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To my family





Kintsugi ("golden joinery"), is the Japanese art of repairing broken pottery
with lacquer dusted or mixed with powdered gold, silver, or platinum.

As a philosophy, it treats breakage and repair as part of the history of an
object, rather than something to disguise.

— [254]

A B S T R A C T

Embedded systems are found everywhere from consumer electron-
ics to critical infrastructure. And with the growth of the Internet of
Things (IoT), these systems are increasingly interconnected. As a re-
sult, embedded security is an area of growing concern. Yet a stream
of offensive security research, as well as real-world incidents, contin-
ues to demonstrate how vulnerable embedded systems actually are.

This thesis focuses on binary security, the exploitation and miti-
gation of memory corruption vulnerabilities. We look at the state of
embedded binary security by means of quantitative and qualitative
analysis and identify several gap areas and show embedded binary
security to lag behind the general purpose world significantly.

We then describe the challenges and limitations faced by embedded
exploit mitigations and identify a clear open problem area that war-
rants attention: deeply embedded systems. Next, we outline the cri-
teria for a deeply embedded exploit mitigation baseline. Finally, as a
first step to addressing this problem area, we designed, implemented
and evaluated µArmor : an exploit mitigation baseline for deeply em-
bedded systems.
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When you want to know how things really work,
study them when they’re coming apart.

— William Gibson
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1
I N T R O D U C T I O N

1.1 problem statement

Embedded systems are everywhere. From consumer electronics, net-
working equipment and critical infrastructure to vehicles, airplanes,
military hardware and medical equipment: they underpin the techno-
logical fabric of society [88, 237, 240–242]. Over the years embedded
systems have become increasingly interconnected [13], a trend that is
exacerbated by the rise of the so-called ’Internet of Things (IoT)’ which
has been projected to grow from roughly 5 billion [102] deployed de-
vices in 2015 to anywhere between 20 [102] and 50 billion [139] in
2020.

Contrary to its popular image, the IoT is not just limited to smart
home and wearable consumer electronics. While most people are famil-
iar with such gadgets, the real drive behind IoT growth comes from
enterprise applications [121, 245]. Some examples are asset tracking,
production line monitoring and automation in the industrial IoT [431],
smart grid [335] and smart meter deployment in the energy sector and
streamlining of lighting, parking, surveillance and public infrastruc-
ture optimization in smart cities [358].

The growing interconnectedness of embedded systems has made
security an increasingly important concern [13, 101, 202, 203]. Not
only because the systems themselves are interesting targets for at-
tackers but also because many of these systems weren’t designed to
be connected to networks in the first place. And with the growth
of the IoT these concerns are set to spread to many different sec-
tors. Such concerns are not merely theoretical as real-world incidents
involving embedded systems have shown. Nor are they limited to
one particular group of systems or industry vertical: incidents occur
everywhere from the infamous Stuxnet attack against nuclear facil-
ities in Iran [413], recent attacks against Ukrainian power grid [178,
278, 323] and the hacking of smart TVs by intelligence agencies [70]
to the formation of massive botnets consisting of compromised IoT
devices [145]. And with new attacks on embedded systems in ev-
erything from cars [36, 308] to medical equipment [189, 451] being
demonstrated, the importance of embedded security is virtually self-
evident.
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4 introduction

Yet embedded systems security is generally seen as lagging behind
what we’ve come to expect of our general purpose (eg. desktop and
server) systems [202, 203, 205, 421, 422]. Embedded ’binary security’
in particular is an area where exploitation of vulnerabilities is sig-
nificantly easier than on general purpose systems. This is exempli-
fied by a 2016 incident where a previously unknown group calling
themselves the "Shadow Brokers" released a cache of exploits which
they claimed belonged to the supposedly state-sponsored "Equation
Group" [78] threat actor. Among this cache were a set of exploits for
high-end firewall equipment of multiple manufacturers [5], none of
which had to bypass any exploit mitigations.

However, despite the general perception of embedded systems bi-
nary security as lagging, there is a lack of quantitative and qualitative
research providing insight into the current state-of-the-art and its gap
areas.

1.2 research goal & questions

Research Goal: The goal of this work is to identify the state-of-the-art
in embedded operating system binary security and contribute to im-
prove the security of embedded systems, in particular against mem-
ory corruption attacks.

The following research questions have to be answered in order to
achieve the stated research goal:

RQ-1: What would a minimum exploit mitigation baseline for em-
bedded systems look like?

RQ-2: What is the current state-of-the-art in embedded operating
system exploit mitigations in terms of adoption, dependency
support and implementation quality?

RQ-3: What are the gap areas and open problems within the current
state-of-the-art and what are the challenges underlying them?

RQ-4: Given the clearest gap area identified, what would an effective
solution look like and what criteria should it meet?

1.3 contributions

This work makes the following, to the best of our knowledge, novel
contributions:

1. We establish a minimum exploit mitigation baseline for embed-
ded systems and outline its security criteria and hardware- and
software dependencies.
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2. We perform the first quantitative analysis of the state of embed-
ded exploit mitigation adoption and support for software- and
hardware dependencies. This analysis shows that embedded
systems lag behind general purpose ones significantly in this
regard.

3. We perform the first qualitative analysis of the exploit mitigations
and secure random number generators of three embedded oper-
ating systems: QNX, RedactedOS and Zephyr. This analysis shows
their implementations to be flawed in various ways. We respon-
sibly disclosed the vulnerabilities we uncovered in the course
of this analysis to the vendors in question and collaborated in
drafting fixes.

4. In order to explain the results of our analyses, we provide the
first systematic identification of the challenges embedded ex-
ploit mitigation adoption efforts face. We then identify two ma-
jor open problems and outline the criteria for their solutions.

5. We propose, implement and evaluate µArmor : the first exploit
mitigation baseline design for constrained deeply embedded sys-
tems, thereby addressing the identified open problems.

1.4 outline

Part i provides a background on embedded systems and binary se-
curity in Chapter 2 and presents an embedded exploit mitigation
baseline in Chapter 3. Part ii presents our analyses of the state of
embedded exploit mitigations in the form of a quantitative analysis
in Chapter 4, a qualitative analysis in Chapter 5 and a discussion of
challenges, open problems and criteria in Chapter 6. Part iii presents
our work on µArmor and discusses its design in Chapter 7, its im-
plementation in Chapter 8 and its evaluation in Chapter 9. Part iv
contains an overview of related work in Chapter 10 and discussion,
conclusions and future work in Chapter 11. Finally, Appendix A con-
tains supplementary data such as tables, benchmarking information
and code snippets.





2
B A C K G R O U N D

2.1 basic embedded concepts

The term ’embedded systems’ covers a wide range of devices used for
a myriad of different purposes. They can be as simple as a single
pressure sensor node or a digital alarm clock or as complicated as
flight management systems, medical imaging equipment or military
weapons systems.

Embedded & General-Purpose Systems

An embedded system is "a combination of computer hardware
and software, and perhaps additional mechanical or other parts,
designed to perform a dedicated function. In some cases, embedded
systems are part of a larger system or product, as in the case of
an antilock braking system in a car. Contrast with general-purpose
computer" [402].

