Flow synthesis of diaryliodonium triflates

Citation for published version (APA):

DOI:
10.1021/acs.joc.7b01346

Document status and date:
Published: 17/11/2017

Document Version:
Typeset version in publisher’s lay-out, without final page, issue and volume numbers

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Flow Synthesis of Diaryliodonium Triflates

Gabriele Laudadio, † Hannes P. L. Gemoets, † Volker Hessel, ‡ and Timothy Noël*†

Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Supporting Information

ABSTRACT: A safe and scalable synthesis of diaryliodonium triflates was achieved using a practical continuous-flow design. A wide array of electron-rich to electron-deficient arenes could readily be transformed to their respective diaryliodonium salts on a gram scale, with residence times varying from 2 to 60 s (44 examples).

INTRODUCTION

In recent years, the applications of aryl electrophile sources, such as hypervalent iodinated compounds, have become increasingly important in synthetic organic chemistry. In particular, diaryl-α-iodanes, also known as diaryliodonium salts, have been extensively used in numerous arylation procedures.

Such diaryliodonium salts can be considered as both strong electrophiles and powerful oxidants, which allows chemists to reach higher oxidation states with Pd or Cu complexes and to carry out the targeted transformations at milder reaction conditions. Furthermore, diaryliodonium salts can be used as an electrophilic aryl source to couple with a wide variety of nucleophiles, allowing the preparation of sulfides, ethers, amines, esters, and nitro compounds as well as the α-arylation on enolates.

Given the apparent importance of diaryliodonium salts, many syntheses have been developed to prepare these compounds.

The most practical reaction conditions involve the reaction of iodoarenes with a suitable oxidant to give I+III followed by a ligand exchange with an arene. An improved one-pot version was developed by Olofsson et al. using meta-chloroperbenzoic acid (m-CPBA) as the oxidant and trifluoromethanesulfonic acid (TfOH) to yield diaryliodonium triflates directly.

However, such oxidative reaction conditions are typically very exothermic and thus present a substantial safety risk when carried out on a large scale. Herein, we present a flow synthesis of diaryliodonium triflates which is fast and scalable and provides a broad substrate scope.

RESULTS AND DISCUSSION

To quantify the thermodynamic data of highly exothermic reactions, reaction calorimetry is typically used. In order to rapidly determine the unknown reaction enthalpy (ΔH_rx) of the diaryliodonium salt synthesis, we developed an operationally simple adiabatic continuous-flow device that allowed us to calculate ΔH_rx values via in-line ΔT measurements (see Scheme 1c). Hereto, a custom-made glass tube was designed, and the cross-micromixer and microreactor were placed inside. High vacuum was applied to the system in order to create adiabatic conditions (for more details about the setup, see the Supporting Information).

We commenced our investigations by designing a suitable continuous-flow setup (Figure 1). Our design consists of three individual feeds that allow separation of the hazardous reagents and control of the reaction stoichiometry by adjusting the individual flow rates. The different reagent streams were merged in a cross-micromixer and subsequently introduced in a perfluoroalkoxy capillary reactor (PFA, 750 μm i.d., 0.1–3.0 mM). To avoid microreactor clogging, the mixer and reactor were operated at 125 °C, ensuring complete reaction in ~1 min.
were submerged in an ultrasonic bath. The reaction between 4-iodotoluene (1a) and toluene (2a) in the presence of m-CPBA and TfOH was selected as the benchmark for our reaction optimization studies (see the Supporting Information). Optimal reaction conditions were obtained with 1.1 equiv of 2a and m-CPBA, and 2 equiv of TfOH and dichloroethane (DCE) as the solvent in a 100 μL microreactor. The reaction was remarkably fast and was completed within 2 s residence time. Notably, the desired di-p-tolyliodonium triflate (3a) could be obtained on a gram scale (2.04 g, 89%) in excellent yield as pure and simple to handle crystals (Figure 2). Analogous batch experiments resulted in a lower yield (69% yield) of 3a as an inferior-quality powder precipitate.

