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�~�1� = �~�1� 
---------------------------------

x 
m 

x 
n 

�e�~� -2 

�~�2� 

I 
we wish to rotate �~ �1 �,� . •• �,�~�m� so as to move step by step from r,; 1, ••• �~�m� to 

s , ..• ,s . Take any k = 2, ..• ,m, and consider a rotation about a in the 
1 m 

plane < �~�l� �'�~�k� > , leaving all other �~�i� fixed: 

�~�l� (a.) = �~�l� cos a.- �~�k� sin a., �~�k�(�a�.�)� = �~ �1� sin a. + �~�k� cos a, e. (a) 
-]. 

Then r;j (a) := II �P�(�~�j� (a.)) II satisfy �r�;�~� (a) + �r�;�~� (a.) 
2 2 

= r,; 1 + �~� , and 

r;. (a.) = r; . for i I= 1,k 
]. l. 

Since r;k(a) is an increasing function of a from 

1 , and since 1 

choose a. such that z;k (a.) = sk. Then z; . (a.) 
]. 

= z;i s; si implies 

m 
2 

m 
�s�~� l i;i (a.) = n = l and r;i s; s1 s; i; 1 ( CJ. ) . 

i=l i=l 
l. 

Thus we have made z;k into �~� , and z; 1 (a.) is again the largest number . Now 

e . 
-l. 

repeat the process with each of the indices I= 1, so as to arrive at an or

thonormal basis whose projections onto X have given lengths s2 , ..• �,�~� 
n m. 

Then also the first length fits with �~�.� This finishes the induction step 

from n - 1 to n. For n = 1 the theorem is true, since then the line spanned 

by the vector (s1, ... �,�~�)� applies. Thus the proof is completed. 

The theorem may be rephrased in the following ways. 

Corollary. Necessary and sufficient for the existence of a eutactic star 

in xn consisting of m vectors at lengths �s�1�1�· �· �·�1 �~ �m� are 

�s�~� + ..• + �s�~� = n, 0 �~� sk �~� 1 • 

x n-1 
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Corollary. Necessary and sufficient for the existence of a symmetric idem

potent matrix C are: 

trace C = rank C diag C ;;i. 0 

In particular,taking �~�l� = 
�~� 

= t; = V - we have m m 

Corollary. 

Corollary. 

Corollary; 

X contains spherical eutactic stars of any cardinality m. 
n 

Given m, n e: JN, m 2: n, there exists a symmetric zero-diagonal 

matrix of size m whose only eigenvalues are n and n - m. 

a (I 
n m 

g,m 
1 

Proof. For tjle t 2-norm we know 

min ::k - �~ �I�I� = ::k - P;:k II 
x e: x n 

Now II P::l 112 + ... + Pe 112 = n , 
-m 

II ::1 - Pe 11 2 + ... + II e - Pe 11 2 = m - n -1 -m -m 

implies 

max II ::k - P ( ::k ) II ;;i. 
1 :::; k :5m 

j 1 - n 
m 

By Sofman' s theorem, an Xn with II P:: 
1

11 = = II Pe II = n really exists, -m m 

hence for such X 
n 

max 
1 :::; k:5 m 

Remark. Any X , for which 
n 

max II ::k - Pe 
1 :::; k:::; -k m 

satisfies II P=111 = II 

II = I 
Pe 11 -m 

1 - n 
m 

1 
n - -
m 

j !!. . Indeed, m 

0 
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II �p�~�k� 
11 2 + II =k - P=k 

11 2 = 1 I 

m 2 2 
n + I 11 e - �P�~�k� II = m n+m max ll =k - P=k II I 

k=l -k 1 s;k::;; m 

II 2 11 e -
2 

Vl:Sk;S;m 11 e - Pe = max �P�~�k� II I -k -k 1 s;. k s; -k m 

hence all II P=k II are equal. 

4. The theorem of Hahn - Banach. 

Let v be a Banach space with norm II II , and let W be a closed subspace. 