This is contrasted with a general purpose (GP) system which
is "a combination of computer hardware and software that serves as
a general-purpose computing platform. PCs, Macs, and Unix work-
stations are the most popular modern examples" [402].

Due to the incredible diversity of embedded systems, it is impos-
sible to say what a ’typical’ embedded system looks like. They can
range from high-end systems with a user interface to constrained
deeply embedded systems engaging only in machine-to-machine (M2M)
communications as part of a Cyber-Physical System (CPS).

7



8 background

Deeply Embedded & Cyber-Physical Systems (CPS)

Deeply embedded systems [423] are those systems on the
most highly integrated and constrained end of the embedded
spectrum and serve dedicated, single purposes (eg. collecting
sensor data, basic processing or automation, etc.). These sys-
tems tend to use resource-constrained microcontrollers which
allow for low production cost. Deeply embedded system often
lack user interfaces and tend to be either bare metal or run
extremely minimal operating systems. They are generally not
(dynamically) programmable once the program logic has been
burned into ROM and require either device programmers or
bootloader-assisted firmware reflashing.

Cyber-Physical Systems (CPS) are a "class of engineered sys-
tems that offer close interaction between cyber and physical compo-
nents" [442] characterized by deep integration between phys-
ical and software components that are "typically designed as a
network of interacting elements with physical input and output in-
stead of as standalone devices" [131]. Examples of CPS include
automotive, avionics and aerospace systems, industrial control
systems and ’smart grids’, robotics systems, medical monitor-
ing and robotic surgery systems, military and defense systems,
etc.

As a result, embedded systems hardware can range from simple 8-
bit microcontrollers to a System-on-a-Chip (SoC) outfitted with a multi-
core 32- or 64-bit microprocessor.
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Microprocessors, Microcontrollers (MCUs) and System-on-a-
Chip (SoC)

Microprocessors incorporate CPU functionality on a single
integrated circuit (IC) (or at most a small number of them),
reducing the cost of processing power. Microcontroller Units
(MCUs) essentially integrate a CPU along with memory and
peripherals on a single IC. This high degree of integration
allows for size and cost reductions that make MCUs ideally
suited for embedded deployment.

The term System-on-a-Chip (SoC) refers to systems with a
high degree of integration of all components of a computer
or other electronic system. The difference with MCUs is often
one of degree, with MCUs generally being actual single-chip
systems while the term SoC is often used as hyperbole indi-
cating a high degree of but not completely single-chip integra-
tion. Typical SoCs consist of an MCU, microprocessor or digital
signal processor (DSP) core and memory, peripherals, external
interfaces (eg. USB, Ethernet, etc.) or power management func-
tionality.

Some embedded systems run an operating system while others
are only outfitted with a piece of bare metal (ie. OS-less) application
firmware. Embedded operating systems themselves come in many
different flavors too, from variants of popular general-purpose OSes
to tiny real-time operating systems (RTOS) and from monolithic kernel
architectures to microkernel designs.

Real-Time Operating System (RTOS)

Real-Time Operating Systems (RTOS) are "designed specifically
for use in real-time systems" [402], the latter being "any com-
puter system, embedded or otherwise, that has timeliness require-
ments" [402]. That is to say: those systems which must be able
to guarantee a response within specified time constraints with
varying degrees of ’hardness’. The ’harder’ these constraints,
the more serious missing a deadline is considered. As such
real-time systems are more about deterministic and predictable
response times than fast ones [344]. Real-time requirements
are particularly important in safety-critical applications such
as flight control software, automotive brake controls or indus-
trial manufacturing processes.
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Monolithic & Microkernel Architectures

As opposed to monolithic kernels where "all functionality pro-
vided by the OS is realized within the kernel itself" [344], a micro-
kernel "reduces the services provided by the kernel dramatically by
putting all services, which are not essentially necessary for the micro-
kernel, into user space as isolated processes. (...) The service processes
typically behave like servers of the client-server model. To use such
a service an application needs to send a message with a service re-
quest to the service which receives the request, completes the request
and sends back a response message to the client application. (...) The
big advantage of microkernels against monolithic kernels is the clear
separation of services from the kernel itself making the kernel a very
small piece of software that provides a better fault isolation and can be
maintained more easily than a monolithic kernel. The fault isolation
prevents crashing the whole system. (...) The price we have to pay for
the better structuring and fault isolation is that we get a high amount
of interprocess communication through message passing and a high
amount of context switching" [344].

While the high-end embedded operating systems found in smart-
phones or certain networking equipment are often based on Linux-,
BSD- or even Windows and as such are familiar to people used to the
general purpose world, the library-based operating systems aimed at the
low-end of the embedded spectrum are quite different as illustrated
in Figure 1.

Library-Based Operating Systems

Library-based operating systems implement the OS as a col-
lection of libraries which are linked together with the applica-
tion code into "one single executable which is executed in one single
address space. Therefore no loader is required to dynamically load ap-
plications at run-time, by this minimizing the operating system code.
Another advantage of a library-based RTOS and the execution in a
single common address space is that system calls can be simply im-
plemented as function calls. Thus no context-switches are required
when calling an operating system function. This is often more effi-
cient and less time consuming as a full context switch with address
space changes when having an RTOS implemented as a kernel in a
separated address space" [344]. A disadvantage of library-based
OSes is the lack of safety and security that comes with running
all application code and kernel code in the same address space
as a result of the lack of memory separation.
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Figure 1: Library-Based Operating System Example

2.2 embedded security threat landscape

The world of embedded systems is incredibly diverse and spans many
industry verticals. As such, rather than establishing a single compre-
hensive overview of the threat landscape we will outline some of the
key differences between the embedded and general purpose worlds:

1. Security Attention: Security has been a serious concern in a mi-
nority of industries dealing with embedded systems (eg. pay-
ment cards, video game consoles, PayTV solutions, etc.), but
this has usually been the result of the fact that security issues
in such devices directly threaten corporate revenue streams, in-
tellectual property or the core business model. Since this is not
the case for most other industries, attention to the security of
embedded systems has continued to structurally lag behind
what we’ve come to expect of general purpose systems. A re-
cent joint report by the European Union Agency for Network and
Information Security (ENISA) and semiconductor manufacturers
Infineon, NXP and STMicroelectronics speaks of a "market failure
for cybersecurity and privacy" [56], a sentiment which is echoed
by Bruce Schneier [202].

The ENISA report observes that there is "no basic level, no level
zero defined for the security and privacy of connected and smart de-
vices" [56], a troubling observation considering the increasing
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connectivity and corresponding exposure of embedded systems [13].
This is compounded by a common ’confusion’ between safety
and security requirements. While the prior is a core require-
ment of many embedded systems and enforced by regulations
and certifications, it does not cover the latter which deals with
actively malicious subversion of a system. This was illustrated
in one recent study [88] where 22% of the surveyed designers
of Internet-connected safety-critical systems indicated security
was not a design requirement.

2. Security Concerns: The security concerns of embedded sys-
tems are often quite different from those in the general purpose
world as well. A 2017 embedded safety & security study [88]
found the three primary security concerns to be product tam-
pering, theft of data and theft of intellectual property, all of which
relate more to the company which designed the product than to
the users. This is despite the fact that security threats to embed-
ded systems are growing more serious with the involvement of
government-sponsored hacking [17] rather than the tradition-
ally more restricted attackers such as pirates or competitors.

