Coupled heat, moisture and CFD modeling in the built environment

Citation for published version (APA):

Document status and date:
Published: 01/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Jan. 2020
Coupled Heat, Moisture And CFD Modeling In The Built Environment

K. Kompatscher¹, S. Kochen¹, A. M. W. van Schijndel¹, H. L. Schellen¹

¹Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

Museum buildings strive for a stable indoor climate to reduce the risk of cultural object degradation. An incorrect temperature or relative humidity can induce or accelerate deterioration processes such as biological, chemical or mechanical degradation. In order to reduce these risks, museums often install (parts of) an HVAC system to control the indoor climate of exhibition rooms. The indoor climate is often assessed based on bulk environment which does not reflect possible parameter gradients that cause strains and stresses in heritage objects.

The purpose of this research is to create a COMSOL Multiphysics® model that simulates conditioned air flow and its impact on the local climate near objects. The use of COMSOL Multiphysics® provides the advantage to study the micro-climate in the room and different physics that are influenced by one another. Boundary conditions such as temperature, relative humidity and air flow velocity, can easily be altered to study multiple variations. Both air flow of the exhibition room and its impact on temperature and relative humidity near objects can be studied.

Measurements of the indoor climate conditions of an exhibition room were conducted with combined temperature and relative humidity sensors and infrared thermography. The results of this experimental study are used to validate the COMSOL Multiphysics® model. A Conjugate Heat Transfer model combined with the Heat and Moisture Transport module is applied to simulate heat, air and moisture transport through the building structure and air volume. A simplified geometry representing a museum exhibition room is created. The COMSOL Multiphysics® model calculates surface and air temperature and relative humidity. At representative locations of the exhibition room the quality of local climates is assessed. The wall surface temperature and relative humidity are compared to the observed infrared thermograms to assess the accuracy of the COMSOL Multiphysics® model.

The expected results of the study will give an indication to what extent indoor climate control in museum buildings influences the behavior of local climates near objects. Additionally, by varying boundary conditions of the model, it is possible to assess the impact of different building envelope qualities on the local climate behavior. Based on the results, different climate control strategies will be assessed to fully understand the impact of dynamic HVAC control on the indoor climate of an exhibition room and the risk of object degradation.

Figures used in the abstract
Figure 1: Velocity flow field of museum exhibition room.