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On the Synthesis of Boundary Control Laws for
Distributed Port-Hamiltonian Systems

Alessandro Macchelli, Member, IEEE , Yann Le Gorrec, Member, IEEE ,
Héctor Ramírez, Member, IEEE , and Hans Zwart, Member, IEEE

Abstract—This paper is concerned with the energy shap-
ing of 1-D linear boundary controlled port-Hamiltonian sys-
tems. The energy-Casimir method is first proposed to deal
with power preserving systems. It is shown how to use finite
dimensional dynamic boundary controllers and closed-loop
structural invariants to partially shape the closed-loop en-
ergy function and how such controller finally reduces to a
state feedback. When dissipative port-Hamiltonian systems
are considered, the Casimir functions do not exist anymore
(dissipation obstacle) and the immersion (via a dynamic
controller)/reduction (through invariants) method cannot be
applied. The main contribution of this paper is to show how
to use the same ideas and state functions to shape the
closed-loop energy function of dissipative systems through
direct state feedback i.e. without relying on a dynamic con-
troller and a reduction step. In both cases, the existence of
solution and the asymptotic stability (by additional damp-
ing injection) of the closed-loop system are proven. The
general theory and achievable closed-loop performances
are illustrated with the help of a concluding example, the
boundary stabilization of a longitudinal beam vibrations.

Index Terms—Boundary control, distributed port-Hamil-
tonian systems, passivity-based control, stability of pdes.

I. INTRODUCTION

I T is more than two centuries that partial differential equa-
tions (PDEs) are used to model physical systems. However,

one of the most recurring assumption is that no external signals
are present. In this respect, it is only since the sixties and
seventies of the last century that a mathematical theory has
been developed in order to cope with boundary control and
observation. This fact makes it possible to study practical
problems modeled by PDEs, such as controlling the water level
in a river, or estimating the temperature distribution in a room.
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Moreover, by introducing inputs and outputs, the distributed
parameter system is no longer a “closed” system since it can
be easily interconnected with other (sub-)systems.

From a physical point of view and with the bond-graph
modeling formalism [1] in mind, the interaction between dif-
ferent systems can be interpreted as an exchange of energy
through a set of well-defined power ports. Port-Hamiltonian
systems [2], [3] have been introduced about 20 years ago as the
mathematical formalization of bond-graphs to describe lumped
parameter physical systems in an unified manner, [4], [5]. The
generalization to the infinite dimensional scenario leads to the
definition of distributed port-Hamiltonian systems [6]–[9] that
have been introduced about one decade ago as a particular case
of the more general framework presented, e.g., in [10], that
deals with closed infinite dimensional Hamiltonian systems,
and then extended in [11] (see also the references therein), to
open physical systems. Distributed port-Hamiltonian systems
have proved to represent a powerful framework for modeling,
simulation and control of physical systems described by PDEs.

Most of the current research on the stabilization of distributed
port-Hamiltonian systems is about the development of bound-
ary controllers. The simplest way of designing such controllers
is to add some dissipation, or to use the passivity properties of
the interconnected systems and the total energy as Lyapunov
function to prove asymptotic or exponential stability. Inspired
by the finite dimensional case, a more sophisticated approach
aiming at achieving a certain level of performances in closed-
loop consists in shaping the energy function, the stability being
ensured by the passivity properties of the controlled system.
In current literature (see e.g., [11]–[16]), this task has been
accomplished for power preserving systems by considering a
dynamic controller and generating a set of closed-loop Casimir
functions that relates the state of the infinite dimensional plant
to the state of the finite dimensional controller. The shape
of the closed-loop energy function is then changed by acting
on the Hamiltonian of the controller. From the existence of
the closed-loop structural invariants, the dynamic controller
finally reduces at the end to a state feedback. This procedure
is the generalization of the control by interconnection (energy-
Casimir method or immersion/reduction methods) developed
for finite dimensional systems, [3], [17]. The strong limitation
of such control design method is the dissipation that breaks the
structural invariants. This phenomenon is well known as the
dissipation obstacle.

This paper focuses on the class of distributed port-
Hamiltonian systems defined on real Hilbert spaces studied
in [8], [18], where the problem of existence of solutions for
the associated system of PDEs, and of the selection of the
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boundary conditions to have a well-defined boundary control
system in the sense of [19] has been solved in case of linear
systems with one-dimensional spatial domain. The latest results
that combine abstract functional analytical approach with the
physical approach of port-Hamiltonian system theory have
been collected in [20], in which, among others, simple matrix
conditions for well-posedness and stability are given. With the
framework proposed in [8], [20] in mind, in this paper new
results dealing with the synthesis of asymptotically stabilizing
boundary control laws are given.

The starting point is the energy-Casimir method, here inves-
tigated in the most general possible case as far as the controller
structure is concerned. In this way, the results already presented
in literature [11]–[16] can be seen as particular cases of the
theory discussed here. In first instance, the geometric properties
of the closed-loop system are investigated. General conditions
for the existence of Casimir functions are provided, together
with a precise characterisation of the class of systems to which
the method is applicable. It is well-known, in fact, that with
this approach it is not possible to deal with systems that are
characterised by equilibria which require an infinite amount of
supplied energy in steady state, i.e., with the so-called “dissi-
pation obstacle,” [3], [15], [17], [21]–[23]. Secondly, based on
[24]–[27], existence and properties of the closed-loop system
solutions are investigated, and a positive answer in case the
controller is passive is given. Once the Casimir functions are
characterized, it is shown how to use them for control purposes.
Indeed, these invariants allow to link the state of the controller
to the state of the system, and then to reduce the dynamic
contribution of the controller to a boundary state feedback.
An appropriate choice of this state feedback through the initial
choice of the controller energy function allows to shape, at least
in some directions (this point is discussed in the last section of
the paper), the closed-loop energy function. Such a control ac-
tion can be paired, for example, with damping injection without
worrying that possible changes in the dissipative structure of
the system “destroy” the Casimir functions, thus ensuring, after
having proved existence of solution, the asymptotic stability of
the closed-loop system.

Inspired by this energy-Casimir method, a new control de-
sign method is proposed to avoid the problems associated to
the dissipation obstacle. The idea is to keep a boundary state
feedback structure without designing it through a dynamic con-
troller nor closed-loop invariants. In this paper, all the boundary
state feedback laws that shape the Hamiltonian function in pre-
defined directions are characterised, so that simple stability
in closed-loop is obtained. To have asymptotic stability, it is
then necessary to add damping by means of a further control
loop. This is the same concept adopted in finite dimensions
in case of stabilization with state modulated sources [17], or
with the more general IDA-PBC control technique, [28]. These
considerations lead to the last main contribution of this paper. It
is shown that if it is possible, via damping injection, to impose
full boundary dissipation to the closed-loop port-Hamiltonian
systems with shaped Hamiltonian, then the desired equilibrium
is asymptotically stable.