With the optimized conditions in hand, we sought to demonstrate the generality of our flow protocol (Table 1). Within a 2 s residence time, a diverse set of both symmetrical and unsymmetrical diaryliodonium triflates was synthesized in fair to excellent yield on a gram scale (5–10 mmol scale).

Symmetrical diaryliodonium triflates were readily produced in good to excellent yields (3a–3c). Using different (hetero)-arenes, unsymmetrical diaryliodonium salts were synthesized (3d, 3e). Furthermore, the use of sterically hindered mesitylene was well-tolerated, providing access to a diverse set of aryl mesityliodonium triflates (3f–3p). These compounds are of high interest in cross-coupling and C–H arylation chemistry because they allow selective transfer of the functionalized aryl groups to the substrate. Aryl iodides bearing strong electron-
donating substituents (e.g., anisoles) or electron-rich heteroaromatic iodides (e.g., thiophene) were incompatible with the reaction conditions. However, these diaryliodonium triflates could be accessed when using the mesityl iodide with the corresponding (hetero)arenes, albeit in a lower yield (3q and 3r).

Aryl iodides with electron-withdrawing functional groups proved particularly challenging. However, after a minor reoptimization of the reaction conditions (see the Supporting Information), it was found that these compounds could be obtained in good yields by increasing the reactor volume to 3 mL and using an excess of m-CPBA (1.3 equiv) and TiOH (3.0 equiv). Aryl iodides bearing ortho, meta, and para electron-withdrawing substituents (e.g., halogens, nitro, esters, ketones) were all well-tolerated, yielding the targeted diaryliodonium triflates in synthetically useful yields (32–90%) (Table 2). Also, 3-iodopyridine (3x and 3ai) and 1-iodoanthraquinone (3s) could be subjected to the flow conditions, resulting in the desired compounds in fair yields (19–47% yield).

Finally, with the aim of developing a flow protocol utilizing cheap and easily available starting materials, we chose to oxidize simple arenes using molecular iodine to yield the corresponding symmetrical diaryliodonium triflates. Optimal results were obtained using iodine as the limiting reagent along with 3 equiv of m-CPBA, 4.1–10 equiv of arene, and 5 equiv of TiOH (see the Supporting Information). Moderate to excellent yields were obtained for the synthesis of symmetrical diaryliodonium salts (36–90%) (Table 3). In most cases, the para-para isomer being the most abundant (Table 3).

Table 3. Scope of Symmetric Diaryliodonium Triflates Derived from Arenes and Molecular Iodine

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Ring A</th>
<th>Ring B</th>
<th>Triphenyliodonium Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Reaction conditions. Feed 1: 2.0 mmol of I, 10 equiv of 2 in 10 mL of DCE. Feed 2: 6.0 mmol of m-CPBA in 10 mL of DCE. Feed 3: 10 mmol of TiOH in 10 mL of DCE. Syringe pumps were used to add reagents to the reactor. Throughput distribution, feed 1/feed 2/feed 3 was 1:1:2. 4.1 equiv of arene was used. Selectivity at room temperature: ortho-para 90%, para-para 5%, and ortho-ortho 5%. Selectivity at 0 °C: ortho-para >96%.

In summary, we have developed a fast, scalable, and safe continuous-flow protocol to prepare various symmetrical and unsymmetrical diaryliodonium triflates. Our protocol displayed a broad substrate scope of electron-rich to electron-deficient substrates (44 examples, yields up to 90%). Notably, the reaction could be completed in a matter of seconds, allowing the preparation of the diaryliodonium triflate on a gram scale with excellent purity in a time-efficient fashion. We believe that the developed flow protocol will find widespread use in both academia and industry given the synthetic relevance of diaryliodonium salts.

