Time-dependent characterization of Na₂CO₃ activated slag

B. Yuan, Q.L. Yu*, H.J.H. Brouwers

Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

A R T I C L E I N F O

Article history:
Received 1 June 2015
Received in revised form
21 March 2017
Accepted 5 September 2017
Available online 13 September 2017

Keywords:
Na₂CO₃ activation
Isothermal calorimetry
Reaction kinetics
Reaction products
Microstructure
Compressive strength

A B S T R A C T

This study aims to investigate the time-dependent characteristics of sodium carbonate activated slag at the early stage and its compressive strength development. The reaction kinetics of Na₂CO₃ activated slag is analyzed at the curing ages of 1h, 6h, 1d, 2d, 3d, 4d and 7d, respectively, and the reaction products are characterized employing FTIR, XRD, TG-DTG and SEM. The results show that a weak reflection of gaylussite is observed after 1 d of curing, while intensive accumulation of gaylussite and formation of hydrotralcite are observed at 2 d/3 d. Meanwhile, the gelation of C-(A)–S–H after 3 d of curing is identified by FTIR. The role of pH, CO₃⁻ anion concentration and the formation of crystals such as gaylussite and hydrotralcite on the reaction process are discussed. In addition, a relationship between the initial alkali concentration and compressive strength at different curing ages of 7 d, 28 d and 180 d is derived.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Great attention has been paid to the increased environmental concerns in recent years, and measures such as to reduce the usage of conventional cement based materials and to recycle industrial wastes have been investigated. It is widely considered that alkali activated materials (AAM) could be one of the promising alternatives to the currently used cement, considering both mechanical properties, durability and applications [1–4]. Ground granulated blast furnace slag (GGBFS), one of the most applied raw materials in AAM, and its blends with supplementary materials have been extensively studied [5–7]. The alkali activation of slag involves the dissolution of calcium and aluminium to form a C-(A)–S–H type gel [5,8], promoting the generation of final product with high strength and good durability [9–11].

Up to date, the effect of alkali activators, concentrations and compound alkali activators on the mechanical properties of AAM has been extensively studied. Wang et al. [12] reported that waterglass is the best activator and the optimal alkali dosage (Na₂O.wt.%) is within the range of 3.0–5.5% by mass of slag. Bakharev et al. [13] concluded that liquid sodium silicate produces the highest mechanical strength, followed by sodium carbonate (Na₂CO₃, optimum proportion 4% Na). Although sodium silicate as an alkali activator shows numerous advantages in AAS, problems such as fast setting is often reported [8,14–16]. Zivica [17] studied the influence of alkali type and temperature (20–31 °C) on the setting of waterglass activated slag with a Na₂O content of 5 wt% and reported that the initial setting time of sodium silicate activated slag paste is significantly shortened from 40 min to 0 min when the temperature increases from 20 °C to 23 °C. According to Jimenez and Puertas [18], the fast setting of sodium silicate activated slag is attributed to the formation of an initial calcium silicate hydrate, while the initial formation of calcium carbonate is responsible for the retarded reaction process of Na₂CO₃ activated slag. On the other hand, high shrinkage of slag activated by sodium silicate solution was also extensively reported [19–22]. Collins et al. [19,20] investigated the cracking tendency and micro-cracking of alkali activated slag concrete and reported that its shrinkage was about two times larger than ordinary Portland cement (OPC) produced concrete. Cengiz et al. [21] reported that Na₂CO₃ activated slag have a similar or lower shrinkage than PC mortar, while slag activated by waterglass generally shows 3–6 times higher than that of PC mortar.

By far, only the reaction of sodium silicate and sodium hydroxide activated slag has been systematically addressed. Although sodium carbonate as an alkali activator has shown great potential in alkali activated system and has a superiority in terms of shrinkage, its reaction mechanism and activation effect is still not clearly understood. It is reported that a delayed reaction of slags activated by sodium carbonate is caused by the initial formation of calcium...
carbonate and mixed sodium/calcium carbonate double salts, as explained by Jimenez and Puertas [18]. Furthermore, a reaction mechanism of sodium/potassium carbonate activated slags was proposed by Xu and Provis [23] after examining the specimens cast between 1964 and 1982, considering that M₂CO₃ (M = Na, K) maintains a buffered alkaline environment for the ongoing reaction. However, the reaction products of sodium carbonate at the early age remain unclear. More specifically, the time when the hardening process of sodium carbonate starts is not yet clear.

