Buffer-aware scheduling of modal radio graphs

Citation for published version (APA):

Document status and date:
Published: 25/03/2015

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Buffer-Aware Scheduling for Modal Radio Graphs
Hrishikesh Salunkhe, Orlando Moreira and Kees van Berkel

1. Introduction

- Real-time streaming applications
 - Require timing correctness
 - Run continuously
 - Process infinite input stream

- Dataflow
 - Suitable to model real-time streaming applications

<table>
<thead>
<tr>
<th>Dataflow</th>
<th>Analytical properties</th>
<th>Expressiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static dataflow</td>
<td>Strong</td>
<td>Limited</td>
</tr>
<tr>
<td>Mode-controlled dataflow</td>
<td>Strong</td>
<td>Medium</td>
</tr>
<tr>
<td>Dynamic dataflow</td>
<td>Limited</td>
<td>Strong</td>
</tr>
</tbody>
</table>

2. Motivation

- Multi-processor without back-pressure

3. Buffer allocation

- Early production
- Late consumption

4. Data-dependent (dynamic) behavior

- Mode-Controlled Dataflow (MCDF)

5. Results

- Buffer sizes for systems without back-pressure

<table>
<thead>
<tr>
<th>LTE receiver</th>
<th>Buffer sizes (Kbytes)</th>
<th>Saving (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>575</td>
<td>-</td>
</tr>
<tr>
<td>Single-rate Dataflow</td>
<td>468</td>
<td>15</td>
</tr>
<tr>
<td>Mode-controlled Dataflow</td>
<td>433</td>
<td>25</td>
</tr>
</tbody>
</table>

6. Conclusion

- Early production and latest consumption → buffer overflow.
- MCDF model of an LTE receiver saves 11% versus SRDF model and 25% versus manual buffer sizes.

Contact
Hrishikesh Salunkhe
h.s.salunkhe@tue.nl

Acknowledgements
1. This work was funded by Catene CA104 Cobra project.

Department of Mathematics and Computer Science
System Architecture and Networking Group (SAN)