How many three-dimensional Hilbert curves are there?

Citation for published version (APA):

DOI:
10.20382/jocg.v8i1a10

Document status and date:
Published: 01/01/2017

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
HOW MANY THREE-DIMENSIONAL HILBERT CURVES ARE THERE?

Herman Haverkort*

ABSTRACT. Hilbert’s two-dimensional space-filling curve is appreciated for its good locality-preserving properties and easy implementation for many applications. However, Hilbert did not describe how to generalize his construction to higher dimensions. In fact, the number of ways in which this may be done ranges from zero to infinite, depending on what properties of the Hilbert curve one considers to be essential.

In this work we take the view that a Hilbert curve should at least be self-similar and traverse cubes octant by octant. We organize and explore the space of three-dimensional Hilbert curves and the potentially useful properties which they may have. We discuss a notation system that allows us to distinguish the curves from one another and enumerate them. This system has been implemented in a software prototype, which is made available together with this article on the journal’s website. Several examples of possible three-dimensional Hilbert curves are presented, including a curve that visits the points on most sides of the unit cube in the order of the two-dimensional Hilbert curve; curves of which not only the eight octants are similar to each other, but also the four quarters; a curve with excellent locality-preserving properties and endpoints that are not vertices of the cube; a curve in which all but two octants are each other’s images with respect to reflections in axis-parallel planes; and curves that can be sketched on a grid without using vertical line segments.

1 Introduction

A space-filling curve in $d$ dimensions is a continuous, surjective mapping from $\mathbb{R}$ to $\mathbb{R}^d$. Hilbert was one of the first to present such a mapping [20]. His mapping can be described as a recursive construction that maps the unit interval $[0,1]$ to the unit square; for ease of notation, we work with a unit square $[-\frac{1}{2}, \frac{1}{2}]^2$ centered on the origin. The unit square is divided into a grid of $2 \times 2$ square cells, while the unit interval is subdivided into four subintervals. Each subinterval is then matched to a cell; thus Hilbert’s curve traverses the cells one by one in a particular order. The procedure is applied recursively to each subinterval-cell pair, so that within each cell, the curve makes a similar traversal (see Figure 1). By carefully reflecting and/or rotating the traversals within the cells, one can ensure that each cell’s first subcell touches the previous cell’s last subcell. The result is a fully-specified, continuous, surjective mapping from the unit interval to the unit square. This mapping can be extended to a mapping from $\mathbb{R}$ to $\mathbb{R}^2$ by inverting the recursion, recursively considering the unit interval and the unit square as a subinterval and a cell of a larger interval and a larger square.

*Dept. of Mathematics and Computer Science; Eindhoven University of Technology, the Netherlands, cs.herman@haverkort.net
By now, various space-filling curves have appeared in the literature [18, 39], and space-filling curves have been applied in diverse areas such as indexing of multidimensional points [3, 23, 25, 27], load balancing in parallel computing [7, 14], improving cache utilization in computations on large matrices [5] or in image rendering [43], finite element methods [4], image compression [1], and combinatorial optimization [36]—to give only a few examples of applications and references. In such applications, the space-filling curve provides a traversal order for points or cells in a two- or higher-dimensional space. The key property of space-filling curves that is leveraged in these applications is that they tend to preserve locality: consecutive elements in the traversal tend to lie very close to each other in space, and elements that lie very close to each other tend to be close to each other in the traversal order. This effect is captured by various metrics, which are discussed in Section 7.

However, generalization of the Hilbert curve to more than two dimensions is not straightforward—Hilbert’s publication does not discuss it. Naturally, a generalization to three dimensions would be based on subdividing cubes into eight cells. The tricky part is how to choose the traversals within the cells, so that each cell’s first subcell touches the previous cell’s last subcell and continuity of the mapping is ensured. Butz’s solution to this problem [8] is fairly well-known, but many other solutions are possible, and sometimes implemented [9]. Documentation of existing applications or implementations of three-dimensional Hilbert curves is not always explicit about the fact that a particular, possibly arbitrary, curve was chosen out of many possible three-dimensional Hilbert curves. However, different curves have different properties: which three-dimensional Hilbert curve would constitute the best choice depends on what properties of a Hilbert curve are deemed essential and what qualities of the space-filling curve one would like to optimize for a given application. This gave rise to efforts to set up frameworks to describe and analyse such curves [2, 6, 10, 13, 19, 33]. However, the scope of these studies has been fairly limited, each of them considering only a subset of possible Hilbert curves and focusing on one particular quality to optimize.

**Contents of this article**  In this work we study the question what defines a Hilbert curve. The goal is to explore and organize the space of possible three-dimensional Hilbert curves and the properties which they may have, to find interesting three-dimensional space-filling
curves, and to generate ideas for further generalization to four or more dimensions. Among the newly discovered curves in this article are:

- the three-dimensional harmonious Hilbert curve (sketched in Figure 10a), which has the unique property that the points on five of the six sides of the unit cube are visited in the order of the two-dimensional Hilbert curve (in four dimensions we found such properties to be relevant to R-tree construction [19]);

- a curve (sketched in Figure 10d) of which not only the eight octants are similar to each other, but also the four quarters and the two halves, and which minimizes the worst-case relative size of the boundary of any curve section (a quality measure relevant to load-balancing applications [21]);

- a curve (sketched in Figures 2b and 14a) which, similar to the two-dimensional Hilbert curve, is only rotated in the first and the last octant, whereas the curve within each of the remaining octants is obtained from the complete curve by a combination of only scaling, translation, reversal and/or reflection in axis-parallel planes;

- curves along which consecutive subcubes are never directly on top of each other (Figures 14c and 14d): if one sketches such a curve by connecting the centre points of the cells in a regular grid in the order in which they are traversed by the curve, then there are no vertical edges.

Some more examples are shown in Figures 2, 10, 11, 14, 15, and 19.

This article sets up a notation and naming system that is compact, yet sufficiently powerful to distinguish between 10694807 different three-dimensional Hilbert curves (modulo rotation, reflection, translation, scaling and reversal), assigning a unique name to each such curve. The system comes with a prototype of a software tool that can enumerate the curves, or determine the name of a curve from the order in which it traverses the cubes in a grid. This may facilitate the automatic identification, verification and comparison of curves implemented in existing code, whose documentation does not always specify exactly what three-dimensional Hilbert curve is used, out of the many possible curves.

This article is structured as follows.

In Section 2, I describe a notation system that allows us to describe Hilbert curves and discuss their properties. We discuss the defining properties of Hilbert curves in Section 3. As a warming-up for what follows, we prove that in two dimensions, the known Hilbert curve is the unique curve that has all of the defining properties.

We then turn to exploring the space of three-dimensional Hilbert curves. A straightforward encoding of Hilbert curve descriptions in the notation presented in Section 2 does not allow us to enumerate such curves efficiently. To overcome this problem, we set up a framework for a more compact naming scheme for three-dimensional curves in Section 4. In Section 5 we fill in the details, making a case distinction by different possible locations of the end points of the curve. We prove that only a limited number of end points are possible, explain how to enumerate the names of the possible curves for each possible combination of end points, and show examples.
Figure 2: Sketches of the order in which five different three-dimensional Hilbert curves traverse the points in a $8 \times 8 \times 8$ grid. For legibility, extra spacing has been introduced between the eight octants and between the eight suboctants within each octant. (a) Butz’s curve. (b) The Base Camp curve. (c) A curve with many sections that fill four cubes in a row. (d) A curve with many self-intersections. (e) A curve with a helix-shaped base pattern.

We discuss further, non-defining properties of the two-dimensional Hilbert curve and their possible generalizations to higher dimensions in Section 6, and see how we can establish or verify the presence or absence of combinations of certain properties in three-dimensional curves. Measurements of the locality-preserving properties of various three-dimensional Hilbert curves can be found in Section 7. Section 8 briefly describes a prototype of a software tool to enumerate, identify, analyse and sketch the curves.

Having established a way to explore and structure the space of three-dimensional Hilbert curves, we can now try to answer the title question of this article in Section 9: how many three-dimensional Hilbert curves are there? In Section 10, we conclude with a discussion of the implications of our findings and questions raised by them, in particular with regard to higher dimensions.

Illustrated examples of curves appear throughout this article. Appendix G, on the last page of this article, gives the definitions and lists properties of all of these curves.

This article extends, improves and replaces most of my brief preliminary manuscript “An inventory of three-dimensional Hilbert space-filling curves” [16].
2 Defining self-similar traversals

2.1 Defining self-similar traversals by figure

We can define a self-similar traversal of points in a $d$-dimensional cube as follows. We consider the unit cube $C$ to be subdivided into $2^d$ subcubes of equal size. We specify a base pattern: an order in which the traversal visits these subcubes. Let $C_1,\ldots,C_{2^d}$ be the subcubes indexed by the order in which they are visited. Moreover, we specify, for each subcube $C_i$, a transformation $\sigma_i$ that maps the traversal of the cube as a whole to the traversal of $C_i$. More precisely, each $\sigma_i$ can be thought of as a triple $(\gamma_i, \rho_i, \chi_i)$, where $\gamma_i : C \to C$ is one of the $2^d!$ symmetries of the unit cube, $\rho_i : C \to C_i$ translates the unit cube and scales it down to map it to $C_i$, and $\chi_i : [0,1] \to [0,1]$ is a function that specifies whether or not to reverse the direction of the traversal: it is defined by $\chi_i(t) = t$ for a forward traversal, and by $\chi_i(t) = 1 - t$ for a reversed traversal.

When $d = 2$ or $d = 3$, it is feasible to give such a specification in a graphical form, as follows. We draw a cube, and indicate, by a thick arrow along the vertices of the cube, the order in which its vertices, and hence its $2^d$ first-level subcubes $C_1,\ldots,C_{2^d}$, are visited by the traversal. This is the first-order approximating curve (see Figure 3a). In fact, we can omit the unit cube from the drawing, as it is implied by the arrow. Inside the cube, we draw the second-order approximating curve: a polygonal curve that connects the centres of the $4^d$ second-level subcubes of the unit cube in the order in which they are visited by the traversal (Figure 3b). Finally, we mark, with an open dot, the vertex that represents $C_1$, and the vertices that represent the corresponding second-level subcubes within their respective first-level subcubes. The arrow head on the first-order approximating curve is now redundant and can be removed (Figure 3c).

Note how the open dots specify the direction functions $\chi_i$: if, within a given subcube $C_i$, the marked vertex is the first one visited by the second-order approximating curve, then $\chi_i(t) = t$; if the marked vertex is the last one visited by the second-order approximating

Figure 3: Example of a graphical definition of a three-dimensional Hilbert curve. (a) First stage: the first-order approximating curve. (b) Second stage: the second-order approximating curve. (c) Third stage: marking the vertex representing the first first-level subcube and the vertices representing the corresponding second-level subcubes.
curve, then $\chi_i(t) = 1 - t$. Given $\chi_i$, the transformations $\gamma_i$ and $\rho_i$ are implied by the shapes of the first- and second-order approximating curves: these curves show how the base pattern (and hence, the whole traversal) is rotated and/or reflected in each octant. If the first-order approximating curve is asymmetric (as in Figures 11efh and 14e), the functions $\chi_i$ are implied by the drawing of the second-order curve even without the dots, but we draw the dots nevertheless for clarity. If the second-order approximating curve is symmetric (as in Figures 10abdefh and 11abcdg), the whole traversal is symmetric, and the dots are without effect—in this case we omit the dots to emphasize the symmetry. If the first-order approximating curve is symmetric but the second-order approximating curve is not (as in Figures 10cg, 14abcd, 15 and 19) the dots are necessary for the unambiguous definition of a self-similar traversal: Figure 4 illustrates how moving a dot on the second-order approximating curve leads to differences in the third-order approximating curve.

2.2 Mapping the unit interval to the unit cube

As illustrated in Figure 1, we can think of a traversal as mapping segments of the unit interval to subcubes of the unit cube $C$. For a given level of refinement $k$, consider the unit interval subdivided into $2^{kd}$ segments of equal length, and the unit cube subdivided into $2^{kd}$ subcubes of equal size. Let $s(i, k)$ be the $i$-th segment of the unit interval, that is, the interval $[(i - 1) \cdot 2^{-kd}, i \cdot 2^{-kd}]$. Let $c(i, k)$ be the $i$-th subcube in the traversal. We can determine $c(i, k)$ from the transformations $\gamma$, $\rho$ and $\chi$ as follows. If $k = 0$, then $i$ must be 1 and $c(i, k) = C$. Otherwise, let $z = 2^{d(k-1)}$ be the number of subcubes within a first-level subcube, let $b = [i/z]$ be the index of the first-level subcube that contains $c(i, k)$, and let $j$ be the index of $c(i, k)$ within $C_b$. More precisely, if $\chi_b$ indicates a forward traversal of $C_b$, then $j = i - (b - 1)z$, and if $\chi_b$ indicates a reverse traversal of $C_b$ then $j = bz - i + 1$. Then we have $c(i, k) = \rho_b(\gamma_b(c(j, k - 1)))$, and the traversal maps the segment $s(i, k)$ to the cube $c(i, k)$. 

Figure 4: (a,b) Two subtly different definitions of three-dimensional Hilbert curves: the only difference is the location of the open dot in the last octant. (c,d) The corresponding third-order approximating curves, which differ in the last octant.
As $k$ goes to infinity, the segments $s(i,k)$ and the cubes $c(i,k)$ shrink to points, and the traversal defines a mapping from points on the unit interval to points in the unit cube. By construction, the mapping is surjective. However, it may be ambiguous, as some points in the unit interval lie on the boundary between segments for any large enough $k$. We may break the ambiguity towards the left or towards the right, by considering segments to be relatively open on the left or on the right side, respectively. In the first case, for a given $i$, we consider a point $t$ on the unit interval to be part of the $i$-th interval with $i = \lfloor 2^{kd}t \rfloor$, and we define a mapping $\tau^- : (0,1] \to C$ to points in the unit cube by $\tau^-(t) = \lim_{k \to \infty} c(\lfloor 2^{kd}t \rfloor, k)$. In the second case, we consider $t$ to be part of the $i$-th interval with $i = \lfloor 2^{kd}t \rfloor + 1$, and we define a mapping $\tau^+: (0,1) \to C$ by $\tau^+(t) = \lim_{k \to \infty} c(\lfloor 2^{kd}t \rfloor + 1, k)$.

### 2.3 Defining self-similar traversals by signed permutations

To define the mappings $\tau^-$ and $\tau^+$, all we need to do is to specify, for each $i \in \{1, \ldots, 2^d\}$, the transformation $\gamma_i$, the location of $C_i$ (or, to the same effect, $\rho_i$), and the orientation function $\chi_i$. This can be done in a graphical way, as explained above, but this approach is not suitable for automatic processing of traversals in software (or for four- and higher-dimensional traversals, for that matter). For that purpose, we adopt the following numeric notation system.

We specify the base pattern by indicating, for each subcube $C_i$ with $1 < i \leq 2^d$, where $C_i$ lies relative to the previous subcube $C_{i-1}$. Let $c_i$ be the centre point of $C_i$; the position of $C_i$ relative to $C_{i-1}$ can then be expressed by the vector $v_i = c_i - c_{i-1}$. We use square brackets to index the elements of a vector, so $v_i$ is a column vector with elements $v_i[1], v_i[2], \ldots, v_i[d]$. However, in our notation system, we specify $v_i$ in a more compact way, namely by a set of numbers $V_i \subset \{-1, \ldots, -d\} \cup \{1, \ldots, d\}$ such that $v_i[j] < 0$ if and only if $-j \in V_i$; $v_i[j] > 0$ if and only if $j \in V_i$; and $v_i[j] = 0$ if and only if $j, -j \notin V_i$. For an example, see Figure 5. Note how $V_i = \{j\}$ can be interpreted as: move forward along the $j$-th coordinate axis to get from $C_{i-1}$ to $C_i$, while $V_i = \{-j\}$ means: move back along the $j$-th coordinate axis, and $V_i = \{j_1, j_2\}$ indicates a diagonal move, simultaneously moving forward in coordinates $j_1$ and $j_2$.

![Figure 5](image-url)
Assume the unit cube is centred at the origin. Each transformation $\gamma_i : C \to C$ is a symmetry of the unit cube and can be interpreted as a matrix $M_i$ such that $\gamma_i(x) = M_ix$, where $x$ is a point given as a column vector of its coordinates. Each row and each column of $M_i$ contains exactly one non-zero entry, which is either 1 or $-1$. We specify such a matrix by a signed permutation of row indices, that is, a sequence of numbers $\Pi_i = \pi_i[1], ..., \pi_i[d]$ whose absolute values are a permutation of $\{1, ..., d\}$, and that corresponds to the matrix in the following way: the non-zero entry of column $j$ is in row $|\pi_i[j]|$ and has the sign of $\pi_i[j]$. We write the sequence $\pi_i[1], ..., \pi_i[d]$ between $\{}$ and $\{}$ to specify a forward traversal $(\chi_i(t) = t)$, whereas we write the sequence $\pi_i[1], ..., \pi_i[d]$ between $\{}$ and $\{}$ to specify a reverse traversal $(\chi_i(t) = 1 - t)$. For example, the traversal from Figure 4ac has the following permutations, in order from $C_1$ to $C_8$:

$\{3, 2, 1\}, \{3, 1, 2\}, \{3, 1, -2\}, \{-2, -1, 3\}, \{-2, -1, -3\}, \{-3, 1, -2\}, \{-3, 1, 2\}, \{2, -3, 1\}$.

Note how our notation facilitates mapping the base pattern to the order in which the suboctants of $C_i$ are visited. For example, if $j$ is positive, a move $\{j\}$, forward along the $j$-th coordinates axis, translates to a move $\{\pi_i[j]\}$ within $C_i$. If we define $\pi_i[-j] = -\pi_i[j]$, then the translation also works for negative values of $j$.

A complete self-similar traversal order is now specified by listing the signed and directed permutations $\Pi_1, ..., \Pi_{2^d}$, with, between each pair of consecutive permutations $\Pi_{i-1}$ and $\Pi_i$, the set $V_i$ that gives the location of $C_i$ relative to $C_{i-1}$. Depending on layout requirements, we may omit commas and/or we may write the numbers of a set $V_i$ or a signed permutation $\Pi_i$ below each other instead of from left to right; we also omit braces around $V_i$. Thus we get the following description of the traversal from Figure 4ac:

$\left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array}\right], \left[\begin{array}{c} 3 \\ 1 \\ 2 \end{array}\right] - 1, \left[\begin{array}{c} 3 \\ 1 \\ 2 \end{array}\right] - 1, \left[\begin{array}{c} 2 \\ 1 \end{array}\right] - 3, \left[\begin{array}{c} 2 \\ 1 \end{array}\right] - 3, \left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array}\right] - 2, \left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array}\right] - 2, \left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array}\right] - 1, \left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array}\right] - 1$.

Note that we do not specify the location of $C_1$ explicitly, but it can be derived from the sets $V_2, ..., V_{2^d}$: subcube $C_1$ is on the low side with respect to coordinate $j$ if and only if $j$ appears in any set $V_i$ before $-j$ does, that is, if there is a set $V_i$ such that $-j \notin V_2, ..., V_i$ and $j \in V_i$.

### 2.4 Self-similar space-filling curves

Suppose a traversal has the property that consecutive segments of the unit interval are always matched to subcubes that touch each other. Then, as $k$ increases, the up to two subcubes corresponding to the segments that share a point $t \in [0, 1]$ must shrink to the same point $p \in C$. For $t \in (0, 1)$, we thus have $\tau^-(t) = \tau^+(t)$. Moreover, the functions $\tau^-$ and $\tau^+$ are continuous. The traversal thus follows a space-filling curve $\tau : [0, 1] \to [-\frac{1}{2}, \frac{1}{2}]^d$ given by $\tau(0) = \tau^+(0)$, $\tau(t) = \tau^-(t) = \tau^+(t)$ for $0 < t < 1$, and $\tau(1) = \tau^-(1)$. By construction, this curve is self-similar: for each $i \in \{1, ..., 2^d\}$ and $t \in [0, 1]$ we have $\tau((i - 1 + t) \cdot 2^{-d}) = \rho_i(\gamma_i(\chi_i(t)))$. Moreover, the mapping is measure-preserving: for any set of points $S \subset [0, 1]$ with one-dimensional Lebesgue measure $\nu$, the image $\bigcup_{x \in S} \tau(x)$ of $S$ has $d$-dimensional Lebesgue measure $\nu$.

Recall that in our graphical notation, we used the first-order and the second-order approximating curves. In general, in this article, we define the $k$-th-order approximating
curve $A_k$ of a space-filling curve $\tau$ as the polygonal curve that connects the centre points of the $2^{kd}$ subcubes in a regular grid in the order in which they appear along $\tau$. In fact, the space-filling curve $\tau$ is equal to the limit of $A_k$ as $k$ goes to infinity. The first-order approximating curve $A_1$ is easy to draw, given a description of the curve in our numerical notation: the sets $V_i$ explicitly specify the directions of the successive edges of $A_1$ (see Figure 5). The $2^d - 1$ edges of $A_2$ within any octant $C_i$ are also easy to draw, as their directions are obtained by applying the signed permutation $\Pi_i$ to the sets $V_2, \ldots, V_{2d}$. Note, however, that in $A_2$, the edges between the octants do not necessarily have the same directions as in $A_1$. For example, axis-parallel edges may become diagonal, as in Figure 3b. Therefore one cannot always obtain the edges of $A_2$ by taking the sequence of alternating permutations and edges of $A_1$ that define the curve and merely substituting transformations of $A_1$ for the permutations—only if the curves have certain properties this is possible, such as in our work on hyperorthogonal well-folded curves [6].

2.5 Gate configurations

Many of the results in this paper are based on case distinctions by the locations of the end points of a traversal. For this purpose, we use the following definitions.

For a traversal $\tau$, we call $\tau^+(0)$ and $\tau^-(1)$ the entrance gate and the exit gate of the traversal. A gate is a vertex gate, an edge gate, or a facet gate, respectively, if, among all faces of the unit cube, the lowest-dimensional face that contains the gate is a vertex, an edge, or a $(d - 1)$-dimensional facet. In three dimensions, we may have vertex-gated, edge-gated, and facet-gated traversals (where both gates are vertex gates, edge gates, or facet gates, respectively), and vertex-edge-gated, vertex-facet-gated, and edge-facet-gated traversals (where the two gates have the two different types mentioned).

We say a traversal is edge-, facet-, or cube-crossing, respectively, if, among all faces of the unit cube, the lowest-dimensional face that contains both gates is an edge, a $(d - 1)$-dimensional facet, or the full cube, respectively.

3 Defining Hilbert curves

Within this publication, we restrict the discussion to traversals $\tau$ that are:

- octant-by-octant (in two dimensions: quadrant-by-quadrant): each of the $2^d$ subcubes of the unit cube is the image under $\tau$ of an interval of length $1/2^d$ within $[0, 1]$;
- self-similar: the traversal $\tau$ restricted to any of the $2^d$ subcubes can be obtained by a linear transformation from the complete traversal $\tau$, as described in Section 2;
- continuous: this implies that if we consider a regular grid of $2^{kd}$ subcubes of the unit cube in the order in which they are traversed by $\tau$, for any integer $k$, then consecutive subcubes in the traversal always touch each other.

Below we will see that in two dimensions, these three properties constitute a minimal set of properties that uniquely defines the two-dimensional Hilbert curve. Therefore we consider
a $d$-dimensional traversal to be a *Hilbert curve* if and only if it has these three properties. In Section 9, we discuss how this is also consistent with Hilbert’s original publication.

The two-dimensional Hilbert curve also has other interesting, non-defining properties, which we might want to see in three-dimensional curves as well, for example to meet requirements of applications or to facilitate generalizations to even more dimensions. Unfortunately, we can always think of a combination of properties of the two-dimensional curve that cannot be realized in three dimensions. Without the context of a particular application, we cannot decide a priori which properties to prefer at the expense of others. Therefore, in this article, I regard all additional properties as optional.

At this point, there are two ways to continue reading this paper:

- To first learn how many three-dimensional Hilbert curves there are and to learn how to give each of them a unique name, read the rest of the current section, and continue with Sections 4, 5, and 8.
- To first learn about the distinct additional properties that Hilbert curves may have, to learn how they relate to each other, and to find out how many curves have certain combinations of properties, skip the rest of the current section, and continue to Sections 6–9 right away.

We will now prove that the two-dimensional Hilbert curve is the only quadrant-by-quadrant self-similar square-filling curve. The proof also illustrates some of the arguments that we will use in the following sections.

**Theorem 1.** The quadrant-by-quadrant self-similar square-filling curve is unique.

**Proof.** Suppose, for the sake of contradiction, that the gates $\tau(0)$ and $\tau(1)$ would coincide. Then, to allow the quadrants to be connected to each other, the gates of all quadrants would have to lie at the single point that is common to all quadrants. That point is the centre of the unit cube; it is a vertex of each quadrant, but it is not a vertex of the unit cube. Thus the quadrants would have vertex gates whereas the unit cube would have its gates in its interior, contradicting the self-similarity and the continuity of the traversal. Therefore, $\tau(0) \neq \tau(1)$.

We now consider all conceivable combinations of gates $\tau(0)$ and $\tau(1)$:

(i) vertex gates at opposite ends of the same edge;

(ii) vertex gates at opposite ends of a diagonal;

(iii) one edge gate and one vertex gate at the end of the same edge;

(iv) one edge gate and one vertex gate that does not lie on the same edge;

(v) two edge gates on adjacent edges;

(vi) two edge gates on opposite edges.
We analyze these cases one by one. In all cases, we try to follow the curve through the four quadrants, assuming, without loss of generality, that we start in the lower left quadrant. The various cases are illustrated in Figure 6.

(i) **Vertex gates at opposite ends of the same edge.**

Without loss of generality, assume the gates are located in the lower left and the lower right quadrant, so the lower left quadrant is the first to be traversed, and the lower right quadrant is the last to be traversed. We enter the lower left quadrant in the lower left corner, so we must leave it either through its lower right corner (in the middle of the bottom edge of the unit square) or through its upper left corner (in the middle of the left edge of the unit square). In the first case we would immediately enter the lower right quadrant, but this contradicts the assumption that this is the last quadrant to be traversed. So the only eligible case is the second case: we leave the lower left quadrant through its upper left corner in the middle of the left edge of the unit square. There we enter the upper left quadrant, which we must then leave through its lower right corner (the centre point of the unit square) in order to be able to connect to the third quadrant. This must then be the upper right quadrant (since the lower right quadrant must be the last), which we leave in its lower right corner in the middle of the right edge of the unit square, where we connect to the lower right quadrant. Thus, the locations of the entrance and exit gates of all quadrants are unambiguously determined by the locations of the entrance and the exit gate of the unit square. By induction, it follows that the complete curve is uniquely determined by the choice of a) the edge that contains the gates and b) which endpoint of the edge is the entrance gate. Thus we obtain eight curves that are all equal modulo isometric transformations.