When attacking desktop or server systems, attackers often at-
tempt to obtain users’ documents or sensitive financial informa-
tion. In embedded systems, however, attacker goals tend to be
more device-specific because of their single-purpose nature. An
attacker might try to sabotage a cyber-physical system [281] (caus-
ing electrical blackouts or car crashes), tamper with measure-
ments (smart meter fraud), bypass authentication procedures
(building access control) or device restrictions (pirated enter-
tainment media), conduct surveillance (network equipment or
smart home hacking) or steal intellectual property (code extrac-
tion and reverse engineering). Sometimes the attacker goal is
only indirectly related to the embedded system in question,
such as when connected embedded systems are used to pivot
into corporate networks [64, 125] or launch Distributed Denial-of-
Service attacks [126].

Such attacks can involve anything from flipping a few bits some-
where in memory or extracting a single cryptographic key to
obtaining full code execution; in some cases, attackers might
have physical access to the device in question (especially when
users themselves are potential adversaries). This opens up a wide
range of attacks [8] ranging from abusing exposed debugging
functionality [93] or side-channel and glitching attacks [80, 170]
to more invasive attacks involving chip decapping and optical
reverse-engineering [80, 236, 283]. A more exhaustive survey
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of threats and concerns can be found in the ENISA "Hardware
Threat Landscape and Good Practice Guide" [55].

3. Ecosystem Differences: Embedded ’ecosystems’ are character-
ized by a number of particular challenges, addressed in Chapter
6, around development practices, resource constraints, system
requirements and limitations that are very different from the
general purpose world. With respect to security these ecosystem
differences also translate to difficulties in patching (addressed
in Section 2.3), host- and network-based intrusion detection [193,
205, 333, 395, 397, 433] and forensics [12, 119, 120, 427]. Finally,
as observed in a recent Barr Group study [88], the sheer diver-
sity of embedded systems in terms of hardware, software and
applications prohibits the emergence of a one-size-fits-all secu-
rity solution.

The embedded devices used in certain industries pose a bigger risk
than those in others. Networked, safety-critical devices in particular
pose a major risk and within that group a handful of systems is as-
sociated with more than two-thirds of the risk [88]: medical devices,
industrial control systems and automotive systems followed by consumer
electronics and defense & aerospace systems.

Below we present a brief overview of some of the practical attacks,
not all of which are relevant to embedded binary security, that have been
demonstrated to affect these systems in order to illustrate how seri-
ous the situation is. For a more exhaustive overview of the threats we
refer to the work in [129, 281, 330, 449].

Medical: Medical devices are often intimately coupled to lethal
risk but despite this practical attacks have been demonstrated on in-
fusion pumps [82, 115, 189, 314], pacemakers and ICDs [320, 328],
ECGs [424], surgical robots [451] and bionic arms [6]. While real-
world incidents are rare, a recent ransomware attack ended up in-
fecting a power injector [71] responsible for injecting contrast agent
for CT and MRI scans.

Industrial Control Systems (ICS): Interest in ICS security has sky-
rocketed in the wake of Stuxnet [413] with attacks being demonstrated
on everything from PLCs [21], RTUs [287] and HMI [178] to DTM
components [286] and rootkits [289, 393], worms [425] and ransomware [325]
having been developed specifically for ICS devices. Meanwhile, re-
cent real-world incidents targeting industrial control systems have
caused blackouts on the Ukrainian power grid [178, 278, 323] and
physically damaged a German steel mill [277].
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Automotive: Modern automobiles are complicated networks of com-
puter systems, essentially "a computer with four wheels and an engine" [203],
with an ever-growing and highly vulnerable attack surface [100, 212,
330]. Attacks have been demonstrated on everything from the CAN
bus and Engine Control Unit (ECU) [36, 62, 130, 301, 309–311, 379,
444], Anti-lock Braking System (ABS) [464], Tire Pressure Monitor-
ing System (TPMS) [249, 366] or infotainment and telematics sys-
tems [308, 361, 385, 432] to Remote Keyless Entry (RKE) [251, 341]
and Immobilizer [168, 169, 429, 443] systems.

Smart Homes and Consumer IoT: The rise of consumer-oriented
IoT gadgets, particularly in the smart home sphere, is just a fragment
of the total consumer electronics market but has seen a proliferation
of so-called ’junk hacking’ [86, 150] targeting almost every type of de-
vice including smart home gadgets [318], alarm systems [34, 127, 468],
locks and access control systems [27, 144, 191, 297, 477], surveillance
cameras [44, 92, 438, 479], thermostats [349] and smart TVs [70, 400,
440].

Defense & Aerospace: ’Cybersecurity’ in the context of military
embedded systems has received increasingly more attention with the
recognition of ’cyberspace’ as a fifth domain of warfare. Given the
overlap with more established military security concerns such as Elec-
tronic Warfare (EW) [87, 362] and Communications Security (COMSEC)
the dividing line with ’cyber’ becomes blurry. For obvious reasons,
there is little detailed public research regarding attacks on military
and aerospace systems but one related area that stands out for its
accessibility to independent researchers is that of Unmanned Aerial Ve-
hicle (UAV) / drone security. This is mainly due to the proliferation of
and subsequent security research on commercial UAVs [32, 113, 196]
but recent work has shown government UAVs, including those used
by the military, are vulnerable as well [32, 166, 294, 382]. In addition,
real-world incidents have taken place over the past decade involv-
ing signals interception [10, 114, 252] and hijacking [173] of military
UAVs.

2.3 embedded patching issues

When a vulnerability is discovered in a computer system a patch
should be created and applied, ideally as soon as possible. In order to
avoid making constant patch application the responsibility of users,
many general purpose operating systems contain integrated function-
ality for secure and automated patch management. The embedded
world is very different in this regard where many systems require
manually applied updates or are unpatchable altogether and vendors
sometimes don’t even provide a patch in the first place. There are var-
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ious reasons why embedded patch management is complicated [202,
423]:

1. Broken Patch Management: Effective patch management re-
quires an infrastructure that ensures a patch gets securely from
the party responsible for creating patches to all affected devices
with minimal interaction. For embedded systems, the problem
starts with fragmented responsibility. As discussed in more
detail in Section 6.1, no single entity manages the entire soft-
ware development lifecycle of an embedded product. As a re-
sult, it is not always clear who is responsible for creating a patch
when a vulnerability is discovered nor are all parties equally in-
centivized to create one which leads to an absence of (timely)
fixes for embedded vulnerabilities. Industrial control systems
are illustrative of the latter issue as shown by a 2016 FireEye
study [66] which found that out of 1552 vulnerabilities exam-
ined over the course of 15 years, 33% had no vendor fix at
the time of public disclosure. Another recent ICS vulnerability
study, by Andreeva et al. [417], found that patches were avail-
able for 85% of publicly disclosed vulnerabilities, leaving the
rest with either no or partial patches.

