Magnon polarons in the spin seebeck effect

Citation for published version (APA):

DOI:
10.1103/PhysRevLett.117.207203

Document status and date:
Published: 10/11/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Magnon Polarons in the Spin Seebeck Effect

Takashi Kikkawa,1,2,* Ka Shen,3 Benedetta Flebus,4 Rembert A. Duine,4,5 Ken-ichi Uchida,1,6,7,† Zhiyong Qiu,2,8 Gerrit E. W. Bauer,1,2,3,7 and Eiji Saitoh1,2,7,8,9

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
3Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
4Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
5Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
6PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
7Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan
8Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577, Japan
9Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan

(Received 8 July 2016; published 10 November 2016)

Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y3Fe5O12 at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.

DOI: 10.1103/PhysRevLett.117.207203

The spin Seebeck effect (SSE) [1–19] refers to the generation of a spin current (Jτ) as a result of a temperature gradient (VT) in magnetic materials. It is well established for magnetic insulators with metallic contacts, at which a magnon flow is converted into a conduction-electron spin current by the interfacial exchange interaction [20] and detected as a transverse electric voltage via the inverse spin Hall effect (ISHE) [21–27] [see Fig. 1(a)]. The SSE provides a sensitive probe for spin correlations in magnetic materials [8,9,12–15].

The ferrimagnetic insulator yttrium-iron-garnet Y3Fe5O12 (YIG) is ideal for SSE measurements [19], exhibiting a long magnon-propagation length [28–30], high Curie temperature (~560 K) [31], and high resistivity owing to a large band gap (~2.9 eV) [32]. The magnon and phonon dispersion relations in YIG are well known [33–38]. The magnon dispersion in the relevant regime reads

$$\omega_k = \sqrt{D_{ex} k^2 + \gamma \mu_0 H} \sqrt{D_{ex} k^2 + \gamma \mu_0 H + \gamma \mu_0 M_s \sin^2 \theta},$$

where ω, k, θ, γ, and μ0Ms are the angular frequency, wave vector k with length k, angle θ with the external magnetic field H (of magnitude H), gyromagnetic ratio, and saturation magnetization, respectively [33–36]. The exchange stiffness coefficient Dex as well as the transverse-acoustic (TA) and longitudinal-acoustic (LA) sound velocities for YIG are summarized in Table I and the dispersion relations are plotted in Fig. 1(b).

FIG. 1. (a) The longitudinal SSE in the Pt/YIG/GGG sample, where EISHE denotes the electric field induced by the ISHE. The close-up of the upper (lower) right shows a schematic illustration of a propagating magnon and TA (LA) phonon. (b) Magnon [Eq. (1)] with μ0Ms = 0.2439 T, μ0H = 1.0 T, and θ = π/2, TA-phonon (ω = c, k), and LA-phonon (ω = c/, k) dispersion relations for the parameters in Table I. (c),(d) Magnon polarons at the (anti)crossings between the magnon and TA-phonon branches at (c) lower and (d) higher wave numbers, where k∥θ (θ = π/2 and φ = 0) and H∥Z.
In this Letter, we report the experimental results are well reproduced by a theory for the thermally induced magnon flow in which the magnetoelectric interaction is taken into account. We interpret the experiments as evidence for a strong magnon-phonon coupling at the crossings between the magnon and phonon dispersion curves, i.e., the formation of hybridized excitations called magnon polarons [40,41].

The sample is a 5-nm-thick Pt film sputtered on the (111) surface of a 4-μm-thick single-crystalline YIG film grown on a single-crystalline Gd₃Ga₅O₁₂ (GGG) (111) substrate by liquid phase epitaxy [42]. The sample was then cut into a rectangular shape with \(L_V = 4.0 \text{ mm} \) (length), \(L_W = 2.0 \text{ mm} \) (width), and \(L_T = 0.5 \text{ mm} \) (thickness). SSE measurements were carried out in a longitudinal configuration [1,19] [see Fig. 1(a)], where the temperature gradient \(\nabla T \) is applied normal to the interfaces by sandwiching the sample between two sapphire plates, on top of the Pt layer (at the bottom of the GGG substrate) stabilized to \(T_H \) (\(T_L \)) with a temperature difference \(\Delta T = T_H - T_L > 0 \). \(\Delta T \) was measured with two calibrated Cernox thermometers. A uniform magnetic field \(\mathbf{H} = H \mathbf{z} \) was applied by a superconducting solenoid magnet. We measured the dc electric voltage difference \(V \) between the ends of the Pt layer with a highly resolved field scan, i.e., at intervals of 15 mT and waiting for ~30 sec after each step.