EXPERIMENTAL SECTION

All reagents and solvents were used as received without further purification. All capillary tubing and microfluidic fittings were purchased from IDEX Health & Science. Used syringes were from BD Discardit II or NORM-JECT. Syringe pumps were purchased from Chemix Inc. model Fusion 200 Touch. Used ultrasonicator was VWR USC300T. "H (400 MHz), "C (100 MHz), and "F (376 MHz) NMR spectra were recorded at ambient temperature using a Bruker Avance 400 or Mercury 400 spectrometer. "H NMR spectra are 1021102/acsjoc.7b01346

J. Org. Chem. XXXX, XXX, XXX-XXXX
reported in parts per million (ppm) downfield relative to CDCl$_3$ (7.26 ppm) and DMSO-d$_6$ (2.50 ppm); all 1H NMR spectra are reported in ppm relative to CDCl$_3$ (7.27 ppm) and DMSO-d$_6$ (39.52 ppm). HRMS (ESI/APCI multimode ionization source, TOF-MS) analyzer was measured with direct infusion in a 50:50 flow of 5 mM NH$_4$OAc in water/MeOH. NMR data were processed using the MestReNova 9.0.1 software package. Known products were characterized by comparison to the corresponding 1H NMR and 13C NMR from literature. Melting points were determined with a Buchi B-540 capillary melting point apparatus in open capillaries and are uncorrected. The names of all products were generated using the PerkinElmer ChemBioDraw Ultra v.12.0.2 software package.

General Procedure for the Diaryliodonium Salt Synthesis with Electron-Neutral and Electron-Rich Substrates (GP1). A 25 mL oven-dried volumetric flask was charged with 4-iodotoluene (1a, 1.09 g, 5.5 mmol) and toluene (2a, 506 mg, 5.5 mmol). Next, a second 25 mL oven-dried volumetric flask was charged with meta-chloroperbenzoic acid (≤77%) (1.24 g, 6 mmol). Both the flasks were fitted with a septum and were degassed by alternating vacuum and argon backfill. Dichloroethane was added via syringe to make a 25.0 mL solution. Both the solutions were charged in 30 mL NORM-JECT syringes and were fitted to a single syringe pump. Afterwards, a 50 mL oven-dried volumetric flask fitted with a septum was charged with 20 mL of dichloroethane. Trifluoromethanesulfonic acid (0.9 mL, 10.0 mmol) was added carefully with a syringe, and dichloroethane was added via syringe to make a 20.0 mL solution. The resulting mixture was kept in the freezer (−26 °C) overnight. Formed crystals were filtered off and washed with a minimum of diethyl ether.

General Procedure for the Diaryliodonium Salt Synthesis with Iodine (GP3). A 10 mL oven-dried volumetric flask was charged with iodine (4, 507 mg, 2 mmol) and the arene (2, 8.2–20 mmol). Next, a second 10 mL oven-dried volumetric flask was charged with meta-chloroperbenzoic acid (≤77%) (1.5 g, 6 mmol). Both the flasks were fitted with a septum and were degassed by alternating vacuum and argon backfill. Dichloroethane was added via syringe to make a 10 mL solution in both flasks. Both the solutions were charged in 10 mL NORM-JECT syringes and were fitted to a single syringe pump. Afterwards, a 25 mL oven-dried volumetric flask was fitted with a septum and was degassed by alternating vacuum and argon backfill and charged with around 15 mL of dichloroethane. Trifluoromethanesulfonic acid (0.9 mL, 10.0 mmol) was added carefully with a syringe, and dichloroethane was added via syringe to make a 20.0 mL solution. The solution was charged in a 20 mL NORM-JECT syringe and fitted to a second syringe pump. All syringes were connected to a PEEK cross-mixer (500 μl id.) and subsequently connected to the inlet of the 3 mL PFA capillary tubing (750 μm id.). The cross-mixer and microreactor were submerged in a sonication bath, and sonication was applied during operation. The first syringe pump (containing two syringes) was operated at 2 × 0.75 mL/min, and the second syringe pump was operated at 1.5 mL/min (total 3 mL/min flow rate, 60 s residence time). The outlet of the reactor was fitted to an argon-filled round-bottom flask with septum via a needle connection. An argon-filled balloon was attached in order to ensure a constant pressure. The reaction mixture was evaporated under reduced pressure at the rotavap. Residue was dissolved in diethyl ether and evaporated again at the rotavap. This procedure was repeated five times, and then the residue was dissolved in a minimum amount of acetone, followed by addition of diethyl ether until a cloudy solution was obtained. Next, the resulting mixture was kept in the freezer (−26 °C) overnight. Formed crystals were filtered off and washed with a minimum of diethyl ether.

