Dispersity under scrutiny

Citation for published version (APA):

DOI:
10.1021/acsmacrolett.7b00266

Document status and date:
Published: 18/07/2017

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2020
Disperity under Scrutiny: Phase Behavior Differences between Disperse and Discrete Low Molecular Weight Block Co-Oligomers

Bas van Genabeek, Bas F. M. de Waal, Bianca Ligt, Anja R. A. Palmans,* and E. W. Meijer*

Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Supporting Information

ABSTRACT: An experimental study is presented in which we compare the bulk phase behavior of discrete and (partially) disperse diblock co-oligomers (BCOs) with high y—low N. To this end, oligomers of dimethylsiloxane (dDMS) and lactic acid (oLA) were synthesized, each having either a discrete number of repeat units or a variable block length. Ligation of the blocks resulted in dDMS—oLA BCOs with dispersities ranging from <1.00001 to 1.09, as revealed by mass spectroscopy and size exclusion chromatography. The phase behavior of all BCOs was investigated by differential scanning calorimetry and small-angle X-ray scattering. Compared to the well-organized lamellae formed by discrete dDMS—oLA, we observe that an increase in the dispersity of these BCOs results in (1) an increase of the stability of the microphase-segregated state, (2) a decrease of the overall degree of ordering, and (3) an increase of the domain spacing.

Block copolymers (BCPs) represent an important class of self-organizing materials and have been studied for many decades. By far the largest subgroup herein is the diblock copolymers, which comprise two chemically distinct polymeric entities, covalently linked to generate a linear macromolecule. The microphase separation between these polymer blocks is well understood—both theoretically and experimentally—and enables chemists to control morphologies as well as feature sizes, mainly by fine-tuning three parameters: the Flory–Huggins interaction parameter, χ; the average overall degree of polymerization, N; and the volumetric ratio of the two blocks, expressed as the volume fraction of block A (f_a) or block B ($f_b = 1 - f_a$).

The increasing attractiveness of BCPs for emerging fields such as nanopatterning and nanofiltration initiated a desire to decrease the feature sizes and increase the long-range order of the formed morphologies. This has resulted in a plethora of publications describing the behavior of materials containing two highly incompatible blocks, close to or at the border of (micro)phase separation. In a number of cases, these so-called “high y—low N” block copolymers commonly share the use of one silicon-rich block (resulting in both high χ values and a high etching contrast), in combination with very short block lengths (low N). A simple calculation shows that elongation of the A block of an A_{15}-B_{15} type BCP (i.e., a BCP comprising 2 blocks of 15 A monomers and 15 B monomers) by only a single A-monomer already results in an ~3.3% increase in both N and f_b, which consequently may lead to complete alteration of the phase behavior. Inevitably, this also raises the question how the phase behavior is affected by the chain length and composition dispersity, both of which result in chain-to-chain variations in N and f_b around the average values. Of particular consideration is the fact that even low disperse polymers comprise polymer chains differing up to tens of repeat units.

As was nicely summarized by Hillmyer et al.,9 most of the early theoretical work that employs the self-consistent field theory (SCFT) or random phase approximation (RPA) theory to address the effect of dispersity on BCP phase behavior predicts that increased dispersity will lead to an increase of the segregation strength (decrease of χN_{ODT}) over the full f_b range, as well as an increase of the domain spacing (d^*). More recently, Monte Carlo studies were performed by Matsen et al.10,11 for a BCP system that better resembles experimentally accessible low N BCPs, avoiding the approximations needed for SCFT and RPA calculations. The BCPs evaluated in this work were only disperse in one of the two blocks. The computational results confirmed the elaborate experimental work by Hillmyer and co-workers on relatively low MW poly(ethylene-alt-propylene)-b-poly(lactic acid) (PEP–PLA) and poly(styrene-b-isoprene) (PS–PI).12–14 Careful analysis of their phase behavior revealed that all BCPs formed microphase-segregated structures, in which an increased dispersity resulted in an increase of the segregation strength,12 as well as an increase of the domain spacing for polymers with similar average length and composition.13 Interestingly, the uniformity of the structures seemed “independent of the size distribution...
of the polymers that comprise it.14 Still, with an overall dispersity range of 1.1 < $D < 1.4$, a large portion of the low-dispersion playground remains uncovered. Moreover, beautiful work of Chang and co-workers15–17 revealed that HPLC fractionation of various samples of “monodisperse” PS-b-PI ($M_n > 20$ kDa, $D \approx 1.02$) resulted in better organized phases than those present in the parent material. This not only highlights the vast number of different polymeric species present in polymer samples that are often misleadingly labeled “monodisperse” but also restates the question: how perfect do we have to define our molecules to attain the desired (self-assembly) properties?18