In absence of a single, coherent patch management solution
patches end up getting pushed down the supply chain on an
individual or batch basis. For example, when a vulnerability
is discovered in an embedded operating system, the OS vendor
creates a patch and announces its availability via an update feed.
It is then up to any customers such as original equipment manufac-
turers (OEMs) or original device manufacturers (ODMs) to monitor
this feed, apply patches to their products, rebuild their firmware
images and distribute them to their own customers. The further
removed the party responsible for creating the patch is from
the end-user of an affected product, the more complicated and
slower this process becomes.

Partially as a result of this situation, many embedded systems
don’t even have a secure updating mechanism to apply patches.
While there are over-the-air software updating solutions for Linux-
based embedded devices [207] and firmware updating mecha-
nisms for specific MCUs [11, 416], these are far from univer-
sally deployable. When it comes to finally applying a patch, re-
sponsibility is not always clear either. Many embedded systems
don’t have a real system administrator (eg. who is responsible
for patching building automation systems or smart locks?) or
have the end-user/owner as a potential adversary (eg. set-top
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boxes) and many embedded devices vendors don’t consider the
products they sell to require maintenance, especially if they’re
disposable consumer electronics. Those vendors offering repair
and replacement services, as part of a warranty or otherwise,
expect to do this only in case of field defects. Some vendors
try to solve this problem by offering remote maintenance ser-
vices but these can become a security concern themselves as an
external avenue of attack [125] or through the introduction of
backdoors [83, 195, 201].

2. Availability Issues: Another concern is that many embedded
systems are engineered for high availability. Industrial control
or avionics systems, for example, have high uptime and respon-
siveness requirements which translate to small maintenance win-
dows. When a system lacks hot-patching capabilities or a patch
must be applied to any part of the system that requires down-
time, this means patches will get applied only very infrequently.

3. Safety Issues: Some systems have clear risks associated with
failure: eg. avionics, automotive and ICS failures can result in
serious equipment damage, personal injuries or even loss of life.
As a result, such safety-critical systems are designed and built us-
ing safety engineering [374] techniques such as failure mode and ef-
fects analysis (FMEA), fault tree analysis (FTA) and probabilistic risk
assessment (PBA). These techniques seek to assess and minimize
the risk of system failures and provide (different degrees of) re-
liability. Apart from careful coding, reviewing and verification
some approaches include generating code from specifications
using a certified production system or using formal methods
to prove a piece of code meets certain requirements. Many em-
bedded industries have also developed rigorous qualification
and certification procedures such as DO-178B for avionics, ISO
26262 for automotive, IEC 62304 for medical and IEC 61513 for
nuclear.

The issue for embedded patching here arises [420, 423] from the
fact that the introduction of changes in such systems requires re-
certification. Re-certification often applies to the entire system
rather than the modified components alone, especially in mixed
criticality systems where safety- or security-critical components
exist next to less critical ones, eg. infotainment systems in air-
planes or cars. Since this is a costly and time-consuming process
a common strategy employed to minimize re-certification cost
is to delay changes until major upgrades and re-certify in bulk,
but such a strategy is incompatible with the need for timely
application of vulnerability patches.
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The above patching issues contribute to long vulnerability exposure
windows. The window of exposure of a given system to a particular
vulnerability covers the entire period from the vulnerability’s first
discovery to the system being patched. The size of this window is
determined by a) the time between vulnerability discovery and vendor
awareness, b) the time between vendor awareness and patch creation and
c) the time between patch creation and patch application.

Various factors play a role here such as how often the vulnerability
is rediscovered (bug collision rate) and whether any of those parties
notify the vendor, how often the vulnerability is exploited in the wild
and whether the vendor is alerted in this manner, the length of the
distribution chain between patch creator and applier, the regularity
of updates, etc. On top of that embedded devices tend to have long
life-spans which sometimes exceed the vendor support period and
result in so-called ’forever days’ [84] which remain unpatched forever.

As a result embedded exploits tend to have a long shelf life (ie. re-
main usable against a large number of active systems) and a corre-
spondingly high return on investment (ROI) for the attacker. While
there are, as of writing, no studies dealing specifically with embed-
ded exploits in this regard, research into exploit shelf life for (mainly)
general purpose systems indicates this can span years. A 2012 study
by Bilge et al. [386] found that zero-day attacks, ie. the period of ac-
tive exploitation of a vulnerability, lasted 312 days on average. A 2017

RAND study [388] found zero-day exploits to live 6.9 years on aver-
age and have a median survival time of 5.07 years. Given the above
discussed problems with embedded patch management, it seems fair
to conclude that those figures are even higher for embedded exploits.

2.4 memory corruption vulnerabilities

Binary security, the subject on which this work focuses, is a short-
hand for all things related to memory corruption vulnerabilities. Mem-
ory corruption vulnerabilities [390, 459] are one of the oldest and
most widely exploited classes of vulnerabilities in computer systems
and arise from the use of so-called unsafe languages. As various studies
have shown [88, 240–242], unsafe languages dominate the embedded
world with between 60% and 66% of embedded projects written in
C for the period 2011-2015 [242] compared to 71% in 2017 [88] and
between 19% and 22% written in C++ for the period 2011-2015 [242]
compared to 22% in 2017 [88].

And while strict programming guidelines and development prac-
tices can help reduce the number of bugs that end up in shipped
code, some will inevitably slip under the radar as evidenced by mem-
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ory corruption issues causing unintended acceleration problems in
the Toyota Camry [14] and Audi 5000 [15] vehicles and miscalcula-
tion issues in the Patriot missile defense system [16], all with lethal
consequences. So it should come as no surprise that some of the
memory corruption bugs that end up in shipped embedded code are
exploitable vulnerabilities. In fact, memory corruption issues consis-
tently rank among the most prevalent vulnerability classes in embed-
ded systems [49, 97, 98] with a 2016 Kaspersky study of ICS vulnera-
bilities even identifying them as the biggest single vulnerability class
affecting industrial control systems [417].

2.4.1 Language Safety

Before we discuss memory corruption exploitation, let us first briefly
get at the root of the problem by looking at language safety. What
precisely constitutes a ’safe’ language [180] (and to what degree it
is safe) is a subject of some debate but generally speaking, it comes
down to ensuring programs have precise and clearly defined seman-
tics by providing memory safety and type safety. A safe language is
obliged to detect or prevent unsafe behavior either at compile-time,
run-time or a combination thereof and ensure that a safety violation
always results in precisely defined error behavior such as throwing
an exception. A language is said to be memory safe if and only if pro-
grams written in it are "guaranteed to only access memory locations that
they are permitted to access" [180] and thus detect or prevent memory-
unsafe behavior such as pointer arithmetic, unbounded memory ac-
cess or unconstrained casting. A language is said to be type safe if it
"guarantee[s] that executing well-typed programs can never result in type
errors" [180]. Examples of unsafe languages are C(++) or assembly
while examples of safe langues are Ada, Erlang or (to a lesser extent)
Java or C#. Safe languages are not completely fail-safe, however, see-
ing as how their execution might rely on an interpreter or virtual
machine which itself is written in an unsafe language or might have
bugs in the type checker or compiler.