The quotient space V/W is a Banach space with norm 

11 v + w II : = inf �I�I�~� - :!. II • 
w €. w 

* The dual space V of all continuous linear functionals f on V is a Banach 

space with norm 

II f II* = sup I f (!_) I 
11 x 11 = 1 

x €. v 

= sup 
0 �,�.�~�E �V� 

I �f�<�~�l� I 
llxll 

The following is a consequence of the Hahn - Banach theorem. 

Theorem. �1�1�~�1�1� sup 
II f 11* = *1 

f €. v 

I f <xl I 

Furthermore, we need the following 

If <xl I 
= sup 

0 ,. fE v* II f 11* 

Theorem. There exists an isometric isomorphism of the spaces 

(V/w) * and �w�~ �:� = {f "' v* I f (W) = O} • 

We apply the above to the linear space X provided with the 2 -norm 
m p 

II x II 
- p 
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Holder 

with 
1 1 -+p p' 

1, 1 < p < co • 

* As a consequence, x has t ,-norm 
m p 

1 · 

crl 
jy.1p')P' 1 

llyll p' = + 
l. / p 

For a subspace X of X we now have 
n m 

1 = 1 ' y E p' 

.l * xn = {y E xm I y 1x1 + ••• + y x = O, V } 
mm �~�E�X�n� 

* x m 

where y, = y(e.). Apply Hahn-Banach to the quotient V/W = X /X, then we 
i -i m n 

obtain (since the dimension is finite) 

Theorem . l! �~�k� + Xn lip = inf 
X E X n 

II �~�k� - �~� ll P = 

In 6. we will use the following consequence of Holder's inequality 

1 1 

Theorem • r 

Indeed, apply Holder with q;;;. 1 to the (m - 1) -vectors 

. , jx jrandl,. 
m 

1- .!. 
Ix. I r �~� (m - 1) q ( I 

J j;ifk 

1 

jx . lrq)q , 
J 

�.�~�.� 

___! - .!. 1 

(m - 1) qr r �~� ( \' I I qr\ qr 
�\�j�~�k� xj ) 

For p = r, that is q = 1, our inequality is an equality. 

, for p ;;;. r . 

. 1 , then 

For p > r, equality holds iff the (m - 1)-vectors are proportional. 



- 8 -

5. Melkman's theorem for p = 00 
• 

In the following proof we will use back and forth the consequence 

of Hahn-Banach exposed in 4. In addition, we will use the Cauchy-Schwarz 

inequality in the following form: 

m 

l 
i=l 
i;ifk 

IY. 1. 1 <. j I 
J. i=l 

i;ifk 

\y. 12 V m - 1 • 
J. 

We first prove-the p = �~� case, since this case is representative. 

Theorem. a (I 
n m 

'},m 

1 

1 . 
i m :;;;., ( 1 +/<m-lJn \-

�~� �~� m-n } ' 

and equality holds iff there exists a regular two-graph on m ver

tices with multiplicities n, m - n . 

Proof. Fork c { 1,2, ... ,m} we have 

:;;;., max 
IYk l 

= 
Orfy .L X 

- 1 j m 
Jyil2- 1Yk! 2 - - n IYk I + I/ m I 

i=l 

l1 JI = �!�( �~�)� 
-2 

= max + V m - 1 1 
0-f:y.L X 
- - n L ll y ll 2 

i- j ( max I Yk I f 2 1-1 
= l! + I/ m - 1 lj Q. f .z E �x�~� II z 112 J 
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t + 
j r \-2 1-1 

= v iU - 1 min II e - x "2; 1 J \ -k x e: x 
n 

Since f (z) := �~� + V m - 1 J z-2 - 1 ] -\s a monotone increasing function 

of z, this implies 

min max min II e - x II �~� 
-k - 00 

x c x 1 :s;k ::;;m x e: x 
n m n 

�~� �~� + 
- 1 j ( min vm max min 

\x c x �l�~�k�~�m� x e: n m 

Thus we have expressed m m a (I ; t
1 

, 2
00

) in terms of 
n m 

1 -1 \-2 
II e - �~�"� 2; -1J -k x n 

which equals J 1 - !!. by 3. Substitution yields the inequality of the theorem. 
m 

Now suppose we have equality 

a (I n m 
2m 2m) = '1 + j n(m - l) J -l . 