(ii) **Vertex gates at opposite ends of a diagonal.**

We enter the lower left quadrant in the lower left corner, and leave it at its upper right corner, which is the centre of the unit square. Now, no matter which quadrant we traverse next, we must enter it at the centre of the unit square and leave it at a corner of the unit square. But there, there is no third quadrant to enter. Hence, with vertex gates at opposite ends of a diagonal, we cannot construct a self-similar curve.

Figure 6: This figure shows, for each of the six possible combinations of gate types for a square-filling curve, what sequences of gates between the quadrants we could realize assuming that the curve is quadrantwise self-similar. Solid arrows indicate a feasible sequence. Dashed arrows indicate dead ends leading to a point where we cannot connect to the next quadrant (either because the point is not incident on any other quadrant, or because it is only incident on the quadrant that must be the last to be visited but other unvisited quadrants remain). Hollow arrows lead to an exit gate of the fourth quadrant that is not consistent with the exit gate of the complete curve under the assumptions of the case.
(iii) One vertex gate and one edge gate on an incident edge.

We enter the lower left quadrant in the lower left corner. Then we must leave it in the interior of either its bottom or its left edge. But there is no second quadrant to enter there. Hence, with this combination of gates, we cannot construct a self-similar curve.

(iv) One vertex gate and one edge gate on a non-incident edge.

We enter the lower left quadrant in the lower left corner. Without loss of generality, assume we leave it through its top edge. Then the second quadrant must be the upper left quadrant, which we enter at its bottom edge, and leave at its top left or top right corner. At the top left corner, there is no third quadrant to connect to, so we must leave the second quadrant at its top right corner, and enter the upper right quadrant there. We leave through the bottom edge, entering the lower right and last quadrant, which we must then leave either at its bottom left or its bottom right vertex. But those points lie on an edge of the unit square that is incident to the entrance gate in the lower left corner, which contradicts the conditions of this case. Hence, with this combination of gates, we cannot construct a self-similar curve.

(v) Two edge gates on adjacent edges.

If the gates lie on adjacent, that is, orthogonal edges, then the orientations of the edges containing the gates must alternate as we follow the curve from the entrance gate of the first octant to the exit gate of the last octant. But then the exit gate of the last octant lies on an edge of the same orientation as the entrance gate of the first octant, which contradicts the assumption that the gates of the unit cube lie on edges of different orientations. Hence, with this combination of gates, we cannot construct a self-similar curve.

(vi) Two edge gates on opposite edges.

If the gates lie on opposite, that is, parallel edges, no curve can cross both the horizontal and the vertical centre line of the cube to reach the top right quadrant. Hence, with this combination of gates, we cannot construct a self-similar curve.

Thus, the only case that works out, is case (i), and it does so in a unique way.

The conditions of Theorem 1 constitute a minimal set that uniquely defines the Hilbert curve. If we drop any of the conditions, there are other traversals that fulfill the remaining conditions: Peano’s curve [35] is a self-similar square-filling curve that is not quadrant-by-quadrant; Wierum’s \(\beta\Omega\)-curve [44] is a quadrant-by-quadrant square-filling curve that is not self-similar; the Z-order traversal [32] constitutes a quadrant-by-quadrant self-similar square-filling traversal that is not a curve (it is discontinuous)\(^1\).

\(^1\) Alternatively, the Z-order traversal can be modelled as a curve by including straight line segments to bridge the discontinuities, as in Lebesgue’s space-filling curve [26]. However, then it does not comply with our framework of quadrant-by-quadrant traversals as described in Section 2. In other words, we can model Z-order as a curve but then it is not measure-preserving and not strictly quadrant-by-quadrant, or we can model Z-order as a measure-preserving quadrant-by-quadrant traversal, but then it is discontinuous.
4 A naming scheme for three-dimensional Hilbert curves

4.1 A five-stage approach that highlights symmetries

A three-dimensional self-similar, octant-by-octant traversal is defined by the order in which the octants are visited, that is, the base pattern, together with the transformations in each of the octants. As we saw in Section 2.3, the base pattern and the transformations can be described by a string of limited length. Thus, there can be only a finite number of such traversals. However, enumerating them by simply trying all possible permutations of the octants, together with all possible combinations of reflections, rotations and reversals in the octants, would be infeasible: note that there are \(2^d \cdot d! \cdot 2 = 96\) choices per octant. Moreover, it would be difficult to recognize such things as symmetric curves or pairs of curves that share the same sequence of gates between octants.

Therefore, in this section we set up an alternative approach. We will distinguish five levels of detail in the description of the curves. On the coarsest level, we specify a partition, that is, which octants lie in the first half of the traversal and which octants lie in the second half. On the next level, we specify the base pattern, that is, in which order the octants in each half are visited. On the third level, we specify the gate configuration, that is, the locations of the entrance and exit gates of the curve. On the fourth level, we specify the gate sequence, that is, the locations of the entrance gates (first points visited) and exit gates (last points visited) of all octants. On the fifth level, we specify the remaining details of the transformations of the curve within the octants. This generalizes the approach taken by Alber and Niedermeier [2], who effectively consider the second, fourth and fifth level of detail. However, they encoded only the 920 curves with a specific set of properties that we consider optional\(^2\), whereas we will encode 10,694,807 different curves, as we will see later. Therefore we need to make the descriptions of each level much more powerful than in their work.

Recall that we consider curves that can be transformed into each other by rotation, reflection, translation, scaling or reversal to be equivalent. We set up our naming scheme such that we give a unique name to exactly one curve of each equivalence class.

Our five-stage approach allows us to enumerate curves by generating them with increasing amount of detail. We will see that when we get to the third level (base pattern with gate configuration), there are only a few hundred possibilities. For each choice for a third-level specification, we can generate all feasible gate sequences, making sure that every triple of an octant with its entrance gate and its exit gate can be obtained by at least one transformation of the unit cube with its entrance and exit gates, and each octant’s entrance gate matches the previous octant’s exit gate. Then, for each possible gate sequence, we can enumerate all options for filling in the remaining details of the curve: these options consist in all combinations of independent choices for which transformation to use in which octant, out of all transformations that map the gates of the unit cube to the gates of the octants.

\(^2\)Alber and Niedermeier encoded the face-continuous, vertex-gated, order-preserving Hilbert curves—see Section 6 for definitions of these properties. They counted 1,536 curves with these properties, since they counted some curves twice which we consider to be equivalent: see Footnote 16 in Section 9 for details.
4.2 The general format

In general, our curve names follow the pattern $P_{cmn.gh.st.op.qr}$. In this pattern, $P$ is an uppercase letter specifying the partition, $m$ and $n$ are hexadecimal digits specifying the order of octants within each half; $c$ is a lowercase letter specifying how the two halves fit together, and thus, $P_{cmn}$ encodes the base pattern. Next are two letters $g$ and $h$, specifying the location of the gates $\tau(0)$ and $\tau(1)$, and two hexadecimal digits $s$ and $t$, specifying the locations of the gates between the octants. Thus, $P_{cmn.gh.st}$ encodes a gate sequence. The remaining digits, $op.qr$, specify the transformations within the octants. Many curves have shorter names: depending on the gate sequence, the number of digits actually used to specify the transformations within the octants can be zero, two or four.

The first symbol in each pair $(m, g, s, o, q)$ concerns the first half of the curve; the second symbol in each pair $(n, h, t, p, r)$ concerns the second half. This is implemented such that a name that follows the pattern $P_{cmn.ggs.sso.qq}$ describes a curve of which the first and the second half are each other’s reverse, modulo a transformation encoded by $c$. We call such a curve symmetric if the transformation encoded by $c$ is symmetric, that is, if that transformation equals its own inverse. As we will see later, the second-last pair of digits, $oq$, is redundant for such curves. Therefore, for a symmetric curve, we may use a condensed form of the name that follows the pattern $P_{cmn.gs}$.

In the following sections, I describe the details of our naming scheme level by level.

4.3 First two levels: encoding the base pattern

A base pattern is identified by a string of four symbols $P_{cmn}$. Below, I first describe what values these symbols can have and how to interpret them. After that, we discuss how each possible base pattern has a unique name.

Decoding a base pattern identifier The first symbol $P$ is one of \{C, L, N, S, X, Y\} and indicates which four octants are traversed by the first half of the curve. The six possibilities are described in Figure 7 (first row). The second row of the figure gives a standard order in which the octants of each partition are traversed—we will see shortly how different traversal orders are encoded by the third symbol of the base pattern name.

The second symbol $c$ is a lower-case letter that specifies a rotary reflection that is a symmetry of the unit cube and maps the set of octants in the first half of the traversal to the set of octants in the second half of the traversal. Thus, we also get a standard order for the traversal of the octants in the second half of the curve. The possible values for $c$ and the corresponding symmetries are listed in Table 1: each symmetry is given as a signed permutation (see Section 2.3) enclosed in square brackets. The third row of Figure 7 gives an example of the resulting traversal orders for the octants in the second half of a traversal.

The third symbol, $m$, in the name of a base pattern indicates the permutation of the octants within the first half of the pattern. The default is that the first four octants, as encoded by the first symbol, are visited in the order indicated in the second row of Figure 7. Other orders are indicated by a pentadecimal number according to Table 2. For example, if
Figure 7: Encoding of base patterns. First row: the six options for the set of octants in the first half of the traversal. Second row: the standard order in which these octants are traversed. A vector \((x\ y\ z)\) represents the octant that includes the unit cube vertex \((x/2\ y/2\ z/2)\), assuming a unit cube of volume 1, centred at the origin. Third row: the seven ways in which a standard order for the second half of a C-pattern can be obtained by a transformation of the first half. Fourth row: six examples of how the final octant order is obtained by permuting the traversal order in the first and the second half, and finally reversing the second half.

For more examples, refer to the fourth row of Figure 7.

The fourth symbol describing the base pattern indicates the permutation of the octants within the second half of the traversal, in reverse order, so from the eighth back to the fifth octant of the complete base pattern. The default is that the eighth octant back to the fifth, in order, are the ones corresponding to the octants listed in the second row of Figure 7, in order, under the transformation indicated by the second symbol of the base pattern name. In other words, the traversal order for the second half is obtained by taking the ordered set of octants specified by \(P\), applying the permutation specified by \(n\), followed by the transformation specified by \(c\), and finally reversing the order.

The fourth row of Figure 7 shows several examples.
Table 1: Encoding of the symmetries of the unit cube

<table>
<thead>
<tr>
<th>symbol</th>
<th>symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>a [ 1, 2, −3]</td>
<td>reflection in plane orthogonal to 3rd coordinate axis</td>
</tr>
<tr>
<td>b [ 1, −2, 3]</td>
<td>reflection in plane orthogonal to 2nd coordinate axis</td>
</tr>
<tr>
<td>c [ −1, 2, 3]</td>
<td>reflection in plane orthogonal to 1st coordinate axis</td>
</tr>
<tr>
<td>d [ 1, −2, −3]</td>
<td>180° rotation around line parallel to 1st coordinate axis</td>
</tr>
<tr>
<td>e [ −1, 2, −3]</td>
<td>180° rotation around line parallel to 2nd coordinate axis</td>
</tr>
<tr>
<td>g [ −1, 3, 2]</td>
<td>180° rotation around line through (0, −1, −1) and (0, 1, 1)</td>
</tr>
<tr>
<td>h [ −1, −3, −2]</td>
<td>180° rotation around line through (0, −1, 1) and (0, 1, −1)</td>
</tr>
<tr>
<td>i [ 3, −2, 1]</td>
<td>180° rotation around line through (−1, 0, −1) and (1, 0, 1)</td>
</tr>
<tr>
<td>j [ −3, −2, 1]</td>
<td>180° rotation around line through (−1, 0, 1) and (1, 0, −1)</td>
</tr>
<tr>
<td>k [ 2, 1, −3]</td>
<td>180° rotation around line through (−1, −1, 0) and (1, 1, 0)</td>
</tr>
<tr>
<td>l [ −2, −1, −3]</td>
<td>180° rotation around line through (−1, 1, 0) and (1, −1, 0)</td>
</tr>
<tr>
<td>o [ −1, −2, −3]</td>
<td>point reflection with respect to the centre of the cube</td>
</tr>
<tr>
<td>q [ 1, 3, −2]</td>
<td>90° rotation around line parallel to 1st coordinate axis</td>
</tr>
<tr>
<td>r [ 3, −2, 1]</td>
<td>90° rotation around line parallel to 2nd coordinate axis</td>
</tr>
<tr>
<td>s [ 2, −1, 3]</td>
<td>90° rotation around line parallel to 3rd coordinate axis</td>
</tr>
<tr>
<td>u [ 2, −1, −3]</td>
<td>a combined with s</td>
</tr>
<tr>
<td>w [ −3, −1, −2]</td>
<td>reflection combined with 120° rotation around interior diagonal</td>
</tr>
<tr>
<td>x [ 3, −1, 2]</td>
<td>reflection combined with 120° rotation around interior diagonal</td>
</tr>
<tr>
<td>y [ −3, 1, 2]</td>
<td>reflection combined with 120° rotation around interior diagonal</td>
</tr>
<tr>
<td>z [ 3, 1, −2]</td>
<td>reflection combined with 120° rotation around interior diagonal</td>
</tr>
</tbody>
</table>

Table 2: Encoding of permutations of octants in one half of a traversal

<table>
<thead>
<tr>
<th>symbol</th>
<th>traversal order</th>
<th>symbol</th>
<th>traversal order</th>
<th>symbol</th>
<th>traversal order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1st 2nd 3rd 4th</td>
<td>6</td>
<td>2nd 1st 3rd 4th</td>
<td>c</td>
<td>3rd 1st 2nd 4th</td>
</tr>
<tr>
<td>1</td>
<td>1st 2nd 4th 3rd</td>
<td>7</td>
<td>2nd 1st 4th 3rd</td>
<td>d</td>
<td>3rd 1st 4th 2nd</td>
</tr>
<tr>
<td>2</td>
<td>1st 3rd 2nd 4th</td>
<td>8</td>
<td>2nd 3rd 1st 4th</td>
<td>e</td>
<td>3rd 2nd 1st 4th</td>
</tr>
<tr>
<td>3</td>
<td>1st 3rd 4th 2nd</td>
<td>9</td>
<td>2nd 3rd 4th 1st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1st 4th 2nd 3rd</td>
<td>a</td>
<td>2nd 4th 1st 3rd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1st 4th 3rd 2nd</td>
<td>b</td>
<td>2nd 4th 3rd 1st</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selecting a unique name for each base pattern  The previous discussion of base pattern names may raise two questions. First, for some base patterns there may be multiple ways to encode them: how do we select a unique name for a pattern, so that patterns that are equivalent modulo reflections, rotations and/or reversal get the same name? Second, can we give a name to each possible base pattern in this way?

To deal with the question of uniqueness, we restrict the names of base patterns to those that are implicitly listed in Table 3. Appendix A explains how this gives us a unique name for each equivalence class of base patterns. Table 3 also lists the numbers of symmetric base patterns and the numbers of asymmetric base patterns per row. Note that a pattern is symmetric if and only if the transformation that maps the first half to the second half is its own inverse (that is, \( c \in \{a, ..., o\} \)) and the first and the second half are permuted in the
Table 3: All possible base patterns by name. A name $Pcnm$ identifies a base pattern if and only if it consists of a symbol $P$ from the first column, a symbol $c$ from the second column, a symbol $m$ from the third column and another symbol $n$ from the third column of the same row, subject to the following restriction: if the second symbol denotes a symmetric transformation, then the third and the fourth symbol should be in lexicographical order. In effect, this means that names with the third and fourth symbol out of order must start with Cu or Yz.

<table>
<thead>
<tr>
<th>partition</th>
<th>transformations</th>
<th>permutations</th>
<th>number of patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>adeklou</td>
<td>012</td>
<td>18 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 asymmetric</td>
</tr>
<tr>
<td>L</td>
<td>al</td>
<td>012345678cde</td>
<td>24 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>132 asymmetric</td>
</tr>
<tr>
<td>N</td>
<td>ae</td>
<td>012345</td>
<td>12 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 asymmetric</td>
</tr>
<tr>
<td>S</td>
<td>ei</td>
<td>0123456789ab</td>
<td>24 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>132 asymmetric</td>
</tr>
<tr>
<td>X</td>
<td>abcghijkloqrsxyz</td>
<td>0</td>
<td>10 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 asymmetric</td>
</tr>
<tr>
<td>Y</td>
<td>hikoz</td>
<td>0236</td>
<td>16 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 asymmetric</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td>104 symmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>368 asymmetric</td>
</tr>
</tbody>
</table>

Table 4: Gate symbols

<table>
<thead>
<tr>
<th>symbol</th>
<th>intuition</th>
<th>gate location</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>corner</td>
<td>at vertex</td>
</tr>
<tr>
<td>r</td>
<td>radial</td>
<td>on interior of edge parallel to 1st coordinate axis</td>
</tr>
<tr>
<td>v</td>
<td>vertical</td>
<td>on interior of edge parallel to 2nd coordinate axis</td>
</tr>
<tr>
<td>t</td>
<td>transverse</td>
<td>on interior of edge parallel to 3rd coordinate axis</td>
</tr>
<tr>
<td>f</td>
<td>front</td>
<td>on facet orthogonal to 1st coordinate axis</td>
</tr>
<tr>
<td>g</td>
<td>ground</td>
<td>on facet orthogonal to 2nd coordinate axis</td>
</tr>
<tr>
<td>s</td>
<td>side</td>
<td>on facet orthogonal to 3rd coordinate axis</td>
</tr>
</tbody>
</table>

same way (that is, $m = n$). Table 11 in Appendix F shows all base patterns that we found to be realizable by three-dimensional Hilbert curves.

4.4 Third level: encoding the entrance and exit gates

In our naming scheme, the encoding of the base pattern is followed by two symbols that encode the entrance and the exit gate, respectively. These symbols are given in Table 4. Note that the interpretation of the exit gate symbol is subject to the transformation that maps the octants in the first half of the order to the octants in the second half (see Figure 8 for an example).

Observe that we only encode the topological locations of the gates, but not where exactly the edge and facet gates are located on the respective edges and facets. In the following section, we will find that the realizable combinations of entrance and exit gates for the unit cube are actually fairly limited, enough so that the topological locations of the gates are sufficient to determine their exact locations:
Figure 8: Encoding of possible locations for the entrance gate (open dots) and the exit gate (closed dots) of a curve with base pattern Yz00. Note that \( z \) denotes the transformation \([3, 1, -2]\), see Table 1.

- edge and facet gates in vertex-edge-gated or vertex-facet-gated curves are located at the midpoint of the edge or facet, respectively (Theorems 3 and 4);
- edge gates in edge-gated-curves are located at distance \( 1/3 \) from the closest endpoint of the edge (Lemma 6);
- facet gates in facet-gated-curves are located at distance \( 1/3 \) from two edges of the facet (Corollary 10);
- edge-facet-gated curves do not exist (Theorem 8).

If a curve is symmetric in the base pattern but not in the gate configuration, then we encode the curve in the direction that results in the name that comes first in lexicographical order. For example, we use \( \text{Ca00.gs} \), not \( \text{Ca00.sg} \).

5 Inventory of three-dimensional Hilbert curves by gate configuration

To set up the fourth and fifth levels of our naming scheme, we need to distinguish a number of cases depending on the gate configuration, similar to the proof of Theorem 1. In the next subsections we discuss vertex-gated, vertex-edge-gated, vertex-facet-gated, edge-gated, edge-facet-gated, and facet-gated curves, respectively. In each subsection we establish where exactly the entrance and exit gates must be located relative to each other, so that we can enumerate the corresponding gate sequences and the curves that implement them efficiently, and define an appropriate encoding. In total, we find that there are 10694807 different three-dimensional Hilbert curves: 10691008 vertex-gated curves (of which 1552544 edge-crossing and 9138464 facet-crossing), 2758 vertex-edge-gated curves, 1024 vertex-facet-gated curves, 16 edge-gated curves, 1 facet-gated curve, no edge-facet-gated curves.

Throughout this section, given a traversal \( \tau \), we use \( g_i \) to denote \( \tau(i/8) \), that is, the exit gate of the \( i \)-th octant and the entrance gate of the \( (i + 1) \)-st octant.
Figure 9 summarizes the complete naming scheme. The top half summarizes the encoding of the base pattern and the gates, as described in the previous section, this time omitting some combinations of partitions, transformations and permutations that cannot actually be realized by Hilbert curves, as we will see in the coming sections. The bottom part describes the fourth and the fifth level of the encoding, where different branches are taken depending on the configuration of the entrance and exit gates as described by the first three levels. These branches are explained in detail in the following subsections.

In general, with each combination of entrance and exit gates, the fourth level, the gate sequence, is encoded with two hexadecimal digits. As with the encoding of permutations in the base pattern, the first digit is for the first half of the curve; the second digit is for the second half of the curve as seen from the other end—that is, the second digit corresponds to the first half of the curve that is obtained by reversing the curve and applying the inverse of the transformation encoded by the second symbol of the base pattern name. In the following subsections, we describe how to encode the gates in one half of the curve as a four digits’ binary number, which is then written as a single hexadecimal digit. Typically, but not always, we use one bit per octant, in order of decreasing significance as we traverse the octants starting from the entrance gate. So the two hexadecimal digits, if written as eight binary digits, from left to right, encode the first, second, third, fourth, eighth, seventh, sixth and fifth octant, in that order. In the cases in which the fifth level, concrete curves, needs one or two further pairs of digits, the same principles apply: each hexadecimal digit encodes one half of the curve, and we use one bit per octant, starting with the most significant bit for the octant at the entrance or exit gate.

We write each hexadecimal digit as a symbol that is reminiscent of the equivalent four-bit binary number, as displayed in Figure 9 (on the bottom right). The four bits of a hexadecimal digit, in order from most significant to least significant (first to last encoded octant) are represented by the absence (0) or the presence (1) of, respectively, a vertical stroke on the right, a high horizontal stroke, a horizontal stroke in the centre, and a low horizontal stroke. If the first bit is zero, there is a vertical stroke on the left. In practice, we approximate the shapes thus composed by standard letters and digits as shown in Figure 9.

This section includes several figures sketching three-dimensional Hilbert curves. For each curve there are two diagrams (see, for example, Figure 10). The drawing on the left is an annotated drawing of the second-order approximating curve and defines the space-filling curve in the way described in Section 2.1. The drawing on the right is an exploded view of the eight octants that clarifies the gate sequence. In the exploded views, bold solid lines connect the exit gate of an octant with the entrance gate of the next octant—note that in the unexploded reality, these points coincide. Dashed lines connect the entrance gate of an octant with the exit gate of the same octant. For asymmetric curves, open dots mark the octant gates that correspond to the entrance gate of the entire curve: an open dot thus marks the exit or the entrance gate of an octant, depending on whether the transformation that maps the entire curve to the curve within the octant involves reversal or not.

Note that the curves are not always drawn with the same orientation of the coordinate system: some of the curves are rotated and/or reflected for a better view. For example, Figures 11d and 14c show curves with the same base pattern $C_{d00}$, but one is rotated and
Each white box produces a symbol. Boxes in rows marked ×2 produce one symbol for the 1st half of the curve and one symbol for the 2nd half.

**Encoding 2nd half:** apply reversal and inverse transform.; then encode permutation, gates, sequence, reversals, reflections.

**Decoding 2nd half:** determine permutation, gates, sequence, reversals, reflections as with 1st half; then apply reversal and transformation.

If transformations (reversals, rotations and/or reflections) of a given curve allow multiple encodings, use the lexicographically smallest one. For symmetric curves, \(Pcmm.csq\) functions as a shorthand for \(Pcmm.cc.ss..Iqq\).

Figure 9: The full naming scheme for octant-by-octant self-similar continuous traversals.
reflected with respect to the other. To clarify this, each figure includes a drawing that indicates the positive direction of each coordinate axis. Appendix G, on the last page of this article, gives the definitions of all curves illustrated in this section. The captions of the figures sometimes comment on specific properties of the example curves. Terms that will only be defined later, are written in italics, with a subscript referring to the numbered definition in Section 6 or 7. These terms can be ignored on first reading; the figures will be referred to again from Section 6 or 7.

### 5.1 Vertex-gated curves

**Theorem 2.** The gates of vertex-gated three-dimensional Hilbert curves are located at opposite ends of either an edge or a facet-diagonal of the cube.

**Proof.** The theorem only excludes the possibility of gates at opposite ends of an interior diagonal. The proof that this is not possible is completely analogous to case (ii) in the proof of Theorem 1. \qed

In other words, vertex-gated curves are either edge-crossing or facet-crossing, but not cube-crossing. Whether the curve is edge-crossing or facet-crossing, depends on whether the first and the last octant of the base pattern lie along the same edge of the unit cube, or only on the same facet.

### 5.1.1 Curves that are vertex-gated and edge-crossing

**Gate sequences** With vertex-gated, edge-crossing curves, the locations of the gates of the octants are restricted by the fact that they have to lie relatively close to each other: subsequent gates must lie at opposite ends of an octant edge. In particular, $g_0$ is at a corner of the unit cube, $g_1$ must be in the middle of the edge of the unit cube that is shared by the first and the second octant, and $g_2$ must be in the middle of the facet of the unit cube that is shared by the second and third (and, necessarily, also the first) octant. For the first half of the curve, this leaves only $g_3$ and $g_4$ to be specified. The gate $g_3$ must lie either in the centre of the cube, or at the midpoint of the edge of the unit cube that is shared by the third and fourth octant. The gate $g_4$ must lie at the midpoint of a facet of the unit cube that is shared by the fourth and the fifth octant.

We encode $g_3$ and $g_4$ in a hexadecimal digit, or equivalently, a four bits’ binary number, as follows. The first (most significant) bit encodes $g_3$ (0 if in the centre; 1 if on an edge), the remaining three bits in order of decreasing significance give the three coordinates of $g_4$ in order of increasing index (for each coordinate: 0 if in the centre, 1 if not).

