Towards viable nuclear fusion reactors 2

Citation for published version (APA):

Document status and date:
Gepubliceerd: 31/10/2017

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be
 important differences between the submitted version and the official published version of record. People
 interested in the research are advised to contact the author for the final version of the publication, or visit the
 DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page
 numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Towards viable nuclear fusion reactors

A. Mannheim, J. A. W. van Dommelen, M. G. D. Geers

Research goal: Can the heat extractor (divertor) withstand the extreme loads in a future fusion reactor for a sufficient amount of time?

Help to realize nuclear fusion.
Make the wall of the fusion reactor withstand the extreme loads.
Understand the degradation processes in the divertor monoblocks.
Study the microstructural evolution of tungsten under the combined heat and neutron loads.

Figure 1: the divertor in the JET reactor (www.iter.org, left) consists of many tungsten monoblocks (on the right).

Method 1 Grain level: neutron damage

\[
\frac{dC}{dt} = \text{Defect Production} + \text{Evolution} - \text{Removal (at sinks)}
\]

Method: Cluster dynamics model for the concentrations of vacancies (V), self-interstitial atoms (I) and dislocations.

Scale: Å – μm

Based on Li (2012), Stoller (1990), Yi (2015), Jourdan (2015)

Defect Production

\[I_1, I_2, I_3, I_5, I_6 \]

Evolution

\[V, V, V, V, V, I, I, I \]

Removal (at sinks)

\[V, I \]

Mean-field model (Scale 1-100 μm)

Microstructure: a set of representative grains.

- Radius \(r \)
- Defect densities \(\rho, C_I^n, C_V^n \)
- # of represented grains \(N \)

Defect production and removal depend on:

- Mean-field model (Scale 1-100 μm)

Microstructure: a set of representative grains.

GB mobility
Defect density
Nucleation depends on:
- GB (grain boundary) mobility
- Defect density: stored energy
- GB surface area

Equation:

\[n = \mathbf{m}(T) \Delta E_{\text{average/grain}} \]

Grain growth is based on the velocity of the grain boundaries:

\[v = \mathbf{m}(T) \Delta E_{\text{average/grain}} \]

Results Microstructural evolution

Stored defect energy
Average grain size

Initial grain sizes

- High driving force
- Most grain growth
- Most nucleation
- High mobility

Initial grains

Temperature effect

1000°C
1100°C
1200°C
1300°C
1400°C

At \(t = 10 \text{ hr} \), many grains are disappearing.

The largest grains vanish first (most damage accumulation).

The smallest grains vanish first (the GB surface energy dominates).

Damage accumulation vs. recovery

- Defect accumulation / GB mobility / point defect mobility / nucleation rate / individual grain behavior can all be studied with this model.
- Pace of renewal of the microstructure.

Conclusions/Outlook

- The multi-scale model for the microstructural evolution of tungsten under heat and neutrons shows to be a versatile tool to study the temperature dependent stability of the original microstructure and the competition between the various processes for damage and recovery.
- In future, lifetime of the divertor monoblocks will be studied by combining the (stress-dependent) microstructural model with a mechanical FE analysis.