As mentioned earlier unsafe languages dominate the embedded
world, but not exclusively. Ada and Rust, discussed among related
work in Section 10.2, are two examples of safe languages with respec-
tively a long track record and a promising future of embedded usage.
However, despite the availability of such languages there are many
reasons [88, 213, 420] for the continued dominance of C(++) in the
embedded world:

• Portability: There is a C(++) toolchain for nearly every plat-
form and operating system and many proprietary chips only
come with a vendor-supplied C toolchain. If a given embedded
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project is to be portable across different platforms and operating
systems, then C(++) tends to be the best choice.

• Functionality: The ’close to metal’ nature of languages like C
and the (safety breaking) ability to perform operations like pointer
arithmetic make it well suited for the kind of optimized, low-
level programming required for embedded systems.

• Overhead: As a result of language safety mechanisms, perfor-
mance overheads resulting from run-time checks or lack of op-
timization due to compile-time checks might become unaccept-
able for a given embedded system.

• Maturity: C and C++ are mature languages with a long his-
tory of usage in the embedded world. As such there are many
integrated development environments (IDEs), frameworks and
libraries to draw upon which shortens development time.

• Legacy Code: There are billions of lines of legacy code written
in C(++), many of which are reused in subsequent projects [242].
Porting these to a safe language (or the other way around), even
if aided by automated tools, is a complicated, costly and messy
affair [116] given issues with (re)verification of code, changed
performance, timing and memory usage characteristics, switch-
ing to new development environments and the fact that pro-
grammers will possibly have to be re-trained in the new lan-
guage. In many scenarios there simply won’t be a strong busi-
ness case for doing this.

2.4.2 ’Weird Machines’ & Exploitation

Some memory corruption bugs are vulnerabilities which could be
leveraged by an attacker to maliciously subvert the system, for exam-
ple by leaking sensitive information, escalating privileges, inducing
undesirable behavior or executing arbitrary code. It should be noted
that not all memory corruption bugs are vulnerabilities and not all
vulnerabilities are exploitable. On the other hand, the status of a bug
as vulnerability or a vulnerability as exploitable is not static either. A
vulnerability occurring in one place in the program code might be un-
exploitable while it might be exploitable in another, and a bug that is
unexploitable today might become exploitable tomorrow as a result
of changes in the code base (eg. components being added or removed,
control-flow paths changed, modifications to system design, etc.) and
vice versa.

The exploitation of memory corruption vulnerabilities often tends
to be perceived more as an arcane craft based on hazy folklore than
as an exact science, a view strengthened by both the target-dependent
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nature of many exploits and the changes in approach as a result of
the ’mitigation-bypass-counter-mitigation’ cat and mouse game. But
exploit development has a workflow not completely unlike that of reg-
ular software engineering [435] where the exploit developer identifies
computational structures in the target that allow them to manipulate
the program state on the basis of inputs and distills from these struc-
tures so-called ’exploit primitives’ (eg. memory read and write opera-
tions). The exploit developer then combines these inputs and exploit
primitives into an exploit that achieves the desired manipulation of
the program state.

A more formalized approach to reasoning about exploits comes
in the form of the concept of so-called ’weird machines’ [53, 54, 435–
437], which can be summarized as the view that "the crafted inputs
that constitute the exploit drive an input-accepting automaton already im-
plicitly present in the target’s input-handling implementation, its sets of
states and transitions owing to the target’s features, bugs or combinations
thereof" [437]. A less concise but perhaps more intuitive way to think
about weird machines is to think of ’weird states’ as states falling out-
side of a program’s ’Intended Finite State Machine (IFSM)’ [54]. Certain
bugs allow the attacker to enter a weird state and from there poten-
tially transition into other weird states by means of exploit primitives,
leading to a ’state space explosion’ of unintended weird states. Ex-
ploits can then be understood as "programs for these ’weird machines’
and serve as constructive proofs that a computation considered impossible
could actually be performed by the targeted environment" [435].

2.5 exploit mitigations

If we think of exploitation as the programming of weird machines
through the composition of individual exploit primitives into a sin-
gle ’exploit chain’ it becomes clear, as pointed out by Hawkes [91],
that exploit development can be frustrated by the introduction of ex-
ploit mitigations: measures which make each link harder to forge and/or
lengthen the chain. In other words, by requiring more exploit primi-
tives on part of the attacker and by making each primitive harder to
construct, attacker cost are raised and certain vulnerabilities become
unexploitable altogether.

In this work, we will borrow the general model for memory cor-
ruption exploitation and proposed mitigations introduced in [390]
which we slightly augmented and illustrated in Figure 2. Note that
this model does not aim to be exhaustive in terms of either vulnera-
bilities or mitigations covered but rather represent the most popular
attack and mitigations techniques occurring in literature and practice
as evidenced by compiler- [25, 48, 171], OS- and 3rd party [475] sup-
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port. The mitigations are listed at a conceptual level and can often be
implemented in different ways of varying degrees of strength.

Since exploit mitigations target exploitation techniques rather than
the root cause of vulnerabilities they are not a silver bullet [54, 61,
91]. They do, however, make exploitation more complicated and time
consuming (and thus costlier) which causes the number of attackers
capable of exploiting a particular vulnerability to shrink [61, 381]. Mit-
igations with recurring ’bypass cost’ in particular act as a multiplier
to exploit development time since they need to be bypassed for each
bug in a chain [52]. Mitigations have been shown to cause exploit de-
velopers to shift their focus to areas not covered by mitigations [388]
and as such play a key role in zero day reduction trends [250].

Developing reliable and stealthy exploits is even more challenging
than developing a simple Proof-of-Concept (PoC). Attackers want ex-
ploits to work on all versions and configurations of a vulnerable tar-
get and ideally without making too much ’noise’ in order to prevent
discovery of their attack and possible loss of their zero-day. After
all as the case of the MS08-067 vulnerability [128] shows, crash log
telemetry obtained via Windows Error Reporting allowed Microsoft
to rapidly discover a zero-day exploit despite 95% reliability. With ex-
ploit mitigations, reliability becomes even harder to achieve as each
primitive within an expanding chain will have to be reliable for the
whole chain to be.

Given the above observations and the fact that more root-cause ori-
ented solutions to memory corruption vulnerabilities in the embed-
ded world are long-term projects at best, we consider exploit mitiga-
tions to be a viable short-term solution for increasing binary security
in embedded systems. After all, as pointed out by Koopman et al. "it
might make more sense to spend a small fraction of available resources pro-
viding ways to survive bugs that will inevitably be encountered, rather than
throwing all resources at an attempt to achieve absolute perfection" and as
such "short term research milestones should emphasize characterizing prac-
tical limitations and exploring techniques to offer near-term improvement to
system builders" [423].
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Figure 2: Memory corruption exploitation flowchart demonstrating mitiga-
tions at different stages based on [390]





3
E M B E D D E D E X P L O I T M I T I G AT I O N B A S E L I N E

In this chapter, we will establish a minimum exploit mitigation base-
line and outline their security criteria as well as their hardware and
software dependencies.

3.1 establishing a minimum baseline

When establishing a minimum exploit mitigation baseline for embed-
ded systems we are interested in defining an absolute minimum set
of mitigations which should be reasonably expected to be present in
all modern embedded systems. Because of the sheer diversity of em-
bedded systems, we do not select our baseline on the basis of strict
criteria. Instead, we only require them to be adoptable across the em-
bedded spectrum and not rely on any specialized hardware features
not commonly present in COTS embedded hardware.