As a matter of fact, carbonate anions are the main component of the pore solution of aged samples, even the activator applied is not sodium carbonate [24,25]. When characterizing the reaction products of carbonated sodium silicate activated slag, Bernal et al. [24] observed the formation of different hydrous sodium carbonate in the pore solution depending on the carbonation condition such as CO₂ partial pressure, temperature and relative humidity. Meanwhile, a recent research on the characterization of naturally carbonated alkali activated slag concretes shows that after a long period exposed to atmosphere, calcite, vaterite, and natron are identified as the main carbonation products [25]. It is obvious that carbonate anions play an important role on the strength development of aged alkali activated slag. As a result, a deeper understanding of sodium carbonate especially at the early age is of great interest. However, up till now, investigations on the early age behavior of sodium carbonate activated slag are limited and most researches only claim that the initial precipitation of CaCO₃ is responsible for the delayed reaction process.

This study investigates the reaction kinetics of sodium carbonate activated GGBFS at the early stage. The reaction process is measured by an isothermal calorimeter and the reaction products at different ages, based on the reaction kinetics results, are further characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and thermogravimetric and derivative thermogravimetric analyses (TG-DTG). Moreover, the strength development of samples with different recipes at different curing ages were studied and the influential factors, including alkali dosage, water to solid ratio and curing age, are evaluated. Furthermore, the mechanism for the restarted reaction process after a lengthened dormant period is discussed.

2. Materials and experiments

2.1. Materials

The ground granulated blast furnace slag (GGBFS) used in this study was provided by ENCI B.V., the Netherlands, with a Blaine surface area of 300 m²/kg. Table 1 presents the chemical composition of the GGBFS, determined by X-ray Fluorescence (XRF). The particle size distribution (PSD) was determined by laser granulometry (Mastersizer 2000) with the d(0.5) of 19.18 μm, as shown in Fig. 1.

The investigated alkali activator was sodium carbonate (powder form, analytical grade). The powder of alkali activator was firstly dissolved in water and followed by cooling down to room temperature (20 ± 1 °C) prior to further use. Recipes with different contents of alkali activator and different amounts of water were designed, as shown in Table 2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Chemical composition of GGBFS determined by XRF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
<td>CaO</td>
</tr>
<tr>
<td>Content (wt.%)</td>
<td>36.97</td>
</tr>
</tbody>
</table>

2.2. Experimental program

The reaction heat released from the slag reacted with alkali activators was analyzed by an isothermal calorimetry instrument (TAM Air Calorimeter). The materials were first mixed and then transferred to an ampoule that is then loaded to the calorimeter. In general, the preparation would take 4–5 min before the measurement can start (i.e. this period cannot be analyzed). The temperature of the instrument is set to 20 °C and the calorimetry data were normalized by the amount of solids added to the mixture, including the mass of slag and sodium carbonate.

The fresh samples were prepared by mixing the solid materials and the designed activators (Table 2). Specimens for compressive strength test were cast with the size of 40 × 40 × 160 mm³ in plastic moulds, following EN 196-1. The specimens were manually vibrated and then sealed with plastic foils to prevent the moisture loss. Most of specimens could not be demoulded after 2 d of casting because of the slow reaction rate. In this case, the samples were removed from the moulds after 3 d of curing (room temperature, 20 ± 1 °C) and then cured in water at room temperature until the testing age for the strength determination, while the samples for the early age behavior analysis were directly taken from the moulds at relevant curing times.

The FTIR analysis was firstly carried out to the selected samples
after 28 d of curing. Afterwards, mixture M3 with the highest re-
action rate studied here, which will be discussed in Section 3.1, was
selected for further characterization. Based on the calorimetry
analysis (see the identification in Fig. 2b), the samples of mixture
M3 at different curing ages (1 h, 6 h, 1 d, 2 d, 3 d, 4 d and 7 d) were
collected for further analysis (Fig. 2), applying FTIR, XRD, TGA-DTG
and SEM. The samples were firstly ground into powders (≈ 63 μm)
in the ethanol solution (absolute, 99.99%) and then washed by the
ethanol solution for three times and then put in the oven to dry for
3 h at the temperature of 40 °C. In general, samples before 2 d after
casting were easily dispersed and separated into fine particles in the
ethanol solution, while samples from 3 d after casting needed to
be ground because of the hardened condition. The samples at 28 d
for the FTIR analysis were taken from the crushed specimens after
the compressive strength test.

The FTIR spectra for the reaction products were collected using a
Varian 3100 FTIR Spectrometer. All spectra were obtained with 48
scans per spectrum. Using a Cu tube (20 kV, 10 mA) with a scanning
Varian 3100 FTIR Spectrometer. All spectra were obtained with 48
the compressive strength test.