Recently, we reported on the self-assembly of “truly monodisperse” or discrete (i.e., $D < 0.0001$) diblock co-oligomers (BCOs), composed of oligodimethylsiloxane (oDMS) and atactic oligolactic acid (oLA).19 Microphase separation of the BCOs into various ordered structures was observed even for $N < 50$, despite the fact that the materials employed in this work are located in the weak phase-segregation regime because of their low molecular weights. In contrast, an analogous, disperse oDMS–oLA reference material ($D = 1.15$) with similar M_n and oLA volume fraction (f_{LA}) but slightly different end groups and interblock connectivity—did not yield ordered structures.

Surprised by this result, which is in contradiction to the work of Hillmyer et al.,12–14 Mahanthappa et al.,20–22 Matsushita et al.,23,24 and numerous theoretical models,9–11 we encouraged to perform a more systematic study of discrete versus disperse blocks in low MW BCOs. The work presented here is accompanied by a complementary study by Hawker and co-workers on (semi)discrete/disperse BCOs.25 Utilizing our knowledge on the oDMS–oLA system, we envisioned a set of co-oligomers with almost identical end groups and interblock connectivity but embodying four different types of dispersity: (1) discrete oDMS + discrete oLA; (2) disperse oDMS + discrete oLA; (3) discrete oDMS + disperse oLA; (4) disperse oDMS + disperse oLA. Both for practical reasons (commercial availability of the starting materials) and to minimize the risk of encountering undesired morphology changes upon changing the dispersity, we aimed for a symmetric BCO ($f_{LA} \approx 0.5$) with (average) block lengths of 15 siloxane and 17 lactic acid repeat units.

First, oDMS with a free carboxylic acid residue and atactic oLA with a free hydroxyl group were synthesized (both discrete and disperse variants), followed by straightforward ligation via carbodiimide-facilitated esterification (Scheme 1). In this way, the dispersity in each of the two blocks can be tuned independently. The synthesis of discrete oDMS Si$_{15}$ oLA LA$_{16}$ and subsequent coupling has been fully documented.19 The disperse oDMS block Si$_{15}$ was prepared in a similar way as the discrete analogue, starting from commercially available oDMS hydride (DP ≈ 15; $M_n \approx 1150$ Da) (Scheme S1). Disperse oLA LA$_{16}$–PC was synthesized with an uncontrolled condensation reaction of lactic acid dimer, which was initially obtained via ring opening of DL-lactide (a 1-to-1 mixture of L- and D-lactide) with water (Scheme S2). A subsequent, carbodiimide-mediated polycondensation (PC) reaction of this compound with the appropriate amount of benzyl alcohol as a chain stopper resulted in the desired LA$_{16}$–PC block. For comparison, we also prepared the disperse oLA block by a more commonly employed ring-opening polymerization (ROP) of DL-lactide with benzyl alcohol, in the presence of catalytic amounts of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (Scheme S3).

Finally, coupling of the two oDMS and three oLA blocks resulted in 6 BCOs: [Si$_{15}$–LA$_{17}$], [Si$_{15}$–LA$_{17}$], [Si$_{15}$–LA$_{17}$]–PC, [Si$_{15}$–LA$_{17}$]–PC, [Si$_{15}$–LA$_{17}$]–ROP, and [Si$_{15}$–LA$_{17}$]–ROP. The disperse blocks are indicated with a tilde (~) character preceding the (desired) average block lengths and the methods used for the synthesis of the oLA blocks are abbreviated as PC and ROP for polycondensation and ring-opening polymerization, respectively. Full experimental details can be found in the Supporting Information.