Based on Figure 2, we selected the following minimum embedded
exploit mitigation baseline:

1. Executable Space Protection (ESP) / Non-Executable Data

2. Address Space Layout Randomization (ASLR)

3. Stack Canaries

The above mitigations were selected because they are complemen-
tary and have been integrated in virtually all modern general purpose
operating systems and development toolchains [48, 77, 250, 381, 388,
419], including those which are used widely in the embedded world.
As such they are well understood and can reasonably be considered
to be the absolute minimum in modern exploit mitigations. As noted
by [355]: "when these three techniques are properly implemented on a sys-
tem they provide a strong defense against most memory error exploitations".

ESP forces attackers to use a code-reuse payload which is compli-
cated by ASLR’s randomization of code and data memory. Stack
canaries prevent stack buffer overflows from overwriting the saved
function return address by requiring attacker knowledge of a secret
canary value. ESP and ASLR apply to all control-flow hijacking attacks
and while stack canaries only protect against stack buffer overflows,
these are far more common in embedded systems than they are in
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modern general purpose ones [388, 417]. In addition, properly con-
figured ESP (as discussed below) protects against code corruption
attacks as well by making code memory non-writable. We will ex-
plain these mitigations in more depth in Section 3.2.

Baseline Limitations: Our baseline does not seek to offer exhaus-
tive protection against all memory corruption classes and only consid-
ers control-flow hijacking and code corruption attacks while leaving
data-flow and information leaks attacks unaddressed. In addition, as
is usually the case with mitigations, the baseline does not guarantee
absolute unexploitability of vulnerabilities but rather raises attacker
cost by lengthening the exploit chain.

Keep in mind, however, that while this baseline is an absolute min-
imum upon which future embedded binary security work should
build, embedded software has a far smaller attacker interaction sur-
face than popular targets on general purpose machines which tends
to mean that bypassing mitigations is more complicated. As pointed
out by Mark Dowd [52], there have been almost no publicly known
exploits achieving unconstrained code execution for Microsoft server
software (eg. RPC, IIS, etc.) after the introduction of ASLR and DEP
(ESP for Windows) while client software such as browsers, office
suites, and PDF readers continue to be targeted by increasingly com-
plex exploits. The key difference here is attacker control over scripting
languages, multimedia elements and other interactive components
which present both a larger attack surface as well as providing more
granular control over the target program and memory state.

3.2 baseline mitigations in-depth

In this section we will discuss our mitigation baseline in-depth and
outline the criteria for their successful implementation, because plenty
can go wrong here which leads to easily bypassable mitigations.

3.2.1 Executable Space Protection (ESP)

Before we can discuss the rationale behind ESP, we first need to con-
sider the fact that there are essentially two main processor architec-
tural style: Harvard and Von Neumann.
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Harvard and Von Neumann Architectures

The Harvard CPU architecture is defined as "a processor archi-
tecture that separates data and instructions into different memory
spaces. The Harvard architecture is most popular on DSPs, where the
benefit of simultaneous instruction and data fetches can significantly
increase signal processing throughput." [402] The Von Neumann
CPU architecture is defined as "a processor structure based on a
basic theory of operation that intermixes data and instructions so that
any value in memory can be executed or interpreted as data. With the
exception of some supercomputers and most DSPs, the von Neumann
architecture is predominant" [402].

Since in this work we are only concerned with how these architec-
tural differences relate to memory corruption exploitation, we define
a processor to have a Harvard architecture iff it has separate code
and data memories (from the programmer’s external point of view)
and its data memory is non-executable. This somewhat relaxed defi-
nition allows code memory to be generally readable and sometimes
writable too under limited circumstances (eg. limited to privileged in-
structions executed by a bootloader). All architectures which do not
meet our Harvard definition are considered Von Neumann.

This architectural distinction is important when considering that
an attacker executing a control-flow hijacking attack seeks to redirect
intended control-flow to a piece of code of their own choosing. On a
Von Neumann processor, the attacker can inject any piece of code into
data memory and redirect control-flow to it to achieve arbitrary code
execution. However, on a Harvard processor the attacker is restricted
to repurposing fragments of pre-existing code memory by means of
a so-called code-reuse attack.
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Code-Reuse Attacks

Code-Reuse Attacks [458] are a class of control-flow hijack-
ing attacks where an attacker re-purposes existing code to
a malicious end, thus effectively constructing a malicious
payload out of pre-existing program code without having
to inject a malicious payload into memory. Code-reuse at-
tacks evolved out of the more specific Return-Into Libc

(RILC) [405] attacks where whole functions are re-purposed
and encompasses variants where fragments of code (of-
ten referred to as gadgets) are strung together in ’chains’
such as Return-Oriented Programming (ROP) [279, 430],
Jump-Oriented Programming (JOP) [458], Call-Oriented

Programming (COP) [410], Sigreturn-Oriented Programming

(SROP) [336] and Counterfeit Object-Oriented Programming

(COOP) [339].

ROP is by far the most common and popular code-reuse at-
tack class and there are various interactive and automated
tools [111, 123, 199, 332, 469] to aid in constructing ROP chains.
While ROP attacks have been shown to be Turing-complete
on several platforms [337, 454], practical limitations [292] such
as available gadgets, available memory or payload size restric-
tions mean ROP chains are often far less expressive in practice
and many attackers tend to prefer ’partial ROP’ [31, 279, 471] at-
tacks where an initial ROP payload is used to change memory
permissions and circumvent ESP thus allowing for injection of
a second stage payload containing the actual malicious code.

Executable Space Protection (ESP) (also known as DEP, NX or WX̂
memory) essentially seeks to emulate Harvard-style code and data
separation on a Von Neumann processor by rendering data mem-
ory non-executable as well as usually ensuring code memory is non-
writable. The goal here is to force attackers to use code-reuse attacks
which are both more complicated to execute as well as often more
restricted in capabilities.

ESP can be implemented either by relying on hardware support or
by means of software emulation. The former case is usually imple-
mented in the form of a dedicated hardware feature, usually part of
the Memory Management Unit (MMU), regulating memory executabil-
ity permissions at a certain granularity level such as on a per-page
basis.



3.2 baseline mitigations in-depth 29

N X WSI Reserved Page Base Address M isc.

0125263 40

N X Avail Reserved Page Base Address M isc.

0125163 36

64-bit PTE (PAE mode)

64-bit PTE

Figure 3: x86 Page Table Entry (PTE) with NX bit

Hardware ESP

We define hardware ESP support as support by a Von Neu-
mann CPU for a feature (usually as part of integrated MPU or
MMU functionality) that allows for marking memory as (non-
)executable. This does not have to have been desigend or mar-
keted explicitly as an ’ESP’ feature by processor vendors for it
to serve this purpose. Examples of hardware ESP features are
AMD’s NX bit (illustrated in Figure 3), Intel’s XD bit, ARM’s XN

bit, MIPS’ XI bit and the PowerPC segment register N bit or
TLB entry EX bit.

There are multiple approaches to software-based ESP, the most
well-known being the PaX project’s implementation [174], the details
of which are out of scope for this work. All software emulation ap-
proaches, however, incur at least some runtime overhead and tend to
be architecture-specific in design.