Di-p-tolyliodonium Trifluoromethanesulfonate (3a). GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as gray solids (2.04g, 89%); mp 131−137 °C (lit.18 121−123 °C); 1H NMR (400 MHz, DMSO-d$_6$) δ 8.08−8.56 ppm (m, 4H), 7.31 (d, J = 8.1 Hz, 4H), 2.32 (s, 6H); 13C{1H} NMR (101 MHz, DMSO-d$_6$) δ 142.5, 135.0, 132.3, 120.8 (q, J = 322.3 Hz), 113.1, 27.1 B. Diphenoxyliodonium Trifluoromethanesulfonate (3b).** GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as off-white solids (1.89 g, 88%). GP3 was used on a 4 mmol scale. Purification by recrystallization in diethyl ether afforded the product as off-white solids (1.55 g, 90%); mp 169−173 °C (lit.19 172−174 °C); 1H NMR (400 MHz, DMSO-d$_6$) δ 8.27−8.82 ppm (d, J = 8.0 Hz, 4H), 7.64 (t, J = 7.4 Hz, 2H), 7.52 (t, J = 7.7 Hz, 4H); 13C{1H} NMR (101 MHz, DMSO-d$_6$) δ 135.2, 132.1, 131.8, 120.8 (q, J = 322.3 Hz), 116.5. Bis(4-fluorophenyl)iodonium Trifluoromethanesulfonate (3c).** GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as gray solids (1.35 g, 58%). GP3 was used on a 4 mmol scale. Purification by recrystallization in diethyl ether afforded the product as off-white solids (1.34 g, 72%): mp 168−170 °C (lit.20 168−170 °C); 1H NMR (400 MHz, DMSO-d$_6$) δ 8.39−8.22 ppm (m, 4H), 7.42 (t, J = 8.9 Hz, 4H); 13C{1H} NMR (101 MHz, DMSO-d$_6$) δ 164.4 (d, J = 251.5 Hz), 138.4 (d, J = 9.1 Hz), 122.7 (q, J = 322.6 Hz), 119.8, 119.6, 111.6 (d, J = 3.0 Hz); 19F NMR (376 MHz, DMSO-d$_6$) δ −77.75−106.60 (tt, J = 9.0, 5.0 Hz).
recrystallization in diethyl ether afforded the product as white solids (2.09 g, 86%): mp 170−172 °C (lit.19 167−168 °C); 1H NMR (400 MHz, CDCl3) δ 7.50−7.38 (m, 3H), 7.17 (td, J = 7.7, 7.1, 2.0 Hz, 1H), 7.11 (s, 2H), 2.60 (s, 9H), 2.36 (s, 3H), 31P{1H} NMR (100 MHz, CDCl3) δ 144.8, 142.7, 140.4, 137.3, 132.7, 132.6, 130.9, 130.0, 120.5 (q = J = 321.8 Hz), 119.7, 115.8, 74.2, 27.1, 25.0, 21.2.