All materials were purified by automated column chromatography and fully analyzed with 1H NMR, 13C NMR, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and size exclusion chromatography (SEC) (Figures S1–S8). As depicted in Table 1, entries 1–5, comparable values for M_ncalcd are found for the disperse blocks and the related discrete versions. Yet, MALDI-TOF analysis revealed the stark contrast for both the oDMS and oLA blocks when comparing the discrete and disperse samples, of which the latter contained at least 15 different oligomers (Figure S7B and C). Similar observations were made for the BCOs (entries 6–11, Figure 1 and Figure S7D and E). Here, purification of the final product by column chromatography led to a slightly larger variation in the oLA block length for the BCOs with a disperse oLA block obtained by ROP (entries 10 and 11). Still, all BCOs gave oLA volume fractions that were close to the desired fully symmetrical composition. Finally, dispersities of the BCOs ranged between $D < 1.00001$ for the discrete BCO and $D = 1.09$ for both BCOs with two disperse blocks, placing this set out of the dispersity range of previously studied BCOs.12–14 Intermediate values for D were found for the BCOs comprised of one discrete and one disperse block.

The thermal behavior of the BCOs was studied with differential scanning calorimetry (DSC). As shown in Figure S9, and summarized in Table 1, entries 6–11, and Table S1, this afforded the temperatures of the order–disorder transitions (ODTs), represented by endo- and exothermal transitions in the heating and cooling curves, respectively.19,26 Interestingly, the ODT of nearly each BCO could be visualized by DSC, regardless of the presence of dispersity in either of the blocks. Only for BCO [Si$_{15}$–LA$_{17}$]–PC, no ODT was observed by DSC. For the other BCOs, the sharpness and position of the peaks varied significantly. Both [Si$_{15}$–LA$_{17}$] and [Si$_{15}$–LA$_{17}$], with discrete oLA blocks, gave narrow ODT signatures. In contrast, dispersity in the lactic acid block ([Si$_{15}$–LA$_{17}$]–PC, [Si$_{15}$–LA$_{17}$]–ROP, and [Si$_{15}$–LA$_{17}$]–ROP) resulted in signifi-

Scheme 1. Final Ligation Step in the Formation of Discrete and Disperse BCOs

```
Scheme 1. Final Ligation Step in the Formation of Discrete and Disperse BCOs

[Si$_{15}$ or Si$_{15}$] \[\text{Si} \] \[\text{LA$_{17}$} \] \[\text{PC} \] \[\text{LA$_{17}$} \] \[\text{ROP} \]

\[\text{Si} \] \[\text{LA$_{17}$} \] \[\text{Si} \] \[\text{LA$_{17}$} \] \[\text{ROP} \]

Reagents and conditions: (a) EDC-HCl, DPTS, DCM, RT, O/N (58–82%).
```
cantly broader order–disorder transitions. Although not fully understood, this probably is partially related to the somewhat higher dispersity of the oLA block with respect to the oDMS block. In addition, a strong correlation between dispersity was observed: T_{ODT} increased from $T_{\text{ODT}} = 72.9$ °C for the monodisperse [Si$_{15}$-LA$_{17}$] up to $T_{\text{ODT}} = 83.0$ °C for BCO [Si$_{15}$-LA$_{17}$]-ROP that has the highest dispersity ($D = 1.09$). This suggests that the materials with higher dispersity are stable for lower values of χN ($\chi \alpha T^{-1}$) and hence can be considered to have a more stable microphase-segregated state, exactly as described by the theoretical and experimental work.12,27 Noteworthy here is the assumption that kinetic effects do not play a dominant role in the determination of T_{ODT} with DSC. The justifiability of this assumption follows from the small hysteresis between the transitions of each BCO in the heating and cooling run, as well as the negligible shift of T_{ODT} of, for example, [Si$_{15}$-LA$_{17}$] or [Si$_{15}$-LA$_{17}$] when the DSC measurement was repeated at 5 and 20 times slower heating and cooling rates (i.e., 2 °C min$^{-1}$ and 0.5 °C min$^{-1}$, respectively).

Next, the extent of microphase separation in the BCOs was studied with small-angle X-ray scattering (SAXS) at room temperature. Azimuthal integration of the 2-D transmission scattering data resulted in 1-D patterns depicted in Figure 2. When focusing on the q-range 0.1–4 nm$^{-1}$, which corresponds to a size domain of approximately 1.6–60 nm, both [Si$_{15}$-LA$_{17}$] and [Si$_{15}$-LA$_{17}$] revealed a sharp principal scattering peak at $q^* = 0.885$ nm$^{-1}$ and $q^* = 0.856$ nm$^{-1}$, respectively. This corresponds to domain spacings ($d^0 = 2\pi/q^*$) of $d^0 = 7.10$ nm for [Si$_{15}$-LA$_{17}$] and $d^0 = 7.34$ nm for [Si$_{15}$-LA$_{17}$]. Additional reflections at q-values $\sqrt{4q^*}$ (both BCOs) and $\sqrt{9q^*}$ (discrete BCO only) confirmed the lamellar ordering of the samples. Increasing the dispersity in the oDMS block has a negative—albeit small—effect on the quality of microphase separation. Besides, a small but significant decrease in q^* (i.e., an increase of the domain spacing) was seen after introduction of dispersity in the siloxane block. This is in line with SCFT predictions and previous experimental work12 but never observed for materials with such low dispersities. In sharp contrast, the scattering curves of BCOs with a disperse oLA block lack any higher-order reflections and are largely dominated by a broad reflection that

