Visual mapping of computational shear stresses implies mechanical control of cell proliferation and differentiation in bone tissue engineering cultures

Citation for published version (APA):

Download date: 27. Aug. 2020
glycol) hydrogels for in vivo optical-sensing and diabetic therapy. The real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanoxicity of cadmium-based quantum dots in vivo. Using opto- genetic cells producing glucagon-like peptide-1, we also performed light-controlled therapy and demonstrated improved glucose homeostasis in diabetic mice. In addition, we developed in situ supramolecularly assembled and modularly modified hyaluronate hydrogels for genetically engineered mesenchymal stem cell (eMSC) cancer therapy. The long-term expression of mutant interleukin-12 (IL-12M) by eMSCs within the supramolecular hydrogels resulted in effective inhibition of tumor growth with a significantly enhanced survival rate. Finally, we developed silicone hydrogels for a smart contact lens inhibition of tumor growth with a significantly enhanced survival rate.

Controlling the Astrocytic Response to Brain Injury using Self-assembling Peptide Hydrogels

F. Maclean¹, D. Tomas², R. Williams³, M. Horne²,⁴, D. Nisbet¹;
¹Research School of Engineering, Australian National University, Canberra, AUSTRALIA, ²Florey Institute of Neuroscience, Melbourne, AUSTRALIA, ³RMIT, Melbourne, AUSTRALIA, ⁴Department of Neurology, St Vincent’s Hospital, Fitzroy, AUSTRALIA.

After traumatic brain injury, the acute phase of astrogliosis is an essential physiological response. It is responsible for demarcating the lesion site, preventing secondary degeneration and arresting growth through the production of pro-inflammatory molecules [1]. This response is detrimental if persistent, as chemical and physical barriers provided by the ‘reactive’ astrocytes prevent functional recovery. Therefore, attenuation of reactive astrogliosis post-insult is an important biological challenge to promote central nervous system repair and reconstruction. We have implanted an Fmoc-based self-assembling peptide (SAP), Fmoc-DIKVAV, presenting the laminin sequence IKVAV, into the caudate putamen. This hydrogel self-assembles under physiological conditions, forming an injectable hydrogel with a nanofibrous network [2]. The sequence DIKVAV is presented on the outer surface of the nanofibres, resulting in the high-density presentation of a biologically relevant sequence, whilst also providing morphology reminiscent of the native extra cellular matrix. We functionised this hydrogel with an anti-inflammatory molecule and showed that conjugation of reactive astrogliosis post-insult is an important biological challenge to control the persistence of ‘reactive’ astrocytes after injury, and hence, encourage functional regeneration across the lesion site.

Session: Quantitative 3D Micro- and Nano-CT Imaging in Tissue Engineering: Emerging Technologies and Recent Advancements

Date and Time: Friday, September 11, 2015, 9:15 AM - 10:45 AM

NanoCT and Contrast-Enhanced NanoCT as First Line Screening and Quality Control Tools for Robust Production of Tissue Engineered Products: an Overview

G. Kerckhofs¹, F. Luyn¹, L. Geris²;
¹Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, BELGIUM, ²Biomechanics Research Unit, Université de Liège, Liège, BELGIUM.

Advanced 3D imaging is one of the enabling technologies that is of increasing importance in the field of tissue engineering (TE) to assess and guarantee high product quality, and to provide better knowledge on the mechanisms behind tissue formation and regeneration. Indeed, TE constructs (such as scaffolds with cells and/or growth factors) are 3D structures with complex spatial heterogeneity, for which traditional 2D imaging techniques are insufficient for comprehensive characterization or to assess their quality. In this overview, we show the potential value of nanofocus computed tomography (nanoCT) and contrast-enhanced nanoCT (CE-nanoCT) as first line screening and quality control tools throughout the entire production process of TE constructs.

Concerning scaffold selection, using nanoCT combined with empirical modelling, we highlight the important influence of the scaffold material and structure on its bone forming capacity, allowing to select and reverse engineer scaffolds with optimized properties. For biomarker-driven TE construct development, we showed that CE-nanoCT can be used as a ‘whole-construct’ imaging technique allowing to quantify in vitro formed neo-tissue (cells and extracellular matrix) in large 3D TE constructs. With respect to in vivo tissue formation, we have shown that CE-nanoCT allows 3D multi-tissue imaging (using one imaging modality for visualizing multiple tissues) as ‘virtual histology’ of skeletal tissues (bone, cartilage and bone marrow including fat tissue and blood vessels). For all these steps in the production process, nanoCT and CE-nanoCT also enabled to get a better insight in the mechanisms driving tissue formation both in vitro and in vivo.

Current Research Trends in Micro-CT Evaluation of Biomaterials for Tissue Engineering

A. Parrilli¹, M. Fini¹,²,³;
¹Biocompatibility, Technological Innovations and Advanced Therapies Laboratory, Rizzoli Orthopaedic Institute, Bologna, ITALY, ²Preclinical and Surgical Studies Laboratory, Rizzoli Orthopaedic Institute, Bologna, ITALY.

Currently one of the most incisive needs in the industry and in research is the development of non-destructive methods to analyze biomaterial microstructures. Furthermore, the only 2D analysis, provided for example by histology, is totally inadequate in the case of samples which are too fragile to be cut (for example powders) or in the case of connectivity or tortuosity quantification of different material phases. The intrinsic ability to provide a huge amount of data allows the evaluation of biomaterials in two different ways: by studying the 3D structure or by studying the regenerated tissue morphology and thus their efficacy in the event of implantation. Tissues damaged by injury or disease could be replaced using constructs based on bio-compatible materials, cells and growth factors. Scaffold design, porosity and early colonization are key components for implant success. Thus, the need to display the architecture of materials and the 3D cellular distribution is a key aspect. In addition, 3D models could be used as a basis for the creation of prototypes (e.g. STL or PLY files, useful in the additive manufacturing technique) or for the creation of 3D meshes useful in the FE analysis. Given the non-destructive nature of the technique, another important aspect is the opportunity to follow the evolution of a microstructure under controlled environmental conditions (e.g. load, temperature and/or corrosive environment). This aspect is sometimes called 4D imaging (3D + time) extending the analysis to dynamic parameters or validating numerical predictions of structural and microstructural evolution (mathematical modeling).