It is now important to understand how to frame this work
in the more general topic “control of distributed parameter

systems.” First of all, there are several sub-classes of infinite-
dimensional systems. In the general operator-theoretic ap-
proach [19] the use of energy is most times hidden, although
the co-located feedback is based on it. Therefore, our ap-
proach is more related to the second main subclass of infinite-
dimensional systems, namely working with the PDE directly,
[29]. In this class, the use of energy is very common. However,
in this paper, there is no reference to a specific PDE, but to
a class of PDEs that encompasses models, e.g., of flexible
beams, waves, and reaction diffusion processes, in 1-D but also
2-D or 3-D when there are symmetries that can be exploited
to obtain a simplified 1-D model, and that forms a sub-class
of port-Hamiltonian systems. Furthermore, the idea is not to
stabilize the system around the origin (the lowest point of the
energy), but around another point with modified closed-loop
performances associated to a modified shape of the closed-loop
energy. Combined with the analytic proof that this is possible,
to the best of our knowledge this has not been studied before
neither in the operator approach, nor in the PDE approach.

The paper is organized as follows. In Section II, the class of
linear, distributed, port-Hamiltonian systems under investiga-
tion is briefly presented. In Section III, the geometric properties
of the energy-Casimir method are discussed. Section IV is
devoted to the main control synthesis methodology that is based
on passivity-based considerations. How to achieve asymptotic
stability via damping injection is then discussed in Section V.
Finally, in Section VI, the general methodology is illustrated
with the help of an example, namely the PDE that describes
the longitudinal vibration of a beam. Conclusions and a dis-
cussion about possible future research activities are reported in
Section VII.

II. BACKGROUND

In this paper, we refer to the class of linear distributed port-
Hamiltonian systems defined on real Hilbert spaces that have
been studied in [8], [20], [27], [30], i.e., to systems described by
the PDE

∂x

∂t
(t, z) = P1

∂

∂z
(L(z)x(t, z)) + (P0 −G0)L(z)x(t, z) (1)

with x ∈ Rn, and z ∈ [a, b]. Moreover, P1 = PT
1 and invert-

ible, P0 = −PT
0 , G0 = GT

0 ≥ 0, and L(·) is a bounded and
Lipschitz continuous matrix-valued function such that L(z) =
LT (z) and L(z) ≥ κI , with κ > 0, for all z ∈ [a, b]. For the
sake of clearness, (Lx)(t, z) := L(z)x(t, z). We say that the
symmetric matrix M is positive definite, in short M > 0, if all
its eigenvalues are positive, and positive semi-definite, in short
M ≥ 0, if its eigenvalues are non-negative. The state space
is X = L2(a, b;Rn), and is endowed with the inner product
〈x1|x2〉L = 〈x1|Lx2〉 and norm ‖x1‖2L = 〈x1|x1〉L, where 〈·|·〉
denotes the naturalL2-inner product. The selection of this space
for the state variable is motivated by the fact that ‖ · ‖2L is
strongly linked to the energy function of (1). As a consequence,
X is also called the space of energy variables, and Lx denote
the co-energy variables. This class is quite general and includes
models of flexible structures, traveling waves [7], [9], [13], heat
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exchangers, and linearised models of bio or chemical reactors
among others, [31].

Remark 2.1: Note that L(·) may be L∞, i.e., a bounded
measurable matrix-valued function. Lipschitz continuity is only
needed in the proof of Theorem 5.3.

The PDE (1) can be also written as ẋ = J x, where J is
the linear operator defined as J x := P1(∂/∂z)(Lx) + (P0 −
G0)Lx, with domain D(J ) = {Lx ∈ H1(a, b;Rn)}. Here,
H1(a, b;Rn) denotes the Sobolev space of order one.

To have a distributed port-Hamiltonian system, the PDE (1)
has to be completed by a set of boundary port variables. More
precisely, for Lx ∈ H1(a, b;Rn), the boundary port variables
associated to (1) are the vectors f∂, e∂ ∈ Rn defined by(

f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)
︸ ︷︷ ︸

=:R

(
(Lx)(b)
(Lx)(a)

)
. (2)

The boundary port variables are a linear combination of the
restriction of the co-energy variables to the boundary, and inte-
gration by parts shows that (1/2)(d/t)‖x(t)‖2L = eT∂ (t)f∂(t).
The problem of determining the “right” boundary inputs and
outputs for (1) to have a boundary control system on X in
the sense of the semigroup theory, see, e.g., [19], has been
addressed in [8].

Theorem 2.1: Let W be a n× 2n real matrix. With this W ,
we define the input mapping B : H1(a, b;Rn) → Rn and the
input u(t) as

u(t) = W

(
f∂(t)
e∂(t)

)
=: Bx(t). (3)

If W has full rank and satisfies WΣWT ≥ 0, with

Σ =

(
0 I
I 0

)

then the system (1) with input (3) is a boundary control sys-
tem on X . Furthermore, the operator J̄ x := P1(∂/∂z)(Lx) +
(P0 −G0)Lx with domain

D(J̄ ) =

{
Lx ∈ H1(a, b;Rn) |

(
f∂
e∂

)
∈ Ker W

}
=
{
Lx ∈ H1(a, b;Rn) | Bx = 0

}
generates a contraction semigroup on X . Moreover, let W̃ be a
full rank n× 2n matrix such that (WT W̃T ) is invertible and
let P be given by

P =

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)−1

.

Define the output as

y(t) = W̃

(
f∂(t)
e∂(t)

)
=: Cx(t) (4)

with C : H1(a, b;Rn) → Rn. Then, for u ∈ C2(0,∞;Rn)
and (Lx)(0) ∈ H1(a, b;Rn), the following energy balance
equation is satisfied:

1

2

d

dt
‖x(t)‖2L ≤ 1

2

(
u(t)
y(t)

)T

P

(
u(t)
y(t)

)
. (5)

Proof: See [8]. �
In this paper, the matrices W and W̃ are selected in such a

way that (1) is in impedance form i.e.,WΣWT = W̃ΣW̃T = 0
and WΣW̃T = I , or equivalently(

W

W̃

)
Σ
(
WT W̃T

)
= Σ. (6)

In this case, the energy-balance (5) reduces to

1

2

d

dt
‖x(t)‖2L ≤ yT (t)u(t). (7)

In Sections IV and V, the design of a state-feedback law
for the PDE (1) that leads to a closed-loop system in port-
Hamiltonian form which is asymptotically stable is discussed.
However, preliminary problems are to understand if the linear
system of coupled PDEs and ODEs associated to the closed-
loop system has a unique solution, and if it is a well-defined
boundary control system. In this respect, let us consider a linear
control system in port-Hamiltonian form, whose most general
formulation is [32]{

ẋC = (JC −RC)QCxC + (GC − PC)uC

yC = (GC + PC)
TQCxC + (MC + SC)uC

(8)

where xC ∈ RnC and uC , yC ∈ Rn, while JC = −JT
C , MC =

−MT
C , RC = RT

C , and SC = ST
C , with this further condition

satisfied (
RC PC

PT
C SC

)
≥ 0. (9)