1 , co Ll m - n 

We analyse the various steps performed in the proof of the inequality. First, 

for an optimal X we have n 

max 
�l �~�k�~�m� 

x �~�n� x II ::k - �~�I� 2 
n 

n 
m 

hence, by the remark at the end of 3, 

min II ::k - xii / 1 n for all k = - - , -2 m x e: x n 

In addition, for any 1 �~� k �~� m, the x which achieves 

1, ... ,m . 

min II ::k - �~�I�I� oo , also 

minimizes II ::k - �~�l�b� . Hence the matrix A which approximates I in the t -norm m oo 

also works for the t 2-norm. 
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secondly, if equality holds in Cauchy-Schwarz, then the corresponding vectors 

of length m - 1 

and (1,1, ... , \/ , ... ,1) 

are proportional. So we may take IY 1 1= ... = IYml = 1 except for IYkl which 

equals 

/ (m - 1) (m - n) 
n 

since 
1 

I . n(m - 1) 
1 + m - n 

For each k = 1, ••. ,m we find such a vector y_, which is proportional to the 

projection of e onto �X�~� . These vectors are taken as the columns of the 
-k n 

following coordinate matrix B ( = Gram matrix, cf. 2) of rank m - n : 

I :2, e:12 �"�1�~� 
y e:2m I e: . . I 1 ' e: . . = e: .. 

I . 
l.J· l.J J l. 

B = 

l �~�m�l� IYkl =I (m-1) (m-n) 
y= 

n 

e:in2 y J 
It follows that the lines spanned by these vectors are equiangular, at 

cos
2x = (m _ l)7m _ n) . This set of equiangular lines in �X�~� is extremal in the 

sense of 2 (just interchange n and m - n). Equivalently, X contains an extremal 
n 

2 m - n 
set of equiangular lines at cos �~� = �~�(�-�m�~�-�~ �1�-�)�-�n�- . Equivalently, there exists a 

regular two-graph on m vertices with the multiplicities n and m - n. 

6. Melkman's theorem for p > 2 . 

For p �~� r, a lower bound for a (I 
n m 

m ; z
1 

m m m 
Z ) in terms of a (I ; i

1 
,tr) is p n m 

obtained, and specialized to the case r = 2, since a (I 
n m 

n 

= 

= / 1 
m is known. Instead of Cauchy-Schwarz we use the following conse-

quence of Holder, cf.4 : 



- 11 -

1 
r' 

for p > r ; for p = r this degenerates into an equality. 

For a fixed k, we abbreviate as follows: 

n 
p 

: = min 
X E X 

n 

Then for p > r , 

p' 
( n ) 

p 
= max 

x. ..L x n 

( r''f' l I YJ. I r' 
jrfk 

max 
1 _ E_'._ -( I Yk I 

1 + (m - 1) r' --
llyll I r 

�p�'�~� 1 + (m - 1)
1 

- �~� ( max 
y ..L x 

-- n 

It follows that 

Theorem. 

n > 
p 

For p > 2 

a (I ,Q,m 
n m 1 

�~� 
1 

p' p' 

( ( ) -r' - 1) ;t. 
nr , J 

- £.'.._ 
(m - 1)

1 r' 

I 
-p 

,Q,; ) > 11 + (m - l)cm - !) (m - n))2(p-1 ) 

1 
-1 + 

p 



. .. 
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and equality holds iff there exists a regular two-graph on m 

vertices with multiplicities n, m - n. 

Proof. Put r = 2 in the formula for 1\i' proceed as in 5 , and substitute 

the value of a for r = 2. This yields the inequality. For the case of 
n 

equality we must have equality in the consequence of Holder's inequality. 

Since p > 2, again the(m - 1)-vectors are proportional, and the reasoning 

of 5 works. 

Remark. The second part of the reasoning above does not work for p = 2. 

Indeed, then the consequance of H6lder's inequality is an equality, and 

yields nothing new. In fact, for p = 2 we do have 

a (I 
n m 

im 
2 

n 
m 

but the extremal sets need not be extremal sets of equiangular lines. Any 

spherical eutactic star provides an extremal set. As an example we mention 

the root systems [41. 
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