Regardless of whether the design is hardware- or software-based,
implementing ESP has an operating system component and a toolchain
one. Care should be taken to meet the following criteria:

1. Default Policy: The OS components implementing ESP should
have a default policy marking data memory (stack, heap, etc.)
as non-executable and code memory as non-writable by default.
In cases where backwards compatiblity with ESP-violating con-
structs (eg. dynamically generated or self-modifying code) is
required, ESP policy should be enforced on an opt-out basis to
avoid putting the burden of proper configuration on system
integrators and administrators as is the case with opt-in poli-
cies [471].

2. OS Support: The OS memory management subsystem and pro-
gram loader should ensure memory areas (eg. code memory for
a loaded program, stack, and heap, etc.) are marked as per their
default policy upon allocation.
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3. Toolchain Support: The toolchain should ensure proper separa-
tion of code and data is respected by avoiding constructs which
violate this (such as code trampolines, data inlined in code, etc.).

If opt-out support is required the toolchain should emit a marker
indicating this (such as the GNU_STACK ELF header [20]), either
indicating explicit memory permissions for a given memory el-
ement overriding ESP policy or a generic opt-out causing a fall-
back to non-ESP defaults.

4. Coverage: Shared libraries loaded by a program should fall un-
der the program’s ESP policy to prevent ’split personalities’ [208]
from arising in case of opt-out marking conflicts.

5. Granularity: Care should be taken to consider the granularity
level at which memory permissions are applied on a given plat-
form to prevent ESP violations caused by overlapping or incom-
pletely covered memory regions arising from improper align-
ments or data and code separation boundaries.

6. Conflicting Features: Any features which conflict with ESP poli-
cies, such as the Linux READ_IMPLIES_EXEC [51, 95, 152] ’legacy
support’ personality flag, should be turned off by default.

3.2.2 Address Space Layout Randomization (ASLR)

When developing exploits, attackers rely on knowledge of the tar-
get application’s memory map for write and read targets as well as
crafting code-reuse payloads. Address Space Layout Randomization
(ASLR) [22, 81] is a technique which seeks to break this assump-
tion by ensuring memory layout secrecy via randomization of ad-
dresses belonging to various memory objects (eg. code, stack, heap,
etc.) and rendering them hard to guess as illustrated in Figure 4. A
full overview of all existing ASLR designs and proposals is out of
scope for this work but they can be categorized based on the follow-
ing decisions:

1. When to (re)randomize: Randomization can occur at different points
in time: at boot, when a program is loaded, when a thread is cre-
ated, etc. This choice determines the variation in memory layout
between different processes running on the same machine and
the options for relocation frequency.

2. What to randomize: Program memory can be seen as divided into
different memory objects all of which can be randomized to dif-
ferent degrees. In order to thwart code-reuse attacks, at least
code memory (both that of the main program image and any
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Figure 4: Address Space Layout Randomization (ASLR) [22]

shared libraries) needs to be randomized. Depending on the op-
erating system design, randomization of certain memory objects
might require them to be compiled in a special fashion such as
Position Independent Executables (PIE) required for main program
code randomization as illustrated in Figure 4b versus Figure 4c.

3. How to randomize: Randomization can occur at different levels
of granularity (eg. only randomizing memory object base ad-
dresses vs. randomizing their internal layout) and with different
degrees of correlation (eg. loading all shared libraries in-order
at static offsets from the first or randomizing them individu-
ally).

It is crucial for the effectiveness of ASLR that sensitive addresses
are both secret and unpredictable. Generally speaking the more granu-
lar and frequent the (re)randomization, the better.

Over the years, ASLR implementations in various operating sys-
tems have been found to suffer from a variety of weaknesses [81, 154,
359]. Based on prior work [81, 355, 356] we can conclude ASLR secu-
rity is based upon the following criteria:
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1. Entropic Quality: The probability that an attacker can guess the
locations of randomized memory objects within a reasonable
amount of time needs to be low for ASLR to be secure. As such
we require randomized addresses to have high entropic quality,
something which has three different dimensions [355]:

a) Non-Randomized Sections: A single non-randomized (code)
section can often be used by an attacker to bypass ASLR if
sufficient gadgets reside within it. On Linux VDSO (named
linux-gate.so on some systems) [77] used to be mapped
at a fixed address while Windows used to be plagued by
commonly loaded old non-ASLR libraries such as msvcr71.dll [472]
or structures mapped at fixed addresses such as SharedUserData
or Wow64SharedInformation [271]. In some cases, random-
ized memory objects might end up being mapped at fixed
addresses as an unforseen side-effect of memory pressure [60].
ASLR as implemented in popular general purpose operat-
ing systems has evolved to avoid these pitfalls by carefully
randomizing all memory objects.

b) Range of Entropy: The range of possible values for a given
randomized address determines the probability that an at-
tacker can guess the address within a reasonable amount
of time. this range is limited by the available (virtual) mem-
ory space and the flexibility of memory object placement
the operating system allows.

c) Relocation Frequency: Address randomization can occur
at different points in time and either once or more fre-
quently. Ideally, all memory objects for different processes
are all mapped at different locations with respect to both
previous execution runs and other processes. It is also pos-
sible to relocate memory objects during runtime so that
addresses are not only randomized per execution run and
per process but also randomized throughout a single run.
While the latter approach is not integrated into the ASLR
implementation of any major operating system and comes
with serious overhead, it has the additional benefit of lim-
iting the usefulness of information leaks.

2. Brute-Force Resistance: In addition to the entropic quality, ASLR
designers need to take memory layout inheritance into account
when seeking to harden against brute-force attacks. Many op-
erating systems have process management models where child
processes inherit the memory layout of their parents. This has
two major drawbacks: a) It makes application architectures where
children are respawned after crashing highly vulnerable to brute-
force attacks b) Child processes know the memory layouts of
sibling processes which constitutes a breach of ASLR’s memory
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secrecy assumption if child processes are considered indepen-
dent (eg. Android’s Zygote sandboxing model).

The former is particularly dangerous in the light of byte-by-byte
brute-force attacks against ASLR [273, 356]. Here an attacker
with fine-grained control over their memory corruption vec-
tor targeting an application with respawning child processes
or threads starts by overwriting the first byte of a given code-
pointer and observes the resulting control-flow. If the target
thread or child process crashes their guess was incorrect, while
if it continues running as intended it was correct. Because of
memory layout inheritance, the codepointer value does not change
between guesses and the attacker can try all 256 possible values
before obtaining the correct value for the first byte and move on
to the next one. In this manner, the attacker only needs at most
256N trials to brute-force the target codepointer, where N is the
codepointer byte-width.

3. Information Leaks: Since ASLR security rests on memory lay-
out secrecy, information leaks [206] disclosing memory layout or
contents (eg. in the form of code or data pointer values) can be
used to defeat it. The impact of a particular information leak de-
pends on the scope and flexibility of the leak itself as well as the
ASLR implementation but generally speaking they are the most
reliable way to defeat modern ASLR implementations. While
information leaks might result from and require an attacker to
find an additional bug on top of the one used to hijack control-
flow, sufficiently flexible vulnerabilities can often be crafted into
information leaks themselves. In addition, operating system de-
signers need to consider memory layout and content as secret
when introducing ASLR and ensure they are not disclosed to
potential attackers by system features [238, 452].