For example, consider the gate sequence of the curve in Figure 10g, identified by $Pcmm.gh.st = S\text{i}00.\text{cc}.LT$. First consider the first half of the curve. The gate $g_3$ between the third and the fourth octant is the centre of the cube, so the first bit is a zero. The gate $g_4$ between the fourth and the fifth octant has coordinates $(0, 0, \frac{1}{2})$, so the next three bits are 001, and therefore $s = 0001 = L$ (see Figure 9). For the second half of the curve, we first
Table 5: Interpretation of the reversal and reflection bits in the names of vertex-gated curves.

<table>
<thead>
<tr>
<th>reversal encoding</th>
<th>reflection encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>first half</th>
<th>second half, if c maintains orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-rev.</td>
<td>reversed</td>
</tr>
<tr>
<td>non-refl.</td>
<td>non-refl.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>second half, if c induces reflection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>reversed</td>
<td>reflected</td>
</tr>
<tr>
<td>non-refl.</td>
<td>non-refl.</td>
</tr>
</tbody>
</table>

apply reversal and the inverse of the transformation \( c = \mathbf{i} = [3, -2, 1] \). Thus, \( g_5 = (0, 0, 0) \) becomes \( g_3 = (0, 0, 0) \) (so the first bit of \( t \) is zero), and \( g_4 = (0, 0, \frac{1}{2}) \) becomes \( g_4 = (\frac{1}{2}, 0, 0) \) (so the next three bits of \( t \) are 100). Thus \( t = 0100 = T \).

If a curve has a symmetric base pattern but an asymmetric gate sequence, then we encode the curve in the direction that results in the name that comes first in lexicographical order (interpreting digits by value, not by symbol). For example, a curve name can start with \( \text{Si00.cc.LT} \) (\( \text{Si00.cc.00010100} \)), never with \( \text{Si00.cc.TL} \) (\( \text{Si00.cc.01000001} \)).

Gate sequences for vertex-gated, edge-crossing curves can be enumerated by exhaustive search: it turns out there are 29 such gate sequences, which realize 14 different base patterns. From the 29 gate sequences, 10 are symmetric and 19 are asymmetric. A full list is given in Appendix F, Table 7.

Curves To fully specify a vertex-gated curve, we need to specify how exactly the curve is transformed within each octant. For each octant \( C_i \), the locations of the gates are given by the gate sequence. This still leaves two binary choices per octant. The first choice is whether to use a forward or a reverse copy of the curve, that is, whether to map the entrance gate of \( \tau \) to \( g_{i-1} \) and the exit gate to \( g_i \), or the other way around. The second choice is whether to use only rotation, scaling, translation and/or reversal to map \( \tau \) to \( \tau[(i - 1)/8, i/8] \), or to employ also reflection. The difference between the two options for the second choice is a reflection in the diagonal plane that bisects \( C_i \) and contains both gates \( g_{i-1} \) and \( g_i \).

We encode these choices by two pairs of hexadecimal digits following the name of the gate sequence. The general pattern of a curve name is then \( \text{Pcmn.cc.st.op.qr} \), where \( \text{Pcmn.cc.st} \) identifies the gate sequence, \( o \) and \( p \) specify the reversals in the first and the second half of the curve, respectively, and \( q \) and \( r \) specify the reflections in the first and the second half, respectively. Reversals and reflections are specified using one bit per octant. A value of 0 means non-reversed/non-reflected; 1 means reversed/reflected. Recall that the second half of the curve is encoded reversed and under the inverse of the transformation \( c \) that is used in the base pattern encoding. Thus, for the second half of the curve, the meaning of 0 and 1 is effectively modified as summarized in Table 5.

For example, consider the curve \( \text{Ca00.cc.44.hh.db} \) in Figure 10c. The first reversal digit is ‘h’, binary 0010 (see Figure 9), so among the first four octants, only the third octant is reversed—in correspondence with the placement of the open dots in the figure. The second reversal digit is also ‘h’, binary 0010, but for the second half of the curve, the meaning of 0 and 1 is flipped, as is the order of the bits. Thus, among the last four octants, the third-\textit{last} octant is the only one that is not reversed. The digit ‘d’, binary 1011, tells us that the
Figure 10: Examples of vertex-gated, edge-crossing curves. At first sight, most of these examples may look very similar, but they each have unique properties that are not shared by the other curves. (a) The Harmonious Hilbert curve, with maximum facet-harmony $17$. (b) Butz’s coordinate-shifting $30$ curve. (c) Alfa, the vertex-gated hyperorthogonal $13$ curve, which has excellent locality-preserving properties $39$. (d) The Sasburg curve, a metasymmetric $21$ curve with optimal score on the worst-case surface ratio $39$. (e) A realization of another symmetric gate sequence for face-continuous $11$ curves. An asymmetric gate sequence Ca00.cc.h4 for face-continuous $11$ curves can be constructed by combining the left half of the gate sequence in Figure e with the right half of the sequence in Figure b. (f) The Imposter curve, whose approximating curve $A_2$ wrongly suggests maximum facet-harmony $17$ and palindromicity $16$. (g) A curve with full interior-diagonal harmony $18$. (h) Another metasymmetric $21$ curve.
curve is reflected in the first, third and fourth octant, but not in the second octant. The digit ‘b’, binary 0011, should be interpreted with the meaning of 0 and 1 flipped (because the transformation \( a = [1, 2, -3] \) induces a reflection) and counting from the back, so the last and the second-last octant (corresponding to the zeros in 0011) are reflected, and the third-last and fourth-last octant (the ones in 0011) are not.

Figure 10 shows several other examples of vertex-gated, edge-crossing curves.

**Assigning unique names to curves** If the gate sequence is symmetric then there is some redundancy in the encoding that we just defined. Let \( P_{mm.cc.ss} \) denote a symmetric gate sequence for vertex-gated, edge-crossing curves. To avoid an unnecessary case distinction, note that Table 7 in Appendix F tells us that \( c \) must denote the transformation \( a = [1, 2, -3] \), which induces a reflection. Let \( \overline{x} \) denote the bitwise complement of a hexadecimal digit \( x \).

First, observe that \( P_{mm.cc.ss.op.qr} \) and \( P_{mm.cc.ss.pq.qr} \) now encode curves that are reversed and reflected copies of each other, and should therefore get the same name. In such cases we only use the lexicographically smallest name (interpreting digits by value, not by symbol).

Second, for symmetric curves, the two binary choices per octant do not give us four, but only two options per octant, because the curve equals its reversed reflection. Therefore we do not use reversal in the first half of the curve and we do not use non-reversal in the second half of the curve, and always give symmetric curves names of the form \( P_{mm.cc.ss.II.qq} \) (recall that \( I = 0000 \)). Alternatively, we may use the shorthand \( P_{mm.csq} \).

It remains to filter out the names that employ reversal to encode a symmetric curve. Consider a vertex-gated, edge-crossing curve that has a symmetric gate sequence and name \( P_{mm.cc.ss.op.qr} \). Since transformation \( a \) induces a reflection, reversing the curve within an octant, that is, mapping \( \tau(0) \) to \( g_i \) and \( \tau(1) \) to \( g_{i-1} \), rather than the other way around, results in a reflection of the base pattern. Therefore, if we write \( x \oplus y \) to denote the digit that is obtained by applying the bitwise exclusive-or operation to the digits \( x \) and \( y \) in binary representation, then \( P_{mm.cc.ss.op.qr} \) and \( P_{mm.cc.ss.II.qq} \) are the same with respect to the order in which the second-level subcubes are traversed. If \( \frac{q}{q} = \frac{p}{p} \), then that order is symmetric, so the whole curve is symmetric, and \( P_{mm.cc.ss.II.qq} \) is its name. Conversely, \( P_{mm.cc.ss.op.qr} \) names an asymmetric curve if and only if \( P_{mm.cc.ss.op.qr} \) is lexicographically smaller than \( P_{mm.cc.ss.pq.qr} \) and \( \frac{q}{q} \neq \frac{p}{p} \).

**Counting the curves** As explained above, given the gate sequence, we need to make two binary choices per octant, which makes 16 choices for the full curve. Thus we get \( 2^{16} = 65536 \) curves per gate sequence. However, if the gate sequence is symmetric, then the number of different curves is smaller. Symmetric curves have names ending in \( \text{II} \) followed by two identical digits: thus there are 16 such curves for each symmetric gate sequence. Asymmetric curves from symmetric gate sequences have 16 choices for each of the digits, except that we need to exclude the choice for the last digit that results in \( \frac{q}{q} = \frac{p}{p} \), and we need to divide by two because we only keep the lexicographically smallest version out of \( P_{mm.cc.ss.op.qr} \) and \( P_{mm.cc.ss.pq.qr} \). Thus there are \( 16 \cdot 16 \cdot 15/2 = 30720 \) asymmetric curves from
each symmetric gate sequence. In total we have 30736 curves for each of 10 symmetric gate sequences and 65536 different curves for each of 19 asymmetric gate sequences: 1 552 544 different edge-crossing vertex-gated curves in total.

5.1.2 Curves that are vertex-gated and facet-crossing

Gate sequences The entrance gate $g_0$ must lie at a corner of the unit cube, so the coordinates of $g_0$ sum up to $\frac{1}{2}$ (mod 1). By induction, one can now show that all gates $g_i$ for $0 \leq i \leq 8$ must have the same coordinate sum modulo 1, and thus, they must all be corners or facet midpoints of the unit cube. Moreover, since the gates $g_i$ for $1 \leq i \leq 7$ must connect two octants, they cannot be corners of the unit cube, so each gate $g_i$, for $1 \leq i \leq 7$, must be the midpoint of a facet of the unit cube that is shared by the $i$-th octant and the next.

Note that none of the base patterns from Table 3 start with a pair of octants that only differ in the third coordinate. Therefore, for $g_1$, there is never a choice between the midpoint of a facet orthogonal to the first coordinate axis and the midpoint of a facet orthogonal to the second coordinate axis: if there is a choice, it is between the midpoint of a facet orthogonal to the third coordinate axis and the midpoint of a facet orthogonal to another coordinate axis. Therefore it suffices to encode whether $g_1$ lies on a facet that is orthogonal to the third coordinate axis. We implement this by letting the first bit encode the third coordinate of $g_1$ (0 if zero, 1 if non-zero).

For the remaining gates, note that $g_i$ must be one of the two unit cube facet midpoints that are incident on the $i$-th octant and differ from $g_{i-1}$. The three facet midpoints incident on the $i$-th octant can be distinguished by their non-zero coordinate. Thus we encode the location of $g_i$ (for $2 \leq i \leq 4$) as follows. If the third coordinate of $g_{i-1}$ is zero, then the $i$-th bit encodes the third coordinate of $g_i$ (0 if zero, 1 if non-zero) to distinguish between the midpoint of a facet orthogonal to the third coordinate axis and the midpoint (not $g_{i-1}$) of a facet orthogonal to another coordinate axis. If the third coordinate of $g_{i-1}$ is non-zero, then the $i$-th bit encodes the second coordinate of $g_i$, to distinguish between the midpoint of a facet orthogonal to the first coordinate axis and the midpoint of a facet orthogonal to the second coordinate axis.

As with edge-crossing curves, if a curve has a symmetric base pattern but an asymmetric gate sequence, then we encode the curve in the direction that results in the name that comes first in lexicographical order.

Gate sequences for vertex-gated, facet-crossing curves can be enumerated by exhaustive search: it turns out there are 149 such gate sequences, which realize 54 different base patterns. From the 149 gate sequences, 18 sequences are symmetric and 131 sequences are asymmetric. A full list is given in Appendix F, Table 7.
Figure 11: Examples of vertex-gated, facet-crossing curves. (a,b,c,d) Metasymmetric curves with full interior-diagonal harmony. (e) An attempt to maximize the number of times four consecutive subcubes in the $4 \times 4 \times 4$ grid lie in a row. (f) An attempt to maximize the number of times four consecutive subcubes in the $4 \times 4 \times 4$ grid lie on a diagonal. (g) A convoluted but symmetric curve. (h) An attempt to maximize the worst-case surface ratio (the curve contains four consecutive octants that do not share any octant facets).

**Curves**  Given a gate sequence, vertex-gated, facet-crossing curves are specified in the same way as vertex-gated, edge-crossing curves. Note, however, that there is a subtle difference in the conditions for asymmetric curves from symmetric gate sequences. As one can see in Table 7, all symmetric, vertex-gated, facet-crossing gate sequences are symmetric by transformation $d$ or $e$ from Table 1. These transformations are rotations without reflections. In this respect the facet-crossing gate sequences differ from the edge-crossing gate sequences, where reversal of a symmetric sequence induced reflection of the base pattern.
Figure 12: Base patterns in which no octant is separated from its predecessor and its successor by a single axis-parallel plane (Lacc drawn upside down).

Consequently, names of asymmetric curves are a bit easier to recognize. If \( P_{cmm.cc.ss} \) is a symmetric gate sequence for vertex-gated, facet-crossing curves, then \( P_{cmm.cc.ss.op.qr} \) names an asymmetric curve if and only if \( P_{cmm.cc.ss.op.qr} \) is lexicographically smaller than \( P_{cmm.cc.ss.pqr} \) and the last two digits are simply different.

Some examples of vertex-gated, facet-crossing curves are shown in Figure 11.

**Counting the curves** The curves can be counted as with vertex-gated, edge-crossing gate sequences. We have 30,736 curves for each of 18 symmetric gate sequences and 65,536 different curves for each of 131 asymmetric sequences: 9,138,464 different facet-crossing vertex-gated curves in total.

### 5.2 Vertex-edge-gated curves

We first establish where the gates lie relative to each other:

**Theorem 3.** If one gate of a three-dimensional Hilbert curve is at a vertex and the other gate lies in the interior of an edge, then the edge gate lies exactly in the middle of the edge. Moreover, the two gates lie on a common facet of the unit cube, but not on a common edge of the unit cube.

**Proof.** Assume the entrance gate is at a vertex and the exit gate is in the interior of an edge (the reverse configuration is analogous). This implies that the traversal must be reversed in every second octant to be able to match the gates between the octants. Thus the traversal ends at a vertex of the eighth octant that lies in the interior of an edge of the unit cube—thus it actually lies in the middle of that edge. We can now distinguish three possible locations for the exit gate.

(i) The exit gate lies on one of the three edges incident on the entrance gate. This is impossible by the same argument as for case (iii) in the proof of Theorem 1 (after traversing the first octant within a cube, it would be impossible to connect to the second octant).

(ii) The exit gate lies on one of the three edges that are not on any of the unit cube facets that contain the entrance gate. This implies that one can never enter and leave an octant across the same axis-parallel centre plane of the cube. We call this the *no-turns condition*; it is equivalent to the condition that no pair of consecutive edges of \( A_1 \) makes an acute angle. The reader may now verify that the only base patterns that comply with the no-turns condition are Ca00, Cd00, Cl00, Lacc, Ll1c, Na00, and Si00, see Figure 12.

---

4Half base patterns that comply are \( C^*0^* \), \( L^*1^* \), \( L^*e^* \), \( N^*0^* \), \( N^*5^* \), and \( S^*0^* \), but \( N^*5^* \) cannot be extended to a complete base pattern that complies with the no-turns condition.
Figure 13: (a) No cube-crossing vertex-edge-gated curve with base pattern \(Cd00\) could connect the last octant’s entrance gate to the full curve’s exit gate. (b) No cube-crossing vertex-edge-gated curve with base pattern \(Cl00\) could connect the fifth octant’s entrance gate to the six octant’s entrance gate.

Note that for any of these patterns to be realizable under the conditions of case (ii), the exit gate must be a vertex of the last octant that lies in the middle of an edge of the unit cube that is not on a common unit cube facet with the first octant. In other words, if the first octant is the lower left front octant, then the exit gate must lie in the middle of the top right edge, the top back edge, or the right back edge. With \(Ca00\), \(Lacc\), \(Ll1c\), \(Na00\) and \(Si00\), this is not possible, because the first and the last octant are adjacent, and the last octant does not have any vertices on the top right, top back, or right back edge. With \(Cd00\), the last octant has one such vertex (the middle of the top right edge), but it cannot be used as an exit gate since it lies on the octant facet that is shared by the second-last and the last octant and which must therefore contain the last octant’s entrance gate (see Figure 13a). Finally, the reader may verify that the only feasible gate sequence for the beginning of \(Cl00\) would put \(g_2\) in the middle of the left back edge and \(g_4\) in the middle of the top edge. But thus, \(g_4\), the fifth octants’ entrance gate, lies on the octant facet that is shared by the fifth and the sixth octant and must, therefore, also contain the fifth octants’ exit gate (see Figure 13b). Thus, none of the base patterns that comply with the no-turns exit gate condition can be realized under the conditions of case (ii).

(iii) The exit gate lies on a common unit cube facet, but not on a common unit cube edge with the entrance gate. This is the only possibility that remains.

Gate sequences Theorem 3 leaves only one possibility for the positions of the entrance gate and the exit gate relative to each other. Given only the location of the entrance gate \(g_{i-1}\) of an octant \(C_i\), there are up to six different transformations of the complete curve that could map it to the curve within the octant, such that one of the gates \(g_0\) or \(g_8\) is mapped to \(g_{i-1}\). Correspondingly, there are up to six different possibilities for the location of the exit gate \(g_i\) of \(C_i\). However, the reader may verify that any particular facet of \(C_i\) contains at most two of the possible locations for \(g_i\), so at most two possible locations for \(g_i\) can be adjacent to the next octant. In fact, given the location of the entrance gate on an octant and the octant facet (if any) shared with the next octant, we only need to know whether the traversal within the octant is reflected to fully determine the location of the next gate.
Figure 14: Examples of vertex-edge-gated curves. (a) The \textit{centred}_{22}, \textit{standing}_{33}, \textit{well-folded}_{14} curve that may have the most regular structure of any Hilbert curve. (b) A curve with many diagonal connections through the centre. It exhibits \textit{full harmony on the interior diagonals}_{18}. Its worst-case locality-preserving properties\textsuperscript{39} are among the worst of all Hilbert curves. (c,d) Two \textit{standing}_{33} curves that would make for a relatively leisurely stroll if built as a three-dimensional labyrinth: there are no vertical edges, and a minimal number of sloped edges (only one per octant). These properties remain true in recursion. (e) The only Hilbert curve that I found to be uniquely defined by its base pattern, \textbf{La13}: there is only one way to fit the octants together in this pattern.

Therefore, gate sequences are encoded with one bit per octant that simply indicates whether the traversal within the octant is reflected (1) or not (0). Note that thus, unfortunately, the encoding of the gate sequence in the first half of the curve is not independent from the second half: it depends on where the exit gate $g_8$ is located (on which edge), and it depends on the location of the fifth octant (to encode $g_4$). Recall that reflections in the second half of the curve are subject to the transformation encoded by the second symbol of the base pattern name. Consider, for example, the curve \textbf{La13.cv.II} in Figure 14e: its reflections are encoded by II = 00000000, which means no reflections. However, the second half of the curve is still subject to the reflection a, so that all octants in the second half of the pattern do in fact contain a reflected copy of the curve.

The vertex-edge-gated curves turn out to be much more flexible than the vertex-gated curves with respect to the placement of the connecting gates between the octants:
an exhaustive search brought up 2,758 gate sequences for vertex-edge-gates curves, realizing 112 different base patterns. The gate sequences are listed in Appendix F, Tables 8 and 9: for each entry in the table, the first column gives a prefix (third-level description), and the second and third column give a number of possibilities for the first and the second symbol, respectively, of the gate sequence specification. Each combination of a prefix, one symbol from the second column, and one symbol from the third column, constitutes a gate sequence name for a vertex-edge-gated curve.

Curves The location of the gates $g_0, ..., g_8$ leaves no freedom with respect to the rotations, reflections and/or reversals of the traversals within the octants. Therefore, there is only one curve per gate sequence, and a gate sequence name suffices to identify a curve. Some examples are shown in Figure 14. Note the examples of centred, standing curves: as we will prove in Section 6 (Theorem 23 and Corollary 34), these properties cannot be obtained with vertex-gated curves.

5.3 Vertex-facet-gated curves

Theorem 4. If one gate of a three-dimensional Hilbert curve is at a vertex and the other lies in the interior of a facet, then the facet gate lies exactly in the middle of the facet. Moreover, the two gates do not lie on a common facet of the unit cube.

Proof. The proof is completely analogous to the beginning of proof Theorem 3 (replacing edges by facets) up to and including case (i), leaving only the option of a facet gate in the middle of a facet that does not contain the entrance gate.

Gate sequences Theorem 4 leaves only one possibility for the positions of the entrance and exit gates relative to each other. As with the hypothetical vertex-edge-gated curves in case (ii) in the proof of Theorem 3, the no-turns condition applies. Therefore, only the base patterns Ca00, Cd00, Cl100, Lacc, Ll1c, Na00, and Si100 need to be considered, from which Ca00, Cd00, Na00, and Si100 can be eliminated right away because the last octant would have to have the entrance and the exit gate on the same octant facet. Traversing the octants one by one, starting from the vertex gate, forward and reverse copies of the curve must alternate so that they can connect at alternating vertex and facet gates. Thus, gates $g_0, g_2, g_4, g_6$ and $g_8$ are at octant vertices and gates $g_1, g_3, g_5$ and $g_7$ are in the centres of the octant facets that are shared by the octants they connect. This rules out the base patterns Lacc and Ll1c, because in these patterns, the seventh and the eight octant, who share $g_7$, do not share an octant facet. This leaves only one possible base pattern:

Lemma 5. If one gate of a three-dimensional Hilbert curve is at a vertex and the other lies in the interior of a facet, then the curve has base pattern Cl100.

The reader may now verify that only four gate sequences are possible, with gates $g_1, g_3, g_5$ and $g_7$ fixed as explained above, and $g_4$ in a fixed position on an edge of the unit cube. Only for $g_2$ and $g_6$ there is a choice: each of them can be either in the middle of an
edge (e) or in the middle of a facet (f) of the unit cube. Thus we get the gate sequences Cl00.cf.ee, Cl00.cf.ef, Cl00.cf.fe, and Cl00.cf.ff.

Curves For each octant $C_i$, given the location of the gates $g_{i-1}$ and $g_i$, there is still freedom whether or not to reflect the traversal in the diagonal plane that contains both gates. This is encoded with one bit per octant: 0 if the transformation of the whole curve to the curve within the octant can be obtained without reflection; 1 if it requires a reflection. Thus, each gate sequence allows exactly $2^8 = 256$ different curves, and there are 1024 vertex-facet-gated curves in total. An example is shown in Figure 15a.

5.4 Edge-gated curves

Unfortunately, whereas combining edge gates with vertex gates unlocks a world of curves with interesting properties that could not be achieved with vertex gates alone, having edge gates at both ends turns out to be very restrictive. As the analysis on the next three pages shows, there are only sixteen edge-gated curves, and I am afraid I have not discovered anything particularly interesting about them. The impatient reader may therefore prefer to skip to Section 5.6 on facet-gated curves.

To start our analysis, we first determine where the gates lie on their respective edges in Lemma 6 below. After that we determine where the entrance and the exit gate lie relative to each other in Theorem 7.

Lemma 6. If both gates lie on the interiors of edges, then each gate lies at distance $1/3$ to the closest vertex of the unit cube.

Proof. Let $a > 0$ and $z > 0$ be the distances of the entrance and the exit gate, respectively, to the closest vertex of the unit cube. Let $a_0, \ldots, a_8$ be the distance of $g_0, \ldots, g_8$, respectively, to the closest octant vertex. If $a \neq z$, forward and reverse copies of the curve must alternate to match up, so we can distinguish two cases: (i) $a_0, a_2, a_4, a_6, a_8 = a/2$ and $a_1, a_3, a_5, a_7 = z/2$, or (ii) $a_0, a_2, a_4, a_6, a_8 = z/2$ and $a_1, a_3, a_5, a_7 = a/2$. If case (ii) applies, then case (i) applies to the reverse of the curve; if $a = z$, case (i) also applies; so we may assume that case (i) applies without loss of generality. In particular, we have $a_0 = a_8 = a/2$. 

Figure 15: Examples of: (a) a standing vertex-facet-gated curve. (b) an edge-gated curve.
Since the curve does not have vertex gates, the gates \(g_0\) and \(g_8\) cannot lie at a vertex of the first or last octant, respectively, and therefore they cannot lie exactly in the middle of an edge of the unit cube. So we have \(a < 1/2\) and \(z < 1/2\). Now we can unambiguously define \(u_0\) and \(u_8\) as the vertices of the unit cube that are closest to \(g_0\) and \(g_8\), respectively, and we define \(p_0, ..., p_8\) as the octant vertices closest to \(g_0, ..., g_8\), respectively. Since \(a_0 = a/2 \neq a\), the octant vertex \(p_0\) cannot be \(u_0\) but must be a midpoint of an edge of the unit cube; therefore the coordinates of \(p_0\) sum up to 0, modulo 1. Between each pair of points \(p_{i-1}, p_i\), for \(i \in \{1, ..., 8\}\), some coordinates may change by 1/2 and others remain equal. By the self-similarity of the curve, the number of coordinates that change is always the same and it is either by 0 or by 1/2, modulo 1. Thus, summed over eight pairs \(p_{i-1}, p_i\), the coordinate sum changes by 0, modulo 1, and hence \(p_8\), like \(p_0\), must be a midpoint of an edge of the unit cube, not a vertex, that is, not \(u_8\).

Now let \(|xy|\) denote the distance between the points \(x\) and \(y\). We have \(|u_0p_0| = |u_0g_0| + |g_0p_0|\), so \(1/2 = a + a_0 = a + a/2\) and, therefore, \(a = 1/3\). Similarly, we have \(|u_8p_8| = |u_8g_8| + |g_8p_8|\), so \(1/2 = z + a_0 = z + a/2 = z + 1/6\), and therefore, \(z = 1/3 = a\). \(\Box\)

**Theorem 7.** If both gates of a three-dimensional Hilbert curve lie on the interiors of edges, then the octants that contain the gates lie on a common facet of the unit cube, but not on a common edge of the unit cube; one of the gates lies on that facet shared by the first and the last octant, whereas the other gate lies on an edge orthogonal to the shared facet. Each gate lies at distance 1/3 to the closest vertex of the unit cube.