(2-Fluorophenyl)(mesityli)dionium Trifluoromethanesulfonate (3m).21 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as white solids (307 g, 37%): mp 157−159 °C (lit.21 161−162 °C); 1H NMR (399 MHz, CDCl3) δ 7.81 (dd, J = 7.8, 5.8, 1.6 Hz, 1H), 7.59 (ddd, J = 8.6, 7.2, 5.4, 1.6 Hz, 1H), 7.35−7.19 (m, 2H), 7.08 (s, 2H), 2.68 (s, 3H), 2.34 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 160.5 (d, J = 32.2 Hz), 144.6, 142.7, 136.1, 135.2 (d, J = 8.0 Hz), 130.6, 127.6 (d, J = 3.8 Hz), 130.5, 117.6 (d, J = 21.8 Hz), 98.0 (d, J = 23.9 Hz), 27.1, 22.6, 21.2; 19F NMR (376 MHz, CDCl3) δ −78.35−95.37 to −96.24 (m, 385).

Mesityl(3-methylphenyl)dionium Trifluoromethanesulfonate (3n).21 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as white solids (1.94 g, 80%): mp 169−188 °C (lit.21 171−172 °C); 1H NMR (399 MHz, CDCl3) δ 7.58 (s, 2H), 7.39 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.10 (s, 2H), 2.62 (s, 6H), 2.35 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.6, 143.3, 142.7, 133.6, 132.9, 132.1, 130.5, 129.9, 120.5 (q = J = 320.5 Hz), 120.2, 111.6, 27.3, 21.5, 21.3.

(3,5-Dimethylphenyl)(mesityli)dionium Trifluoromethanesulfonate (3o).21 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as white solids (1.18 g, 72%): mp 200−213 °C; 1H NMR (399 MHz, CDCl3) δ 7.28 (s, 2H), 7.34 (s, 1H), 7.11 (s, 2H), 2.63 (s, 9H, 2.36 (s, 3H)); 19F NMR (376 MHz, CDCl3) δ −88.7, −92.2.

Dimesityl(3-methylphenyl)dionium Trifluoromethanesulfonate (3p).19 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as white solids (1.44 g, 56%): mp 187−190 °C (lit.21 187−188 °C); 1H NMR (400 MHz, CDCl3) δ 7.05 (s, 3H), 2.84 (s, 12H, 2.64 (s, 3H), 2.35 (s, 6H); 13C{1H} NMR (101 MHz, CDCl3) δ 144.0, 142.4, 131.1, 117.4, 26.3, 21.1.

Mesityl(4-methoxyphenyl)dionium Trifluoromethanesulfonate (3q).21 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as dark gray solids (502 mg, 20%): mp 148−150 °C (lit.21 148−151 °C); 1H NMR (400 MHz, CDCl3) δ 7.69−7.57 (m, 2H), 7.10, 6.98−6.85 (m, 8.15 2H), 3.82 (s, 3H), 2.64 (s, 6H), 2.35 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 162.8, 144.7, 142.4, 135.5, 130.6, 121.0, 118.3, 99.9, 55.9, 57.2, 21.3.

Mesityl(4-biphenyl-2-yl)methyl)dionium Trifluoromethanesulfonate (3r).21 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as light brown solids (1.20 g, 50%): mp 160−162 °C; 1H NMR (400 MHz, CDCl3) δ 7.77 (dd, J = 3.8, 12.2 Hz, 1H), 7.61 (dd, J = 5.4, 1.2 Hz, 1H), 7.11−7.04 (m, 3H), 2.73 (s, 4.23 Hz), 2.58 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 144.5, 141.7, 139.7, 135.8, 129.8, 125.7, 120.3 (q = J = 319.6 Hz), 94.3, 27.5, 24.6; 19F NMR (385 MHz, CDCl3) δ 328.9857, found 328.9856.