Visual Mapping of Computational Shear Stresses Implies Mechanical Control of Cell Proliferation and Differentiation in Bone Tissue Engineering Cultures

J. R. Veitsch¹, R. Müller⁴, S. Hofmann¹,²;
¹Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zürich (ETH), Zürich, SWITZERLAND, ²Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, NETHERLANDS.

The advantages of longitudinal monitoring techniques are getting more attention in various tissue engineering approaches. They
Quantification of Mechanical Stimuli and Bone Formation in Fracture Healing Using In Vivo Time-Lapse Imaging

D. Betts¹, E. Wehrle¹, G. A. Kuhn¹, S. Hofmann¹,², R. Müller¹;
¹Institute for Biomechanics, ETH Zürich, Zürich, SWITZERLAND,
²Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, NETHERLANDS.

During bone regeneration, mechanical loading is believed to be responsible for provoking bone formation, however previous investigations into tissue level loading have been limited to cross-sectional studies and relied upon idealized models for mechanics. By applying in vivo time-lapse micro-computed tomography (microCT) in concert with imaged based micro-finite element (microFE) analysis we have overcome these limitations and have even allowed tight control and adaptation of the mechanical load during culture by taking the present status of the tissue into account.

A Staining and Tensioning Method for Micro X-ray CT Scanning of Sutured Tendons

The University of Manchester, Manchester, UNITED KINGDOM.

Suturing has been recommended to re-join tendons and permit tissue regeneration for over a century. However, 25% of flexor tendon patients achieve unsatisfactory postoperative mobility. Traditional in vivo, clinical and clinical studies have failed to determine an ideal suture arrangement for tendon repair. We aim to employ in silico analysis in approaching a conclusion. Tissue acellularity and impaired remodelling may be preceded by stress concentrations and stress shielding respectively. We therefore employed Micro X-ray CT and finite element analysis (FEA) to observe the stress patterns in tendon following suture withdrawal. To ensure characteristic deformations during suture withdrawal, the contrast agents must assert minimal change to tendon and suture mechanical behaviour. Quill barbed suture and porcine flexor digitorum profundus tendons were stained using potassium iodide solutions (0.2%KI, 0.1%I) for 24 hours. This stained their surfaces only, preserving the mechanical interaction between suture and tissue. 10 mm of suture was passed through the tendon centre. Using a tension rig, Micro X-ray CT imaging was permitted whilst samples were submerged in phosphate-buffered saline, and following a 2 mm suture withdrawal a subsequent scan was performed. Using the unloaded reconstructed volume data, a 2 mm suture withdrawal was simulated by FEA. Tendon Constitutive behaviour was described using the anisotropic, hyperelastic Holzapfel model in Abaqus. There was no significant difference in failure load between unstained and surface-stained tendons during suture pull-out, and the surface staining enabled reliable data reconstruction. FEA results and reconstructed volumes showed good agreement, thus validating the method.

Optimization of Contrast Enhanced Ct for Neo-tissue Quantification using a Design of Experiment Approach

M. Sonnaert¹,², G. Kerckhofs¹,²,³, P. Papantoniou¹,²,³, S. Van Vlierberghe¹, V. Rotterberg², P. Dubruel³, F. P. Luyten¹, J. Scroten²,³, L. Geris³;
¹Prometheus, Division of skeletal tissue engineering, KU Leuven, Leuven, BELGIUM, ²Department of Materials Engineering, KU Leuven, Leuven, BELGIUM, ³Skeletal Biology and Engineering Center, KU Leuven, Leuven, BELGIUM, ³Polymer Chemistry and Biomaterials Group, University of Gent, Gent, BELGIUM, ³Biomechanics Research Unit, Université de Liege, Liege, BELGIUM.

To progress the fields of tissue engineering and regenerative medicine, development of quantitative methods for non-invasive 3D characterization of engineered constructs (i.e. scaffolds with cells and/or growth factors) becomes essential. In order to enable the use of X-ray based imaging techniques for quantitative analysis of soft tissue fractions in TE constructs the use of contrast-enhanced nanofocus computed tomography (CE-nanoCT) was optimized.

A fractional factorial design of experiments approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix® and phosphotungstic acid - PTA) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by PTA staining was quantified to determine the operating window within which this contrast agent can be accurately applied.

For Hexabrix® the staining concentration was the main parameter influencing image contrast and dataset quality. A concentration of 60% and a staining time of 30 minutes were sufficient to allow accurate and fully automated quantification of the neo-tissue formed.

Using PTA the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of PTA did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. As the staining time did not have any significant influence, this can be kept as low as possible.

Metabolic Tracking of Muscle Precursor Cells for Skeletal Muscle Tissue Engineering using PET/CT

D. Haralampevi¹,²,³, S. Salemi¹, T. Betzel¹, I. Dinulovic³, S. Kraemer³, T. Sulser³, C. Handschin³, S. M. Ametamey³,², D. Eberli¹,²;
¹Prometheus, Division of skeletal tissue engineering, KU Leuven, Leuven, BELGIUM, ²Department of Materials Engineering, KU Leuven, Leuven, BELGIUM, ³Skeletal Biology and Engineering Center, KU Leuven, Leuven, BELGIUM.