**Proof.** First note that the entrance and the exit gates cannot lie on parallel edges, since then, by induction, all gates \(g_0, ..., g_8\) would have to lie on parallel edges, and the traversal would never be able to cross the centre plane of the unit cube that is orthogonal to those edges. We now distinguish three cases for the possible locations of the first and the last octant relative to each other: they may (i) share an edge of the unit cube, or (ii) only a facet, or (iii) they lie opposite of each other on an interior diagonal.

Case (i): the first and last octant lie on the same edge of the unit cube. We distinguish two subcases: (a) the entrance or the exit gate lies on the shared edge of the unit cube, and (b) neither the entrance nor the exit gate lies on the shared edge. In case (a), suppose the entrance gate lies on the shared edge (the case of an exit gate on the shared edge is symmetric); see Figure 16a. The \(L_\infty\)-distance between \(g_0\) and \(g_8\) would then be at most 2/3, and thus, the \(L_\infty\)-distance between \(g_0\) and \(g_1\) would have to be at most 1/3. But the \(L_\infty\)-distance between \(g_0\) and the second octant is 1/2, so this is not possible. In case (b), illustrated by Figure 16b, recall that the entrance and exit gate do not lie on parallel edges. A traversal within an octant that starts on an edge of the unit cube, at distance 1/3 from the corner of the unit cube, can now only end on an axis-parallel line through the centre of the unit cube at distance 1/3 from the centre, and vice versa. Thus \(g_2\), like \(g_0\), must lie on an edge of the unit cube, where no connection to the third octant is possible. So case (i) cannot occur.

Case (ii): the first octant and the last octant lie on the same facet of the unit cube. Since the entrance and exit gates cannot lie on parallel edges, at most one of them lies on an
Figure 16: Impossible gate combinations for edge-gated curves. (a) Case (i)(a): if $g_0$ lies on the unit cube edge shared by the first and the last octant, then $g_1$ must lie at $L_\infty$-distance at most $1/3$ from $g_0$, that is, within the shaded box. But that box does not reach any octant other than the first and the last. (b) Case (i)(b): showing the possible locations for $g_1$ and $g_2$. None of the possible locations for $g_2$ allows a connection to a third octant. (c) Case (ii)(a): showing the possible locations for $g_1$. None of the possible locations for $g_1$ allows a connection to a second octant.

edge orthogonal to the unit cube facet shared by the first and the last octant. We distinguish two subcases: (a) both the entrance and the exit gate lie on the shared facet of the unit cube, and (b) only one of the gates lies on the shared facet. In case (a), following the curve through the first octant, it follows that $g_1$ lies on an edge of the unit cube, at distance $1/3$ from $u_0$ (see Figure 16c). So no connection to the second octant is possible, and case (a) cannot occur. Case (b) is entirely realizable, as illustrated in Figure 15b.

Case (iii): the first and the last octant lie opposite of each other on an interior diagonal of the unit cube. In this case, consider the four layers of second-level subcubes, and without loss of generality, suppose the traversal starts in the bottom layer. With every traversal of an octant in the bottom half of the unit cube, one moves from the bottom layer to the second layer or vice versa, so after traversing all octants in the bottom half (possibly visiting octants in the top half in between), one ends in the bottom layer with no more octants to go to. However, the traversal must end in an octant that spans the top two layers, so this case is not realizable.

**Gate sequences** Theorem 7 leaves only one possibility for the positions of the gates $g_0$ and $g_8$ relative to each other. Furthermore, by the same arguments as in the proof of Theorem 3, case (ii), the fact that the gates do not lie on a common facet restricts the possible base patterns to $Ca00$, $Cd00$, $Cl00$, $Lacc$, $Ll1c$, $Na00$, and $Si00$. From these, only $Cd00$ has the first and the last octant on a common unit cube facet, but not on a common unit cube edge, as required by Theorem 7. So all edge-gated curves have base pattern $Cd00$. Moreover, by Theorem 7, one of the gates is on an edge orthogonal to the facet of the unit cube that is shared by the first and the last octant, so the names of all edge-gated curves start with either $Cd00.rt$ or $Cd00.rv$.

Given the location of the entrance gate of an octant and the octant facet (if any) that is shared with the next octant, we only need to know whether the traversal within the
Figure 17: (a) The location of the entrance and exit gates of a \textit{Cd00.rt}-curve. (b) Example of how reflection in a given octant distinguishes between the two possible ways to reach the next octant. Assume (without loss of generality, modulo rotary reflections) that the entrance gate of the given octant is on the bottom left edge at 1/3 of the way from the front vertex to the back vertex. Then there are four possible locations for the exit gate, as shown in the four figures. On each of the top facet, right facet, front facet and back facet of the octant, we find exactly two candidate locations for the exit gate: one that is reached by a (possibly reversed) non-reflected traversal and one that is reached by a (possibly reversed) reflected traversal.

The octant is reflected to fully determine the location of the next gate (Figure 17 illustrates this for \textit{Cd00.rt}-curves; the situation for \textit{Cd00.rv}-curves is similar). Therefore, gate sequences are encoded with one bit per octant that simply indicates whether the traversal within the octant is reflected (1) or not (0).

An exhaustive search brought up 16 gate sequences, as listed in Appendix F, Table 10.

**Curves** The location of the gates \(g_0, ..., g_8\) leaves no freedom with respect to the rotations, reflections and/or reversals of the traversals within the octants. Therefore, there is only one curve per gate sequence, and a gate sequence name suffices to identify a curve. An example is shown in Figure 15b.

### 5.5 Edge-facet-gated curves

**Theorem 8.** There is no three-dimensional Hilbert curve with one gate in the interior of an edge and one gate in the interior of a facet.

**Proof.** Suppose there would be a three-dimensional Hilbert curve with the entrance gate in
the interior of an edge and the exit gate in the interior of a facet. This implies that the traversal must be reversed in every second octant to be able to match the gates between the octants. Thus the traversal ends on an edge of the eighth octant that lies in the interior of a facet of the unit cube—so the exit gate lies on an axis-parallel centre line of that facet, but not in the centre point. Call the facet that contains the exit gate the back face.

Then the first and the second octant must be connected back to back and they must have the same transformations, apart from a reflection in a plane parallel to their shared octant facet and possibly a reflection in a plane containing the back face centreline with the connecting gate. Thus, \( g_0 \) and \( g_2 \) must lie on parallel edges. Following the traversal through the subsequent octants, we find that \( g_0, g_2, g_4, g_6 \) and \( g_8 \) are all on parallel edges. Hence \( g_0 \), the entrance gate of the unit cube, is on an edge that is parallel with the facet that contains the exit gate.

Now rotate the curve such that the edge with the entrance gate is vertical. We now find that all gates \( g_0, g_1, ..., g_8 \) lie in the interior of vertical octant edges or facets. But then the curve cannot connect the bottom half of the unit cube with the top half of the unit cube. Therefore it is impossible to realize a gate sequence with one gate in the interior of an edge and the other gate in the interior of a face.

\[ \square \]

5.6 Facet-gated curves

**Theorem 9.** There is only one facet-gated three-dimensional Hilbert curve.

**Proof.** In a facet-gated curve, consecutive subcubes in the grid must always share a subcube facet for their exit and entrance gates to match up. This limits the possible base patterns to those whose approximating curves \( A_1 \) only have axis-parallel edges: \( \text{Ca00}, \text{Cl00}, \) and \( \text{Si00} \) (see Figure 12). Moreover, the gates cannot be on parallel facets, otherwise, by induction, all of the gates \( g_0, g_1, ..., \) must be on parallel octant facets and the traversal could never cross the centre planes of the unit cube that are orthogonal to the facets that contain the gates. Hence, the gates are on non-parallel facets, and thus, no pair of consecutive edges in an approximating curve can be collinear. As will be explained in Section 6, three-dimensional octant-by-octant space-filling curves with this property are called hyperorthogonal\(^{13} \).

We now consider the three possible base patterns one by one.

Hyperorthogonal curves with base pattern \( \text{Ca00} \) are analysed in a separate publication with Arie Bos. We prove that there is exactly one three-dimensional facet-gated hyperorthogonal Hilbert curve with base pattern \( \text{Ca00} \) [6].

Base pattern \( \text{Cl00} \) cannot be realized with hyperorthogonal curves, by the same arguments as for case (iii) of the proof of Theorem 7.

We investigate base pattern \( \text{Si00} \) by trying to draw the approximating curves \( A_0, A_1, A_2, A_3 \), each extended with an entry edge and an exit edge orthogonal to the facets that contain the gates. Approximating curve \( A_0 \), consisting of an entry edge, one vertex, and an exit edge, is trivial. There are two different ways (modulo rotation, reflection and/or reversal) to construct a matching approximating curve \( A_1 \), using base pattern \( \text{Si00} \), and without collinear edges, as shown in Figure 18. From these, we can construct five different
Figure 18: Trying and failing to construct a facet-gated curve with base pattern $\text{Si}00$.

Figure 19: The facet-gated curve. This curve has excellent locality-preserving properties: it is the unique best three-dimensional Hilbert curve with respect to the worst-case bounding-box surface and $L_2$-dilation measures. On each of the other metrics calculated, the curve is within 4% from optimal.

curves $A_2$ while maintaining that the curve in each octant is similar to $A_1$. However, now one can see that we cannot construct matching curves $A_3$ while maintaining continuity: if we replace the curve in each octant by a copy of $A_2$, then the edges drawn fat in Figure 18 would break. Hence, there are no facet-gated curves with base pattern $\text{Si}00$.

If follows that the only facet-gated three-dimensional Hilbert curve is the three-dimensional facet-gated self-similar curve that was described by Bos and myself [6]. Bos and I also calculated the locations of the gates and thus we get:

**Corollary 10.** If both gates lie on the interiors of facets, then each gate lies at distance $1/3$ to the closest two edges of the facet of the unit cube that contains it.

The curve is shown in Figure 19. Its name is simply $\text{Ca}00_{\text{gs}}$. Since there is only one facet-gated curve, its name does not need to be more specific than this: there is no need to encode the gate sequence.
6 Observations on properties of three-dimensional Hilbert curves

In this section we discuss several non-defining properties of the two-dimensional Hilbert curve that could also be desirable for three- and higher-dimensional Hilbert curves. Specifically, in Section 6.1 we discuss properties regarding the succession of subcubes along the curve: face-continuity, hyperorthogonality, and wellfoldedness. In Section 6.2 we discuss properties regarding the relations between different sections of the curve: palindromicity, facet-harmony, diagonal-harmony, symmetry, metasymmetry, and centredness. In Section 6.3 we discuss properties of the set of transformations (rotary reflections and/or reversals) of the curve that appear in subcubes: the properties of being pattern-isotropic, edge-isotropic, standing, coordinate-shifting, and order-preserving. For each of these properties, I first give a definition that is independent of the number of dimensions, then I give references to applications I am aware of, I point to examples, and I give any results that can help identifying three-dimensional Hilbert curves with the given property.

Note that, although the two-dimensional Hilbert curve has all of the aforementioned properties, no three-dimensional Hilbert curve can have all of them. In Section 9, I summarize the results on which properties can be combined with each other and which properties are mutually exclusive in three-dimensional Hilbert curves.

6.1 Properties regarding the succession of subcubes

6.1.1 Face-continuous curves

Definition 11. A space-filling curve is face-continuous if, for any section of the curve, the interior of the region filled by that section is connected.

In other words, for any $0 \leq a < b \leq 1$, the interior of the set $\bigcup_{t=a}^{b} \tau(t)$ must be connected. Concretely, for the case of $d$-dimensional Hilbert curves, this means that, at any level of recursion, cubes that are consecutive along the curve must share a $(d-1)$-dimensional face (hence the name), or equivalently, all edges of the approximating curves $A_1, A_2, \ldots$, as defined in Section 2, are axis-parallel. Face-continuity thus generalizes the property of two-dimensional Hilbert curves that consecutive squares always share an edge.

Face-continuity may be considered instrumental in achieving good locality-preserving properties—see Section 7. However, face-continuity also severely restricts the combinatorial possibilities for assembling a cube-filling curve from similar curves in each of eight octants. Under certain circumstances, better properties might be achieved by trading face-continuity for combinatorial flexibility.

Examples of face-continuous curves are shown in Figures 10a–g and 19.

Theorem 12. The face-continuous three-dimensional Hilbert curves are the vertex-gated and facet-gated curves with base pattern $Ca00$ or $Si00$ (see Figure 20).

5Bader [4] uses the term face-connected. I prefer face-continuous because I find face-connected easy to confuse with my definition of facet-gated (see Section 2.5).
Proof. A curve can only be face-continuous if each octant except the first shares an octant facet with the previous octant. There are only three base patterns that satisfy this requirement: Ca00, C100, and S100 (see Figure 20).

With base patterns Ca00 and S100, the first and the last octant lie next to each other along an edge of the unit cube. By the theorems from Section 5, traversals for which this is the case may only be realized as vertex-gated, as vertex-edge-gated, or as facet-gated curves. We consider these cases one by one.

Vertex-gated curves: let $g_i$ denote $\tau(i/8)$, that is, the exit gate of the $i$-th octant $C_i$ and the entrance gate of the $(i+1)$-st octant $C_{i+1}$. Note that if octants $C_i$ and $C_{i+1}$ share an octant facet $F$ and connect in a vertex gate $g_i$, then the suboctants of $C_i$ and $C_{i+1}$, respectively, that connect in $g_i$ must also share a suboctant facet, namely the appropriately sized subfacet of $F$ in the corner at $g_i$. Hence, by induction, all vertex-gated curves with base pattern Ca00 or S100 are face-continuous.

Vertex-edge-gated curves: consider the curve $A_2$ that sketches the traversal order of the second-level subcubes. Let $v_{ijk}$ be the vertex of $A_2$ in the $i$-th layer, $j$-th row, $k$-th column, where $i,j,k \in \{1,\ldots,4\}$. We define the parity of a vertex $v_{ijk}$ as the parity of $i+j+k$. Note that $A_2$ has an odd number of edges, and, if the curve is face-continuous, each edge connects vertices of different parity. Thus, the first and the last vertex of $A_2$ must have different parity. From Theorem 3 we know that, without loss of generality, we may number layers, rows and columns such that $A_2$ starts at $v_{111}$ and ends at $v_{124}$ or $v_{134}$. Given that the base pattern Ca00 or S100 ends with an octant that lies next to the first octant along an edge of the unit cube, $A_2$ actually has to end at $v_{124}$, but $v_{124}$ has the same parity as $v_{111}$. This contradicts the conditions of a face-continuous traversal. Hence, no vertex-edge-gated curve is face-continuous.

Facet-gated curves: these are necessarily face-continuous, because consecutive octants must always share the octant facet that contains the gate between them. By Theorem 9 in Section 5.6, there is only one facet-gated curve, and it has base pattern Ca00.

With base pattern C100, the first and the last octant are opposite of each other on an interior diagonal of the unit cube. By the theorems from Section 5, this can only be realized by vertex-facet-gated curves. However, starting from the vertex gate, we find that a face-continuous traversal is not possible by the same argument as in case (iii) of the proof of Theorem 7 in Section 5.4.

6.1.2 Hyperorthogonal curves

Recall that a $d$-dimensional Hilbert curve can be described by a series of approximating polygonal curves $A_k$, whose edges connect the centres of consecutive cubes along the curve...
in a grid of $2^{dk}$ subcubes of the unit cube. We can identify the unsigned orientation of an edge or a line $e$ by an unordered pair of antipodal points on the unit sphere, such that $e$ is parallel to the line through these points.

**Definition 13.** A $d$-dimensional Hilbert curve is hyperorthogonal if and only if, for all positive integers $k$ and for all $n \in \{0, \ldots, d-2\}$, the unsigned orientations of each sequence of $2^n$ consecutive edges of $A_k$ are those of exactly $n+1$ different axes of the Cartesian coordinate system [6].

Hyperorthogonality can be understood as a stronger (more restrictive) generalization of the two-dimensional Hilbert curve’s property that consecutive squares always share an edge. This property of the two-dimensional curve can also be phrased as: each edge between the centres of consecutive squares must be parallel to an axis of the coordinate system. This is exactly what hyperorthogonality requires in the case $n=0$, and this case is what hyperorthogonality boils down to if $d=2$. In three dimensions, hyperorthogonality requires the same (and thus, face-continuity), and adds the case $n=1$: any pair of consecutive edges of an approximating curve must be orthogonal to each other.

For a certain metric of locality-preservation, it is known that Hilbert curves that are hyperorthogonal and well-folded (see below) have good locality-preserving properties, regardless of the number of dimensions [6].

### 6.1.3 Well-folded curves

Let $G(d)$ denote the $d$-dimensional curve defined as follows: $G(0)$ is a single vertex, and $G(d)$, for $d > 0$, is the concatenation of $G(d-1)$, an edge of length $1/2$ in the direction of the $d$-th coordinate axis, and the reverse of $G(d-1)$. For example, $G(3)$ is the curve shown in Figure 5a.

**Definition 14.** An octant-by-octant traversal is well-folded [6] if its first-order approximating curve is $G(d)$ (modulo rotation, reflection and/or reversal).

Note that the successive orientations of the edges in $G(d)$ indicate exactly which bits change when proceeding from one number to the next in the $d$ bits’ binary reflected Gray code. In three dimensions, Definition 14 can also be phrased as:

**Definition 15.** A three-dimensional Hilbert curve is well-folded if it has base pattern $Ca00$ (see Figure 20).

Well-folded curves have a regular structure that provides a good basis for defining a family of Hilbert curves for any number of dimensions. Moreover, it can be instrumental in efficient computations with the curve (see Inset 1).

Examples of well-folded curves are given in Figures 10a–f, 14a, and 19.
Inset 1 Exploiting well-foldedness

One way to exploit well-foldedness is in the computation of an inverse of $\tau$, as demonstrated by Bos and myself [6]. An inverse of $\tau$ is a mapping $\tau^{-1} : [-\frac{1}{2}, \frac{1}{2}]^d \rightarrow [0, 1]$ such that $\tau(\tau^{-1}(x)) = x$. Such a mapping can be used to order points along the curve. To compute the order, one can maintain an interval $T$ for any point $p$ such that $\tau^{-1}(p) \in T$. Initially, one sets $T$ equal to $[0, 1]$. Well-foldedness makes it possible to narrow down $T$ in steps: each step inspects only one bit of one coordinate of $p$ and then halves the size of $T$. To determine the order in which different points appear along the curve, one narrows down their corresponding intervals just enough so that they become disjoint and their order can be determined.

Another way to exploit well-foldedness is demonstrated by Lawder’s algorithm [24] to compute $\tau(t)$ for a given $t$ and vice versa, when $\tau$ is Butz’s $d$-dimensional Hilbert curve. Lawder’s algorithm exploits the properties of the binary reflected Gray code when using bitwise exclusive-or operations to translate between one-dimensional and $d$-dimensional coordinates in binary representation.

6.2 Properties regarding the relations between different sections of the curve

6.2.1 Palindromic curves

Definition 16. Consider an octant-by-octant traversal of the cube, and an interior facet, that is, a facet $F$ between two octants $C_i$ and $C_j$, where $i < j$. For any $k \geq 1$, define $K = 4^k - 1$ and consider $F$ subdivided into a regular grid of $K$ squares. Let $F_{i,1}, \ldots, F_{i,K}$ be these squares in the order in which the traversal visits the adjacent subcubes of $C_i$, and let $F_{j,1}, \ldots, F_{j,K}$ be the same squares in the order in which the traversal visits the adjacent subcubes of $C_j$. We say a traversal is facet-palindromic if, for each interior facet $F$ between two octants $C_i$ and $C_j$ (note that there are twelve such facets), and for each level $k$, we have $F_{i,t} = F_{j,K+1-t}$.

In other words, for any interior facet $F$, the order in which $F$ is traversed the second time around (during the traversal of $C_j$) is exactly the opposite of the order in which $F$ is traversed the first time around (during the traversal of $C_i$).

Palindromicity facilitates elegant implementations of finite element methods that use only stacks for storage of intermediate results—the so-called stack-and-stream method [4].

The two-dimensional Hilbert curve is facet-palindromic (with respect to the four edges between the quadrants). A three-dimensional facet-palindromic continuous octant-by-octant traversal is not known. When we consider the second-order approximating curves of the three-dimensional Hilbert curves in Figure 21, these curves appear to be facet-palindromic.\(^6\) Unfortunately, the third-order approximating curves show violations of palindromicity.

6.2.2 Maximally facet-harmonious curves.

We say a $d$-dimensional traversal $\tau$ harmonizes with an $n$-dimensional traversal $\tau'$ on a given $n$-dimensional subset $F$ of the unit cube, if $\tau$ restricted to the points of $F$ constitutes an

\(^6\)Thus these curves demonstrate that Bader’s arguments ([4], p229) for the non-existence of palindromic three-dimensional Hilbert curves are inconclusive with respect to the definition of palindromicity used here.
Figure 21: Two curves, named Ca00.cT7 and Ca00.cT9, that seem palindromic at first sight. For example, consider the interior facet shared by the second and the third octant, as indicated in the figures. We see that the second time, the order in which we visit the four subsquares of this facet (dashed arrow) is exactly the opposite of the order in which we visit those subsquares the first time around (solid arrow). The reader may verify that also on the other eleven interior facets between the octants, the four quadrants are visited in the exact opposite order the second time around. However, if we expand the recursion and consider the subdivision of facets into sixteen squares, we find that the traversal orders from below and from above do not match on the facet between the first and the fourth octant. The right figure illustrates this for Ca00.cT9; for the other curve, Ca00.cT7, the situation is similar.

isometric copy of $\tau'$. On all one-dimensional faces (edges) of the square, the two-dimensional Hilbert curve harmonizes with the unique and trivial one-dimensional Hilbert curve: the one-dimensional Hilbert curve traverses a line segment from one end to the other, and the two-dimensional curve visits the points on each edge of the square in order from one vertex to the other. Unfortunately, no three-dimensional Hilbert curve can harmonize with the two-dimensional Hilbert curve on each side of the cube (for a proof, see Appendix B).

However, it is possible to get five sides (and all edges) right: one can verify by induction that Ca00.c4Z (Figure 10a) is consistent with the two-dimensional Hilbert curve on all facets except the back facet. The crucial observation to use is the following: the transformations that map the curve as a whole to the curves within the octants are such that the back facet of the unit cube is mapped to octant facets that lie either in the interior of the unit cube, or on the back. Thus, the violations of two-dimensional Hilbert order that show up on the back facets, do not show up on any of the other facets in recursion.

Therefore we define maximum facet-harmony as follows:

Definition 17. A three-dimensional Hilbert curve has maximum facet-harmony if it harmonizes with the two-dimensional Hilbert curve on five sides.

Note that harmony cannot be verified by only looking at the order in which the second-level subcubes are traversed, and this may sometimes be misleading: one needs to make sure that the $(d-1)$-dimensional Hilbert order on the facets is maintained also when the grid is refined recursively. For example, Figure 22 shows a three-dimensional Hilbert curve whose second-order approximating curve matches the two-dimensional Hilbert curve on five sides, but in recursion, harmony with the two-dimensional Hilbert curve is maintained on only one of these sides.
Harmony properties were first researched because of an application to the construction of R-trees. For that application it was desirable to use a traversal of the four-dimensional cube that, for points on a certain two-dimensional face of the cube, would degenerate to a two-dimensional Hilbert curve [19].

6.2.3 Fully interior-diagonal-harmonious curves.

Definition 18. A $d$-dimensional Hilbert curve has full interior-diagonal harmony if it harmonizes with the trivial one-dimensional Hilbert curve on all $2^{d-1}$ interior diagonals.

Specifically, a three-dimensional Hilbert curve $\tau$ has full interior-diagonal harmony if, for each of the four interior diagonals, $\tau$ visits the points on the diagonal in order from one end to the other. The following lemma is straightforward to prove and offers an easy test for interior-diagonal harmony:

Lemma 19. A curve has full interior-diagonal harmony if and only if on each interior diagonal, the second-level subcubes are visited in order.

Examples of curves with full interior-diagonal harmony are given in Figures 10g, 11a–d, and 14b.
6.2.4 Symmetric curves

Definition 20. A traversal order $\tau$ is symmetric if there is an isometric transformation $\gamma$ such that $\tau^+(t) = \gamma(\tau^-(1-t))$ for all $t \in [0,1]$, and $\tau^-(t) = \gamma(\tau^+(1-t))$ for all $t \in (0,1]$.

For a continuous traversal order, this is equivalent to $\tau(t) = \gamma(\tau(1-t))$ for all $t \in [0,1]$, and hence, $\tau(t) = \gamma(\tau(1-t)) = \gamma(\gamma(\tau(t)))$. Thus, the curve $\tau$ is equal to its own reverse under the transformation $\gamma$, which must, in general, be a rotary reflection that is its own inverse.

Symmetry can have advantages for the implementation of efficient algorithms operating on the curve, since it allows the algorithm designer to choose between geometric transformations or reversing the direction, whatever is easiest to implement.

Examples of symmetric curves are given in Figures 10abdefh and 11abcdg.

6.2.5 Metasymmetric curves

Informally, we say a traversal is metasymmetric if there is a (not necessarily symmetric) linear transformation that maps the first half of the curve to the reverse of the second half, and each half is metasymmetric itself. The property of being metasymmetric can be understood as a stronger (more restrictive) generalization of the two-dimensional Hilbert curve’s symmetry and self-similarity: symmetry implies that sections of the curve of length 1/2 are similar to each other; self-similarity implies that sections of length 1/2$^d$ are similar to each other; metasymmetry requires for all positive integers $n$ that sections of the curve of length 1/2$^n$ are similar to each other. More precisely:

Definition 21. A traversal $\tau$ is metasymmetric if and only if for any non-negative integers $n$ and $i < 2^n$, there is an isometric transformation $\gamma$ such that $\tau^+((i + t)/2^n) = \gamma(\tau^-(i + 1 - t)/2^n))$ for all $t \in [0,1/2)$, and $\tau^-((i + t)/2^n) = \gamma(\tau^+(i + 1 - t)/2^n))$ for all $t \in (0,1/2]$.

Examples of metasymmetric curves are given in Figures 10dfh and 11a–d.

6.2.6 Centred curves.

Definition 22. A curve $\tau$ is centred if $\tau(1/2)$, the point half-way along the curve, is the centre of the $d$-dimensional cube.

Examples of centred curves are given in Figure 14a–d.