Finally, assume that QC = QT
C > 0, so that (8) is a passive

linear system. For the sake of compactness, this system can be
easily written in standard (AC , BC , CC , DC) form, being

AC = (JC −RC)QC BC = GC − PC

CC =(GC + PC)
TQC DC = MC + SC . (10)

The control system (8) is interconnected to the boundary of
(1) in a power-conserving way through the input u and the
output y defined in (3) and (4) under the assumptions (6) as(

u
y

)
=

(
0 −I
I 0

)(
uC

yC

)
+

(
u′

0

)
(11)

where u′ ∈ Rn is an additional control input. This is the
standard feedback interconnection. The closed-loop system is
characterized by the total Hamiltonian

Hcl(x(t), xC (t)) =
1

2
‖x(t)‖2L +

1

2
xT
C(t)QCxC(t)︸ ︷︷ ︸
=:HC(xC(t))

(12)
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and can be compactly written as{
ζ̇ = Jclζ

u′ = (B +DCC CC) ζ =: B′ζ
(13)

where

ζ =

(
x
xC

)
∈ Z := X × R

nC

is the state variable of the closed-loop system and Jcl :
D(Jcl) ⊂ Z → Z is the following linear operator:

Jclζ :=

(
J 0

BCC AC

)(
x
xC

)
(14)

with domain

D(Jcl) = D(J )× R
nC . (15)

Z is endowed with the inner product defined as

〈ζ1 | ζ2〉Z = 〈x1 | x2〉L + xT
C,1QCxC,2

which means that Hcl(ζ) = (1/2)‖ζ‖2Z . Some fundamental
properties associated to the PDEs and ODEs describing the
closed-loop dynamics are presented in the next proposition.

Proposition 2.2: Consider the port-Hamiltonian system re-
sulting from the power-conserving interconnection (11) of (1)
and (8), which results in (13). Then, (13) with Jcl defined in
(14) with domain (15) is a boundary control system. Moreover,
the operator J̄cl given by

J̄clζ :=

(
J 0

BCC AC

)(
x
xC

)
with domain

D(J̄cl) =

{(
x
xC

)
∈ Z | x ∈ D(J ), and B′

(
x
xC

)
= 0

}

with B′ defined in (13) generates a contraction semigroup.
Proof: The proof can be found in [26]. �

III. STRUCTURAL INVARIANTS OF BOUNDARY

CONTROLLED SYSTEMS

Proposition 2.2: Shows that the power conserving inter-
connection (11) of the distributed port-Hamiltonian system (1)
with the passive port-Hamiltonian controller (8) results in a
port-Hamiltonian system, the closed-loop system, characterized
by the Hamiltonian (12) which is the sum of the Hamiltonian
functions of (1) and (8). To use this closed-loop Hamiltonian as
Lyapunov function, one has first to guarantee that this function
has a minimum at the desired equilibrium with a proper choice
of HC . The choice of HC also allows to change the shape (at
least in some directions) of the closed-loop energy function, and
thus the closed-loop performances. As in the finite dimensional
case [3], [17], if it is possible to find structural invariants
(i.e., that do not depend on the Hamiltonian) named Casimir
functions of the form C(x, xC) = xC − F (x), with F (x) some
smooth well defined functional of x, then on every invariant

manifold defined by xC − F (x) = κ, with κ a real constant
relating the initial state of the system to the initial state of the
controller, the closed-loop Hamiltonian (12) may be written as
Hcl(x) = H(x) +HC(F (x) + κ), with H(x) = (1/2)‖x‖2L.
Hence, the closed-loop Hamiltonian Hcl depends on the state
variable of (1) only. Its minimum and its shape, defining the
closed-loop equilibrium and the closed-loop performances, can
be assigned by an appropriate choice of HC .

Definition 3.1 (Casimir function): Consider the boundary
control system defined in Proposition 2.2 with u′ = 0 in (11).
A function C : X × RnC → R is a Casimir function if Ċ = 0
along the (classical) solutions for every possible choice of L(·)
and QC , [3], [13], [21].

Due to the fact that the geometric structure (namely, the Dirac
structure) associated to the boundary control system introduced
in Proposition 2.2 is linear, the Casimir functions are linear
(see e.g., [22]). Consequently, as in [26], [33], [34], we look
for Casimir functions in the form

C(x(t), xC(t)) = ΓTxC(t) +

b∫
a

ΨT (z)x(t, z) dz (16)

with Γ ∈ RnC and Ψ ∈ L2(a, b;Rn). Note that they are not
(yet) in the form assumed above.

Proposition 3.1: Consider the boundary control system in-
troduced in Proposition 2.2 with u′ = 0 in (11). Then, (16)
is a Casimir function for this system if and only if Ψ ∈
H1(a, b;Rn),

P1
dΨ

dz
(z) + (P0 +G0)Ψ(z) = 0 (17)

(JC +RC)Γ + (GC + PC)W̃R

(
Ψ(b)
Ψ(a)

)
= 0 (18)

(GC − PC)
TΓ +

[
W + (MC − SC) W̃

]
R

(
Ψ(b)
Ψ(a)

)
= 0

(19)

Proof: The proof of [26], for the case RC = PC =
MC = 0, can be easily adjusted to show the above proposition.
However, in Appendix A we present a simpler and more elegant
one. �

It is worth noting that Casimir functions are also discussed in
[10] for Hamiltonian systems, and there called “distinguished
functionals.” They are employed in the stabilisation by port-
interconnection in [11], where a finite dimensional Hamiltonian
control system is interconnected to the boundary of an infinite
dimensional Hamiltonian plant, and similar results to the ones
in Proposition 3.1 are obtained.

Proposition 3.2: Assume that it is possible to find nC

Casimir functions, i.e. it is possible to relate all the state
variables of the controller with the states of the plant, and
denote by Γ̂ = (Γ1 · · · ΓnC

) and Ψ̂ = (Ψ1 · · · ΨnC
)

the nC × nC matrices built from the vectors and vector valued
functions that appear in the Casimir (16). Moreover, assume that
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the Ψi are independent solutions of (17). Then, the following
conditions are satisfied:

G0Ψ̂(z) = 0 (20)

(
RC PC

PT
C SC

)⎛
⎝ Γ̂

W̃R

(
Ψ̂(b)

Ψ̂(a)

)⎞⎠ = 0. (21)

Proof: The proof is reported in Appendix B. �
Propositions 3.1 and 3.2: Summarise the conditions for the

existence of the Casimir invariants in closed-loop. Relations
(20) and (21) impose conditions on the parameters in the
Casimir when there is dissipation in the system. This is called
the dissipation obstacle. For instance, when G0 is invertible,
i.e., there is strong dissipation in the PDE, (20) implies that Ψ̂
must be zero, and so we cannot find any Casimir function of the
form (16). Hence, our control design procedure fails. See also
[3], [17] for the finite-dimensional case.