For the FTIR analysis were taken from the crushed specimens after
be ground because of the hardened condition. The samples at 28 d
for the FTIR analysis were taken from the crushed specimens after
the compressive strength test.

The FTIR spectra for the reaction products were collected using a
Varian 3100 FTIR Spectrometer. All spectra were obtained with 48
scans per spectrum. Using a Cu tube (20 kV, 10 mA) with a scanning
Varian 3100 FTIR Spectrometer. All spectra were obtained with 48

Fig. 2. Heat release of the designed sodium carbonate activated slags at 20 °C measured by isothermal calorimeter.
The infrared spectroscopic results of anhydrous slag and sample M3 at different curing ages are presented in Fig. 4b. The IR spectrum of anhydrous slag contains a distinct intensity band centred around 892 cm\(^{-1}\) (characteristic of T-O, T is Si or Al, bonds of tetrahedral silicates) [11], and another small intense band at approximate 687 cm\(^{-1}\) represents the functional group of AlO\(_2\) [33]. After mixing with sodium carbonate solution, two sharp peaks at around 1429 cm\(^{-1}\) and 874 cm\(^{-1}\) appear in the spectrum of sample after 1 h of casting, which are assigned to the vibration of \(v_3[\text{CO}_3^{2-}]\) and \(v_2[\text{CO}_3^{2-}]\), respectively. At the age of 3 d, a new peak centred at 951 cm\(^{-1}\) is observed, which is a typical Si–O asymmetric stretching vibration generated by Q\(^2\) units (C-(A)–S–H gel) [34]. After 4 d, the bands centred at approximate 1429 cm\(^{-1}\) slightly shift to 1409 cm\(^{-1}\). The small peaks at 1645 cm\(^{-1}\) and 3346 cm\(^{-1}\) indicate that the samples contain small amount of free water, possibly due to the absorbed free moisture during the sample preparation.

In general, the vibration of CO\(_3^{2-}\) groups can be attributed to the used activator, the precipitated CaCO\(_3\) or new phases formed during this period. The carbonation or weathering of the samples could also be partly responsible for these bonds. However, these effects are minimized due to the applied preparation process. On the other hand, it is clear the proportions of hump attributed to the gelation start to increase from 3 d after casting.

3.3. XRD

The X-ray diffraction patterns of M3 collected from the alkali-activated slag paste samples at different ages and unreacted GGBS are presented in Fig. 5. Only a broad hump centred at around 30\(^\circ\) 2\(\theta\) is identified for the anhydrous slag, which is attributed to the amorphous phase of short range order of CaO–MgO–Al\(_2\)O\(_3\)–SiO\(_2\) structure [35–37]. After mixing with sodium carbonate solution, the main reaction products at different ages are slightly different.

At the initial 1 h, the main crystalline binder phases identified in the samples are calcium carbonate calcite (CaCO\(_3\), PDF#00-047-1743), aragonite (CaCO\(_3\), PDF# 01-071-2392), along with hydrous sodium carbonate: thermonatrite (Na\(_2\)CO\(_3\)\(\cdot\)H\(_2\)O, PDF# 00-008-0448) and nahcolite (NaHCO\(_3\), PDF# 01-074-1203). Due to the high concentration of CO\(_3^{2-}\) provided by the activator, the precipitation of CaCO\(_3\) occurs rapidly when the dissolved Ca\(^{2+}\) reaches the

Fig. 3. Pictures of mixture M3 at different curing ages.

Fig. 4. FTIR spectra of: (a) mixtures at 28 d; (b) M3 at different curing ages.

Fig. 5. X-ray diffractograms of anhydrous slag and M3 at different curing ages.
saturated limit. Meanwhile, the formation of huntite (Mg₃Ca(CO₃)₄, PDF# 00-014-0409) and dolomite (Mg₆Ca(CO₃)₄, PDF# 01-075-3699) shows weak reflections, probably due to the raw slag which contains a high Mg and Fe element (see Table 1).