Theorem 23. All centred three-dimensional Hilbert curves are vertex-edge-gated.
Proof. A three-dimensional Hilbert curve is centred if and only if \( g_4 \), the exit gate of the fourth octant, is the centre of the unit cube. Since the centre of the unit cube is a vertex of each octant that touches it, a three-dimensional Hilbert curve can only be centred if it has at least one vertex gate, that is, the curve must be vertex-gated, vertex-edge-gated, or vertex-facet-gated.

A vertex-gated curve starts at a vertex of the unit cube whose coordinates sum up to \( \frac{1}{2} \pmod{1} \), and the coordinate sums of the entrance and exit gates of each octant differ by either 0 (mod 1) (if the curve is facet-crossing) or \( \frac{1}{2} \pmod{1} \) (if the curve is edge-crossing). Hence \( g_4 \) must be at an octant vertex whose coordinates sum up to \( \frac{1}{2} \pmod{1} \) and cannot be the centre of the unit cube.

In vertex-facet-gated curves, octants appear in pairs that share the octant facet that contains the facet gates, while the vertex gates are on the opposite sides of these octants, on the boundary of the unit cube.

This leaves vertex-edge-gated curves as the only class of curves that may have \( g_4 \) in the centre of the unit cube.

### 6.3 Properties of the set of transformations in subcubes

#### 6.3.1 Pattern-isotropic curves

**Definition 24.** A traversal is pattern-isotropic if, in the limit as \( k \) goes to infinity, each symmetry of the unit cube occurs equally often among the transformations of the curve (modulo scaling, translation and reversal) in the \( 2^{kd} \) subcubes of the unit cube.

Note that we do not take the direction in which the pattern is traversed into account\(^8\).

Isotropy, like fairness [29], may be instrumental in ensuring that the performance of applications that order objects along a space-filling curve does not depend on the orientation of patterns in the data, since an isotropic or fair space-filling curve does not favour any particular orientation.

To be able to analyse isotropy and other orientation properties of the curves, we introduce the following notation. For a given three-dimensional Hilbert curve \( \tau \), let \( \Gamma^k(\tau) \) be the set of symmetries of the unit cube that map \( \tau \) to the curve (or its reverse) within at least one \( k \)-th-level subcube (modulo scaling, translation, and reversal). So \( \gamma \in \Gamma^1(\tau) \) if and only if there is a first-level octant \( C_i \) with \( \gamma = \gamma_i \) or \( \gamma = \gamma_i \circ \sigma \), where, if applicable, \( \sigma \) is a transformation that maps a symmetric curve \( \tau \) to its own reverse. Now, for any integer \( k \geq 2 \), we have \( \gamma \in \Gamma^k(\tau) \) if and only if there are \( \alpha \in \Gamma^1(\tau) \) and \( \beta \in \Gamma^{k-1}(\tau) \) such that \( \gamma = \alpha \circ \beta \).

**Lemma 25.** A three-dimensional Hilbert curve \( \tau \) is pattern-isotropic if and only if there is a \( k \) such that \( \Gamma^k(\tau) \) is the set of all 48 symmetries of the unit cube.

---

\(^8\)If we would take the direction into account, the two-dimensional Hilbert curve would not qualify. For example, the two-dimensional Hilbert curve traverses some squares from the bottom left to the top left corner, but never from the top left corner to the bottom left corner.
Proof. For ease of explanation, first consider asymmetric curves $\tau$.

By definition, an asymmetric three-dimensional traversal is pattern-isotropic if and only if, in the limit, we see each of the 48 possible transformations of the base pattern equally often. Let $\pi_1, \ldots, \pi_{48}$ be the symmetries of the unit cube, numbered such that $\pi_1$ is the trivial symmetry (the identity transformation). Let $P$ be the $48 \times 48$ matrix defined by $P_{ij} = z/8$ if exactly $z$ out of the 8 first-level subcubes have the transformation $\beta$ such that $\beta \circ \pi_j = \pi_i$. Note that for each permutation $\beta$ used in $z$ first-level subcubes, we put an entry with value $z/8$ in each row $i$ (namely at $P_{ij}$ where $\pi_j = \beta^{-1} \circ \pi_i$) and in each column $i$ (namely at $P_{hi}$ where $\pi_h = \beta \circ \pi_i$). Thus each row sums up to one and each column sums up to one. Let $u$ be the 48 elements' vector with $u[1] = 1$ and $u[i] = 0$ for all $i > 1$. Now, if we choose a subcube from level $m$ at random, the probability that it has transformation $\pi_i$ is given by element $i$ of the vector $P^m u$.

Suppose there is a $k$ such that $\Gamma^k(\tau)$ is complete, that is, it contains all 48 symmetries of the unit cube. Then all entries in the first column of $P^k$ are strictly positive. These entries indicate that any transformation $\pi_i$ can be constructed from the identity transformation $\pi_1$ by composing $k$ transformations from those from the eight octants with $\pi_1$. Then any permutation $\pi_i$ can actually be constructed from any permutation $\pi_j$ in this way, and therefore all entries of $P^k$ are strictly positive. This implies that $P$ is a regular doubly stochastic matrix, and as $m$ goes to infinity, $P^m u$ converges to the vector of which all elements are 1/48. Conversely, if there is no $k$ such that $\Gamma^k(\tau)$ is complete, then, for any $k$, the vector $P^k u$ contains at least one zero, and thus, by definition, $\tau$ is not pattern-isotropic.

If $\tau$ is symmetric, then the situation is slightly more subtle: because direction is irrelevant in the definition of pattern-isotropy, we should now consider 24 pairs of possible transformations such that the transformations in each pair result in each other’s reverse; the traversal is pattern-isotropic if and only if, in the limit, 1/24 of the transformations of the base pattern comes from each pair. Therefore we put a non-zero entry in $P_{ij}$ when $\beta \circ \pi_j = \pi_i$ or $\beta \circ \sigma \circ \pi_j = \pi_i$, where $\sigma$ is the symmetry transformation that maps $\tau$ to its own reverse. We now fill the matrix with multiples of 1/16 rather than multiples of 1/8. Otherwise, the proof goes through verbatim.

In practice, Lemma 25 allows us to calculate efficiently whether a curve is pattern-isotropic: we simply calculate $\Gamma^k(\tau)$ for increasing values of $k$, until we find we have completed a cycle, that is, until we have found two values $a < b$ such that $\Gamma^a(\tau) = \Gamma^b(\tau)$. Since the number of different values which $\Gamma^k(\tau)$ can assume is finite, such a cycle must eventually be found—and in practice it is found fast. Then, we can decide whether $\tau$ is pattern-isotropic by checking if $\Gamma^a(\tau)$ contains all 48 symmetries of the unit cube.

6.3.2 Edge-isotropic curves

Definition 26. We say a face-continuous Hilbert curve, that is, a Hilbert curve whose approximating curves $A_k$ have only axis-parallel edges, is edge-isotropic if, in the limit as $k$ goes to infinity, there is an equal number of edges of $A_k$ parallel to each axis [22].
Note that we do not take the direction in which the pattern is traversed into account and we do not define edge-isotropy for non-face-continuous curves. Moon et al. [30] proved that the two-dimensional Hilbert curve, along with certain generalizations to higher dimensions, is edge-isotropic.

We now discuss how to recognize edge-isotropy in three-dimensional Hilbert curves, which turns out to be very simple: the edge-isotropic curves are exactly the face-continuous curves. To prove this, we use an adapted version of the notation used above to analyse pattern-isotropy. Recall that a symmetry of the unit cube is given by a signed permutation, which we write as a square-bracketed sequence of three numbers whose absolute values are a permutation of \( \{1, 2, 3\} \). Let \( \Gamma_k(\tau) \) be the transformations in \( \Gamma^k(\tau) \) without the signs, so \( \Gamma^k_*(\tau) \) is a subset of \( U = \{[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\} \). We call the transformation \([1, 2, 3]\) the identity transformation, the transformations \([2, 3, 1]\) and \([3, 1, 2]\) are shifts, and the transformations \([1, 3, 2]\), \([2, 1, 3]\) and \([3, 2, 1]\) are swaps. The following lemma is easy to verify by trying all combinations:

**Lemma 27.** If \( \Gamma^1_*(\tau) \) contains...

(i) ...at least both shifts and no swaps, then
\[
\Gamma^k_*(\tau) = \{[1, 2, 3], [2, 3, 1], [3, 1, 2]\} \text{ for all } k \geq 2;
\]
(ii) ...at least one swap and one shift, or at least two swaps and identity, then
\[
\Gamma^k_*(\tau) \text{ is the complete set } U \text{ for all } k \geq 3;
\]
(iii) ...at least two swaps, no shifts and no identity, then
\[
\Gamma^k_*(\tau) = \{[1, 2, 3], [2, 3, 1], [3, 1, 2]\} \text{ for all even } k \geq 2, \text{ and }
\Gamma^k_*(\tau) = \{[1, 3, 2], [2, 1, 3], [3, 2, 1]\} \text{ for all odd } k \geq 3.
\]

Lemma 27 is very helpful in analyzing vertex-gated curves:

**Lemma 28.** If \( \tau \) is a vertex-gated three-dimensional Hilbert curve, then case (i), (ii) or (iii) of Lemma 27 applies.

**Proof.** We distinguish two cases: edge-crossing and facet-crossing curves. (By Theorem 2, cube-crossing vertex-gated curves do not exist.)

Suppose \( \tau \) is edge-crossing, and suppose the edge that connects the entrance and the exit gate is parallel to the third coordinate axis (the cases of the first and the second
coordinate axis are similar). For each \( i \in \{1, 2, 3\} \), there must be an octant in which the edge that connects the octant’s entrance and exit gate is parallel to the \( i \)-th coordinate axis, otherwise the traversal cannot reach the opposite octant on the interior diagonal through the first octant. Therefore, \( \Gamma^1_i(\tau) \) must contain at least one of \([2, 3, 1]\) and \([3, 2, 1]\), at least one of \([1, 3, 2]\) and \([3, 1, 2]\), and at least one of \([1, 2, 3]\) and \([2, 1, 3]\).

Now suppose \( \tau \) is facet-crossing. We call a facet a \( k \)-facet if it is orthogonal to the \( k \)-th coordinate axis. Suppose the facet that contains the entrance and the exit gate is a 3-facet (the cases of 1- and 2-facets are similar), the entrance gate is at \((-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})\) and the exit gate is at \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\). We say an octant is \( i \)-low if it is on the same \( i \)-facet of the unit cube as the entrance gate, and \( i \)-high otherwise. For each \( i \in \{1, 2\} \), there must be an \( i \)-low octant in which the facet that contains the octant’s entrance and exit gate is an \( i \)-facet, otherwise the \( i \)-th coordinates of the exit gates of the four \( i \)-low octants alternate between 0 and \(-\frac{1}{2}\), ending with \(-\frac{1}{2}\), and the remaining \( i \)-high octants, among which the octant that contains the exit gate of \( \tau \), cannot be reached. Therefore, \( \Gamma^1_i(\tau) \) must contain at least one of \([2, 3, 1]\) and \([3, 2, 1]\) and at least one of \([1, 3, 2]\) and \([3, 1, 2]\).

Both for edge-crossing and for facet-crossing curves, it follows that case (i), (ii) or (iii) of Lemma 27 applies.

**Theorem 29.** All face-continuous three-dimensional Hilbert curves are edge-isotropic.

**Proof.** Let \( \tau \) be a face-continuous three-dimensional Hilbert curve. By Theorem 12, \( \tau \) must be vertex-gated or facet-gated. In the latter case: it must be the only facet-gated curve that exists (see Section 5.6) and we have \( \Gamma^1_i(\tau) = \{[2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\} \) as can be seen in Figure 19, hence case (ii) of Lemma 27 applies. Otherwise \( \tau \) is a vertex-gated curve, and case (i), (ii) or (iii) of Lemma 27 applies, by Lemma 28.

By the same analysis as in the proof of Lemma 25, asymptotically, as \( k \) goes to infinity, for each element \( \gamma \in \Gamma^k(\tau) \) there is an equal number of \( k \)-th level subcubes \( C \) that are traversed according to the image of \( \tau \) under the transformation \( \gamma \) (modulo reflections, reversals, translation and scaling)—note that this also applies in case (iii): one can simply do the analysis for odd and even \( k \) separately. Thus, by the composition of the sets \( \Gamma^k(\tau) \) as described by Lemma 27, for each edge of the approximating curve of the base pattern, its images within the \( k \)-th level subcubes are equally distributed among parallels of the first, the second, and the third coordinate axis. Thus \( \tau \) is edge-isotropic.

Theorem 29 implies that the edge-isotropic curves are exactly the face-continuous curves, since for non-face-continuous curves, the concept of edge-isotropy is not defined.

### 6.3.3 Coordinate-shifting curves

We call a signed permutation \( \Pi_i \) that encodes a transformation \( \gamma_i \) a **generalized shift** if the permutation, without the signs, is either the identity permutation or a rotation in the permutation-sense of the word. In other words, \( \Pi_i \) is a generalized shift if and only if, for all \( j \in \{1, ..., d\} \), we have \( |\pi_i[j]| = |\pi_i[d]| + j \ (\text{mod} \ d) \).
Definition 30. A self-similar traversal is coordinate-shifting if it can be defined in such a way that, for all $i \in \{1, \ldots, 2^d\}$, the signed permutation $\Pi_i$ that defines $\gamma_i$ is a generalized shift.

Coordinate-shifting is often exploited by implementations of higher-dimensional Hilbert curves, such as Butz’s [8, 24, 31], to avoid having to code for arbitrary permutations of the coordinates.

Examples of coordinate-shifting curves are given in Figure 10beg.

In the proof of Lemma 28 we derived necessary conditions on $\Gamma^1_\times(\tau)$ for vertex-gated curves. In fact, these conditions are almost sufficient for the realization of a given gate sequence. More precisely, consider the sequence of the entrance and exit gates of the eight octants. Not only with vertex-gated curves, but also with vertex-facet-gated curves, such a gate sequence fixes one axis in each octant, namely the axis of the edge that connects the gates (if the curve is vertex-gated and edge-crossing), the axis orthogonal to the facet that contains the gates (if the curve is vertex-gated and facet-crossing), or the axis orthogonal to the facet that contains the facet gate (if the curve is vertex-facet-gated)—note that vertex-gated, cube-crossing curves do not exist by Theorem 2. Otherwise, as discussed in Sections 5.1 and 5.3, for each octant, one is free to choose whether or not to reflect it in a diagonal plane that contains the gates—in other words, one can choose freely how to permute the two non-fixed axes. Thus, for each octant, one can choose between a swap and a generalized shift. Choosing a generalized shift in each octant results in a coordinate-shifting curve and we obtain:

**Theorem 31.** Each gate sequence for a vertex-gated or vertex-facet-gated curve admits a coordinate-shifting curve.

On the other hand, one can examine the 16 edge-gated curves (see Section 5.4) and the only facet-gated curve (see Section 5.6) one by one and find that none of them are coordinate-shifting, and edge-facet-gated curves do not exist (Theorem 8). One can also verify by hand that it is not possible to assemble octants of vertex-edge-gated curves in such a way that they only differ by rotations of the coordinate axes (and reflections, traversals and translations). Thus we find:

**Finding 32.** A gate sequence for a three-dimensional Hilbert curve can be realized by a coordinate-shifting curve if and only if it is vertex-gated or vertex-facet-gated.

6.3.4 Standing curves

Definition 33. A self-similar traversal is standing if it can be defined in such a way that, for fixed $m, n \in \{1, \ldots, d\}$ and for all $i \in \{1, \ldots, 2^d\}$, the signed permutation that encodes the transformation $\gamma_i$, without the signs, is either the identity permutation or swaps only the $m$-th and the $n$-th coordinate.

In other words, using the terminology and notation from Section 6.3.2: $\tau$ is standing if and only if $\Gamma^1_\times(\tau)$ contains a single swap and/or identity, and nothing else. Note that
in two dimensions, any traversal is, trivially, both coordinate-shifting and standing, but in three or more dimensions, these two properties are mutually exclusive.

The term “standing” derives from the fact that standing curves can be drawn in a way that keeps the third coordinate vertical. Conceivably, standing curves offer the same advantage as coordinate-shifting curves: implementations can be efficient because they do not need to be capable of handling all $d!$ possible permutations of the coordinate axes.

Examples of standing curves are given in Figures 14acd and 15a.

Lemma 28 immediately implies:

**Corollary 34.** No standing three-dimensional Hilbert curve is vertex-gated.

One can check the 17 edge-gated and facet-gated curves (Sections 5.4 and 5.6) one by one and find that none of those are standing either, and edge-facet-gated curves do not exist (Theorem 8). Thus we find:

**Finding 35.** All standing three-dimensional Hilbert curves are vertex-edge-gated or vertex-facet-gated.

### 6.3.5 Order-preserving curves

**Definition 36.** A self-similar traversal is **order-preserving** if it can be defined without reversals, that is, $\chi_i(t) = t$ for all $i \in \{1, \ldots, 2^d\}$.

Order-preserving curves are arguably less complicated to understand and use than curves that contain reversals. Existing literature on space-filling curves tends to use or disallow reversal without discussing it explicitly. Alber and Niedermeier only considered order-preserving curves in their work on higher-dimensional Hilbert curves [2], whereas other authors [3, 44] implicitly used reversal in their (non-self-similar) two-dimensional quadrant-by-quadrant curves.

If a traversal is symmetric, the reversed curve cannot be distinguished from a suitably rotated and/or reflected, non-reversed copy. Therefore one can choose to define the transformations in the octants with only the symmetries of the cube and no reversals. Thus we observe:

**Observation 37.** All symmetric traversals are order-preserving.

An example of an asymmetric order-preserving curve is given in Figure 10g.

**Finding 38.** All order-preserving three-dimensional Hilbert curves are vertex-gated.

*How found:* Since each octant’s entrance gate must match the previous octant’s exit gate, if no reversal is used, both gates must be of the same type. One can examine the 16 edge-gated curves (see Section 5.4) and the only facet-gated curve (see Section 5.6) one by one and find that none of them are order-preserving, so all order-preserving curves must be vertex-gated.


7 Locality-preserving properties

The space-filling curves discussed in this article are, by construction, measure-preserving: the $d$-dimensional volume of the image of an interval $[a, b]$ under a traversal $\tau$ is equal to the length of the interval, that is, $b - a$. Such space-filling curves tend to have locality-preserving properties: points that are close to each other along the traversal, that is, in the domain of $\tau$, tend to be close to each other in $d$-dimensional space, that is, in the image of $\tau$, and vice versa. Many authors have worked on quantifying the locality-preserving properties of space-filling curves in general, and the Hilbert curve and its generalizations to higher dimensions in particular. In this section I present results on some of the metrics that have been defined. The study of these metrics has usually been motivated by applications to load balancing in parallel computing or the organization of spatial data in external memory [10, 11, 13, 18, 21, 33, 34, 44].

Definition 39. Given two points $p$ and $q$ in the unit cube, let $\delta_i(p, q)$ be the $L_i$-distance between $p$ and $q$. Given a Hilbert curve $\tau$ and two points $a$ and $b$ in the unit interval, let $C(a, b) = \bigcup_{t=a}^{b} \tau(t)$ be the set of points that appear on the curve between $\tau(a)$ and $\tau(b)$. Given a set $S$ of $d$-dimensional points, let $\text{vol}(S)$, $\text{diam}_i(S)$, $\text{bbox}(S)$, $\text{ball}_i(S)$, and $\text{surface}(S)$ be the volume, $L_i$-diameter, the minimum axis-parallel bounding box, the minimum bounding $L_i$-ball, and the $(d - 1)$-dimensional measure of the boundary of the set $S$, respectively. We can now define the following quality measures of a $d$-dimensional space-filling curve, where in each case, $i \in \{1, 2, \infty \}$, and the maximum is taken over all pairs $a, b \in [0, 1]$ with $a \leq b$:

- $L_i$-dilation or $\text{WL}_i$: the maximum of $\delta_i(\tau(a), \tau(b))^{d}/(b - a)$;
- $L_i$-diameter ratio or $\text{WD}_i$: the maximum of $\text{diam}_i(C(a, b))^{d}/(b - a)$;
- $L_i$-bounding ball ratio or $\text{WBB}_i$: the maximum of $\text{vol}(\text{ball}_i(C(a, b)))/(b - a)$;
- $\text{surface}$ ratio or $\text{WS}$: the maximum of $(\text{surface}(C(a, b)))/(2d)^{d/(d-1)}/(b - a)$;
- $\text{bounding-box volume}$ ratio or $\text{WBV}$: the maximum of $\text{vol}(\text{bbox}(C(a, b)))/(b - a)$;
- $\text{bounding-box surface}$ ratio or $\text{WBS}$: the maximum of $(\text{surface}(\text{bbox}(C(a, b)))/(2d)^{d/(d-1)}/(b - a)$.

In fact, the $L_i$-dilation and the $L_i$-diameter ratio of a space-filling curve are equal for any $i$, and the $L_\infty$-diameter ratio and the $L_\infty$-bounding ball ratio are always equal as well (for proofs, see Appendix C).\footnote{I conjecture that the $L_2$-diameter ratio and the $L_2$-bounding ball ratio of a space-filling curve are always equal as well, but I can prove this only for two-dimensional space-filling curves (see Appendix C) and I have not found a proof for three-dimensional space-filling curves.}

Table 6 shows some results on metrics of locality-preserving properties as defined above, computed with algorithms from Sasburg [40] based on our previous work [18]. With our current implementation we cannot easily compute $\text{WS}^{2/3}$ with reasonable precision for all curves; the value for the Rough Edge curve is a lower bound. The true value cannot
Table 6: Worst-case locality metrics for a selection of the curves illustrated in Section 5, and analytical bounds for octant-by-octant cube-filling curves known from the literature. For the Butz curve (along with Ca00.chI and Ca00.cT1), bounds on $WD_1$, $WD_2$ and $WD_\infty$ were also calculated by Niedermeier et al. [33]. The numbers reported below improve on their bounds on $WD_2$ and $WD_\infty$.

<table>
<thead>
<tr>
<th>name</th>
<th>nickname</th>
<th>$WD_1^{1/3}$</th>
<th>$WD_2^{1/3}$</th>
<th>$WD_\infty^{1/3}$</th>
<th>$WS^{2/3}$</th>
<th>WBV</th>
<th>WBS$^{2/3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca00.c4I</td>
<td>Butz</td>
<td>4.62</td>
<td>2.97</td>
<td>2.89</td>
<td>1.48</td>
<td>3.11</td>
<td>3.14</td>
</tr>
<tr>
<td>Ca00.cc.44.hh.db</td>
<td>Alfa</td>
<td>4.64</td>
<td>2.84</td>
<td>2.32</td>
<td>1.48</td>
<td>3.11</td>
<td>2.69</td>
</tr>
<tr>
<td>Ca00.c4Z</td>
<td>Harmonious</td>
<td>4.63</td>
<td>3.07</td>
<td>3.04</td>
<td>1.48</td>
<td>3.50</td>
<td>3.46</td>
</tr>
<tr>
<td>Ca00.cT4</td>
<td>Sasburg</td>
<td>4.58</td>
<td>3.00</td>
<td>2.66</td>
<td>1.45</td>
<td>3.50</td>
<td>3.08</td>
</tr>
<tr>
<td>Ca00.cv.4h</td>
<td>Base Camp</td>
<td>5.27</td>
<td>3.21</td>
<td>3.04</td>
<td>1.62</td>
<td>5.25</td>
<td>3.68</td>
</tr>
<tr>
<td>Ca00.gs</td>
<td>Beta</td>
<td>4.48</td>
<td>2.65</td>
<td>2.41</td>
<td>1.48</td>
<td>3.14</td>
<td>2.54</td>
</tr>
<tr>
<td>Cu00.cc.4d.4d.Z7</td>
<td>Long Legs</td>
<td>5.36</td>
<td>3.28</td>
<td>3.04</td>
<td>5.67</td>
<td>4.03</td>
<td></td>
</tr>
<tr>
<td>Li36.cc.II.hT.33</td>
<td>Rough Edge</td>
<td>6.73</td>
<td>4.29</td>
<td>3.04</td>
<td>$\geq 2.09$</td>
<td>10.50</td>
<td>6.34</td>
</tr>
<tr>
<td>Se33.c7T</td>
<td>Mosquito</td>
<td>6.73</td>
<td>4.30</td>
<td>3.04</td>
<td>10.50</td>
<td>6.34</td>
<td></td>
</tr>
<tr>
<td>Si11.ct.P9</td>
<td>Rollercoaster</td>
<td>7.23</td>
<td>4.16</td>
<td>3.04</td>
<td>1.82</td>
<td>14.00</td>
<td>5.81</td>
</tr>
</tbody>
</table>

| symmetric face-cont. curves | $4.49-4.82$ | $2.97-3.10$ | $2.65-3.04$ | $1.45-1.50$ | $3.11-3.73$ | $2.99-3.46$ |
| vertex-edge-gated curves   | $4.69-7.23$ | $2.95-4.16$ | $2.55-3.04$ | $1.53-2.07$ | $4.31-14.11$ | $2.97-5.84$ |
| all Hilbert curves         | $4.48-7.23$ | $2.65-4.30$ | $2.32-3.04$ | $1.45-2.09$ | $3.11-14.11$ | $2.54-6.34$ |

known bounds from the literature

| not necessarily self-similar [13] | $\leq 4.90$ |
| not necessarily self-similar [33] | $\geq 3.49$ | $\geq 2.23$ | $\geq 2.02$ |
| face-cont. order-preserving [10]  | $\geq 4.40$ |
| face-cont. order-preserving [10]  | $\leq 5.04$ |
| [this paper, Theorem 44]          | $<2.44$     |

be that much higher: 2.44 is a weak upper bound for any octant-by-octant traversal (see Theorem 44 in Appendix C). Other results are with an error margin of at most 2%.

No curve is best on all metrics, but the two hyperorthogonal curves (Alfa and Beta) stand out. Beta, the facet-gated hyperorthogonal curve (Figure 19), is the unique best curve with respect to bounding-box surface and $L_2$-dilation. On each metric, the curve is within 4% from optimal. Alfa, the vertex-gated hyperorthogonal curve (Figure 10c) is the unique best curve with respect to $L_\infty$-dilation, the unique second-best with respect to bounding-box surface, and optimal with respect to bounding-box volume. On each metric, the curve is within 7% from optimal. The Alfa curve confirms a result from “computer simulation” reported by Gotsman and Lindenbaum [13] that $WD_2^{1/3}$ is at most 2.84 for some three-dimensional Hilbert curve that was left unspecified.