<table>
<thead>
<tr>
<th>entry</th>
<th>compounda</th>
<th>#Sib</th>
<th>#LAc</th>
<th>M_{calcd} [Da]</th>
<th>M_{SEC} [Da]</th>
<th>D</th>
<th>N^*</th>
<th>f_{LA}</th>
<th>T_{ODT} [°C]</th>
<th>d^h [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Si$_{15}$</td>
<td>15</td>
<td>-</td>
<td>1242</td>
<td>n.d.</td>
<td><1.00001</td>
<td>17.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Si$_{15}$</td>
<td>15.2</td>
<td>-</td>
<td>1299d</td>
<td>1360</td>
<td>1.15</td>
<td>18.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>LA$_{16}$</td>
<td>-</td>
<td>16</td>
<td>1261</td>
<td>n.d.</td>
<td><1.00001</td>
<td>12.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>LA$_{16}$-PC</td>
<td>-</td>
<td>16.0f</td>
<td>1261i</td>
<td>1787</td>
<td>1.24</td>
<td>12.7i</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>LA$_{16}$-ROP</td>
<td>-</td>
<td>17.9g</td>
<td>1398i</td>
<td>2265</td>
<td>1.23</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>[Si${15}$-LA${17}$]</td>
<td>15</td>
<td>17</td>
<td>2486</td>
<td>3852</td>
<td><1.00001</td>
<td>32.6</td>
<td>0.48</td>
<td>72.9</td>
<td>7.10</td>
</tr>
<tr>
<td>7</td>
<td>[Si${15}$-LA${17}$]</td>
<td>15.2</td>
<td>17</td>
<td>2543i</td>
<td>4118</td>
<td>1.05</td>
<td>32.8i</td>
<td>0.47i</td>
<td>77.1</td>
<td>7.34</td>
</tr>
<tr>
<td>8</td>
<td>[Si${15}$-LA${17}$]-PC</td>
<td>15</td>
<td>16.2e</td>
<td>2429i</td>
<td>4015</td>
<td>1.08</td>
<td>30.5i</td>
<td>0.44i</td>
<td>82.9</td>
<td>7.20</td>
</tr>
<tr>
<td>9</td>
<td>[Si${15}$-LA${17}$]-PC</td>
<td>15.0</td>
<td>16.7e</td>
<td>2464i</td>
<td>3999</td>
<td>1.09</td>
<td>30.9i</td>
<td>0.45i</td>
<td>-</td>
<td>7.45</td>
</tr>
<tr>
<td>10</td>
<td>[Si${15}$-LA${17}$]-ROP</td>
<td>15</td>
<td>21.0e</td>
<td>2774i</td>
<td>4964</td>
<td>1.07</td>
<td>36.1i</td>
<td>0.52i</td>
<td>79.5</td>
<td>7.72</td>
</tr>
<tr>
<td>11</td>
<td>[Si${15}$-LA${17}$]-ROP</td>
<td>15.0</td>
<td>19.4e</td>
<td>2701i</td>
<td>4547</td>
<td>1.09</td>
<td>34.7i</td>
<td>0.51i</td>
<td>83.0</td>
<td>-</td>
</tr>
</tbody>
</table>

aDisperse blocks are indicated with a tilde (˘) character preceding the (desired) average block lengths. bNumber of siloxane repeat units. cNumber of lactic acid repeat units. dCalculated molecular weight, based on the number of Si and LA repeat units. eNumber of segments based on a 110 Å2 reference volume. fLactic acid volume fraction, calculated using bulk densities for PDMS and PLA (0.95 and 1.24 g mL$^{-1}$, respectively). gThe reported values are for the heating run. hDomain spacing attributed to lamellar ordering. iAverage value. jCalculated from relative peak intensities in the MALDI-TOF spectra.