Figure 2(b) shows the measured \(V(H) \) of the Pt/YIG sample at \(T = 50 \text{ K} \). A clear signal appears by applying the temperature difference \(\Delta T \) and its sign is reversed when reversing the magnetization. The magnitude of \(V \) at \(\mu_0 H = 0.1 \text{ T} \) is proportional to \(\Delta T \) [see Fig. 2(c)]. These results confirm that \(V \) is generated by the SSE [19].

Owing to the high resolution of \(H \), we were able to resolve a fine peak structure at \(\mu_0 H \sim 2.6 \text{ T} \) that is fully reproducible. A magnified view of the \(V-H \) curve is shown in Fig. 2(d), where the anomaly is marked by a blue triangle. Since the structures scale with \(\Delta T \) [see Figs. 2(c) and 2(d)], they must stem from the SSE.

The peak appears for the field \(H_{TA} \) at which according to the parameters in Table 1 the magnon dispersion curve touches the TA-phonon dispersion curve. By increasing \(H \), the magnon dispersion shifts toward high frequencies due to the Zeeman interaction \(\propto \gamma \mu_0 H \), while the phonon dispersion does not move. At \(\mu_0 H = 0 \), the magnon branch intersects the TA-phonon curve twice [see Fig. 2(a)]. With increasing \(H \), the TA-phonon branch becomes tangential to the magnon dispersion at \(\mu_0 H = 2.6 \text{ T} \) and detaches at higher fields [see Fig. 2(a)]. If the anomaly is indeed linked to the “touch” condition, there should be another peak associated with the LA-phonon branch. Based on the parameters in Table I, we evaluated the magnon–LA-phonon touch condition at \(\mu_0 H_{LA} \sim 9.3 \text{ T} \). We then upgraded the equipment with a stronger magnet and subsequently investigated the high-field dependence of the SSE.

Figure 2(f) shows the dependence \(V(H) \) of the Pt/YIG sample at \(T = 50 \text{ K} \), measured between \(\mu_0 H = \pm 10.5 \text{ T} \). Indeed, another peak appeared at \(\mu_0 H_{LA} \sim 9.3 \text{ T} \) precisely at the estimated field value at which the LA-phonon branch

TABLE I. Parameters for the magnon and phonon dispersion relations of YIG [34–39].

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange stiffness (D_{ex})</td>
<td>(7.7 \times 10^{-6})</td>
<td>m²/s</td>
</tr>
<tr>
<td>TA-phonon sound velocity (c_\perp)</td>
<td>(3.9 \times 10^3)</td>
<td>m/s</td>
</tr>
<tr>
<td>LA-phonon sound velocity (c\parallel)</td>
<td>(7.2 \times 10^3)</td>
<td>m/s</td>
</tr>
</tbody>
</table>
touches the magnon dispersion [see Fig. 2(e)], sharing the characteristic features of the SSE; i.e., it appears only when $\Delta T \neq 0$ and exhibits a linear-ΔT dependence [see Figs. 2(g) and 2(h)]. For $\mu_0H > 9.3$ T the V-H curves remain smooth.

We carried out systematic measurements of the temperature dependence of the SSE enhancement at H_{TA} and H_{LA}. Figure 3(c) shows the normalized SSE voltage $S = (V/\Delta T)(L \tau / L_V)$ as a function of H for various average sample temperature $T_{\text{avg}} = (T_H + T_L)/2$. The amplitude of the SSE signal monotonically decreases with decreasing T in the present temperature range [8,9] [see Fig. 3(b)]. Importantly, the two peaks in S at H_{TA} and H_{LA} exhibit different T dependences [see Figs. 3(c), 3(d), and 3(e)]. The peak shape at H_{TA} becomes more prominent with decreasing T and it is the most outstanding at the lowest T. On the other hand, the S peak at H_{LA} is suppressed below ~ 10 K and it is almost indistinguishable at the lowest T. This different T dependence can be attributed to the different energy scale of the branch crossing point for $H = H_{TA}$ and $H = H_{LA}$. The frequency of the magnon–LA-phonon intersection point is 0.53 THz = 26 K ($= T_{\text{MLA}}$), and it is more than 3 times larger than that of the magnon–TA-phonon intersection point (0.16 THz). Therefore, for $T < T_{\text{MLA}}$, the excitation of magnons with energy around the magnon–LA-phonon intersection point is rapidly suppressed, which leads to the disappearance of the S peak at H_{LA} at the lowest T.