The symmetric face-continuous curves are always within 37% from optimal. Several examples are listed in Table 6 and in Figure 10, including Butz’s curve, which is optimal with respect to bounding-box volume, and the best metasymmetric curve (the Sasburg curve), which is optimal with respect to curve section surface.

Convoluted curves such as Rough Edge (Figure 11h), Mosquito (Figure 11g) and Rollercoaster (Figure 14b) can score up to 350% worse than optimal on the bounding-box volume metric, but on the other metrics the differences between curves are less pronounced.
Note that a curve with diagonal edges in the approximating curves is not automatically worse than a face-continuous curve. On the bounding-box surface, $L_\infty$-dilation, and $L_2$-dilation metrics, the best vertex-edge-gated curves actually score slightly better than the best symmetric face-continuous curves—but still worse than the hyperorthogonal curves.

**Other metrics** The results presented above should be interpreted with caution: the locality metrics analysed here may not be decisive. In practice, metrics that consider averages rather than worst cases may be more relevant. Unfortunately, average-case metrics are non-trivial to define [18] and tend to be much more difficult to compute efficiently and accurately for large numbers of curves [40]. Nevertheless, if we can establish that a three-dimensional Hilbert curve (for example, the hyperorthogonal curves, the Sasburg curve, or Butz’s curve) is particularly good according to some metric of locality-preservation, then, it is, of course, an interesting curve to study: we may want to inspect such curves to see what qualitative properties of their structure cause it to perform so well according to these metrics.

More radically different metrics of locality-preserving properties have been described in the literature as well. Some authors consider bounds on the average distance between points along a curve as a function of their distance in $d$-dimensional space [12, 28, 45, 47]. Mokbel et al. define metrics that capture to what extent a traversal differs from sorting points in ascending order by one coordinate, and how these differences are distributed over the $d$ coordinates [29]. One may also consider the number of contiguous sections of the curve that are needed to adequately cover any given query window in the unit cube [3, 17, 30, 46]. As I established through Observation 3 and Theorem 9 in my previous work on this topic [17], if the query window is a cube, seven or eight sections of any three-dimensional Hilbert curve are sufficient and in the worst-case necessary for an approximate cover. An exact cover requires an unbounded number of curve sections in the worst case, unless one assumes the query range to be aligned with the grid of $2^{kd}$ subcubes at a particular depth $k$ [30, 46]. Either way, it is questionable whether these worst-case metrics of cover quality capture the differences between the curves within the scope of this article well. Attempts at average-case analysis [17, 30, 46] suggest that what really matters are the orientations of the edges of the approximating curves: axis-parallel edges, modelling face-continuous curves, are good; curves with diagonal edges may be less good. Note that in this respect, the Alfa and Beta curves again seem to be a good choice.

**8 Software**

From this article’s page on the website of the Journal of Computational Geometry, one may download the C++ sources and the manual of a tool to search the curves. The purpose of this tool is to allow us to verify the contents of the present article, to reverse-engineer the curve that underlies any existing, incompletely documented implementation of a three-dimensional Hilbert curve, and to facilitate the exploration of three-dimensional Hilbert curves that have given properties.

The search tool takes as input a set of conditions which a curve should fulfill. These conditions could take the form of a prefix of a curve name, the order in which the subcubes
in a grid of $8^k$ cubes are visited (for any natural number $k$), a curve description in the numerical style of Section 2.3, and/or a subset of the properties\textsuperscript{12} described in Sections 2.5 and 6. The tool then searches the space of 10,694,807 three-dimensional Hilbert curves by lexicographical order of their names as described in Section 5, it reports how many curves fulfill the specified conditions, and, depending on the user’s preferences, outputs details for one or all of these curves. Such details may include whatever could be given as input (the name of the curve, the order in which subcubes in a grid are visited etc.), as well as a POV-Ray [38] file for an illustration of the curve in the style of, for example, Figure 4c, and additional information if known (nickname, references).

The base pattern names (Table 3), the names of vertex-facet-gated curves, and the names of metasymmetric curves (Finding 48 in Appendix D) are hardcoded. Otherwise the tool computes gate sequences and computes or verifies curve properties on the fly, using the same algorithms that were used to generate the tables in Appendix F, and exploiting the results of Section 6 to test properties of curves.

\section{How many Hilbert curves are there in three dimensions?}

We will now answer the title question of this article.

Hilbert presented his two-dimensional curve to confirm and demonstrate the existence of a space-filling \textit{curve}, that is, a continuous traversal. He described his curve as a quadrant-by-quadrant traversal in which consecutive squares along the curve always share a side\textsuperscript{13}, but this does not uniquely define the Hilbert curve, as Wierum’s curve demonstrates [44]. I propose to assume that Hilbert intended his traversal to be self-similar, and I assume he wrote that consecutive squares should share sides only to narrow it down to the unique quadrant-by-quadrant, self-similar, continuous traversal. Thus we arrive at the definition adopted in this paper: a Hilbert curve (in three dimensions) is an octant-by-octant, self-similar, continuous traversal.

According to this definition, there are 10,694,807 different three-dimensional Hilbert curves, as explained in Section 5. If, however, one deems some of the additional properties, such as those from Section 6, to be essential characteristics of Hilbert curves, one may arrive at a different number. Counts for different combinations of properties can be obtained with the software tool described in Section 8; Figure 23 shows the results.

Unfortunately, none of the curves is palindromic: the curves Ca00.cT7 and Ca00.cT9 show violations of palindromic conditions in the third-order approximating curve $A_3$ (see Figure 21), and all other three-dimensional Hilbert curves were found to violate palindromic conditions already in the second-order approximating curves $A_2$.

\textsuperscript{12}The following properties can be specified: vertex-gated etc., edge-crossing etc., face-continuous, hyper-orthogonal, well-folded, maximally facet-harmonious, fully interior-diagonal-harmonious, symmetric, metasymmetric, centred, pattern-isotropic, coordinate-shifting, standing, and order-preserving. Palindromicity cannot be specified separately: all curves are tested and found to be non-palindromic. Edge-isotropy cannot be specified separately because it is equivalent to face-continuity by Theorem 29.

\textsuperscript{13}In German: “Seite” [20].
Total number of curves per property: face-continuous 223 281; hyperorthogonal 2; well-folded 157 865; palindromic 0; max. facet-harmonious 1; fully interior-diagonal-harmonious 507 567; symmetric 448; metasymmetric 24; centred 1 330; pattern-isotropic 10 526 545; edge-isotropic 223 281; coordinate-shifting 38 432; standing 165; order-preserving 42 208.

Figure 23: This map shows, for each combination of the properties recognized by our software tool, how many three-dimensional curves with that combination of properties exist. No curves are palindromic, only one is maximally facet-harmonious (marked Harmonious on the map), and only two are hyperorthogonal (Alfa and Beta). Edge-isotropy is equivalent to face-continuity by Theorem 29. The hatched part marks the 920 order-preserving face-continuous curves, which are the curves covered by the framework from Alber and Niedermeier [2].
Some curves with fairly unique properties are:

- The *Harmonious* Hilbert curve, Ca00.c4Z (Figure 10a) is the only three-dimensional Hilbert curve that visits the points on each of five of the six facets of the cube in the order of a two-dimensional Hilbert curve. For all other three-dimensional Hilbert curves, inconsistency with the two-dimensional Hilbert curve can be established for at least two facets by inspecting the third-order approximating curve\(^1\). The construction of the Harmonious Hilbert curve generalizes to a unique Hilbert curve for any number of dimensions [15].

- The *Sasburg* curve, Ca00.cT4 (Figure 10d), with optimal worst-case surface ratio.

- The *Base Camp* curve, Ca00.cv.4h (Figure 14a), which may have the most regular shape of all Hilbert curves: all octants except the first and the last are scaled-down, translated, reflected and/or reversed (but not rotated) copies of the whole curve, and each consecutive pair of those octants is symmetric by reversal and reflection in the shared octant facet. The Base Camp curve is the unique well-folded, centred, standing curve with this property\(^2\). Its construction generalizes to a unique Hilbert curve for any number of dimensions (Inset 2 in Section 10).

- The *Perfect Fit* curve, La13.cv.II (Figure 14e) is the only three-dimensional Hilbert curve that is unambiguously identified by its base pattern. All other base patterns that are realizable by three-dimensional Hilbert curves, are realized by at least two different curves.

- The *Alfa* and *Beta* curves: Ca00.cc.44.hh.db (Figure 10c) and Ca00.gs (Figure 19). These curves were proven to be hyperorthogonal in earlier work [6]. In fact, they are the only hyperorthogonal three-dimensional Hilbert curves: the software tool described in Section 8 found that all other face-continuous three-dimensional Hilbert curves have a pair of consecutive collinear edges in the third-order approximating curve \(A_3\), thus violating the conditions of hyperorthogonality. The three-dimensional hyperorthogonal Hilbert curves have, in some ways, better locality-preserving properties than any other three-dimensional Hilbert curve (see Section 7). Their construction generalizes to higher dimensions; regardless of the number of dimensions, each section of such a curve has a bounding box of volume at most four times the volume of the curve section itself [6].

- The three face-continuous, symmetric, coordinate-shifting curves are Ca00.chI (Figure 10e), Ca00.cTI and Ca00.c4I (Figure 10b). These three curves were also singled out by Niedermeier et al. [33]. The curve Ca00.c4I is the three-dimensional curve of Butz’s construction, which is well-defined for any number of dimensions [8].

- Some more fairly unique curves are Si00.cc.LT.I3.II (Figure 10g) and Se66.cT3 (Helix, Figure 11b); see Figure 23 for their properties.

---

\(^{14}\)In fact, for all curves other than the “Imposter” Ca00.cT7, such violations are already visible in the second-order approximating curve \(A_2\).

\(^{15}\)The uniqueness of the curve is easy to verify: by Theorem 23, all centred curves are vertex-edge-gated; one can now simply check all the vertex-edge-gated curves of the well-folded pattern Ca00.
The hatched part of Figure 23 marks the 920 order-preserving face-continuous curves, which are the curves covered by the framework from Alber and Niedermeier.\footnote{Alber and Niedermeier counted 1 536 curves with these properties, since they counted some curves twice which we consider to be equivalent: they counted a forward and a reverse copy of each of the asymmetric curves whose names start with \texttt{Ca00.cc.hh.I3}, \texttt{Ca00.cc.TT.I3}, \texttt{Ca00.cc.44.I3} (120 curves each) and \texttt{Si00.cc.LT.I3} (256 curves). Note that versions (a) and (b) of generator \texttt{HilB} in their work are congruent under rotation around a line through the midpoints of the lower front and the upper back edge, therefore both versions generate the same curves whose names start with \texttt{Si100.cc.LT.I3}.}

The non-existence of curves with certain combinations of properties can, in some cases, be verified directly with the results of Section 6. The sets of coordinate-shifting curves, pattern-isotropic curves, and standing curves are disjoint by definition. Face-continuous and/or order-preserving curves are never standing (corollary of Theorem 12, Finding 35). Face-continuous, coordinate-shifting and/or order-preserving curves are never centred (corollary of Theorem 12, Finding 32, Finding 38, and Theorem 23). There are no curves that are well-folded and order-preserving but not face-continuous (corollary of Definition 15, Finding 38, and Theorem 12). Similarly, there are no curves that are well-folded and coordinate-shifting but not face-continuous (Definition 15, Finding 38, and Theorem 12). All metasymmetric curves are symmetric (Theorem 47 in Appendix D) and all symmetric curves are order-preserving (Observation 37). All symmetric face-continuous curves are well-folded (Corollary of Theorem 12, Theorem 46 in Appendix D, and Definition 15). In Figure 23, we also see that full interior-diagonal harmony and well-foldedness are mutually exclusive properties; pattern-isotropic, order-preserving, face-continuous curves are never asymmetric; metasymmetric curves are never coordinate-shifting; well-folded curves that are not face-continuous must be pattern-isotropic or standing. I have not tried to find a simple proof for these observations.

**An alternative definition** An alternative generalization of Hilbert’s definition to higher dimensions could be that “sharing a side” should be interpreted as “sharing a \((d-1)\)-dimensional facet”, where we may regard the two-dimensional Hilbert curve’s self-similarity merely as a non-defining coincidence. To make sure that the two-dimensional Hilbert curve is uniquely defined, we may add the condition (not stated by Hilbert) that the curve be vertex-gated. Indeed, Theorem 49 in Appendix E shows that quadrant-by-quadrant traversal, face-continuity and vertex-gatedness constitute a minimal set of properties that uniquely defines the two-dimensional Hilbert curve.

Clearly, with this alternative definition, we would have missed many interesting curves described in this paper. However, the alternative definition would also bring non-self-similar (and thus, more complicated) curves into scope that could, perhaps, have properties that cannot be realized by octant-by-octant, self-similar, continuous traversals. One way to construct a non-self-similar traversal could be to define a set of traversals in which each subcube is traversed by a scaled-down, rotated, reflected and/or reversed copy of a traversal from the given set. In two dimensions, the \(\beta\Omega\)-curve \cite{44} and the \(AR^2W^2\)-curve \cite{3} constitute examples of this approach (but neither of them is both face-continuous and vertex-gated). A previous manuscript \cite{16} includes some results on certain metrics of locality-preserving properties of such non-self-similar curves in three dimensions.
10  Evaluation and outlook

In this explorative work we discussed the question how many Hilbert curves exist in three dimensions. This question is ill-defined and the answers are debatable. No three-dimensional Hilbert curve is perfect: one can always find a combination of properties of the two-dimensional Hilbert curve that cannot be realized in three dimensions. For example, we found that in three dimensions, no octant-by-octant, self-similar space-filling curve exists that is both coordinate-shifting and maximally facet-harmonious. Searching for a well-defined question and its answers unlocked a world of 10,694,807 three-dimensional space-filling curves: a large set of curves, most of which are probably not particularly interesting, but the set is small enough to search for elegant curves with interesting properties. In particular, I selected 24 curves that I found to be somehow interesting examples, and I sketched these in Figures 10, 11, 14, 15 and 19.

Surely there are more interesting curves. The (prototype) software tool may help readers in searching the realm of three-dimensional Hilbert curves. Furthermore, unanswered questions about locality-preserving properties abound. How do the curves differ with respect to metrics based on the average (rather than worst-case) distance between points along the curve as a function of their distance in $d$-dimensional space, or vice versa? How do the curves differ with respect to the average (rather than worst-case) measures of the boundaries or the bounding boxes of curve sections?

However, the main contribution of this work may not be the exhaustive classification and the sometimes goal-oriented, sometimes curiosity-driven exploration of a particular class of three-dimensional space-filling curves. From this work, we may also derive new ideas for different ways of constructing Hilbert-like space-filling curves in arbitrary numbers of dimensions. In two dimensions there is nothing to choose, and as such, the two-dimensional Hilbert curve by itself does not show us that much about what we could try to achieve in higher dimensions. In three dimensions, we can see more. We discovered a number of interesting space-filling curves, some of which can be generalized to arbitrarily high dimensions and have properties that, in prior work, were established to be relevant to applications.

In particular, we have succeeded in generalizing the hyperorthogonal Hilbert curves to higher dimensions [6]. It is there, in four or more dimensions, that these curves show their strengths as compared to the common generalization from Butz, achieving an exponential improvement on the worst-case bounding-box volume ratio metric. For the harmonious Hilbert curves, a generalization to higher dimensions has been identified as well$^{17}$. In fact, it is the potential applications of harmony properties of four- and six-dimensional curves [19] that led us to studying them. Generating all 10,694,807 possible three-dimensional Hilbert curves, we discovered the three-dimensional harmonious Hilbert curve. This put us on the right track for discovering a family of unique Hilbert curves that have the harmony properties desired for our application for any number of dimensions [15]. The well-folded, centred, standing Base Camp curve Ca00.cv.4h can be generalized to higher dimensions as well (see Inset 2).

$^{17}$Van Walderveen was the first to find an efficient algorithm to construct a compact description of such a curve for any number of dimensions. Later I found a simpler algorithm with a not-so-simple correctness proof [15].
Inset 2 Examples of four-dimensional Hilbert curves

An example from Alber and Niedermeier, translated from Figure 5 in the original source [2]:

\[
\begin{array}{cccc}
\frac{3}{1} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{4}{3} & \frac{3}{2} & \frac{1}{2} & \frac{4}{3} \\
\frac{3}{2} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{1}{2} & \frac{4}{3} & \frac{3}{2} & \frac{1}{2}
\end{array}
\]

Butz's curve [8]:

\[
\begin{array}{cccc}
\frac{3}{1} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{4}{3} & \frac{3}{2} & \frac{1}{2} & \frac{4}{3} \\
\frac{3}{2} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{1}{2} & \frac{4}{3} & \frac{3}{2} & \frac{1}{2}
\end{array}
\]

The Base Camp Hilbert curve, which is generalized to any number of dimensions \( d \geq 2 \) as follows. The base pattern is \( G(d) \) (see Definition 14). Let \( c_i \) be the centre point of the \( i \)-th subcube \( C_i \). We construct the signed permutations \( \gamma_i \) as follows. Start with \( [1,...,d] \). Add reflections to put the entrance gate in the origin, obtaining \( \gamma_i = [\text{sign}(c_i[1]) \cdot 1,...,\text{sign}(c_i[d]) \cdot d] \). Reverse \( \gamma_i \) if \( i \) is even. If \( i = 1 \) or \( i = 2d \), swap 1 and 2 (in particular, we get \( \gamma_{2d} = \{-d,-2...,-(d-1),1\}\)). Finally, reflect the first subcube in all coordinates. The resulting curve starts at \((-\frac{1}{2},...,\frac{-1}{2})\) and ends in the centre of a \( (d-2) \)-dimensional face of the unit cube at \((-\frac{1}{2},0,...,0,\frac{1}{2})\):

\[
\begin{array}{cccc}
\frac{3}{1} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{4}{3} & \frac{3}{2} & \frac{1}{2} & \frac{4}{3} \\
\frac{3}{2} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{1}{2} & \frac{4}{3} & \frac{3}{2} & \frac{1}{2}
\end{array}
\]

The four-dimensional Harmonious Hilbert curve [15], which visits the points on each three-dimensional face (except one) of the four-dimensional unit cube in the order of the three-dimensional harmonious Hilbert curve (in the original description [15], the permutations are given by their inverse, and our coordinate axes \( 1, ..., d \) are numbered from \( d - 1 \) down to 0):

\[
\begin{array}{cccc}
\frac{3}{1} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{4}{3} & \frac{3}{2} & \frac{1}{2} & \frac{4}{3} \\
\frac{3}{2} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{1}{2} & \frac{4}{3} & \frac{3}{2} & \frac{1}{2}
\end{array}
\]

The squared Hilbert curve. Let \( \tau : [0, 1] \to [0, 1]^2 \) be a translation of the Hilbert curve, and let \( \tau_1(t) \) and \( \tau_2(t) \) be the two coordinates of \( \tau(t) \). Applying a method described by Sagan [39], Section 6.9, attributed to Steinhaus [42], we define a four-dimensional Hilbert curve \( \nu : [0, 1] \to [0, 1]^4 \) by \( \nu(t) = (\tau_1(\tau_1(t)), \tau_2(\tau_1(t)), \tau_1(\tau_2(t)), \tau_2(\tau_2(t))) \). The result is a translation of the following curve:

\[
\begin{array}{cccc}
\frac{3}{1} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{4}{3} & \frac{3}{2} & \frac{1}{2} & \frac{4}{3} \\
\frac{3}{2} & \frac{1}{2} & \frac{4}{3} & \frac{3}{2} \\
\frac{1}{2} & \frac{4}{3} & \frac{3}{2} & \frac{1}{2}
\end{array}
\]

The world of three-dimensional Hilbert curves, unlocked in this article, may contain more treasures that signpost the way to interesting, novel generalizations of Hilbert’s curve into higher dimensions. For example, can the Sasburg curve, Ca00.cT4, also be generalized to higher dimensions in a useful way? Can the S100 base pattern be generalized to higher dimensions? How does the world of metasymmetric curves develop in higher dimensions? Can we narrow it down to a family of Hilbert curves, one for each number of dimensions, that are in some sense the most symmetric Hilbert curves of all? We have seen how in two dimensions, facet-gated curves are only possible by giving up self-similarity [44], while in three dimensions, one self-similar facet-gated curve exists, which is not symmetric. How do the possibilities for facet-gated curves develop in higher dimensions? Is there a symmetric, facet-gated Hilbert curve in four dimensions?
Figure 24: (a) Definition of the Pólya curve [37] that fills an isosceles right triangle (equivalent to half of Sierpinski’s curve [41]). Note how the approximating curves visit vertices multiple times, since each visit corresponds to filling only half of the corresponding square in the underlying grid. In numeric notation, staying at a vertex for a second visit is indicated by an empty move between two signed permutations. (b) Definition of a novel curve that fills the extrusion of an isosceles right triangle. It is the only eight parts’ self-similar face-continuous curve that fills this shape. Here, too, the approximating curves visit vertices multiple times. The diagram on the right clarifies how the shape is subdivided into eight parts; the introduction of Section 5 explains how to read this diagram.

The curve naming scheme described in Sections 4 and 5 does not easily generalize to higher dimensions, but the numeric notation of Section 2.3 appears to be very usable for modest numbers of dimensions. Inset 2 gives some examples of four-dimensional Hilbert curves—it may be interesting to compare their definitions to the lengthier notation that was introduced by Alber and Niedermeier [2] and adopted by Van Walderveen and myself [19] in earlier work.

Unfortunately, we also learned that some desirable properties, such as palindromicity, cannot be realized with three-dimensional Hilbert curves such as defined in this paper. In Section 9, I suggested that it might be possible to realize more desirable properties with non-self-similar traversals. One could also consider conducting a systematic study of non-continuous traversals. Moreover, with our notation system from Section 2 we could even, to some extent, describe curves that are based on subdividing into other shapes than squares and cubes, for example triangles, prisms, or simplices: see Figure 24.

Acknowledgements

All calculations of metrics of locality-preservation were made possible by Simon Sasburg, who developed the algorithm for the surface ratio metric, and who extended and improved our previous algorithms for the dilation and bounding-box metrics to be able to handle three- and higher-dimensional curves. The numerical notation system introduced in Section 2.3 is based on ideas from Arie Bos as incorporated in our work on hyperorthogonal well-folded Hilbert curves [6], adapted to suit the broader class of curves discussed in the present article. I am indebted to the anonymous reviewers whose constructive criticism was very helpful in improving the presentation of the material in this article.
References


A Verifying the list of base patterns

To understand why the rules of Table 3 give us a unique name for each equivalence class of base patterns, the following four observations are helpful.

First, up to rotation and reflection, there are indeed exactly six possibilities for how octants can be divided between the first half and the second half of the traversal, as shown in Figure 7. The possibilities can easily be analysed by distinguishing between three cases: (i) there is a plane that separates the first half from the other (type \(C\)); (ii) there is a plane that separates three octants in the first half from the fourth (types \(L\), \(S\), and \(Y\)); (iii) any axis-parallel plane through the centre of the cube has two octants from each half on each side (types \(N\) and \(X\)). Henceforth, we assume any base pattern or traversal is rotated and/or reflected such that the first four octants have the coordinates as indicated in the second row of Figure 7, where coordinates \((x_1, x_2, x_3)\) indicate the octant that includes the unit cube vertex \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\).

Second, each of the sets identified by \(C\), \(L\), \(N\), \(S\), \(X\) and \(Y\) has certain symmetries in itself. This limits the number of permutations we need to encode with the third symbol of the base pattern name. For example, for \(S\)-patterns, we only need to encode permutations that start with the first or the second octant in the set—if we would want to start with the third or the fourth octant, we would instead apply the rotary reflection \([-3, -2, -1]\) to the whole pattern, so that we swap the first and the second octant with the fourth and the third octant, respectively. Thus, for \(S\)-patterns, the third symbol can be restricted to the range \(\{0, \ldots, b\}\). By a similar argument, the values of the fourth symbol are restricted in the same way: any permutation outside the given range can always be obtained by combining a permutation within the given range with a rotary reflection of the second half of the pattern—in effect changing the choice of the transformation encoded by the second symbol. As indicated in Table 3, the required set of permutations is different for each partition, because it depends on the geometric arrangement of the octants within one half.

Third, if the transformation specified by the second symbol \(c\) is symmetric (that is, equal to its own inverse), then applying it to the base pattern \(Pcmn\) and reversing the order results in the base pattern \(Pcnm\). Thus, if \(n \neq m\), then these are two different names for the same equivalence class of base patterns. In that case we choose the lexicographically smallest name. Hence the third condition on base pattern names—note that among the transformations listed in Table 1, the symmetric transformations are exactly those with a symbol lexicographically smaller than ‘p’.

Fourth, with the second symbol we only need to be able to specify a limited subset of the 48 symmetries of the unit cube. This is because many symmetries of the unit cube do not map any of the sets \(C\), \(L\), \(N\), \(S\), \(X\) or \(Y\) to their complement, or they are redundant, because we could use another transformation to describe a reversed and/or reflected version of the same base pattern. This is why only seven, not eight different transformations are applied to partition \(C\).

To verify Table 3, we first analyse how many base patterns there could be. We ignore reversal for the moment, and get back to that later. Let a vector \((x_1, x_2, x_3)\) represent the octant that includes the unit cube vertex \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\), assuming a unit cube of volume 1,
centred at the origin. We say that a base pattern is in directed canonical form if it starts with octant \((-1, -1, -1)\), and if octants \((-1, -1, +1)\), \((-1, +1, -1)\) and \((+1, -1, -1)\) appear in that order, possibly with other octants in between. We can reflect and rotate any given octant order into directed canonical form in two steps, as follows. First, if the first octant is \((x_1, x_2, x_3)\), then, for any \(i\) such that \(x_i = 1\), we reflect the pattern in the axis-parallel plane through the origin that is orthogonal to the \(i\)-th coordinate axis. In effect, we change the coordinates of any octant \((y_1, y_2, y_3)\) to \((-x_1y_1, -x_2y_2, -x_3y_3)\). As a result, the pattern now starts with octant \((-1, -1, -1)\). Second, we permute the coordinate axes as needed to ensure that octants \((-1, -1, +1)\), \((-1, +1, -1)\) and \((+1, -1, -1)\) appear in that order.

