultaneously does not easily come to mind for most people.

Using modal logics we can also easily check that 17 is the most optimal crossing time. The
following formula that says that there is a path to the action ready(17) and not to any action
ready(n) for any n < 17, is readily proven to hold

(true*-ready(17)) true A Vn:N.(n < 17 — [true™-ready(n)]false).

4 A winning strategy in tic-tac-toe

Finding winning strategies in games can also be neatly expressed and studied in process theory.
One of the simplest well-known games that can be analysed in this way is tic-tac-toe. Essentially,
tic-tac-toe consists of an 3 by 3 board where two players alternatingly put a naught or cross at empty
positions on the board. The first player that has three of naughts or crosses in a row, horizontally,
vertically or diagonally, wins the game.

Table 3 contains a rather natural formalisation of this game. The playing board is given by a
function from pairs of naturals to pieces. A less elegant formulation uses lists of lists of pieces, but
for state space generation this is much faster. A player moves by putting its own piece at an empty
position on the board using the action put. The action win is used to indicate that one of the players
did win. The most complex function is did_win(p, b), checking whether player p, represented by a
piece, did win the game.

The total behaviour of this game has 5479 states and 17109 transitions, which is not very large.
This behaviour is depicted in Figure 2 at the right. The red dot at the right middle indicates where
player ‘naught’ can win. There are more such states two disks lower, but they are hardly visible in
the figure.

Although the transition system for this game is relatively small, it makes no sense to investigate
it directly to determine whether the player that starts the game has a winning strategy. Fortunately,
modal formulas come to the rescue. The following formula says that there is a way to put a cross on
the board after which player ‘cross’ wins, or for every counter move by player ‘naught’, X must hold
again, saying that also in that case player ‘cross’ has a winning move. The use of a minimal fixed
point operator expresses that winning must happen within a finite number of steps. As there are
only a limited number of moves in tic-tac-toe this is always satisfied, hence a maximal fixed point
operator could also have been used.

pX .(3i,j:N*.put(cross, i,)) ((win(cross))true v [3i, j : N*.put(naught, i,)1 X)

sort Piece = struct empty | naught | cross;
Board =Nt — N* — Piece;

map empty_board :Board;
did_win : Piece x Board — B;

other : Piece — Piece;

var b :Board;
p : Piece;
i,j:N%;
eqn empty_board(i)(j) =empty;
other(naught) = cross; other(cross) = naught;
did_win(p,b) =
Fi:NY.G<3ABE)D) =pAbE)2)=pAbE)3)=p))V
37 :NY.(G<3AbQ)G) = p AbER)G) = p ABB)J) = p)) v
B =pAb2)2)=pAbB)3)=p)V
(bMB)=p Ab2)2)Ap = b(3)1) = p);

proc TicTacToe(board : Board, player : Piece) =
did_win(other(player),board) —
win(other(player))-6
o (X; j:pos (i <3 A j < 3Aboard(i)(j) = empty) —
put(player,i,j)-
TicTacToe(board[i — board(i)[j — playerl],other(player)));

init TicTacToe(empty_board,cross);

Table 3: An mCRL2 formalisation of tic-tac-toe

sort Doors=struct d; | ds | ds;
init dist door_with_prize : Doors[1/3].
dist initially_selected_door_by_player : Doors[1/3].
player_collects_prize(initially_selected_door_by_player # door_with_prize)-0;

Table 4: An mCRL2 specification of the Monty Hall quiz

Wi
I

player_collects_prize(true) player_collects_prize(false)

Figure 3: The reduced probabilistic transition system for the Monty Hall problem

5 The Monty Hall problem

Processes algebras have seen various extensions. One of these extensions is the addition of prob-
abilities, which gives rise to the interesting combination of nondeterministic and probabilistic be-
haviour. This opens up the field of probabilistic puzzles to be modelled. The Monty Hall problem
is a very nice example, because when understood is it very simple, yet most people fail to solve it
properly.

The Monty Hall problem is a tv-quiz from the 1960s. A player can win a prize when he opens
one of three doors with the prize behind it. Initially, the player selects a door with probability %
Subsequently, the quizmaster opens one of the remaining doors showing that it does not hide the
prize. The question is whether the player should switch doors to optimise his winning probability.