The clear peak structures at low temperatures allow us to unravel the behavior of the SSE around H_{TA} in detail. Increasing H from small values, S increases up to a maximum value at $H = H_{TA}$, as shown in Fig. 3(d) ($T_{\text{avg}} = 3.46$ K). For fields slightly larger than H_{TA}, S drops steeply to a value below the initial one. The SSE intensity $S(i)$, where $i = 0, 1, 2$ represents the number of crossing points between the magnon and (TA-)phonon branch curves [see also Fig. 2(a)], can be ordered as $S(1) > S(2) > S(0)$ and could be a measure of the number of magnon polarons.

The SSE is generated in three steps: (i) the temperature gradient excites magnetization dynamics that (ii) at the interface to the metal becomes a particle spin current and (iii) is converted to a transverse voltage by the ISHE. The latter two steps depend only weakly on the magnetic field. For thick enough samples, the observed anomalies in the SSE originate from the thermally excited spin current in the bulk of the ferromagnet. The importance of the magnetoelastic coupling (MEC) for spin transport in magnetic insulators has been established by spatiotemporally resolved pump-and-probe optical spectroscopy [41,43]. Here, we develop a semiclassical model for the SSE in the strongly coupled magnon-phonon transport regime [40,41,44–46]. Our model Hamiltonian consists of magnon (H_{mag}), phonon (H_{el}), and magnetoelastic coupling (H_{mec}) terms. In second-quantized form $H_{\text{mag}} = \sum_{k,\mu} A_k a_k^\dagger a_k + (B_k/2)(a_k^\dagger a_k^\dagger + a_k a_k)$, $H_{\text{el}} = \sum_{\mu,\nu} \hbar \omega_{\mu\nu} (c_{\mu k}^\dagger c_{\nu k} + \frac{1}{2})$, and

$$H_{\text{mec}} = \hbar n B_{\perp} (\gamma/4M_s \rho)^{1/2} \sum_{k,\mu} k a_k^\dagger a_k + \sum_{\mu} e_\mu \gamma \mu_0 H_{\perp} (\gamma M_s \sin^2 \theta)/2 + c_{\mu k}^\dagger c_{\mu k} + \sum_{\mu} e_\mu \gamma \mu_0 M_{\mu}(\gamma \sin^2 \theta)/2.$$

Here, $\mu_0 = 4\pi \mu_0$ is the magnetic permeability in free space, $\mu_0 H$ is the magnetic field, γ is the gyromagnetic ratio, M_s is the saturation magnetization, n is the number density of spins, and a_0 is the lattice constant. The magnon dispersion from H_{mag} is given by Eq. (1), while the phonon dispersions are $\omega_{\mu \nu} = \omega_{\mu \nu}^0$ with $\mu = 1, 2$ for the two transverse modes and $\mu = 3$ for the longitudinal one. $\delta_{\mu i}$ in H_{mec} represents the Kroncker delta. By diagonalizing $H_{\text{mag}} + H_{\text{el}} + H_{\text{mec}}$ [47], we obtain the dispersion relation of the ith magnon-polaron branch $\hbar \Omega_i \omega_{\mu k}$ and the corresponding amplitude $|\psi_{\mu k}|$. The magnon-polaron dispersions for $\theta = \pi/2$ and $\phi = 0$ are illustrated in Figs. 1(c) and 1(d), with a magnetic field $\mu_0 H = 1.0$ T and $B_{\perp}/(2\pi) = 1988$ GHz [38].