IV. BOUNDARY CONTROL BY ENERGY-SHAPING

The aim of this section is to present a boundary control law
able to shape the Hamiltonian and move the minimum to the de-
sired equilibrium state. The synthesis technique discussed here
allows to overcome the main limitation of the energy-Casimir
method, namely the dissipation obstacle, that imposes strong
constraints on the amount of damping that can be added in
the system, damping that is fundamental to achieve asymptotic
or exponential stability in closed-loop. Before presenting the
main result of this section, it is important to investigate what is
the effect of the control system (8) developed according to the
energy-Casimir method on the distributed parameter system (1).

The link between the state of the controller xC and the
state of the plant x appears through the Casimir functions (16).
Indeed, under the hypothesis of Proposition 3.2 and if Γ̂ is
invertible, since each Casimir function is constant along the
system trajectories, we have that

xC(t) = −Γ̂−T

b∫
a

Ψ̂T (z)x(t, z) dz + κ (22)

with κ ∈ R
nC a constant that depends on the initial conditions

only. If we assume that the controller initial state is selected in
such a way that κ = 0, it is possible to verify that the closed-
loop dynamics are given by the boundary control system

∂x

∂t
(t, z) =P1

∂

∂z

δHcl

δx
(x(t))(z) + (P0 −G0)

δHcl

δx
(x(t))(z)

u′(t) =W ′R

((
δHcl

δx (x(t))
)
(b)(

δHcl

δx (x(t))
)
(a)

)
(23)

in which δ denotes the functional derivative (Fréchet derivative,
in the language of functional analysis) [7], [9], [10], while

Hcl(x(t)) =
1

2
‖x(t)‖2L +

1

2

⎛
⎝ b∫

a

Ψ̂T (z)x(t, z) dz

⎞
⎠

T

× Γ̂−1QC Γ̂
−T

b∫
a

Ψ̂T (z)x(t, z) dz (24)

andW ′ is a n×2n full rank, real matrix such that W ′ΣW ′T ≥0.
The fact that the closed-loop energy as function of the x

coordinates is given by (24) is an immediate consequence of
(12) and (22) if κ = 0. Moreover, the PDE that describes the
closed-loop dynamics in (23) follows from the fact that

δHcl

δx
(z) = (Lx)(z) + Ψ̂(z)Γ̂−1QCΓ̂

−T

b∫
a

Ψ̂T (z)x(z) dz

and because from (17) and (20) we have that

0 =P1
dΨ̂

dz
(z) + (P0 +G0)Ψ̂(z)− 2G0Ψ̂(z)

=P1
dΨ̂

dz
(z) + (P0 −G0)Ψ̂(z)

with the integral term that appears in the previous expression of
δHcl/δx that is not a function of z. Finally, with simple calcu-
lations it is possible to prove that W ′ = W + (MC + SC)W̃ ,
which from (6) and (9) implies that W ′ΣW ′T = 2SC ≥ 0.

The effect of the controller (8) is then to shape the open-
loop Hamiltonian (1/2)‖x(t)‖2L into the desired one (24), as
expected, and this property is strictly related to the presence
of Casimir functions in closed-loop that establish the algebraic
relation (22) between state of the controller and of the plant.
The same result can be equivalently achieved by writing the
control action, i.e., the output yC of (8), in state-feedback form
by defining xC as in (22), with κ = 0. With such control action,
the closed-loop system evolves according to (23), i.e., with the
shaped Hamiltonian. Proposition 2.2 assures that also when
the boundary control action is in standard state feedback form,
the closed-loop system is well-posed. Furthermore, it is possi-
ble to act on the auxiliary input u′ e.g., to add damping without
losing the stability properties obtained in the inner loop.

Similarly to the finite dimensional case, the main contribu-
tion of this section is to use state feedback to avoid the intrinsic
drawbacks of the energy-Casimir method in presence of the
dissipation obstacle. In the following proposition, it is shown
how to design a boundary state feedback control that is able to
map the open-loop dynamics (1) into the target system given
in (23).

Proposition 4.1 (Energy-shaping): Consider the system
(1) with boundary control given by (3). Denote by H(x) =
(1/2)‖x‖2L its Hamiltonian function. Then, the feedback law
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u = β(x) + u′, with u′ an auxiliary boundary input, maps (1),
(3) into the target dynamical system

∂x

∂t
(t, z) =P1

∂

∂z

δHd

δx
(x(t))(z) + (P0 −G0)

δHd

δx
(x(t))(z)

u′(t) =WR

((
δHd

δx (x(t))
)
(b)(

δHd

δx (x(t))
)
(a)

)
(25)

with Hd(x) = H(x) +Ha(x), provided that

P1
∂

∂z

δHa

δx
(x) + (P0 −G0)

δHa

δx
(x) = 0 (26)

β(x) +WR

((
δHa

δx (x)
)
(b)(

δHa

δx (x)
)
(a)

)
=0. (27)

Proof: The proof is immediate by comparison of initial
and target dynamics. For a geometric interpretation of this
result in the distributed parameter scenario, we refer to [22].

�
Remark 4.1: Equation (26) provides all the possible functions

Ha that can be employed in the energy-shaping procedure,
while (26) gives the associated boundary control action. Fur-
thermore, from (26) it is clear that δHa/δx is related to the
equilibrium states of (1). More precisely, the function x(t, z) :=
x�(z) is an equilibrium state of (1) if and only if x� :=
L−1(δHa/δx)(x�), with Ha such that (26) holds.

Once Hd is defined, by Theorem 2.1 a natural choice for the
output is

y′(t) = W̃R

((
δHd

δx (x(t))
)
(b)(

δHd

δx (x(t))
)
(a)

)
(28)

which implies that (d/dt)Hd(x(t)) ≤ y′
T

(t)u′(t). Such new
boundary port (u′, y′) has now to be terminated over a dissi-
pative element to obtain asymptotic stability of the equilibrium,
or just to improve the convergence rate

u′(t) = −Ξy′(t), Ξ = ΞT ≥ 0. (29)

This will be shown in Theorem 5.3.
By the previous remarks it is clear that the additional Hamil-

tonian Ha is constructed in such a way that L−1(Ha/x)(x) are
equilibrium states of (1). Furthermore, since the system has to
reach a non-zero state, Hd is chosen with a global minimum
in this non-zero state. In the following lemma, a construction
for Ha which achieves this is illustrated. Since, in this paper,
the linear case is treated, the focus is on quadratic Hamiltonian
functions.