Figure 1. MALDI-TOF MS spectra (DCTB matrix) for oDMS–oLA BCOs.

Figure 2. Room-temperature SAXS data for monodisperse and (partially) disperse BCOs. The data are shifted vertically for clarity. Higher-order Bragg reflections are indicated if present. The peak at $q = 4$ nm$^{-1}$ results from background scattering (kapton tape). The vertical red line at $q = 0.885$ nm$^{-1}$ is there to guide the eye.
is typical for a disordered BCP. This reflection nearly overshadows the aforementioned primary peak that belongs to the microphase-segregated state and is the only observable reflection at low q for BCO [Si$_{15}$-LA$_{17}$]. ROP. It is currently unclear why [Si$_{15}$-LA$_{17}$]-ROP is seemingly disordered according to SAXS but still gives a weak thermal signature in the DSC traces. Overall, the scattering data reveal that all of the BCOs with a disperse oLA block primarily reside in a disordered state, although partially (lamellar) ordered domains coexist in most samples. Apparently, increasing dispersity in either the oDMS or oLA block affects the lamellar organization to a different extent. The origin hereof is not entirely understood but is likely related to the disparate molecular makeup of the blocks, different block length distributions, or differences in statistical segment lengths.

Additionally, we performed variable-temperature (VT) SAXS measurements with BCO [Si$_{15}$-LA$_{17}$] (Figure S10). Here, a drastic decrease in the intensity of the primary scattering peak was found between 72 and 74 °C. This reduction in scattering intensity is related to the formation of a disordered state, and the temperature of this transition confirms the T$_{ODT}$ value that was found with DSC.

Initially, we were intrigued by the higher level of disordered regions in the set of BCOs with a disperse oLA block obtained via ROP compared to those obtained by polycondensation. First, the dispersities of [Si$_{15}$-LA$_{17}$]-PC and [Si$_{15}$-LA$_{17}$]-ROP are nearly equal, as are the dispersities of [Si$_{15}$-LA$_{17}$]-PC and [Si$_{15}$-LA$_{17}$]-ROP. Besides, N is slightly higher for both BCOs produced with ROP than the PC analogues, which principally should lead to a more facile formation of an ordered structure. However, additional scattering experiments in the q-range 4–30 nm$^{-1}$ (size domain of approximately 2–16 Å) revealed a clear contrast between the materials obtained by PC or ROP. As expected, two partially resolved, broad peaks at q = 8.6 nm$^{-1}$ and q = 14.8 nm$^{-1}$ were found in the scattering data of the BCOs for which polycondensation was employed. These reflections represent the siloxane and oligolactic acid halos of the two amorphous constituents of the BCO, respectively, and are identical to the halos that were observed for [Si$_{15}$-LA$_{17}$] and [Si$_{15}$-LA$_{17}$] (i.e., BCOs with a discrete oLA block). Contrarily, three additional, sharper peaks appeared in the scattering profiles of the BCO with disperse oLA blocks obtained by ROP (marked with arrows in Figure 2). The location of these peaks is in exact correspondence with those found for the stereocomplex of isotactic, crystalline PLA, which is typical for a disordered BCP. Furthermore, two important terms that quantify and qualify phase behavior—and are often erroneously used interchangeably—show two pronounced, yet exactly opposite, trends. Upon switching from a discrete to a considerably less “monodisperse” BCO, there is an increase of the stability of the microphase-segregated state, expressed as an increase of the T$_{ODT}$, accompanied by a decrease of the overall degree of ordering in the samples. Finally, our samples illustrated that variations in local stereoregularity have a strong influence on BCO phase behavior. In view of the forth-going trend toward materials that are becoming too exclusive to be classified as either polymers or small molecules (e.g., thermotropic liquid crystals), we will continue our explorative work on discrete polymeric materials.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmacrolett.7b00266.

Experimental procedures, characterization data for all compounds, Table S1, and Figures S1–S11 (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: e.w.meijer@tue.nl.
*E-mail: a.palmans@tue.nl.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully thank the Hawker research group for the constructive discussion and sharing of relevant research data. This work is financially supported by the Royal Netherlands Academy of Arts and Sciences and the Dutch Ministry of Education, Culture, and Science (Gravity program 024.001.035).

REFERENCES