The problem is expressed in the specification in Table 4. The process only consists of a single
action player_collects_prize(b) where the boolean argument b is true if a prize is collected. The
dist keyword is used to indicate a probability distribution. The process dist x : S[D(x)].p indicates
that variable x of sort S is selected with probability distribution D(x). One of the doors hides the
prize. This door is represented by the variable door_with_prize which can have values d1, dg, or ds,
each with a probability of % Initially, the player selects a door. If the player decides to switch doors
after the quizmaster opened a door, the player has a prize if and only if the initially chosen door did
not carry the prize. This is expressed by the use of not equal sign (%) in the argument of the action.
If the player decides to stick to the door that was initially selected, the not equal sign should be
replaced by equality.

The resulting state space has 9 transitions each with a probability %. It is convenient to apply a
probabilistic bisimulation reduction on the transition system. This leads to the reduced transition
system in Figure 3. It is clearly visible that the action player_collects_prize(true) can be done
with probability % Thus, when switching doors the probability of obtaining a prize is :2;, opposed
to % when not switching doors.

6 The problem of the lost boarding pass

More complex probabilistic problems can become rather tricky. Yet modelling the problem in mCRL2
is again pretty straightforward. The tools can subsequentely help to obtain the required answer.

A particular intriguing puzzle is that of the lost boarding pass as it has a remarkable answer,
defying the intuition of most people trying to solve the problem: There is a plane with 100 seats.
The first passenger boarding the plane lost his boarding ticket and selects a random chair. Each
subsequent passenger will use his own seat unless it is already occupied. In that case he also selects
a random seat. The question is what the probability is that the last passenger entering the plane
will sit in his own seat.

The behaviour is modelled in Table 5. The number N is the number of seats, which is set
to 100. The behaviour of entering the plane is characterised by two parameters. The parameter
number_of _empty_seats indicates how many seats are still empty in the plane. The parameter
everybody_has_his_own_seat indicates that all remaining seats correspond exactly with the places

map N:N7¥;
eqn N =100;

proc Plane(everybody_has_his_own_seat : B, number_of _empty_seats :N) =
(number_of _empty_seats = 0) —
last_passenger_has_his_own_seat(everybody_has_his_own_seat)-6
¢ (enter-
dist b : B[if (everybody_has_his_own_seat, if (by, 1,0),
if (bg,1 — 1/number_of _empty_seats,1/number_of _empty_seats))].
by — select_seat-
Plane(everybody_has_his_own_seat,number_of _empty_seats —1)
o dist b1 : Blif (b1, /number_of _empty_seats,1— 1/number_of _empty_seats)].
select_seat:
Plane(if (number_of _empty_seats = 1,everybody_has_his_own_seat,b1),

number_of _empty_seats — 1));

init dist b : B[if (b, 1N, (N — 1)/N)].Plane(b,N — 1);

Table 5: An mCRL2 specification of the lost boarding pass

for all passengers that still have to board the plane. Except if the number of empty seats is 0. In
that case it indicates whether the last passenger got its own chair.

Initially the first passenger selects his seat at random. With probability % he will end up at his
own seat. This corresponds with the situation where b is true. In the main process Plane, when all
passengers have boarded the plane, the action last_passenger_has_his_own_seat indicates by its
argument whether the last passenger got his own seat. If not all passengers boarded the plane yet,
a next passenger enters (indicated by the action enter) and then it can either be that he finds his
own seat free (bg is true) or occupied (by is false). If everybody is sitting at is own seat this next
passenger will for sure find his own seat free. Otherwise, he finds his own seat free with probability
1 - 1/number_of _empty_seats as exactly one person is sitting on a wrong seat.

When this next passenger finds his own seat free he can sit down. This is done by the action
select_seat with two parameters. But if his own seat is occupied, he must randomly select a
seat for himself. If he selects the seat such that all passengers are sitting on their assigned seats
(modulo a permutation) this is indicated in the variable b1, where this passenger has probability
1/number_of _empty_seats of doing this.

The generated state space turns out to be linear in the size of the number of seats. It has 791
states and 790 transitions. Modulo strong probabilistic bisimulation there are 399 states and 398
transitions. It has the shape of a long sequence, as depicted in Figure 4. Detailed exploration of
this figure indicates that whence all the remaining passengers correspond to the remaining seats
the last passenger will certainly get his own chair. Yet it is not obvious what the probability for
the last passenger to get his own chair is. For this we use two — at present experimental — tools?.
The first one applies a probabilistic weak trace reduction. The obtained state space, see Figure 5, is
rather non-exciting but indicates clearly that the probability of the last passenger to end up at its
own chair is % The remarkable property of this exercise is that this probability is independent of
the number of seats.