Now observe that there are 840 directed canonical octant orders, as each of them can be constructed by starting with the sequence \(S_1, \ldots, S_4 = (-1, -1, -1), (-1, -1, +1), (-1, +1, -1), (+1, -1, -1)\), and then inserting, one after another, the remaining four octants \(S_5 = (-1, +1, +1), S_6 = (+1, -1, +1), S_7 = (+1, +1, -1)\) and \(S_8 = (+1, +1, +1)\). For the \(i\)-th octant to be inserted \((i \geq 5)\), there are \(i - 1\) positions to choose from (after each of the octants \(S_2, \ldots, S_{i-1}\) that precede \(S_i\) in \(\rho\)). Then we identify \(\rho\) by the number \(((r_5 \cdot 5 + r_6) \cdot 6 + r_7) \cdot 7 + r_8\).

To verify the correctness and completeness of the list of base patterns in Table 3, we compare it to the simple numbering scheme presented above. The search tool described in Section 8 has an option\(^\text{18}\) to iterate over all possible names of base patterns according to Table 3, and to output, for each name, the numerical identifier of the directed canonical form of the pattern. More precisely, if the name indicates a symmetric order, the tool outputs the numerical identifier of the directed canonical form of that order. If the name indicates an asymmetric order, the tool outputs the numerical identifiers of the directed canonical forms of that order and its reverse. One may now verify that the tool outputs each of the numbers \(\{0, \ldots, 839\}\) exactly once. Note that this is consistent with the counts of symmetric and asymmetric patterns in the table: one directed canonical form for each of 104 symmetric patterns, and two canonical forms for each of 368 asymmetric patterns, adds up to 840 directed canonical forms. This confirms that our naming scheme has a unique name for each possible base pattern, given that we consider patterns that only differ by reflection, rotation and/or reversal to be equivalent.

\(^{18}\)Start it with: hilbex patterns
B No full harmony

Theorem 40. No three-dimensional Hilbert curve can harmonize with the two-dimensional Hilbert curve on every facet.

Proof. Let $A$ be the first octant in the traversal, and let $B$, $C$, and $D$ be the octants that share an octant facet with $A$, in the order in which they are visited. Let $A'$, $B'$, $C'$ and $D'$ be the octants that are opposite of $A$, $B$, $C$ and $D$, respectively, with respect to the centre of the cube. If we know that an octant $X$ is visited before an octant $Y$, we write $X \prec Y$. So we have $A \prec B \prec C \prec D$.

To match the two-dimensional Hilbert curve on the unit cube facets adjacent to $A$, we must have $B \prec D' \prec C \prec B' \prec D$; and $C \prec B' \prec D$; we can summarize this by $A \prec B \prec D' \prec C \prec B' \prec D$ and $B \prec C' \prec D$. In particular, we have $D' \prec C \prec B'$, so, to get their common unit cube facet with octants $A'$, $B'$, $C$ and $D'$ correct, we need to visit $A'$ either (a) after $B'$ or (b) before $D'$. These two options are illustrated in Figure 25a and 25b, respectively, and we will now discuss them in detail.

Option (a): Since we now have $B \prec D' \prec C \prec B' \prec A'$, and $B \prec C'$, we can only get the common unit cube facet of $B$, $D'$, $A'$ and $C'$ correct if we visit these octants in that order. The partial order thus obtained can only be completed in one way: $A \prec B \prec D' \prec C \prec B' \prec A' \prec C' \prec D$. This traces out the $Ca00$-pattern, as illustrated in Figure 25a. Now the second-order approximating curves of the two-dimensional Hilbert curves on the unit cube facets bordering $D'$ induce a partial order on the suboctants of $D'$, as illustrated in the centre of the figure. The partial order can be completed to a full order, for example with an $Si00$-pattern, but not with a $Ca00$-pattern. Therefore a self-similar solution based on the $Ca00$-pattern is not possible.

Option (b): Since we now have $A' \prec D' \prec D' \prec D'$ and $B \prec C'$, we can only get the common unit cube facet of $B$, $C'$, $A'$ and $D'$ correct if we visit these octants in that order. The partial order thus obtained can only be completed in one way: $A \prec B \prec C' \prec A' \prec D' \prec C \prec B' \prec D$. This traces out the $Si00$-pattern, as illustrated in Figure 25b. Now the second-order approximating curves of the two-dimensional Hilbert curves on the unit cube facets bordering $B$ induce a partial order on the suboctants of $B$, as illustrated in the centre of the figure. The partial order can be completed to a full order that follows an $Si00$-pattern, but only in such a way that the traversal of $B$ ends in a suboctant that is not adjacent to the next octant, $C'$. Therefore a continuous self-similar traversal based on the $Si00$-pattern is not possible.

So, in both cases we find that no traversal is possible that has the defining properties of a three-dimensional Hilbert curve and matches the two-dimensional Hilbert curve on every facet of the unit cube. □
Figure 25: (a) No three-dimensional Hilbert curve with the Ca00-pattern can harmonize with the two-dimensional Hilbert curve on all facets: in the third octant, one can get $A_2$ correct with a Si00-pattern but not with a Ca00-pattern. (b) No three-dimensional Hilbert curve with the Si00-pattern can harmonize with the two-dimensional Hilbert curve on all facets: to get $A_2$ correct in the second octant, one would have to place the pattern such that the exit gate does not connect to the third octant.
C Provable relations concerning locality metrics

Theorem 41. The $L_4$-dilation of any space-filling curve is equal to its $L_4$-diameter ratio.

Proof. Consider a space-filling curve $\tau$ and two points $a, b \in [0, 1]$ with $a < b$. Let $x, y$, with $a \leq x < y \leq b$, be a pair of points that determines the diameter of $C(a, b)$ and is closest along the curve, that is, with minimum $y - x$. Since $C(x, y) \subseteq C(a, b)$ and $\delta_i(\tau(x), \tau(y)) \geq \delta_i(\tau(a), \tau(b))$, reducing the curve section under consideration from $C(a, b)$ to $C(x, y)$ can only increase its dilation $\delta_i(\tau(a), \tau(b))d/(b - a)$ and its diameter ratio $\text{diam}_i(C(a, b))d/(b - a)$; when $C(a, b)$ shrinks to $C(x, y)$ both rise to the same value $\delta_i(\tau(x), \tau(y))d/(y - x)$.

Thus, the worst-case diameter ratio is realized by a curve section $C(x, y)$ of which the diameter is determined by $\tau(x)$ and $\tau(y)$, and we have $\text{WL}_i \geq \delta_i(\tau(x), \tau(y))d/(y - x) = \text{diam}_i(C(x, y))d/(y - x) = \text{WD}_i$. Since, for any pair of points $x, y$, we have $\text{diam}_i(C(x, y)) \geq \delta_i(\tau(x), \tau(y))$, we also have $\text{WL}_i \geq \text{WD}_i$. Therefore, $\text{WL}_i = \text{WD}_i$. \qed

Since the $L_{\infty}$-diameter of the minimum bounding $L_{\infty}$-ball of any set $S$ is equal to the $L_{\infty}$-diameter of $S$, we also have:

Theorem 42. The $L_{\infty}$-bounding ball ratio of any space-filling curve is equal to its $L_{\infty}$-diameter ratio.

I conjecture that the $L_2$-bounding ball ratio also equals the $L_2$-diameter ratio, but I can prove this only for two-dimensional space-filling curves:

Theorem 43. For two-dimensional space-filling curves, $\text{WL}_2 = \text{WD}_2 = \text{WBB}_2$.

Proof. We first prove that for the $L_2$-metric in two dimensions, the worst-case bounding ball ratio $\text{WBB}_2$ is realized by a curve section $C(a, b)$ whose bounding ball is determined by exactly two points of $C(a, b)$.

Suppose that, on the contrary, the worst bounding ball ratio is only realized by curve sections $C(a, b)$ whose bounding balls are determined by three points $x, y, z \in [a, b]$, with $x < y < z$. Let $\Delta$ be the triangle with vertices $\tau(x)$, $\tau(y)$ and $\tau(z)$, and let $\xi, \eta$ and $\zeta$ be the angles of $\Delta$ at the vertices $\tau(x)$, $\tau(y)$ and $\tau(z)$, respectively. The smallest bounding ball is then the circumscribed circle of $\Delta$, which must be an acute triangle, and the circumscribed circle has diameter $\delta_2(\tau(x), \tau(y))/\sin(\xi) = \delta_2(\tau(y), \tau(z))/\sin(\eta)$. If $[a, b] \neq [x, z]$, then shrinking $C(a, b)$ to $C(x, z)$ would increase the bounding ball ratio, so we must have $a = x$ and $b = z$. Since the distance between the end points of a curve section is a lower bound on the bounding ball ratio, and, by assumption, no worst-case bounding ball is determined by only two points, we get: $\delta_2^2(\tau(x), \tau(y))/\sin^2(\eta)/(z - x) = \text{diam}_2(bbdiam(C(x, z)))/(z - x) > \delta_2^2(\tau(x), \tau(y))/(y - x)$, and thus, $(y - x)/(z - x) > \sin^2(\eta)$. Analogously, we get $(z - y)/(z - x) > \sin^2(\xi)$, and thus, $\sin^2(\eta) + \sin^2(\xi) < ((z - y) + (y - x))/(z - x) = 1$. However, since $\Delta$ is acute, we have $\pi/2 > \xi = \pi - \eta - \zeta > \pi/2 - \zeta$, and therefore $\sin^2(\xi) + \sin^2(\eta) > \sin^2(\xi) + \sin^2(\pi/2 - \zeta) = \sin^2(\zeta) + \cos^2(\zeta) = 1$: a contradiction.

Therefore, there must be curve sections $C(a, b)$ that determine the worst-case bounding ball ratio and have a bounding ball determined by only two points, which must also
determine the diameter of $C(a, b)$. Hence the worst-case bounding ball ratio $WBB_2$ is a lower bound on the worst-case diameter ratio $WD_2$, which, by Theorem 41, equals the dilation $WL_2$.

Since the diameter ratio of any curve section is also a lower bound on the bounding ball ratio, it follows that under the $L_2$-metric in two dimensions, the worst-case diameter ratio and the worst-case bounding ball ratio are all equal. □

**Theorem 44.** Any octant-by-octant traversal has $WS^{2/3}$ at most $\frac{2}{3}\sqrt[3]{49}$.

**Proof.** For a given section $s$ of the traversal, let a maximal $k$-level subcube be a $k$-level subcube $Q$ that is completely contained in $s$ while the $(k-1)$-level subcube that contains $Q$ is not completely contained in $s$. For any $k$, let $n_k$ be the number of maximal $k$-level subcubes. Note that the $k$-level subcubes counted by $n_k$ are distributed over at most two $(k-1)$-level subcubes, otherwise they would have to include all subcubes of the second $(k-1)$-level cube and therefore the $k$-level subcubes would not be maximal.

Now consider the octants of a $(k-1)$-level subcube $Q$. Together these octants have 36 facets: 24 exterior facets on the boundary of $Q$, and 12 interior facets inside $Q$. Now consider any of the twelve interior facets $f$ together with the two exterior facets that coincide with $f$ in a projection orthogonal to $f$. Observe that, from these three facets, at most two can lie on the outside of $s'$. Hence $s'$ has a surface area of at most 24 octant facets, with a maximum of $6m$. Therefore, the $n_k$ $k$-level subcubes, distributed over at most two $(k-1)$-level subcubes, contribute at most $6n_k$ facets of area $1/4k$ each, with a maximum of $48/4k$, the surface area of $8k$ $k$-level subcubes.

Recall that $WS^{2/3}$ is the maximum of $\frac{1}{6} \cdot \frac{\text{surface}(C(a, b))}{(b-a)^{2/3}}$. An upper bound on $WS^{2/3}$ for any octant-by-octant traversal is therefore the following:

$$WS^{2/3} = \max_{a \in [0, 1]} \max_{b \in [a, 1]} \frac{\text{surface}(C(a, b))}{(b-a)^{2/3}} \leq \max_{n_1, n_2, n_3, \ldots \in \{0, \ldots, 8\}} \frac{\sum_{k=1}^{\infty} n_k / 4k}{(\sum_{k=1}^{\infty} n_k / 8k)^{2/3}}.$$ 

This expression is maximized with $n_k = 8$ for all $k$, in which case it evaluates to $\frac{2}{3}\sqrt[3]{49}$, which is slightly less than 2.44. □

Note that the bound of Theorem 44 is not tight: the calculation does not account for the fact that if we have $n_k = 8$ for all $k$, then there must be $k$-level subcubes with facets that are contained in facets of $(k-1)$-level subcubes. Such facets do not contribute to the surface area, hence a traversal with $WS^{2/3} = \frac{2}{3}\sqrt[3]{49}$ cannot actually be realized.
D Analytical confirmation of observations on symmetric and metasymmetric curves

This appendix gives analytical proof of several observations on symmetric and metasymmetric curves. The proofs rely on the partitions and transformations encoded in the curve naming scheme described in Section 4. We start with the following observation:

**Theorem 45.** No three-dimensional Hilbert curve follows partition \( X \).

*Proof.* With partition \( X \), each pair of octants in the first half of the traversal shares an octant edge, but no octant facet. This immediately rules out curves with facet gates.

Edge-crossing vertex-gated curves are not possible, since neither of the vertices of the octant edge that is shared by the first and the second octant is on a common octant edge with the entrance gate (the outer vertex) of the first octant. In other words, the second octant is too far from the entrance gate to be reachable by an edge-crossing vertex-gated curve in the first octant. By an analogous argument, vertex-edge-gated curves are not possible, given Theorem 3.

Facet-crossing vertex-gated curves are not possible, since in such curves, the last octant is opposite to the first octant with respect to a facet diagonal, but with partition \( X \), all such octants are in the first half of the traversal. By the same argument, edge-gated curves are not possible, given Theorem 7, which says that the first and the last octant must be opposite of each other with respect to a facet diagonal.

Finally, cube-crossing vertex-gated curves are not possible by Theorem 2. \( \square \)

**Theorem 46.** All symmetric curves are vertex-gated curves whose names start with \( Ca, Cd, Ce, La, Ne, \) or \( Se \).

*Proof.* A symmetric curve must be vertex-gated, edge-gated, or facet-gated. We know there is only one facet-gated curve (Theorem 9), which is asymmetric, and the gates of edge-gated curves are positioned asymmetrically (Theorem 7). This only leaves vertex-gated curves to consider.

A vertex-gated curve starts at a vertex of the unit cube whose coordinates sum up to \( \frac{1}{2} \) (mod 1), and the coordinate sums of the entrance and exit gates of each octant differ by either 0 (mod 1) (if the curve is facet-crossing) or \( \frac{1}{2} \) (mod 1) (if the curve is edge-crossing). Hence all even-indexed gates must be at an octant vertex whose coordinates sum up to \( \frac{1}{2} \) (mod 1), that is, at a vertex or at a facet midpoint of the unit cube. This holds, in particular, for \( g_4 \), which must be at a facet midpoint, because at a unit cube vertex, it could not connect two octants. If a vertex-gated curve is symmetric, then the facet midpoint \( g_4 \) must be a fixed point of the symmetry.

Only the transformations \( a-e \) and \( q-s \) in Table 1 have facet midpoints as fixed points, but transformations \( q-s \) are not symmetric (they are not equal to their own inverse). Curves with partition \( X \) do not exist (Theorem 45). As we can verify with the help of Table 3, this leaves \( Ca, Cd, Ce, La, Na, Ne \) and \( Se \) as possible prefixes of names of symmetric curves. From these prefixes, \( Na \) can be ruled out because symmetric vertex-gated curves with transformation \( a \) must be edge-crossing. Vertex-gated, edge-crossing curves with partition \( N \)
can easily be seen to be impossible by arguments similar to those in the proof of Theorem 45: the shortest path from the entrance gate to the second octant and then to the third octant would be longer than two octant edges, and could not be covered by edge-crossing vertex-gated curves through the first two octants.

**Theorem 47.** All metasymmetric three-dimensional Hilbert curves are symmetric.

**Proof.** Definition 21 does not require metasymmetric curves to be symmetric: a metasymmetric curve may also be “pseudo-symmetric”, that is, the correspondence between the first and the second half of the curve may have the form of a similarity transformation $\gamma$ that does not equal its own inverse.

Suppose $\tau$ is such a pseudo-symmetric metasymmetric curve. By the definition of a metasymmetric traversal, we must have $\tau^{-}(1/2) = \gamma(\tau^{+}(1/2))$; for a metasymmetric curve this is equivalent to $\tau(1/2) = \gamma(\tau(1/2))$, so $g_4 = \tau(1/2)$ must be a fixed point of $\gamma$. Therefore $\gamma$ cannot be a translation (with partition $C$); it must be a rotary reflection. From Table 3, in combination with Theorem 45, we learn that $\gamma$ must be $u = [2, -1, -3]$ or $z = [3, 1, -2]$. In both cases, the only fixed point is $(0, 0, 0)$, so $g_4 = (0, 0, 0)$. This immediately rules out edge-gated and facet-gated curves, and, by the same argument as in the proof of Theorem 46, also vertex-gated curves. By the definition of a metasymmetric curve, we must also have $\tau(0) = \gamma(\tau(1))$, so vertex-edge-gated or vertex-facet-gated curves cannot be metasymmetric.

Therefore, no metasymmetric three-dimensional Hilbert curves exist that are not truly symmetric.

**Finding 48.** The only metasymmetric three-dimensional Hilbert curves are the curves: Ca00.cTb, Ca00.cTC, Ca00.cT4, Ca00.cT7, Ca11.cTI, Ca11.cTP, Ca11.cTJ, Ca11.cT3, Cd00.cPI, Cd00.cPP, Cd00.cPJ, Cd00.cP3, Cd11.cPb, Cd11.cPC, Cd11.cP4, Cd11.cP7, Se00.cTb, Se00.cTP, Se00.cTJ, Se00.cT7, Se66.cTI, Se66.cTC, Se66.cT4, Se66.cT3.

*How found:* Unfortunately I cannot provide a non-tedious way to verify these findings at this point. By Theorem 47, we only need to consider symmetric curves. As one may verify with the help of Table 7 in Appendix F, there are 28 symmetric gate sequences. In six of these, the gates are placed such that a metasymmetric curve results, provided the reflections in the third to eighth octant are chosen to agree with those in the first two octants. This results in four metasymmetric curves (corresponding to four options for reflections in the first two octants) for each of the six gate sequences.
E An alternative minimal set of properties that defines a Hilbert curve

Theorem 49. The quadrant-by-quadrant face-continuous vertex-gated square-filling curve is unique.

Proof. A face-continuous quadrant-by-quadrant square-filling curve must visit the squares of any grid of $2^k$ times $2^k$ squares one by one, such that each pair of consecutive squares shares an edge. Otherwise the curve would contain a section that fills two squares that are consecutive along the curve but do not share an edge: such a section would have a disconnected interior, and thus the curve would not be face-continuous. In particular, this means that $A_1$ must have the familiar \( \Pi \)-shape (see Figure 26a), modulo reflection and rotation.

Given the order in which the squares of a $2^{k-1}$ by $2^{k-1}$ grid are traversed, for $k \geq 2$, the $k$-th order approximating curve $A_k$ is now uniquely determined as follows. Let $C_1, \ldots, C_{4k-1}$ be the squares of the $2^{k-1}$ by $2^{k-1}$ grid, in the order in which they are visited. The first subsquare of $C_1$ must be the one in the corner of the unit cube. Now let, for any $i$, the first subsquare of $C_i$ be given as $C_{i,1}$, and let the two subsquares of $C_i$ that touch $C_{i+1}$ be labelled $X$ and $Y$. If $C_{i,1}$ is $X$ or $Y$, then we must put the \( \Pi \)-pattern inside $C_i$ such that it starts at $C_{i,1}$ and ends at $Y$ or $X$, respectively, to be able to make the connection to $C_{i+1}$. Otherwise, we must put the \( \Pi \)-pattern in $C_i$ such that it starts at $C_{i,1}$ and ends at the unique square out of $X$ and $Y$ that shares an edge with $C_{i,1}$. The first subsquare of $C_{i+1}$ must now be the one that shares an edge with the last subsquare of $C_i$. Thus, the course of $A_k$ through $C_1, \ldots, C_{4k-1}$ follows by induction. The rotation or reflection of the \( \Pi \)-pattern inside $C_{4k-1}$ follows from the requirement that we end in the corner of the unit cube. This is always possible, since we enter $C_{4k-1}$ in another subsquare, which, by a simple parity argument, must be adjacent to the corner subsquare.

The conditions of Theorem 49 constitute a minimal set that uniquely defines the Hilbert curve. If we drop any of the conditions, there are other traversals that fulfill the remaining conditions: Peano’s curve [35] is a face-continuous vertex-gated space-filling curve that is not quadrant-by-quadrant; the AR\(^2W^2\)-curve [3] is a quadrant-by-quadrant vertex-gated space-filling curve that is not face-continuous; and Wierum’s \( \beta\Omega \)-curve [44] is a quadrant-by-quadrant face-continuous space-filling curve that is not vertex-gated.

![Figure 26: (a) The base pattern of any quadrant-by-quadrant, face-continuous curve. (b,c) The course of $A_k$ within a $(k-1)$-level square $C_i$ is uniquely determined by the $k$-level square $C_{i,1}$ where the curve enters $C_i$, and the location of the next $(k-1)$-level square $C_{i+1}$. The shaded squares are $X$ and $Y$, that is, the subsquares of $C_i$ that are adjacent to $C_{i+1}$.](image-url)
F Full list of gate sequences

Table 7 lists all gate sequences for vertex-gated curves: each entry of the table consists of a prefix ending in .cc., denoting the base pattern and the gate configuration, and one or more completions, specifying the gate sequence.

Tables 8 and 9 list all gate sequences for vertex-edge-gated curves: each entry of the table consists of a prefix, one or more options for the symbol specifying the gates in the first half of the curve, and one or more options for the symbol specifying the gates in the second half of the curve. Each combination of a prefix, one symbol from the first bracketed list, and one symbol from the second bracketed list, constitutes a gate sequence name for a vertex-edge-gated curve.

Table 10 lists the remaining gate sequences, that is, for vertex-facet-gated, edge-gated, and facet-gated curves.

Table 11 shows all base patterns that are realized by one or more Hilbert curves.

Table 7: Gate sequences for vertex-gated curves. Symmetric sequences marked with °.

<table>
<thead>
<tr>
<th>edge-crossing curves</th>
<th>facet-crossing curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca00.cc. hh° h4 TT° 44°</td>
<td>La11.cc. hh° TT° 44°</td>
</tr>
<tr>
<td>Ca01.cc. hh h4 4h 44</td>
<td>La77.cc. hh° TT°</td>
</tr>
<tr>
<td>Ca11.cc. hh° h4 TT° 44°</td>
<td>L177.cc. hT</td>
</tr>
<tr>
<td>Ck01.cc. hT 4T</td>
<td>Se06.cc. hh</td>
</tr>
<tr>
<td>Ck11.cc. hT T4</td>
<td>Se08.cc. hh</td>
</tr>
<tr>
<td>Cd00.cc. II° Ih IP IX I4 hh° hP hX h4 PP° PX P4 XX° X4 44°</td>
<td>La36.cc. hI hX</td>
</tr>
<tr>
<td>Cd02.cc. I4 h4 P4 X4 44</td>
<td>La37.cc. LE</td>
</tr>
<tr>
<td>Cd11.cc. PP°</td>
<td>La6c.cc. Ih Xh</td>
</tr>
<tr>
<td>Cd22.cc. 44°</td>
<td>La7c.cc. EL EC</td>
</tr>
<tr>
<td>Ce00.cc. bb° bd dd°</td>
<td>L136.cc. II IX bI bX</td>
</tr>
<tr>
<td>Ce01.cc. IP hP PP XP 4P</td>
<td>La16.cc. LL LJ EL EJ JL JJ</td>
</tr>
<tr>
<td>Ce02.cc. bd dd</td>
<td>L137.cc. LE</td>
</tr>
<tr>
<td>Ce12.cc. P4</td>
<td>L16d.cc. IT XT</td>
</tr>
<tr>
<td>Ce22.cc. dd°</td>
<td>L177.cc. PI Pb PT EL EC</td>
</tr>
<tr>
<td>Cu00.cc. Ib Id hb hd Pb Pd Xb Xd 4b 4d</td>
<td>L17d.cc. EC</td>
</tr>
<tr>
<td>Cu01.cc. bP dP</td>
<td>Lh06.cc. TC CT</td>
</tr>
<tr>
<td>Cu02.cc. Id hd Pd Xd 4d</td>
<td>Ne00.cc. bb° bd dd°</td>
</tr>
<tr>
<td>Cu20.cc. 4b 4d</td>
<td>Ne05.cc. LL LC JL JC</td>
</tr>
<tr>
<td>Cu21.cc. dP</td>
<td>Ne55.cc. II° IT TT°</td>
</tr>
<tr>
<td>Cu22.cc. 4d</td>
<td>Se00.cc. TT°</td>
</tr>
<tr>
<td>La16.cc. LL LJ EL EJ JL JJ</td>
<td>Se01.cc. LL LJ CL CJ</td>
</tr>
<tr>
<td>La17.cc. IP PP XP</td>
<td>Se03.cc. LZ CZ EZ JZ</td>
</tr>
<tr>
<td>La18.cc. LL LJ EL EJ JL JJ</td>
<td>Se33.cc. 77°</td>
</tr>
<tr>
<td>La19.cc. LL LJ EL EJ JL JJ</td>
<td>Se66.cc. TT°</td>
</tr>
</tbody>
</table>
Table 8: Vertex-edge-gated curves with partition C, L or N