Lemma 4.2: Let Φi ∈ H1(a, b;Rn), i = 1, . . . , n be inde-
pendent solutions of

P1
dΦi

dz
(z) + (P0 −G0)Φi(z) = 0 (30)

and define Φ̂(z) = (Φ1(z), . . . ,Φn(z)). Furthermore, let x� be
an equilibrium state of (1), i.e., Lx� ∈ H1(a, b;Rn) and

P1
∂(Lx�)

∂z
(z) + (P0 −G0)(Lx�)(z) = 0. (31)

Then

Ha(x) =
1

2

⎡
⎣ b∫

a

Φ̂T (x− x�)dz

⎤
⎦
T

×Qa

⎡
⎣ b∫

a

Φ̂T (x− x�)dz

⎤
⎦−

b∫
a

xT
� Lx dz + κ (32)

with Qa = QT
a > 0 and κ ∈ R some constant, satisfies (26) and

Hd = H +Ha has a global minimum in x�.
Proof: From (32), we have

δHa

δx
(x) = Φ̂Qa

⎡
⎣ b∫

a

Φ̂T (x− x�)dz

⎤
⎦− Lx�

and so by the definition of Φ̂ and x�, (26) is satisfied. Further-
more, since H(x)−

∫ b
a xT

� Lx dz equals H(x− x�)−H(x�)
the last assertion follows. �

V. ASYMPTOTIC STABILITY ANALYSIS

The aim of this section is now to show that damping injection
(29) with Hd = H +Ha and Ha given by (32) asymptotically
stabilises (1) in the equilibrium x�. We begin by studying the
closed-loop system (25), (28) with (29). Before doing so, we
introduce some notation. We define the bounded linear operator
KΦ : X → Rn as

KΦx =

b∫
a

Φ̂T (z)x(z) dz (33)

and Ld as

Ld = L+K∗
ΦQaKΦ (34)

where K∗
Φ : Rn → X is the adjoint operator of KΦ. Clearly,

K∗
Φ = Φ̂, and Ld is a bounded, coercive operator on

L2(a, b;Rn). Furthermore, Ha being given by (32) we find

Hd(x) =
1

2
〈(x− x�|Ld(x− x�)〉L2 +Hd(x�). (35)

Proposition 5.1: The closed-loop system (25), (28) with
(29) in which Ha is defined by (32) admits a unique solution.
Furthermore, the mapping from the initial error state at time
t = 0, x0 − x� to the error state at time t, x(t)− x� defines
a contraction semigroup in the norm (1/2)〈(x− x�)|Ld(x−
x�)〉L2 .

Proof: We begin by defining x̃ as x− x�, then by (35)
we have that (δHd/δx)(x) = Ldx̃. Since x� is independent of



1706 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 4, APRIL 2017

t, we see that the closed-loop system (25), (28) with (29) can be
written as

∂x̃

∂t
(t, z) =P1

(∂Ldx̃)

∂z
(t, z) + (P0 −G0)(Ldx̃)(t, z)

0 = [W + ΞW̃ ]R

(
(Ldx̃)(t, b)
(Ldx̃)(t, a)

)
. (36)

By pre- and post-multiplication of (6) by (I Ξ) and (I ΞT ),
respectively, we obtain:

[W + ΞW̃ ]Σ[W + ΞW̃ ]T = 2 Ξ ≥ 0

and then from Lemma 5.4 in [8] it follows that the semigroup
associated to (36) is a contraction semigroup with respect to
the norm (1/2)〈(x− x�)|Ld(x− x�)〉L2 . Furthermore, since x̃
and x only differ by x� is clear that the closed-loop system
(25), (28) with (29) admits a unique mild solution for all initial
conditions. �

Proposition 5.2: The operator Jd defined as

Jdx := P1
∂(Ldx)

∂z
+ (P0 −G0)(Ldx) (37)

with domain

D(Jd) =

{
x ∈ L2(a, b;Cn)|Ldx ∈ H1(a, b;Cn)

and 0 = [W + ΞW̃ ]R

(
(Ldx)(b)
(Ldx)(a)

)}
(38)

is the infinitesimal generator of a contraction semigroup and has
a compact resolvent.

Proof: From [8, Lemma 5.4], of which Theorem 2.1
is a particular case, it follows that Jd generates a contrac-
tion semigroup since Ld is a bounded, coercive operator on
L2(a, b;Rn). The compactness of the resolvent is derived from
[25, Theorem 2.28, pg. 50] because, as before, Ld is a bounded
and coercive operator. �

The main result is an application of the Arendt-Batty-
Lyubich-Vũ Theorem, see e.g., [29, Theorem 3.26, p. 130].

Theorem 5.3 (Asymptotic Stability): Consider the linear,
infinite dimensional, port-Hamiltonian system (1) and the equi-
librium state x� satisfying (31). Then, the control action u =
β(x) + u′ with β defined in (27), Ha chosen as in (32), and
with u′ defined in (29) with Ξ > 0, makes x� asymptotically
stable.

Proof: Using the previous notation, it is clear that the
assertion in the theorem is equivalent to the assertion that the
origin is asymptotically stable for the PDE (36). To this PDE,
we associate the infinitesimal generator Jd defined by (37) and
with domain (38). Since Jd has compact resolvent and gener-
ates a contraction semigroup, the semigroup is asymptotically
stable if and only if there are no eigenvalues on the imaginary
axis, see [29, Theorem 3.26]. In this respect, assume that jω is
an eigenvalue, i.e., there exists a nonzero x ∈ D(Jd) such that

jωx = Jdx. (39)

Using the definition of Jd and integration by parts, we see that

0 =Re (〈Ldx|jωx〉)
=

1

2
(Ldx)

∗(b)P1(Ldx)(b)−
1

2
(Ldx)

∗(a)P1(Ldx)(a)

− 〈Ldx|G0Ldx〉
=

1

2
(y′)∗u′ +

1

2
(u′)∗y′ − 〈Ldx|G0Ldx〉

where we have introduced

u′ = WR

(
(Ldx)(b)
(Ldx)(a)

)
y′ = W̃R

(
(Ldx)(b)
(Ldx)(a)

)

and used (6). Hence, the boundary condition gives

0 = −(y′)∗Ξy′ − 〈Ldx|G0Ldx〉. (40)

Since Ξ > 0 we see that y′ = 0 and thus u′ = 0. Furthermore,

G0Ldx = 0. (41)

Using the fact that
(
W
W̃

)
is invertible, y′ = u′ = 0 implies that

(Ldx)(a) = (Ldx)(b) = 0. Let now consider two cases:

• If ω = 0, then (39) and (41) imply that the function q :=
Ldx satisfies the first order ordinary differential equation
P1

∂q
∂z + P0q = 0. However, since q(b) = q(a) = 0 this is

only possible when q ≡ 0. Thus zero is not an eigenvalue.
• For ω �= 0, we introduce ξ =

∫ b

a Φ̂T (z)x(z) dz. We
have that

jωξ =

b∫
a

Φ̂T (z)jωx(z) dz

=

b∫
a

Φ̂T (z)(Jdx)(z) dz

=Φ̂T (b)P1(Ldx)(b) − Φ̂T (a)P1(Ldx)(a)

where we have used integration by parts (30) and (41).
Since (Ldx)(a) = (Ldx)(b) = 0, we have proved that
ξ = 0. Combining this with (33) and (34) we see that

Ldx = Lx+K∗
ΦQaξ = Lx.

Using this and the definition ofJd, we have that x satisfies
the first order ordinary differential equation

jωx = P1
∂(Lx)
∂z

+ P0(Lx).