However, when it comes to 6 h, the crystalline structures detected are weakened and only calcite, aragonite and thermonatrite can be identified. Starting from 1 d after casting, the weak reflections at the positions of 13.9°, 32.8° and 35.8° 2θ indicate the initial formation of gaylussite (Na₂Ca(CO₃)₂·5H₂O, PDF# 00-021-0343), while the weak reflection at 39.5° 2θ is possibly due to the presence of hydrotalcite (Mg₀.₆₆₇Al₀.₃₃₃(OH)₂(CO₃)₀.₃₆₇·0.₅H₂O, PDF# 01-089-0460). A similar XRD pattern is obtained by sample at 2 d after casting but with a slightly intensive reflection of gaylussite. After 3 d of casting, intensive reflections for the formation of calcite, gaylussite and hydrotalcite are identified. For samples at the ages of 4 d and 7 d, the XRD patterns are similar but with higher intensities of the new formed phases. Furthermore, the reflection at 49.8° 2θ is identified as the formation of vaterite (CaCO₃, PDF#00-002-0261) at the curing age of 7 d.

As the main crystalline carbonation products, the calcium carbonate calcite, aragonite and vaterite are identified at different ages. There are three crystal polymorphs of CaCO₃, namely calcite, aragonite and vaterite, and it is known that the temperature and environmental pH have strong effects on the preference of the CaCO₃ polymorphs [38]. The aragonite precipitated at the very early age (about 1 h) is a metastable polymorph of calcium carbonate and gradually transfers to the more stable phase calcite. After 2 d of curing, the reflections of aragonite almost disappear. On the other hand, hydrous sodium carbonates such as nahcolite and thermonatrite are observed at the early stages as well. According to the phase diagram of Na₂CO₃−NaHCO₃−CO₂−H₂O versus temperature and CO₂ partial pressure [24], the formation of natron and trona should be the main products. However, caused by the samples preparation process (oven dried at 40 °C), these phases are not observed because the decrystallization of natron and trona happens at very low temperature (below 40 °C). Nevertheless, the identified thermonatrite, the recrystallized product of natron at 37−38 °C, indicates the existence of natron (Na₂CO₃·10H₂O) in the reaction products. Furthermore, the reflections of hydrous sodium carbonates are gradually disappearing till 2 d of casting, indicating the transformation of hydrous sodium carbonates to other new products, i.e. gaylussite and hydrotalcite.

3.4. TG-DTG

The TG-DTG analysis results (M3) heated from 20 to 1000 °C at different ages are shown in Fig. 6a, confirming again different reaction products are formed at the early stages. In general, the mass loss happening below 200 °C is due to the physically bound water or free water evaporation. The peaks on the DTG curves at approximate 491 °C and 614 °C are attributed to the decomposition of carbonate salts. Corresponding to the XRD results, the carbonate salts can be different polymorphs of calcium carbonate, such as aragonite [39] and calcite. Furthermore, due to the activator applied, the mass change at about 903 °C is possibly attributed to the decomposition of sodium carbonate to Na₂O and CO₂ [40]. When the reaction approaches 3 d/4 d, a new decomposition peak centred at around 296 °C is observed that is then slightly shifting to a higher position (326 °C) and the peak at around 537 °C after 7 d of curing indicates the dehydroxylolation and decarbonation of hydralcite (Fig. 5). It is difficult to distinguish the dehydroxylation of gaylussite and calcite, however, the small shoulder at around 138 °C shows that dehydration of gaylussite [41]. The shoulder is also observed in the samples after 2 d of curing, which is in line with the XRD results. Moreover, the peaks above 840 °C can be attributed to the decomposition of sodium carbonate, which can be the decomposed reaction product from gaylussite after releasing CO₂ [41]. It should be noted that the mass loss before 200 °C is substantially increased after 3 d of curing, probably due to the formation of C-(A)−S−H gel (Fig. 4).

3.5. SEM

The SEM images of samples M3 at different ages are presented in Fig. 7. As can be seen, the initial dissolution of GGBS, precipitation of calcium carbonate and initial gelation process of reaction products can be clearly observed. At the first 1 h, the dissolution process of slag particles starts when it contacts with the alkali activator. Small grains can be observed on the surface of slag particles (Fig. 7–1 h (a,b)) which gradually become more obvious till 1 d after casting, and this is primarily considered to be the initial precipitation process of calcium carbonate. When it comes to 2 d, corresponding with the reaction kinetics (Fig. 2) and FTIR (Fig. 3) results, the gel-like structures on the surface of slag particles (Fig. 7–2 d(b)) are assigned to the initial formation of C-(A)−S−H gel. Furthermore, an increased denser microstructure of samples from 3 d to 7 d is observed, indicating the ongoing process of gelation. In the meantime, the new phases are generated, as shown in Fig. 7–d(b).