There is another way to obtain this probability by employing modal formulas over reals. These
formulas are derived from the modal mu-calculus but deliver a real number, instead of a boolean.

IThe tools are by Olav Bunte (evaluation of modal formulas on probabilistic transition systems) and Ferry Timmers
(probabilistic trace reduction).

10

: L _own_seat(false)

last_passejg

Figure 4: The state space of the problem of the lost boarding pass with 100 passengers

last_passenger_has_his_own_seat(true) last_passenger_has_his_own_seat(false)

Figure 5: The state space of the problem of the lost boarding pass modulo weak trace equivalence

11

In this case the formula is just

(true* -last_passenger_has_his_own_seat(true))true

which is possible as the state space is deterministic. Needless to say that the verification of this
formula yields % as well.

References

[1]

[2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

Alcuinus Flaccus. Propositiones ad Acuendos Juvenes. Manuscript. 780.

H. Bekic. Towards a mathematical theory of processes. Technical Report TR25.125, IBM
Laboratory, Vienna, 1971. Also appeared in Programming Languages and Their Definition,
C.B. Jones (ed.), Lecture Notes in Computer Science 177, Springer, 1984.

J.A. Bergstra and J.W. Klop. Fixed point semantics in process algebras. Report IW 206, Math-
ematisch Centrum, Amsterdam, 1982.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and
Computation. 60(1/3):109-137, 1984.

F. Biemans and P. Blonk. On the formal specification and verification of CIM architectures
using LOTOS. Computers in Industry 7(6), 491-504, 1986.

E. Brinksma and G. Karjoth. A specification of the OSI transport service in LOTOS. In Protocol
Specification, Testing and Verification IV. Y. Yemini, R.E. Strom and S. Yemini (eds), pp. 227—
251. North-Holland, 1984.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Logic of Programs, D. Kozen (ed.), pp. 52-71. Lecture Notes
in Computer Science 131, Springer, 1981.

E.W. Dijkstra. Pruning the search tree. EWD1255. Available at www.cs.utexas.edu/
users/EWD/transcriptions/EWD12xx/EWD1255.html. Accessed June 2017.

H. Garavel, F. Lang R. Mateescu, and W. Serwe. CADP 2011: A toolbox for the construction
and analysis of distributed processes. International Journal on Software Tools for Technology
Transfer, 15(2):89-107, 2013

M. Gardner. My best mathematical and logic puzzles. Dover, 1994.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A.W. Roscoe. FDR3 — A Modern Refine-
ment Checker for CSP. In Tools and Algorithms for the Construction and Analysis of Systems,
E. Abraham and K. Havelund (eds.), pp. 187-201. Lecture Notes in Computer Science 8413,
Springer, 2014.

S. Cranen, J.F. Groote and M.A. Reniers. A linear translation from CTL* to the first-order
modal mu-calculus. Theoretical Computer Science 412(28):3129-3139, 2011.

J.F. Groote and F. van Ham. Interactive visualization of large state spaces. International Jour-
nal on Software Tools for Technology Transfer 8(1):77-91, 2006.

J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communication Systems. The MIT
Press 2014. (See for the toolset www.mcrl2.org).

J.F. Groote and A. Ponse. The syntax and semantics of yCRL. Report CS-R9076, CWI, Amster-
dam, 1990.

12

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

M.C.B. Hennessy and R. Milner. On observing nondeterminism and concurrency. In Proceed-
ings of the 7th colloquium on Automata, Languages and Programming (ICALP’80), J.W. de
Bakker and J. van Leeuwen (eds.), pp. 299-309. Lecture Notes in Computer Science 85,
Springer, 1980.

C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666—
677, 1978.

C.A.R. Hoare. Communicating sequential processes. Prentice Hall International, 1985.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science, 27:333-354,
1983.

ISO. Information processing systems — open systems interconnection — LOTOS — a for-
mal description technique based on the temporal ordering of observational behaviour
ISO/TC97/SC21/N DIS8807, 1987.

R. Milner. An approach to the semantics of parallel programs. In Proceedings Convegno di
Informatica Teorica, Pisa, pp. 283-302, 1973.

S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Informaticae,
XI11:85-139, 1990.

R. Milner. Processes: A mathematical model of computing agents. In Proceedings Logic Collo-
quium 1972, H.E. Rose and J.C. Shepherdson (eds.), pp. 158173. North-Holland, 1973.