Since L is Lipschitz continuous, bounded from above
and away from zero, so is its inverse. Due to the
Cauchy—Lipschitz theorem on existence and unique-
ness of solutions to ordinary differential equations
with given initial conditions, and combining this fact
with (Ldx)(a) = (Lx)(a) = 0, we conclude that x = 0.
Hence there are no eigenvalues on the imaginary axis and
the closed-loop error system is asymptotically stable. �
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Remark 5.1: If in (32) it is assumed that the functions Φi

solutions of (30) are such that

0 = WR

(
Φi(b)
Φi(a)

)
, i = 1, . . . , n

then the energy-shaping state feedback law β defined in (27)
reduces to a constant, namely

β(x) = WR

(
Φ̂(b)φ�

Φ̂(a)φ�

)

which are the boundary conditions associated to the equilibrium
(Lx)�. Then, the effect of the damping injection contribution
(29) is to dissipate the total energy until the new minimum
is reached. A simple application of [30] shows that the equi-
librium is uniformly exponentially stable. Since there are no
constraints on the boundary conditions on the function Φi

solution of (30), a parametrization of all the possible energy-
shaping control actions is provided in the linear case. Different
choices lead to different performances in closed-loop.

Remark 5.2: With the methodology discussed in the previous
section in mind, provided that HC(x) ≡ Ha(x) and Hcl(x) ≡
Hd(x), we see that the control by interconnection and energy
shaping via Casimir generation is a particular case of this one.
In fact, since the Casimir functions have to satisfy (17) and (20),
it is immediate that

P1
dΨ

dz
(z) + (P0 −G0)Ψ(z) = 0

and that

δHC

δx
(x(t, z)) = Ψ(z)

∂HC

∂xC

∣∣∣∣
xC=

b∫
a

ΨT (z)x(t,z) dz

.

Furthermore, condition (27) is a consequence of the definition
of u′ in (23). In addition, if for simplicity the finite dimensional
boundary controller (8) is chosen without the feedthrough term,
i.e., if MC = SC = 0, then in the second relation in (23) we
have that W ′ = W . Since u = β(x) + u′, from (3) we have that

β(x) = u− u′ = WR

((
δHa

δx (x)
)
(b)(

δHa

δx (x)
)
(a)

)

which is exactly (27). Equivalently, we can say that in the
lossless case for any energy-shaping control action β(x) it
is possible to determine a control system (8) that is able, if
properly initialised, to generate the control action β(x) itself.

VI. EXAMPLE: THE LONGITUDINAL

VIBRATION OF A BEAM

A. Port Hamiltonian Modelling

In this section, we consider the example of a bar of size
L subject to longitudinal (axial) vibration. The beam motion
results from an extension/compression deformation along its
longitudinal direction z ∈ [0, L]. In the following, we shall
denote the section of the beam by S(z), the longitudinal
displacement of a section of the beam from the unstressed

configuration by ϕ(t, z), and its velocity by v = (∂ϕ/∂t)(t, z).
In case of longitudinal motion, the deformation of the beam
ε(t, z) is related to the displacement by:

ε(t, z) =
∂ϕ

∂z
(t, z). (42)

The material’s deformation behavior is considered to be lin-
ear (Hooke’s law), which means that the axial mechanical
constraint σ(t, z), defined as the extension/traction force di-
vided by section S(z), is proportional to the axial deformation
ε(t, z) through the Young elasticity modulus E, i.e., σ(t, z) =
Eε(t, z). Applying the second Newton’s law to an infinitesimal
piece of beam (taking internal friction into account) leads to the
PDE equation

ρS(z)
∂2ϕ

∂t2
(t, z) =

∂

∂z

[
ES(z)

∂ϕ

∂z
(t, z)

]
−D

∂ϕ

∂t
(t, z)

where ρ is the mass density, and D ≥ 0 is the internal fric-
tion coefficient. By considering as energy variables the de-
formation ε(t, z) and the linear momentum density p(t, z) =
ρS(z)v(t, z), the total energy of the system can be written as
the sum of the kinetic energy and the potential energy of the
elastic deformation, i.e.,:

H (p(t, z), ε(t, z)) =
1

2

L∫
0

[
p2(t, z)

ρS(z)
+ ES(z)ε2(t, z)

]
dz

leading to the definition of the co-energy variables

σS(t, z) =
δH

δε
(ε(t, z)) = ES(z)ε(t, z) = S(z)σ(t, z)

v(t, z) =
δH

δp
(p(t, z)) =

p(t, z)

ρS(z)
=

∂ϕ

∂t
(t, z)

which are the elastic force acting on the cross-section, and its
velocity, respectively. The port-Hamiltonian formulation of the
system is then

∂

∂t

(
ε(t, z)
p(t, z)

)
=

(
0 ∂

∂z
∂
∂z −D

)(
ES(z) 0

0 1
ρS(z)

)(
ε(t, z)
p(t, z)

)

which is in the form (1), with P0 = 0, and

P1 =

(
0 1
1 0

)
, G0 =

(
0 0
0 D

)

L(z) =
(
ES(z) 0

0 1
ρS(z)

)
.

The boundary port variables (2) are

(
f∂
e∂

)
=

1√
2

⎛
⎜⎜⎝

v(L)− v(0)
σS(L)− σS(0)
σS(L) + σS(0)
v(L) + v(0)

⎞
⎟⎟⎠ .

The boundary input and output are selected as

u(t) =

(
v(t, 0)
σS(t, L)

)
, y(t) =

(
−σS(t, 0)
v(t, L)

)
(43)
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which can be derived from (3) and (4) thanks to the following
choice for W and W̃ :

W =
1√
2

(
−1 0 0 1
0 1 1 0

)
, W̃ =

1√
2

(
0 1 −1 0
1 0 0 1

)
.

The energy balance associated to this choice of input and output
is then given by

dH

dt
(t) = −

L∫
0

Dv2(t, z) dz + yT (t)u(t) ≤ yT (t)u(t).

B. Lossless Case

At first, we assume that D = 0, and we consider the fully
actuated case, i.e., the controller acts on both sides of the beam,
and a state feedback of the form u(t) = β(ε, p) + u′. The aim
of the state feedback is to shape, at least partially, the closed-
loop energy function. The stability is insured by an additional
dissipation term on the new input/output. From Lemma 4.2,
the class of function Ha that can be employed in the energy-
shaping design procedure are in the form

Ha(ε, p) = Ĥa (ξ1(ε, p), ξ2(ε, p)) (44)

with

ξ1 (ε(t, ·)) =
L∫

0

ε(t, z) dz

ξ2 (p(t, ·)) =
L∫

0

p(t, z) dz (45)

and Ĥa can be freely chosen. A closed-loop system with
Hamiltonian Hd(ε, p) = H(ε, p) +Ha(ε, p) with a minimum
in (0, 0) is obtained by selecting Ĥa as

Ĥa(ξ1, ξ2) =
1

2
Ξ1ξ

2
1 +

1

2
Ξ2ξ

2
2 (46)

where Ξ1,Ξ2 are two positive gains. From (27), this leads to the
state feedback:

β(ε, p) = −
(
Ξ]ξ2(p)
Ξ1ξ1(ε)

)
= −

(
Ξ2 0
0 Ξ1

)⎛
⎜⎜⎝

L∫
0

p dz

L∫
0

ε dz

⎞
⎟⎟⎠

and the desired closed-loop energy function:

Hd(ε, p) =
1

2

L∫
0

[
p2

ρS(z)
+ ES(z)ε2

]
dz

+
1

2
Ξ1

⎛
⎝ L∫

0

ε dz

⎞
⎠

2

+
1

2
Ξ2

⎛
⎝ L∫

0

p dz

⎞
⎠

2

. (47)

The resulting closed-loop system is impedance passive with
respect to the new input/output port (u′, y′) defined by (25)
and (28). Moreover, from (46) and (47), we see the energy

function can be (partially) shaped in the ε and p coordinates
by adequately choosing the gains Ξ1 and Ξ2. The asymtotic
stability is obtained by interconnecting a dissipative element
at the input/output port (u′, y′), as in (29). The achievable
performances of energy shaping plus damping injection control
strategy are illustrated in Section VI-D.

Remark 6.1: A similar result could have been obtained by
using the energy-Casimir method. For that purpose, let us con-
sider the system (8) with nC = 2, RC = PC = MC = SC = 0,
GC = I and JC to be assigned later on. By following the
energy-Casimir method discussed in Section III, it is quite easy
to check that Casimir functions are not present in closed-loop if
JC = 0. With this choice, the boundary controller (8) consists
of two separate systems, each required to provide a constant
power flow in steady state: they are not energy-balancing con-
trollers. So, it is necessary to couple these regulators and allow
for an internal power flow at the controller side. This can be
achieved by choosing

JC =

(
0 I
−I 0

)
which implies that the closed-loop system is characterized by
the following Casimir functions:

C1 (ξ1(t), ε(t, ·)) = ξ1(t)−
L∫

0

ε(t, z) dz

C2 (ξ2(t), p(t, ·)) = ξ2(t)−
L∫

0

p(t, z) dz.

Note the similarities with (45), as expected. The controller
Hamiltonian can then be chosen as in (46).

One can check that the closed-loop system is lossless, so
only simple stability has been achieved. However, asymptotic
stability can be obtained by damping injection at the boundary,
as discussed in Section IV. More precisely, asymptotic stability
follows immediately from Theorem 5.3

C. System With Internal Friction

Due to internal dissipation, i.e., when D �= 0, the energy-
Casimir method briefly discussed at the end of the previous
subsection (using a dynamic controller, and reduction) cannot
be applied as the dissipation obstacle does not allow to com-
pute invariant Casimir function in the p coordinate. It is then
necessary to rely on the energy-shaping methodology presented
in Section IV. The PDE (26) provides the admissible functions
Ha, and (27) the associated boundary control action.

With Lemma 4.2 in mind, the admissible Ha takes again the
form (41), with now

ξ1 (ε(t, ·)) =
L∫

0

ε(t, z) dz

ξ1 (ε(t, ·), p(t, ·)) =
L∫

0

[D(L − z)ε(t, z) + p(t, z)] dz. (48)
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Fig. 1. Open-loop step response.

Note that the solution proposed in [35] is just a particular case
of the one presented here. Finally, Ha can be selected e.g.,
as in (46) and, thanks to Theorem 5.3, asymptotic stability is
obtained via damping injection (29) on the new control port
(u′, y′) defined in (25) and (28) in the general case.

D. Achievable Closed-Loop Performances

In order to illustrate the achievable performances with the
energy-shaping methods proposed in this paper, we consider
the aforementioned beam (with D = 0) clamped at one side and
controlled at the other side, i.e.,

u(t) =

(
v(t, 0)
σS(t, L)

)
=

(
0

ū(t)

)

y(t) =

(
−σS(t, 0)
v(t, L)

)
=

(
ỹ(t)
ȳ(t)

)
where u and y are defined as in (43), ū is the actual control
input, namely the applied force in z = L, and ȳ the associated
dual output, the velocity in z = L.

1) Open-Loop Response: For simulation purpose, we con-
sider a finite dimensional approximation of the system with
normalized parameters (all set equal to one). In particular, the
spatial discretisation technique for distributed port-Hamiltonian
systems presented in [36] has been employed. The result
is a finite volume approximation in port-Hamiltonian form.
Fig. 1 shows the evolution of the position of the end of the
beam when a (normalized) force step is applied at the same
point. One can note the undamped oscillations occurring at the
different frequencies.

2) Dissipative Boundary Feedback: At first, a dissipative
boundary feedback in the form

ū(t) = −αȳ(t), α > 0

is implemented. Fig. 2 clearly shows that the oscillations can
be damped by increasing the values of α. As long as the system
is damped, the raising time increases, but at the same time,
the settling time decreases to 2.5 s until α is tuned in such
a way that the system does not present any oscillations. This

Fig. 2. Different step responses for increasing values of α > 0 (with dot
α = 0.2, dashed α = 0.5, and solid line α = 1 symbols, accordingly).

happens when α = 1, i.e., when the dissipative gain matches
the mechanical impedance of the beam. For larger values of
α, the system is over-damped, and the settling time increases
again.

3) Energy Shaping: We consider now the energy-shaping
method presented in Section IV. Since one of the extremities of
the beam is clamped, Ha is looked for under the form Ha(ε) =
Ĥa(ξ1(ε)). By applying Lemma 4.2, the admissible Ha are of
the form

Ha (ε(t, ·)) =
Ξ

2

⎛
⎝ L∫

0

ε(t, z) dz

⎞
⎠

2

=
Ξ

2
[ϕ(t, L)− ϕ(t, 0)]2

with Ξ > 0, in which the geometric constraint (42) has been
taken into account. The corresponding state feedback is

β(ϕ) = −Ξ1 [ϕ(t, L)− ϕ(t, 0)]

which is equivalent to an additional boundary stiffness, i.e., to
a proportional control action. Asymptotic stability is achieved
thanksto a dissipative feedback gain α, and the final control law
is of the form

u = β(ϕ)− αȳ = − Ξ [ϕ(t, L)− ϕ(t, 0)]− αv(t, L)

= − Ξϕ(t, L)− αv(t, L)

in which it is assumed that ϕ(t, 0) = 0 because the beam is
clamped in z = 0. Note that this is a classical PD control law, in
which the proportional gain is related to energy-shaping, while
the derivative one to damping injection. Fig. 3 shows how Ξ
allows to improve the settling time, and this effect combined
with the damping injection gain α allows to improve drastically
the transient response.