FIG. 3. (a) Magnon, TA-phonon, and LA-phonon dispersion relations for YIG when $H < H_{TA}, H = H_{TA}, H_{TA} < H < H_{LA}$, and $H = H_{LA}$. (b) T_{avg} dependence of the normalized SSE voltage S at $\mu_0 H = 0.1$ T, $\mu_0 H_{TA}$, and $\mu_0 H_{LA}$. (c) $S(H)$ of the Pt/YIG/GGG sample for various values of T_{avg} in the range of $|\mu_0 H| < 10.5$ T. (d,e) A blowup of $S(H)$ around (d) H_{TA} and (e) H_{LA}.

$H_{\text{mag}} = \hbar n B_{\perp} (\gamma/4M_s \rho)^{1/2} \sum_{k,\mu} k a_k^\dagger a_k + \sum_{\mu} e_\mu \gamma \mu_0 H_{\perp} (\gamma M_s \sin^2 \theta)/2 + c_{\mu k}^\dagger c_{\mu k} + \sum_{\mu} e_\mu \gamma \mu_0 M_{\mu}(\gamma \sin^2 \theta)/2.$

Here, $\mu_0 = 4\pi \mu_0$ is the magnetic permeability in free space, $\mu_0 H$ is the magnetic field, γ is the gyromagnetic ratio, M_s is the saturation magnetization, n is the number density of spins, and a_0 is the lattice constant.

The magnon dispersion from H_{mag} is given by Eq. (1), while the phonon dispersions are $\omega_{\mu \nu} = \omega_{\mu \nu}^0$ with $\mu = 1, 2$ for the two transverse modes and $\mu = 3$ for the longitudinal one. $\delta_{\mu i}$ in H_{mec} represents the Kroncker delta. By diagonalizing $H_{\text{mag}} + H_{\text{el}} + H_{\text{mec}}$ [47], we obtain the dispersion relation of the ith magnon-polaron branch $\hbar \Omega_i \omega_{\mu k}$ and the corresponding amplitude $|\psi_{\mu k}|$. The magnon-polaron dispersions for $\theta = \pi/2$ and $\phi = 0$ are illustrated in Figs. 1(c) and 1(d), with a magnetic field $\mu_0 H = 1.0$ T and $B_{\perp}/(2\pi) = 1988$ GHz [38].
We assume diffuse transport that at low temperatures is limited by elastic magnon and phonon impurity scattering [45]. We employ the Hamiltonian \(\mathcal{H}_{\text{imp}} = \sum_k \sum_n \varepsilon_n \phi_{nk}^{\dagger} \phi_{nk}^{\dagger} - \sum_k \sum_n \varepsilon_n \phi_{nk}^{\dagger} \phi_{nk} + a_k^{\dagger} a_k \), where, assuming \(s \)-wave scattering, \(v_{nk}^{\text{ph}} = v_{nk}^{\text{ph}} \) and \(v_{nk}^{\text{mag}} = v_{nk}^{\text{mag}} \) denote the phonon and magnon impurity scattering potentials, respectively. We compute the spin current driven by a temperature gradient \([6,16]\) and thereby the SSE in the relaxation-time approximation of the linearized Boltzmann equation. The linear-response steady-state spin current \(j(\mathbf{r}) = -\frac{\mathbf{\zeta}}{v} \cdot \nabla T \) is governed by the SSE tensor \(\zeta \):

\[
\zeta_{\alpha\beta} = \int \frac{d^2k}{(2\pi)^2} \sum_i W_{ik} \zeta_{ik}(\mathbf{k}, \Omega_{ik}) (\mathbf{\partial}_k \zeta_{ik}) \partial^T f_{ik}(0) |_{T=T(r)}.
\]

(2)

Here, \(W_{ik} = |\langle 0| \phi_{ik} |\psi_k \rangle|^2 \) is the intensity of the \(i \)th magnon polaron and \(\tau_{ik} \) is the relaxation time towards the equilibrium (Planck) distribution function \(f_{ik}^{(0)}(r) = (\exp{\left(\frac{\hbar \mathbf{k} \cdot \mathbf{H}_{\text{imp}}}{k_B T}\right)} - 1)^{-1} \). The relaxation time \(\tau_{ik} \) of the \(i \)th magnon polaron reads \(\tau_{ik} = \frac{2\pi}{(h/\hbar)} \sum_j|\langle \psi_j |\mathbf{H}_{\text{imp}} |\psi_i \rangle|^2 \delta (\hbar \mathbf{k} - \hbar \mathbf{k}_j) \). The strong-coupling (weak scattering) approach is valid when \(\tau_{ik,1,2} \ll \Delta \Omega \), where \(\Delta \Omega \) is the energy gap at the anticrossing points \(\mathbf{k}_{1,2} \). We disregard the Gilbert damping that is very small in YIG.