R. Milner. A calculus of communicating systems. Lecture Notes in Computer Science 92,
Springer, 1979.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th annual IEEE symposium
on foundations of computer science, pp. 46-57. IEEE, Piscataway, 1977.

A.N. Prior. Time and modality. Oxford University Press, 1957.
A.W. Roscoe. Understanding concurrent systems. Springer, 2010.

M. van Sinderen, I. Ajubi, and F. Caneschi. The application of LOTOS for the formal descrip-
tion of the ISO session layer. In Proceedings of the First International Conference on Formal
Description Techniques, K.J. Turner (ed.), pp. 263—-277. North-Holland, 1989.

P. Winkler. Mathematical Puzzles. A connaisseur’s collection. A.K. Peters, 2004.

13

Science Reports Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2012):

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system
12/07 Dirk Fahland and Robert Priifer Data and Abstraction for Scenario-Based Modeling with Petri Nets
12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
Model-Driven Development
12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
R.J. Bril, J.J. Lukkien and T. Nolte - extended version —
12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
Johan J. Lukkien and data compression
12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins

Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
Mathijs Schuts, Jozef Hooman
and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice
and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems
and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
and Tim A.C. Willemse

13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms
A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably
Harold Weffers and Bharat Bhargava Secure Software

13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications

managed by a Component Framework
13/08 Mark van den Brand and Jan Friso Groote ~ Software Engineering: Redundancy is Key

13/09 P.J.L. Cuijpers Prefix Orders as a General Model of Dynamics

mailto:wsinsan@tue.nl

14/01

14/02

14/03

14/04

14/05

14/06

14/07

14/08

14/09

14/10

15/01

15/02

15/03

15/04

15/05

15/06

17/01

17/02

Jan Friso Groote, Remco van der Hofstad

and Matthias Raffelsieper
Maurice H. ter Beek and Erik P. de Vink

Frank Peeters, lon Barosan, Tao Yue
and Alexander Serebrenik

Jan Friso Groote and Hans Zantema

Hrishikesh Salunkhe, Orlando Moreira
and Kees van Berkel

D. Bera, K.M. van Hee and
H. Nijmeijer

Reinder J. Bril and Jinkyu Lee
Fatih Turkmen, Jerry den Hartog,
Silvio Ranise and Nicola Zannone

Ana-Maria Sutii, Tom Verhoeff
and M.G.J. van den Brand

M. Stolikj, T.M.M. Meyfroyt,
P.J.L. Cuijpers and J.J. Lukkien
Onder Babur, Tom Verhoeff and
Mark van den Brand

Various

Hrishikesh Salunkhe, Alok Lele,

Orlando Moreira and Kees van Berkel

J.G.M. Mengerink, R.R.H. Schiffelers,
A. Serebrenik, M.G.J. van den Brand

Sarmen Keshishzadeh and
Jan Friso Groote

Jan Friso Groote and Anton Wijs
Ammar Osaiweran, Jelena Marincic
Jan Friso Groote

J.F. Groote and e.P. de Vink

On the Random Structure of Behavioural Transition Systems

Using mCRL2 for the analysis of software product lines

A Modeling Environment Supporting the Co-evolution of
User Requirements and Design

A probabilistic analysis of the Game of the Goose

Buffer Allocation for Real-Time Streaming on a
Multi-Processor without Back-Pressure

Relationship between Simulink and Petri nets

CRTS 2014 - Proceedings of the 7th International Workshop

on Compositional Theory and Technology for Real-Time Embedded Systems
Analysis of XACML Policies with SMT

Ontologies in domain specific languages — A systematic literature review

Improving the Performance of Trickle-Based Data Dissemination in
Low-Power Networks

Multiphysics and Multiscale Software Frameworks: An Annotated Bibliography

Proceedings of the First International Workshop on Investigating Dataflow
In Embedded computing Architectures (IDEA 2015)

Buffer Allocation for Realtime Streaming Applications Running on a
Multi-processor without Back-pressure

Evolution Specification Evaluation in Industrial MDSE Ecosystems

Exact Real Arithmetic with Pertubation Analysis and Proof of Correctness

An O(m log n) Algorithm for Stuttering Equivalence and Branching Bisimulation

Assessing the quality of tabular state machines through metrics

Problem solving using process algebra considered insightful

	TITEL.PG17-02
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 17-02

	Blanco
	festschrift1
	Blanco
	PUBL.LS4csr 2012 tm