VII. CONCLUSIONS AND FUTURE WORK

The motivating idea of the paper has been the development
of a general synthesis methodology of boundary control laws
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Fig. 3. Closed-loop response in case of energy-shaping plus damping
injection control law with fixed Ξ = 200, and increasing values of α ≥ 0
(with dot α = 10, dashed α = 20, and solid line α = 30 symbols,
accordingly).

for linear, distributed port-Hamiltonian systems on a one-
dimensional spatial domain. As in the lumped parameter case,
the feedback law is determined in such a way that its effect
on the system is to shape the energy function, and to modify
the dissipative structure. Thanks to energy-shaping, simple
stability of the desired equilibrium is achieved, while damping
injection assures asymptotic convergence of the trajectories.
For any infinite-dimensional system existence and uniqueness
of solutions is not guaranteed beforehand. Therefore, we started
with the energy-Casimir method to design our control action
that leads to a (formally) passive dynamical system. Using
this structure it is much easier to prove that the set of PDEs
and ODEs associated with the dynamics of the closed-loop
system has a unique solution. This property holds also when
the control action is not provided by a dynamic controller, but
by an equivalent state feedback law.

Since the class of stabilizing controllers that the energy-
Casimir method can provide is quite limited because of the
dissipation obstacle, the problem of determining a feedback
law able to shape the Hamiltonian in a proper manner has
been tackled by determining the control action that maps the
open-loop system into a new one, with the same geometric
structure, but with a different Hamiltonian. Since the control
action shares the main properties of the feedback law obtained
via the energy-Casimir method, it is possible to verify that also
in this case the closed-loop system is well-posed, and defines
a new boundary control system. The resulting control law is
proved to asymptotically stabilize the system.

The proposed methodology has been developed for linear
systems with one-dimensional domain. The extensions to dis-
tributed port-Hamiltonian systems on a 2-D or 3-D spatial
domain and to non linear distributed port-Hamiltonian systems
are our main future research topics. Concerning the later one, all
the geometric considerations that have been used in this paper
remain valid as the port-Hamiltonian framework is intrinsically
devoted to non linear systems, but the analysis of the existence
of solution and of the stability proof remain difficult and open
problems.

APPENDIX

PROOFS OF THE RESULTS OF SECTION III

A. Proof of Proposition 3.1

By using the compact notation introduced in (10), and
with Definition 3.1 in mind, (dC/dt) = 0 along all classical
solutions if and only if for all (Lx, xC) ∈ H1(a, b;Rn)× RnC

there holds

B′
(

x
xC

)
= 0

0 = ΓT [ACxC +BcuC ]+

+

b∫
a

ΨT

[
P1

∂(Lx)
∂z

+ (P0 −G0)(Lx)
]
dz

(49)

Since (49) holds for all Lx ∈ H1(a, b;Rn), it implies that Ψ ∈
H1(a, b;Rn). By integrating by parts, we find

0 =ΓT [ACxC +BCuC ]

+

b∫
a

[
−
(
dΨ

dz

)T

P1 +ΨT (P0 −G0)

]
(Lx) dz

+

(
Ψ(b)
Ψ(a)

)T (
P1 0
0 −P1

)(
(Lx)(b)
(Lx)(a)

)
. (50)

By the definition of a Casimir, the above has to hold indepen-
dently of L and QC . The integral term vanishes if and only if Ψ
satisfies (17), where we used the properties of P1, P0 and G0.
Next, we concentrate on the equation (50) without the integral
term. Using (3), (4), and (11) with u′ = 0, we have that

W

(
f∂
e∂

)
= u = −yC = −CCxC −DCuC

W̃

(
f∂
e∂

)
= y = uC .

Thanks to (6) and the definition of Σ, we see that the inverse of(
W
W̃

)
equals Σ(WT W̃TΣ. Thus(

f∂
e∂

)
= Σ

(
WT W̃T

)(
uC

−CCxC −DCuC

)
.

By using the above relation, the equality(
P1 0
0 −P1

)
= RTΣR (51)

and (2), we see that (50) becomes

0 = ΓT [ACxC +BCuC ]

+

(
Ψ(b)
Ψ(a)

)T

RT
(
WT W̃T

)( uC

−CCxC −DCuC

)
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or equivalently by using (10) and uC = y

0 =

[
ΓT (JC−RC)−

(
Ψ(b)
Ψ(a)

)T

RT W̃T (GC+PC)
T

]
QCxC

+

[
ΓT(GC−PC)+

(
Ψ(b)
Ψ(a)

)T

RT
(
WT −W̃T(MC+SC)

)]
y.

From the definition of y in (4) and the skew symmetry of JC
and MC , this expression becomes independent of QC and L(·)
if and only if (18) and (19) hold. Since the classical solution are
dense, the assertion follows.

B. Proof of Proposition 3.2

Let us consider the matrices W and W̃ introduced in
Theorem 2.1, and satisfying (6). Then, the skew-symmetric and
symmetric parts of W̃TW are given by

J̃ =
1

2

[
W̃TW −WT W̃

]
1

2

[
W̃TW +WT W̃

]
=

1

2
Σ

respectively, where (6) was used in the last relation. We can then
write that

W̃TW = J̃ +
1

2
Σ. (52)

Now, since

(
Ψ̂(b)

Ψ̂(a)

)T (
P1 0
0 −P1

)(
Ψ̂(b)

Ψ̂(a)

)
=

=

b∫
a

dΨ̂T

dz
(z)P1Ψ̂(z) + Ψ̂T (z)P1

dΨ̂

dz
(z) dz

we find by using (17), the symmetry of P1, G0, and the skew-
symmetry of P0 that

(
Ψ̂(b)

Ψ̂(a)

)T (
P1 0
0 −P1

)(
Ψ̂(b)

Ψ̂(a)

)
=

= −2

b∫
a

Ψ̂T (z)G0Ψ̂(z) dz. (53)

By eliminating GC in (18) and (19), we have that

0 = Γ̂T (JC +RC)Γ̂ + 2Γ̂TPCW̃R

(
Ψ̂(b)

Ψ̂(a)

)

+

(
Ψ̂(b)

Ψ̂(a)

)T

RT W̃T (MC + SC)W̃R

(
Ψ̂(b)

Ψ̂(a)

)

−
(
Ψ̂(b)

Ψ̂(a)

)T

RTWT W̃R

(
Ψ̂(b)

Ψ̂(a)

)

which can be compactly written as

0 =

⎛
⎝ Γ̂

R

(
Ψ̂(b)

Ψ̂(a)

)⎞⎠
T [(

RC PCW̃

W̃TPT
C W̃TSCW̃

)

+

(
JC PCW̃

−W̃TPT
C W̃TMCW̃ + J̃

)]⎛⎝ Γ̂

R

(
Ψ̂(b)

Ψ̂(a)

)⎞⎠

− 1

2

(
Ψ̂(b)

Ψ̂(a)

)T (
P1 0
0 −P1

)(
Ψ̂(b)

Ψ̂(a)

)
(54)

once (2), (52), and (53) have been taken into account. Since
for a skew-symmetric matrix Q there holds that vTQv = 0, we
see that the middle term in above equality disappears. From (9)
and (53), we see that the remaining two terms are non-negative.
Hence, (54) implies that both terms are zero, thus (21) holds,
and by (53) we conclude that (20) holds as well.
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