From the experiments we infer the scattering parameters \(|v_{mag}^{\text{ph}}|^2 = 10^{-5} \text{ s}^{-2} \) [28] and \(|v_{mag}^{\text{mag}} / v_{ph}^{\text{ph}}| = 10 \); i.e., the magnons are more strongly scattered than the phonons. The computed longitudinal spin Seebeck coefficient (SSC) \(\zeta_{xx} \) [Eq. (2)] is plotted in Fig. 4(a). Switching on the magnetoelastic coupling increases the SSC especially at the “touching” magnetic fields \(H_{TA} \) and \(H_{CA} \). At these points the group velocity of the magnon is identical to the sound velocity. Nevertheless, spin transport can be strongly modified when the ratio \(|v_{mag}^{\text{ph}} / v_{ph}^{\text{ph}}| \) differs from unity. The SSC can be enhanced or suppressed compared to its purely magnonic value. A high acoustic quality as implied by \(|v_{mag}^{\text{mag}} / v_{ph}^{\text{ph}}| = 10 \) is beneficial for spin transport and enhances the SSC by hybridization, as illustrated by Fig. 4(a). When magnon and phonon scattering potentials would be the same, i.e., \(|v_{mag}^{\text{mag}} / v_{ph}^{\text{ph}}| = 1 \), the anomalies vanish identically [see the blue circles in Fig. 4(a)]. The difference between the calculations with and without MEC agrees very well with the peak features on top of the smooth background as observed in the experiments, see Figs. 4(b) and 4(c). We can rationalize the result by the presence of a magnetic disorder that scatters magnons but not phonons.

Finally, we address the SSE background signal. The overall decrease of the calculated \(\zeta_{xx} \) is not related to the phonons, but reflects the field-induced freeze-out of the magnons (that is suppressed in thin magnetic films [8]). In the experiments, on the other hand, the global \(S \) below ~30 K clearly increases with increasing \(H \) [Fig. 3(c)]. We tentatively attribute this discrepancy to an additional spin current caused by the paramagnetic GGG substrate that, when transmitted through the YIG layer, causes an additional voltage. Wu et al. [7] found a paramagnetic SSE signal in a Pt/GGG sample proportional to the induced magnetization (\(\sim \)a Brillouin function for spin 7/2) [7]. Indeed, the increase of \(S \) in the present Pt/YIG/GGG sample is of the same order as the paramagnetic SSE in a Pt/GGG sample [8].

In conclusion, we observed two anomalous peak structures in the magnetic field dependence of the SSE in YIG that appear at the onset of magnon-polaron formation. The experimental results are well reproduced by a calculation in which magnons and phonons are allowed to hybridize. Our results show that the SSE can probe not only magnon dynamics but also phonon dynamics. The magnitude and shape of the anomalies contain unique information about the sample disorder, depending sensitively on the relative scattering strengths of the magnons and phonons.

The authors thank S. Daimon, J. Lustikova, L. J. Cornelissen, and B. J. van Wees for valuable discussions. This work was supported by PRESTO “Phase Interfaces for Highly Efficient Energy Utilization” from JST, Japan, Grant-in-Aid for Scientific Research on Innovative Area “Nano Spin Conversion Science” (Grants No. 26103005 and No. 26103006), Grant-in-Aid for Scientific Research (A) (Grants No. 15H02012 and No. 25247056) and (S) (Grant No. 25220910) from MEXT, Japan, NEC Corporation, The Noguchi Institute, the Dutch FOM...
Foundation, EU-FET Grant InSpin 612759, and DFG Priority Programme 1538 “Spin-Caloric Transport” (BA 2954/2). T.K. is supported by JSPS through a research fellowship for young scientists (No. 15J08026).

\[31\] M. A. Gilleo and S. Geller, Magnetic and crystallographic properties of substituted yttrium-iron garnet, $\text{Y}_3\text{Fe}_5\text{O}_{12} \cdot x\text{M}_2\text{O}_3 \cdot (5-x)\text{Fe}_2\text{O}_3$, Phys. Rev. 110, 73 (1958).