Introduction

- Most parametric identification techniques require an expert user to make critical decisions and/or assumptions. These include:
 - (Non)linearity
 - Parametric model structures
 - Model order
 - Noise properties
 - Uniformity of sampling
- These decisions require an expert user’s knowledge, and are in general, tedious.
- This research seeks to eliminate the need for such user choices, with the aim of automating system identification for (possibly nonlinear) dynamical systems.

Symbolic Regression

- Symbolic regression refers to the problem of fitting mathematical models to measured data.
- This is done using evolutionary optimization techniques such as genetic programming.
- Mathematical models are viewed as expressions built from several modular blocks.
- The process is illustrated in Figure 2.

Test Applications

- Possible test setups for the validation of the proposed identification scheme include:
 - 3 degree of freedom gyroscope
 - A hybrid clutch from FMTC
 - General modelling test setups at ASML
 - Robotic test applications from National Instruments.

Proposed Scheme

- The proposed scheme incorporates symbolic regression into a system identification framework for (possibly nonlinear) dynamical system. The scheme is illustrated in Figure 3.

References