<table>
<thead>
<tr>
<th>Ca00.cr</th>
<th>I3</th>
<th>bCPJ47</th>
<th>Ce01.rc</th>
<th>I3</th>
<th>CPJ43</th>
<th>Cu01.tc</th>
<th>I3</th>
<th>b</th>
<th>L117.ct</th>
<th>I3</th>
<th>TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca00.cr</td>
<td>LhTX</td>
<td>EdZ9</td>
<td>Ce01.rc</td>
<td>LhTX</td>
<td>TXZ9</td>
<td>Cu01.tc</td>
<td>LhTX</td>
<td>TX</td>
<td>L117.rc</td>
<td>bCJ</td>
<td>b</td>
</tr>
<tr>
<td>Ca00.cr</td>
<td>bCPJ47</td>
<td>I3</td>
<td>bCPJ47</td>
<td>7</td>
<td></td>
<td>Cu01.tc</td>
<td>bCPJ47</td>
<td>LhEd</td>
<td>L117.tc</td>
<td>hTX</td>
<td>7</td>
</tr>
<tr>
<td>Ca00.cr</td>
<td>EdZ9</td>
<td>LhTX</td>
<td>Ce01.rc</td>
<td>EdZ9</td>
<td>Ed</td>
<td>Cu01.tc</td>
<td>EdZ9</td>
<td>ICPJ4</td>
<td>L117.rc</td>
<td>I3</td>
<td>bC</td>
</tr>
<tr>
<td>Ca00.cv</td>
<td>I3</td>
<td>EdZ9</td>
<td>Ce01.tc</td>
<td>I3</td>
<td>TX</td>
<td>Cu02.cv</td>
<td>I3</td>
<td>bC</td>
<td>L117.rc</td>
<td>I3</td>
<td>LhT</td>
</tr>
<tr>
<td>Ca00.cv</td>
<td>LhTX</td>
<td>I3</td>
<td>LhTX</td>
<td>b</td>
<td></td>
<td>Cu10.ct</td>
<td>ICPJ4</td>
<td>EdZ9</td>
<td>L117.rc</td>
<td>I3</td>
<td>bC</td>
</tr>
<tr>
<td>Ca00.cv</td>
<td>bCPJ47</td>
<td>LhTX</td>
<td>bCPJ47</td>
<td>LhEd</td>
<td></td>
<td>Cu10.ct</td>
<td>CPJ43</td>
<td>EdZ9</td>
<td>L117.rc</td>
<td>I3</td>
<td>LhT</td>
</tr>
<tr>
<td>Ca00.cv</td>
<td>EdZ9</td>
<td>bCPJ47</td>
<td>Ce01.rc</td>
<td>EdZ9</td>
<td>ICPJ4</td>
<td>Cu10.rc</td>
<td>bCPJ47</td>
<td>Lh</td>
<td>L117.rc</td>
<td>I3</td>
<td>Lh</td>
</tr>
<tr>
<td>Ca01.cv</td>
<td>bCPJ47</td>
<td>b</td>
<td>Ce02.cr</td>
<td>LhTX</td>
<td>dZ</td>
<td>Cu10.tc</td>
<td>TXZ9</td>
<td>bCPJ47</td>
<td>L117.rc</td>
<td>I3</td>
<td>CP</td>
</tr>
<tr>
<td>Ca01.cv</td>
<td>bCPJ47</td>
<td>Lh</td>
<td>Ce11.cr</td>
<td>CPJ43</td>
<td>b</td>
<td>Cu11.tc</td>
<td>ICPJ4</td>
<td>TXZ9</td>
<td>L137.tc</td>
<td>X</td>
<td>7</td>
</tr>
<tr>
<td>Ca01.cv</td>
<td>EdZ9</td>
<td>I</td>
<td>Ce11.ct</td>
<td>ICPJ4</td>
<td>TXZ9</td>
<td>Cu11.ct</td>
<td>TX</td>
<td>Ed</td>
<td>L167.rc</td>
<td>I3</td>
<td>b</td>
</tr>
<tr>
<td>Ca01.rc</td>
<td>I3</td>
<td>ICPJ4</td>
<td>Ce11.ct</td>
<td>TX</td>
<td>7</td>
<td>Cu11.ct</td>
<td>CPJ43</td>
<td>Z9</td>
<td>L167.rc</td>
<td>hT</td>
<td>b</td>
</tr>
<tr>
<td>Ca01.rc</td>
<td>LhTX</td>
<td>TX</td>
<td>Ce12.cr</td>
<td>Ed</td>
<td>dZ</td>
<td>Cu11.rc</td>
<td>bCPJ43</td>
<td>Lh</td>
<td>L177.rc</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>Ca01.cv</td>
<td>bCPJ47</td>
<td>Ed</td>
<td>Ce12.cr</td>
<td>7</td>
<td>47</td>
<td>Cu11.tc</td>
<td>TXZ9</td>
<td>ICPJ4</td>
<td>L177.rc</td>
<td>bCPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Ca01.cv</td>
<td>EdZ9</td>
<td>CPJ43</td>
<td>Ce00.cr</td>
<td>bCPJ47</td>
<td>I3</td>
<td>Cu11.tc</td>
<td>7</td>
<td>b</td>
<td>L177.rc</td>
<td>b</td>
<td>J4</td>
</tr>
<tr>
<td>Ca02.cv</td>
<td>I3</td>
<td>47</td>
<td>Ce00.cv</td>
<td>bCPJ47</td>
<td>EdZ9</td>
<td>Cu20.rc</td>
<td>47</td>
<td>LhTX</td>
<td>L177.rc</td>
<td>b</td>
<td>J4</td>
</tr>
<tr>
<td>Ca02.cv</td>
<td>LhTX</td>
<td>Lh</td>
<td>Ce01.cr</td>
<td>bCPJ47</td>
<td>7</td>
<td>Cu21.rc</td>
<td>47</td>
<td>Ed</td>
<td>Na00.rc</td>
<td>TX</td>
<td>Ed</td>
</tr>
<tr>
<td>Ca02.cv</td>
<td>I3</td>
<td>dZ</td>
<td>Ce01.cr</td>
<td>EdZ9</td>
<td>3</td>
<td>Cu21.rc</td>
<td>dZ</td>
<td>7</td>
<td>Na00.rc</td>
<td>TX</td>
<td>Ed</td>
</tr>
<tr>
<td>Ca02.cv</td>
<td>EdZ9</td>
<td>47</td>
<td>Ce01.cr</td>
<td>bCPJ47</td>
<td>Z9</td>
<td>La11.cr</td>
<td>9</td>
<td>hTX</td>
<td>No00.rc</td>
<td>TX</td>
<td>I3</td>
</tr>
<tr>
<td>Ca11.cv</td>
<td>TXZ9</td>
<td>Lh</td>
<td>Ce01.cr</td>
<td>I3</td>
<td>ICPJ4</td>
<td>La11.cr</td>
<td>9</td>
<td>bC</td>
<td>No00.rc</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Ca11.cv</td>
<td>CPJ43</td>
<td>b</td>
<td>Ce01.cr</td>
<td>LhTX</td>
<td>b</td>
<td>La11.cr</td>
<td>TXZ9</td>
<td>b</td>
<td>No00.rc</td>
<td>Lh</td>
<td>b</td>
</tr>
<tr>
<td>Ca11.cv</td>
<td>7</td>
<td>I</td>
<td>Ce01.cr</td>
<td>bCPJ47</td>
<td>7</td>
<td>La11.cr</td>
<td>L</td>
<td>3</td>
<td>No01.cv</td>
<td>TX</td>
<td>b</td>
</tr>
<tr>
<td>Ca11.cv</td>
<td>ICPJ4</td>
<td>Lh</td>
<td>Ce01.cr</td>
<td>EdZ9</td>
<td>CPJ43</td>
<td>La13.cr</td>
<td>I</td>
<td>I</td>
<td>No01.cv</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Ca11.cv</td>
<td>LhEd</td>
<td>b</td>
<td>Ce01.cr</td>
<td>ICPJ4</td>
<td>7</td>
<td>La16.cr</td>
<td>9</td>
<td>TX</td>
<td>No01.cr</td>
<td>Ed</td>
<td>Ed</td>
</tr>
<tr>
<td>Ca11.cv</td>
<td>TX</td>
<td>I</td>
<td>Ce01.cr</td>
<td>LhEd</td>
<td>Z9</td>
<td>La16.cr</td>
<td>3</td>
<td>CJ</td>
<td>No01.cv</td>
<td>I3</td>
<td>TX</td>
</tr>
<tr>
<td>Ca12.cv</td>
<td>Ed</td>
<td>dZ</td>
<td>Ce01.cr</td>
<td>TXZ9</td>
<td>3</td>
<td>La16.cr</td>
<td>9</td>
<td>ICPJ4</td>
<td>No01.cv</td>
<td>Lh</td>
<td>b</td>
</tr>
<tr>
<td>Ca12.cv</td>
<td>TXZ9</td>
<td>47</td>
<td>Ce01.cr</td>
<td>TXZ9</td>
<td>7</td>
<td>La16.cr</td>
<td>3</td>
<td>Lh</td>
<td>No01.cv</td>
<td>CPJ43</td>
<td>LH</td>
</tr>
<tr>
<td>Cd00.cv</td>
<td>I3</td>
<td>EdZ9</td>
<td>Ce01.cr</td>
<td>CPJ43</td>
<td>Z9</td>
<td>La17.cr</td>
<td>9</td>
<td>Lh</td>
<td>No11.cv</td>
<td>TX</td>
<td>I</td>
</tr>
<tr>
<td>Cd00.cv</td>
<td>bCPJ47</td>
<td>LhTX</td>
<td>Lh</td>
<td>7</td>
<td>3</td>
<td>La17.cr</td>
<td>3</td>
<td>3</td>
<td>No11.cv</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Cd00.cv</td>
<td>EdZ9</td>
<td>Lh</td>
<td>Ce01.cr</td>
<td>bCPJ47</td>
<td>7</td>
<td>La17.cr</td>
<td>7</td>
<td>hT</td>
<td>No11.cr</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Cd00.cv</td>
<td>bCPJ47</td>
<td>LhTX</td>
<td>Lh</td>
<td>9</td>
<td>BC</td>
<td>La17.cr</td>
<td>L</td>
<td>Cj</td>
<td>No15.cv</td>
<td>TX</td>
<td>bT</td>
</tr>
<tr>
<td>Cd01.cv</td>
<td>Lh</td>
<td>Ce00.cr</td>
<td>I3</td>
<td>I3</td>
<td>La17.cr</td>
<td>hTX</td>
<td>9</td>
<td>Lh</td>
<td>No15.cv</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Cd01.cv</td>
<td>bCPJ47</td>
<td>LhEd</td>
<td>Cu00.cr</td>
<td>I3</td>
<td>I3</td>
<td>La17.cr</td>
<td>hTX</td>
<td>9</td>
<td>bC</td>
<td>No15.cv</td>
<td>Ed</td>
</tr>
<tr>
<td>Cd01.cv</td>
<td>CPJ43</td>
<td>LhEd</td>
<td>Cu00.cr</td>
<td>bCPJ47</td>
<td>EdZ9</td>
<td>La17.rc</td>
<td>bC</td>
<td>Ed</td>
<td>No00.cr</td>
<td>Ed</td>
<td>TX</td>
</tr>
<tr>
<td>Cd01.cv</td>
<td>LhTX</td>
<td>CPJ43</td>
<td>Cu00.cr</td>
<td>I3</td>
<td>bCPJ47</td>
<td>La17.rc</td>
<td>hTX</td>
<td>7</td>
<td>No00.cr</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Cd01.cv</td>
<td>LhTX</td>
<td>ICPJ4</td>
<td>Cu00.cr</td>
<td>bCPJ47</td>
<td>EdZ9</td>
<td>La17.rc</td>
<td>bC</td>
<td>Z</td>
<td>No00.cr</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Cd02.cv</td>
<td>I3</td>
<td>dZ</td>
<td>Cu00.cr</td>
<td>I3</td>
<td>bCPJ47</td>
<td>La17.cr</td>
<td>9</td>
<td>E</td>
<td>No01.cr</td>
<td>TX</td>
<td>3</td>
</tr>
<tr>
<td>Cd11.cv</td>
<td>CPJ43</td>
<td>LhEd</td>
<td>Cu00.cr</td>
<td>bCPJ47</td>
<td>LhTX</td>
<td>La17.cr</td>
<td>3</td>
<td>Lh</td>
<td>No01.cr</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Cd11.cv</td>
<td>7</td>
<td>TX</td>
<td>Cu00.cr</td>
<td>LhEd</td>
<td>EdZ9</td>
<td>La17.cr</td>
<td>3</td>
<td>Lh</td>
<td>No01.rc</td>
<td>Ed</td>
<td>7</td>
</tr>
<tr>
<td>Cd11.cv</td>
<td>ICPJ4</td>
<td>Lh</td>
<td>Cu00.cr</td>
<td>EdZ9</td>
<td>bCPJ47</td>
<td>La17.cr</td>
<td>9</td>
<td>Lh</td>
<td>No01.rc</td>
<td>TX</td>
<td>TX</td>
</tr>
<tr>
<td>Ce00.cv</td>
<td>LhTX</td>
<td>EdZ9</td>
<td>Cu00.cr</td>
<td>I3</td>
<td>7</td>
<td>La17.cr</td>
<td>hTX</td>
<td>h</td>
<td>No01.rc</td>
<td>Ed</td>
<td>Ed</td>
</tr>
<tr>
<td>Ce00.cv</td>
<td>bCPJ47</td>
<td>LhTX</td>
<td>Lh</td>
<td>7</td>
<td>BC</td>
<td>La17.cr</td>
<td>I3</td>
<td>Cj</td>
<td>No01.tc</td>
<td>TX</td>
<td>TX</td>
</tr>
<tr>
<td>Ce00.cv</td>
<td>bCPJ47</td>
<td>EdZ9</td>
<td>Ce01.cr</td>
<td>LhTX</td>
<td>CPJ43</td>
<td>La17.cr</td>
<td>h</td>
<td>7</td>
<td>No01.tc</td>
<td>b</td>
<td>Ed</td>
</tr>
<tr>
<td>Ce00.cv</td>
<td>EdZ9</td>
<td>I3</td>
<td>Ce01.cr</td>
<td>EdZ9</td>
<td>Ed</td>
<td>La17.cr</td>
<td>b</td>
<td>Z</td>
<td>No01.tc</td>
<td>Z</td>
<td>CPJ43</td>
</tr>
<tr>
<td>Ce01.cv</td>
<td>I3</td>
<td>I</td>
<td>Ce01.cr</td>
<td>I3</td>
<td>3</td>
<td>La17.cr</td>
<td>7</td>
<td>I</td>
<td>No05.cr</td>
<td>TX</td>
<td>dZ</td>
</tr>
<tr>
<td>Ce01.cv</td>
<td>bCPJ47</td>
<td>b</td>
<td>Ce01.cr</td>
<td>bCPJ47</td>
<td>9</td>
<td>La17.cr</td>
<td>2</td>
<td>L</td>
<td>No05.cr</td>
<td>Ed</td>
<td>47</td>
</tr>
<tr>
<td>Ce01.cv</td>
<td>EdZ9</td>
<td>Lh</td>
<td>Ce01.cr</td>
<td>EdZ9</td>
<td>7</td>
<td>La7.cr</td>
<td>7</td>
<td>BC</td>
<td>Ne11.cv</td>
<td>CPJ43</td>
<td>Lh</td>
</tr>
<tr>
<td>Ce01.cv</td>
<td>Ed</td>
<td>bCPJ47</td>
<td>Cu01.cr</td>
<td>I3</td>
<td>CPJ43</td>
<td>La7.cr</td>
<td>7</td>
<td>C</td>
<td>Ne11.cv</td>
<td>Ed</td>
<td>3</td>
</tr>
<tr>
<td>Ce01.cv</td>
<td>LhTX</td>
<td>CPJ43</td>
<td>Cu01.cr</td>
<td>LhTX</td>
<td>TXZ9</td>
<td>La7.cr</td>
<td>7</td>
<td>CP</td>
<td>Ne15.cr</td>
<td>TX</td>
<td>47</td>
</tr>
<tr>
<td>Ce01.cv</td>
<td>bCPJ47</td>
<td>TXZ9</td>
<td>Cu01.cr</td>
<td>bCPJ47</td>
<td>Ed</td>
<td>L116.cr</td>
<td>I</td>
<td>9</td>
<td>Ne15.cr</td>
<td>TX</td>
<td>47</td>
</tr>
</tbody>
</table>
Table 9: Vertex-edge-gated curves with partition $S$ or $Y$

| Se00.cr. | ICPJ4 | Ed7  | Se16.rc. | Ed  | CPJ4 | Si01.tc. | IZ9  | CPJ4 | Yh06.ct. | h7  | Ed    |
| Se00.cr. | LhEd7 | IZ9  | Se16.vc. | IZ9 | CPJ4 | Si01.tc. | bCPJ4 | TX   | Yh06.ct. | bZ  | P4    |
| Se00.ct. | bTX29 | Ed7  | Se16.vc. | Lh3 | bTX  | Si02.cr. | LhEd7 | X    | Yh06.tc. | TX  | L     |
| Se00.ct. | CPJ43 | IZ9  | Se16.vc. | b   | Lh   | Si02.cr. | TX3   | J    | Yh06.tc. | CI  | I     |
| Se01.cr. | ICPJ4 | TX   | Se16.vc. | 7   | IEd  | Si03.cr. | LhEd7 | X    | Yh06.vc. | TX  | 3     |
| Se01.cr. | bZ9   | Ed   | Se17.cv. | CPJ4 | Z9   | Si03.cr. | TX3   | J    | Yh06.vc. | CJ  | 9     |
| Se01.cr. | TX3   | CPJ4 | Se17.cv. | Ed  | 3    | Si06.cr. | LhEd7 | 7    | Yh26.vc. | X3  | 9     |
| Se01.ct. | IEd   | Lh7  | Se17.rc. | Ed  | CPJ4 | Si06.cr. | bZ9   | 3    | Yh26.vc. | Z9  | 3     |
| Se01.cr. | Lh7   | I    | Se17.vc. | IZ9 | CPJ4 | Si06.cr. | TX3   | Z9   | Y100.cr. | bZ  | L3    |
| Se01.cr. | bTX29 | 3   | Se17.vc. | 7   | TX   | Si06.cr. | Lh7   | 3    | Y100.ct. | h7  | P4    |
| Se01.cr. | CPJ43 | bZ9  | Se1b.cv. | TX  | 9    | Si06.cv. | bTX29 | 7    | Y102.cr. | h7  | Z9    |
| Se01.rc. | IZ9   | TX   | Se16.rc. | E   | TX3  | Si06.cv. | CPJ43 | Z9   | Y102.cr. | bZ  | J4    |
| Se01.rc. | bCPJ4 | Ed   | Se26.vc. | I   | IEd  | Si06.tc. | IEd29 | Lh   | Y103.cr. | h7  | Z9    |
| Se01.rc. | Ed7   | CPJ4 | Se27.vc. | E   | Ed   | Si06.tc. | Lh3   | CPJ4 | Y106.cr. | bZ  | 2     |
| Se01.tc. | IZ9   | CPJ4 | Se27.vc. | I   | TX   | Si06.tc. | bTX   | IEd  | Y106.tc. | CJ  | L     |
| Se01.tc. | LHtx3 | TX3  | Se36.vc. | P   | Z9   | Si06.tc. | CPJ47 | bTX  | Y106.vc. | TX  | 9     |
| Se01.tc. | Ed7   | Ed   | Se36.vc. | L   | Lh   | Si06.tc. | IPCJ4 | TX3  | Y126.vc. | J4  | 3     |
| Se02.cr. | LhEd7 | X    | Se66.cr. | TX3 | b    | Si06.cr. | TX3   | Z9   | Y136.cr. | J4  | 3     |
| Se03.cr. | bZ9   | J    | Se66.ct. | IEd | TX3  | Si06.vc. | bZ9   | 3    | Y136.vc. | J4  | 3     |
| Se06.cr. | LhEd7 | 7   | Se66.ct. | CPJ4 | Z9   | Si06.vc. | TX3   | Ed7  | Y103.cr. | bZ  | b     |
| Se06.cv. | bTX29 | 7   | Se67.ct. | IEd | 7    | Si07.cr. | Lh7   | 7    | Y103.cv. | h7  | T     |
| Se06.cv. | CPJ43 | Z9   | Se67.ct. | bTX  | 3    | Si07.cv. | CPJ43 | Z9   | Y136.vc. | d  | 3     |
| Se06.rc. | Lh3   | TX3  | Se67.ct. | CPJ4 | Z9   | Si07.cr. | Lh3   | CPJ4 | Y136.vc. | d  | 3     |
| Se06.rc. | bTX   | CPJ4 | Se67.rc. | I   | TX   | Si07.rc. | CPJ47 | Ed   | Y101.cr. | bZ  | 19    |
| Se06.vc. | bTX29 | CPJ4 | Se67.rc. | b   | TX   | Si07.rc. | LhEd7 | CPJ4 | Y100.vc. | h7  | CI    |
| Se06.vc. | CPJ43 | IEd  | Se67.tc. | TX3 | TX   | Si07.vc. | TX3   | TX   | Y100.cr. | l3  | h7    |
| Se07.cv. | IEd   | 7   | Se67.tc. | Ed7 | Ed   | Si0b.cv. | bTX29 | 3   | Y100.tc. | bZ  | 4Z    |
| Se07.cv. | bTX29 | 3   | Se67.tc. | Z9  | CPJ4 | Si11.cr. | CPJ4 | TX   | Y102.cr. | h7  | Z9    |
| Se07.cv. | CPJ43 | Z9   | Se6b.ct. | IEd | X    | Si11.cr. | CPJ4 | bZ9  | Y102.cr. | bZ  | X3    |
| Se07.rc. | bTX   | CPJ4 | Se77.ct. | TX  | 7    | Si13.cr. | TX   | X    | Y102.cv. | bZ  | J4    |
| Se07.rc. | CPJ47 | TX   | Se77.ct. | CPJ4 | Z9   | Si16.cr. | Ed    | Z9   | Y103.cr. | h7  | Z9    |
| Se07.vc. | bTX29 | CPJ4 | Si01.cr. | ICPJ4 | Ed7  | Si16.tc. | Lh7  | CPJ4 | Y106.cr. | bZ  | 7     |
| Se07.vc. | CPJ43 | TX   | Si01.cr. | LhEd7 | IZ9  | Si16.tc. | bZ9  | Lh   | Y106.ct. | h7  | Ed    |
| Se08.cv. | IEd   | 9   | Si01.cr. | bZ9  | bCPJ4 | Si16.ic. | LhZ9 | CPJ4 | Y106.ct. | h7  | CI    |
| Se08.cv. | bTX29 | 3   | Si01.cr. | TX3  | LhTX3 | Si16.vc. | Lh3  | CPJ4 | Y106.vc. | TX  | 3     |
| Se11.cr. | CPJ4  | TX   | Si01.cr. | Ed7  | bCPJ4 | Si17.cr. | CPJ4  | Z9   | Y2000.cr. | h7  | CI    |
| Se11.cr. | CPJ4  | bZ9  | Si01.cr. | Lh7  | LhTX3 | Si17.cr. | Lh7  | CPJ4 | Y1020.cr. | bZ  | 3     |
| Se11.cr. | Ed   | 3   | Si01.cr. | bTX29 | Ed7  | Si17.vc. | Lh3  | CPJ4 | Y1060.cr. | bZ  | 9     |
| Se12.cr. | TX   | X   | Si01.cr. | CPJ43 | IZ9  | Si1b.cv. | Ed   | 3    | Y1026.vc. | Z9  | 3     |
| Se16.rc. | TX   | 7   | Si01.cr. | CPJ4 | TX   | Si126.cr. | 9   | Ed7  | Y1060.cr. | L4  | P4    |
| Se16.cr. | Ed   | 3   | Si01.cr. | bZ9  | CPJ4 | Si126.cr. | 3   | TX3  | Y1060.cr. | L4  | P4    |
| Se16.cr. | TX   | 3   | Si01.cr. | Lh7  | Lh7  | Si126.cr. | 9   | TX   | Y1060.rc. | Z  | h7    |
| Se16.cr. | CPJ4  | Z9  | Si01.cr. | CPJ43 | bZ9  | Si136.cr. | 9   | Ed7  | Y1062.cr. | I  | CP    |
| Se16.cr. | Ed   | 7   | Si01.rc. | LhTX3 | Ed  | Si136.cr. | 3   | TX3  | Y1062.cr. | LIE | I     |
| Se16.rc. | TX   | 29  | Si01.rc. | Ed7  | CPJ4 | Si137.vc. | 3   | Ed   | Y1053.cr. | I  | CP    |
Table 10: Gate sequences for vertex-facet-gated, edge-gated, and facet-gated curves.

<table>
<thead>
<tr>
<th>vertex-facet-gated gate sequences (256 curves per gate sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl00.cf.ee Cl00.cf.ef Cl00.cf.fe Cl00.cf.ff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>edge-gated curves (1 curve per gate sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd00.rt.Ib Cd00.rt.Eb Cd00.rv.Xb Cd00.rv.3b</td>
</tr>
<tr>
<td>Cd00.rt.IC Cd00.rt.EC Cd00.rv.XC Cd00.rv.3C</td>
</tr>
<tr>
<td>Cd00.rt.IP Cd00.rt.EP Cd00.rv.XP Cd00.rv.3P</td>
</tr>
<tr>
<td>Cd00.rt.IX Cd00.rt.EX</td>
</tr>
<tr>
<td>Cd00.rt.I3 Cd00.rt.E3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>facet-gated curves (1 curve per gate sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca00.gs</td>
</tr>
</tbody>
</table>

Table 11: There are 472 possible base patterns (see Table 3), but only the 126 patterns shown below can be realized by Hilbert curves (see Tables 7–10).
### G  Example curves

<table>
<thead>
<tr>
<th>name</th>
<th>nickname</th>
<th>description (see Section 2.3)</th>
<th>propert. figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca00chg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00cT4</td>
<td>Sasburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00cT7</td>
<td>Imposter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00cT8</td>
<td>Butz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00cTZ</td>
<td>Harmonious</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00cc4h</td>
<td>Alfa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00cv4h</td>
<td>Base Camp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca00gs</td>
<td>Beta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca11cTJ</td>
<td>Wind-fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd00cPJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd00ct4h</td>
<td>Indoor Stroll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd00rv3c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd11cP4</td>
<td>Outdoor Stroll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce11ctP9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C100cfdd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu00cc4d</td>
<td>Long Legs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La13cvII</td>
<td>Perfect fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L136ccIIht33</td>
<td>Rough-edge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L136ccIIccJ3</td>
<td>Big Cross</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se00ct7</td>
<td>Pirouette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se33c7t</td>
<td>Mosquito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se66cT3</td>
<td>Helix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si00cclT3I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si11ctP9</td>
<td>Rollercoaster</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b: opt. worst-case curve section shapes by WS, WBV or WBS; c: centre; d: fully int.-diag.-harmonious; f: face-contin.; h: max. facet-harmonious; i: pattern-isotropic; l: opt. dilation WL1, WL2 or WL∞; m: meta symmetry; o: hyperorthogonal; p: order-preserving; s: coord.-shifting; u: standing; v: vertex-gated. Symmetric curves have names of the form Perm.esq. Well-folded curves' names start with Ca00.