[9,10-Dioxa-9,10-dihydroanthracen-1-yl]phényldionium Trifluoromethanesulfonate (3s).21 GP1 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as light brown solids (1.29 g, 45%): mp 225−230 °C; 1H NMR (400 MHz, CDCl3) δ 8.47−8.41 (m, 1H), 8.39 (dd, J = 7.0, 2.0 Hz, 1H), 8.30 (dd, J = 7.2, 1.9 Hz, 1H), 8.25 (d, J = 8.3 Hz, 2H), 8.09 (qd, J = 7.3, 1.7 Hz, 2H), 8.02 (t, J = 8.0 Hz, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.2, 1.0 Hz, 1H), 2.52 (s, 3H); 13C{1H} NMR (101 MHz, CDMSO) δ 185.3, 181.2, 144.9, 138.1, 137.3, 136.9, 136.3, 135.7, 133.7, 133.3, 132.2, 131.9, 130.4, 129.9, 128.2, 127.8, 114.7, 108.4, 21.7; 19F NMR (376 MHz, CDCl3) δ −78.35−95.37 to −96.24 (m, 385).

 DOI: 10.1021/acs.joc.7b01346 J. Org. Chem. XXXX, XXX, XXX−XXX
Bis-(4-chlorophenyl)iodonium Trifluoromethanesulfonate (3a).20

GP2 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as light yellow solids (1.03 g, 43%). mp 164–166 °C (lit.167–168 °C); 1H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.0, 1.5 Hz, 1H), 7.39 (td, J = 7.8, 1.5 Hz, 1H), 7.17 (s, 2H), 7.09 (d, J = 8.2, 1.4 Hz, 1H), 2.62 (s, 2H), 2.40 (s, 3H). 13C{1H} NMR (100 MHz, CDCl₃) δ 164.8, 143.5, 135.5, 133.5, 132.1, 131.0, 130.6, 121.2, 121.0, 120.3 (q, J = 319.8 Hz), 112.4, 27.2, 21.3.

Bis-(3-fluorophenyl)iodonium Trifluoromethanesulfonate (3b).21

GP2 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as yellow solids (0.90 g, 38%): mp 170–172 °C (lit.167–168 °C); 1H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0, 1.5 Hz, 1H), 7.39 (td, J = 7.8, 1.5 Hz, 1H), 7.17 (s, 2H), 7.09 (d, J = 8.2, 1.4 Hz, 1H), 2.62 (s, 2H), 2.40 (s, 3H). 13C{1H} NMR (100 MHz, CDCl₃) δ 164.8, 143.5, 135.5, 133.5, 132.1, 131.0, 130.6, 121.2, 121.0, 120.3 (q, J = 319.8 Hz), 112.4, 27.2, 21.3.

Bis-(3-fluorophenyl)iodonium Trifluoromethanesulfonate (3c).22

GP2 was used on a 5 mmol scale. Purification by recrystallization in diethyl ether afforded the product as yellow solids (0.70 g, 29%): mp 170–172 °C (lit.167–168 °C); 1H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0, 1.5 Hz, 1H), 7.39 (td, J = 7.8, 1.5 Hz, 1H), 7.17 (s, 2H), 7.09 (d, J = 8.2, 1.4 Hz, 1H), 2.62 (s, 2H), 2.40 (s, 3H). 13C{1H} NMR (100 MHz, CDCl₃) δ 164.8, 143.5, 135.5, 133.5, 132.1, 131.0, 130.6, 121.2, 121.0, 120.3 (q, J = 319.8 Hz), 112.4, 27.2, 21.3.
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support is provided by the Dutch Science Foundation (NWO) by an ECHO grant (Grant No. 713.013.001) and a VIDI grant for T.N. (Grant No. 14150).

REFERENCES

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b01346.

Description of reaction setup, optimization of reaction conditions and enthalpy measurements and spectral data of all products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: t.noel@tue.nl.

ORCID

Volker Hessel: 0000-0002-9494-1519

Timothy Noël: 0000-0002-3107-6927

Author Contributions

G.L. and H.P.L.G. contributed equally to this work.

Notes

The authors declare no competing financial interest.

The Journal of Organic Chemistry

XXX, XXX, XXX–XXX

DOI: 10.1021/acs.joc.7b01346

J. Org. Chem. XXXX, XXX, XXX–XXX