3.6. Compressive strength

The compressive strength of Na₂CO₃ activated slag with different alkali contents and W/S ratios at the curing ages of 7 d, 28 d and 180 d, respectively, are shown in Fig. 8. It is clear that the factors of water to solid ratio, alkali content and curing age have significant effects on the compressive strength. The 7 d, 28 d and 180 d compressive strength of mixtures range from 18 MPa to 39 MPa, 26 MPa−50 MPa and 32 MPa−54 MPa, respectively, which shows that these materials can be applied to construction with different strength class requirements to a large extent.

As can be seen, the compressive strength of samples is proportional to the sodium carbonate content and W/S ratio. Within the range of the factors studied (AC, 3%−5%; W/S, 0.4 to 0.5), the effect of water to solid ratio is considered to be more prominent than that of alkali content. To specify, when the alkali content increases from 3% to 5%, the increase of 7 d compressive strength of samples with a W/S of 0.45 is 41%, while with an alkali content of 4% that of W/S from 0.5 to 0.4 is up to 63%. The reason could be related to the fact that more concentrated alkali solution is more effective in attacking the slag particles and the reaction rate is supposed to be faster (Fig. 2).

The relationship between the sodium carbonate concentration and the compressive strength of the samples at different curing ages is investigated. As shown in Fig. 9, it is obvious that within the investigated range here, the initial alkali concentrations play a dominating role on the mechanical properties. Moreover, an approximately linear relationship is observed for samples at the different ages. The interaction between AC and W/S is also observed to have a certain degree of influences, which means that alkali content will more effectively affect the compressive strength of samples produced with a lower alkali content. For example, from W/S ratios of 0.45 to 0.4 at 7d curing, the average increase of strength of AC 3% samples is 29%, whereas to the AC 5% samples it is only 21%.

3.7. Discussion

Previously, Xu and Provis [23] proposed a mechanism and reported that initially Ca²⁺ dissolves from slags and then forms.

B. Yuan et al. / Cement and Concrete Composites 84 (2017) 188−197
CaCO₃, which will decrease the pH of the system. Then the formation of C–S–H gel will take Ca²⁺ from CaCO₃, releasing CO₃²⁻ to participate another cycle of reaction. However, the mechanism proposed is based on the characterization of aged products, which explains the ongoing reaction process of Na₂CO₃ activated GGBFS rather than the initial reaction. Bernal et al. [27] reported a conceptual description of the pore solution chemistry within a sodium carbonate-activated slag binder, however, the reactions happened during the dormant period and the key factors triggering the restarted reaction still require further investigation.

Based on the present results, it is clear that the gelation process of C-(A)–S–H gel started at 2–3 d after casting, confirmed by the FTIR (Fig. 4) and SEM results (Fig. 7). As a result, the phase changes before gelling is of great interest. The precipitation of calcium carbonate is confirmed by the XRD and TG results (Fig. 6a). Bernal et al. [27] proposed that the gaylussite was formed at ~1 d and then started converting to CaCO₃ from days 1 to 5–7. In the meantime, the Mg²⁺ dissolved from slag will react with Al forming hydrotalcite. However, different phenomena are observed in the present study. The intensive formation of gaylussite is only observed during the curing along with the generation of hydrotalcite after around 2 d/3 d, which is in line with the TG-DTG results. While at the early
age (≤2 d), only the existence of different polymorphs of calcium carbonate, such as aragonite and calcite, and a tiny amount of gaylussite can be clearly identified. It is clear that the CO_3^{2-} concentration in the pore solution controls the reaction of sodium carbonate activated slag due to the low saturation limit of calcium carbonate. In this case, according to the results, it is most likely that the accumulation of gaylussite and formation of hydrotalcite decrease the CO_3^{2-} concentration to a certain level, and then the Ca^{2+} concentration increases, leading to the precipitation of C-(A) CeSeH gel.

On the other hand, it has been reported that pH value of solution plays a significant role on the initial dissolution of the precursor and a pH value lower than 9.5 is not sufficient to form the C–S–H gel [17,42]. As a result, changes on pH of sodium carbonate activated slag are worth to be further studied. Because of the lengthened reaction process, the fresh paste remains unhardened after 2 h
Fig. 7. (continued).

Fig. 8. Effect of alkali content, water to solid ratio and curing age on the compressive strength of Na₂CO₃ activated GGBFS.

Fig. 9. Relationship between initial alkali concentration and compressive strength of samples at 7 d, 28 d and 180 d, respectively.
were evaluated by a full factorial experiment. The following con-
water to binder ratio and curing age on the mechanical properties
employing isothermal calorimetry, FTIR, XRD, TG-DTG and SEM.
strength-giving phases, i.e. C-(A)
reaction products of NaCO3 activated slag were investigated by
4. Conclusions
Acknowledgements
References

