A coupled gradient-based shape and topology optimization method

Citation for published version (APA):

Document status and date:
Published: 23/10/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. Aug. 2019
Introduction
Shape and topology optimization address different aspects of a structural design problem. **Shape optimization** is concerned with finding the optimal shape of a structure (Fig. 1(c)). The aim of **topology optimization** is to determine the material distribution for a fixed shape (Fig. 1(d)). However, the design with both optimal shape and topology often would be highly desirable.

Therefore, a coupled gradient-based shape and topology optimization method is proposed. It enables the consideration of shape variation in structural topology optimization.

Coupled optimization model
Such a coupled optimization model (1) is built to minimize the structural compliance c with given material volume V and geometry constraints.

$$
\begin{align*}
\text{minimize} & \quad c(a, \rho) = f^T u(a, \rho) \\
\text{subject to} & \quad V(a, \rho) = f, \\
& \quad l_m \leq a_s \leq u_m, \quad s = 1, \ldots, S \\
& \quad 0 \leq \rho_{\text{min}} \leq \rho_e \leq 1, \quad e = 1, \ldots, N
\end{align*}
$$

where l_m and u_m are the lower and upper bounds of shape design variable a_s; ρ_e is the relative density assigned to each element e; f is the given fraction between material volume V and initial design domain volume V_0; f and u are the system force and displacement vector, respectively.

Solution strategy

![Flowchart of the solution strategy](image)

Numerical examples
A cantilever beam design problem, illustrated in Fig. 1(a), is solved by the coupled optimization method with different optimization sequences. The result of the optimization procedure is shown below.

Conclusion

The shape of a design domain has a large influence on topology optimization both qualitatively and quantitatively. Additionally, the optimization sequence might affect the convergent speed, however, it does not have a critical influence on the final outcome of the optimization procedure.