4. Correlation Attacks: When the location of one memory object
can be used to deduce the location of others these are said to
be correlated. Correlation can either be total, where the attacker
can obtain the exact location of a correlated memory object, or
partial, where the attacker’s search space is reduced by using
correlation information. Many popular ASLR implementations
suffer(ed) from some form of correlation, allowing attackers to
leverage less powerful or even otherwise useless information
leaks to fully defeat ASLR. An example of a total correlation
attack is the offset2lib [355] attack affecting PIE binaries on
Linux and the ASLR bypass used in the Metaphor exploit [19]
for the Stagefright vulnerability.
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3.2.3 Stack Canaries

A Stack Canary Scheme [190] is a security mechanism that aims to
protect against ’linear’ stack buffer overflows. That is, stack buffer
overflows that seek to overflow a local buffer into local stackframe
metadata such as the saved frame pointer or return address. It does
this by placing a so-called canary or guard value between the meta-
data and local variables. Over the years, stack canaries have evolved
and have seen many incarnations in popular toolchains and operat-
ing systems [137, 190, 470] but they are generally impelemented as a
compiler extension (with an operating system component) which:

1. Inserts code to generate a random master canary value at pro-
gram startup and store it somewhere, preferably in a location
that cannot be overwritten or read without invocation of a ded-
icated instruction (eg. in a special data segment).

2. Instruments function prologs to push a copy of the master ca-
nary value to the stack between stackframe metadata and local
variables, as illustrated in Figure 5.

3. Instruments function epilogs to pop the saved canary value
from the stack and compare it against the master canary. If they
don’t match, the stack has been corrupted and a violation han-
dler is invoked (usually terminating the application) in order to
raise an alert and prevent control-flow hijacking from occurring.

By drawing upon the history of stack canary schemes [77, 151, 190,
194, 273, 419, 470] and prior work [81, 354] we can outline the follow-
ing security criteria:

1. Protection Coverage: The canary only protects the elements it
shields from local variables. Thus all stackframe metadata, and
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ideally any stack-stored function arguments as well, should be
placed behind the canary.

2. Data and Pointer Separation: Since the canary does not cover
local variables, an attacker can still overwrite those and poten-
tially hijack control- or data-flow by targeting any local code-
or data-pointers. The likelihood of this being feasible can be re-
duced if the compiler reorders local variables so that non-buffer
data (especially any code pointers) are located below the buffer.

3. Function Coverage: Since canary protection works on a per-
stackframe basis, every function in a given application has to be
protected individually. Since this can come with code size and
performance overhead that might be unacceptable, many canary
schemes allow for configurable function coverage (eg. based
on a minimum buffer size) such as GCC’s -fstack-protector*
flags.

4. Canary Type: Over the years different types of canaries have
been proposed to complicate stack buffer overflow exploitation.
The main types are:

a) Random Canary: Generated using a secure random num-
ber generator. Because the value is random the attacker
cannot predict it and does not know the correct value with
which to overwrite the stored canary value.

b) Terminator Canary: These canaries are set to a combina-
tion of NULL, CR, LF and 0xFF values which act as termina-
tors for various types of parsing and data handling func-
tions (eg. strcpy) in order to terminate an overwriting op-
eration prematurely. All-NULL canaries can be considered a
sub-type of terminators.

c) XOR Canary: Consist of a combination of a random canary
value and stored control data such as the saved return ad-
dress.

Generally, the preferred canary type is a mixture of random and
terminator canaries.

5. Canary Secrecy and Entropy: Canaries which include a ran-
dom component have two important security properties, they
should be: a) Secret and b) Unpredictable. Apart from informa-
tion leaks, the main threat to canaries of this type is low entropy
rendering the canary predictable. In order to prevent the latter,
canaries should be ’wide’ enough to accommodate a sufficient
number of random bits and these bits should be generated us-
ing a cryptographically secure random number generator (CSPRNG).
As the impact of low boot entropy of the Linux CSPRNG on An-
droid on its stack canary implementation has shown [326, 327,
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465], a proper evaluation of stack canary scheme security thus
also requires an evaluation of the utilized CSPRNG.

6. Susceptibility to Brute-Force: Since randomization-style canaries
rely on an attacker being unable to guess the canary value, they
need to be hardened against brute-force attacks. Sufficient ca-
nary entropy is one aspect of this but, as with ASLR, operating
system design details should be taken into consideration as well.
In most canary schemes the master canary value is generated
once and shared across forking and threading operations.

In application architectures where child processes and threads
are respawned upon crashing, this renders the canary scheme
particularly vulnerable to brute-force attacks because they can
try to exploit the vulnerability with new canary guesses upon
each crash. Byte-for-byte brute-force attacks on the canary [273,
354] are particularly dangerous here because this allows an at-
tacker to brute-force the canary with at most 256N guesses where
N is the canary byte-width minus the number of terminator-
style bytes. Thwarting these attacks would require a canary
scheme incorporating canary renewal [354].

3.3 exploit mitigation dependencies

The exploit mitigations in our baseline have a variety of software
and hardware dependencies that have to be supported by a particular
system in order for a mitigation to be deployable on it. In this section,
we map out and discuss these dependencies for each of our baseline
mitigations.

3.3.1 ESP Dependencies

Figure 6 illustrates ESP’s dependencies. All ESP implementations re-
quire some form of memory protection support on part of the oper-
ating system, either in the form of simple permissions or in the form
of more elaborate protection management.
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Memory Protection

Memory Protection can be defined as access control manage-
ment for memory. Its main goal is to prevent software faults
by disallowing (a certain type of) access to a given memory re-
gion to code that does not have the proper permissions. This
can be as trivial as setting read and write permissions at vari-
ous levels of granularity but can also involve a more complex
full-protection model with private virtual memory per process.
There are many different approaches to memory management
and protection but for our purposes, we are only interested
in an operating system’s capabilities to manage the most basic
form of memory protection: managing permissions (eg. read,
write, execute) at a certain level of memory granularity. In this
work, we will consider an OS to have memory protection capa-
bilities if it is at least able to manage permissions.

In order for an operating system to provide memory protection
support, it requires the system to have a Memory Protection Unit
(MPU) or Memory Management Unit (MMU). While there are exter-
nal MMUs available for some processors, this is not the case for the
vast majority of them and as such many low-end microcontrollers are
excluded from providing memory protection support.
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MPUs and MMUs

A Memory Management Unit (MMU) is "a quite complex cir-
cuit that translates logical addresses to physical addresses. An MMU
is used to manage the memory needs of multiple processes in a single
physical memory. The MMU segments physical memory into many
frames, each of which has its own (read/write/execute) access rights.
A particular process can run only within its own frames; any at-
tempt to access other frames results in a fault. The OS captures the
fault and takes appropriate action." [402] The MMU is typically
integrated as part of the CPU in modern processors. A more
lightweight variant, the Memory Protection Unit (MPU), pro-
vides support for memory protection capabilities but not vir-
tual memory management. We consider this the prime distin-
guishing feature between MPUs and MMUs.

3.3.2 ASLR Dependencies

As illustrated in Figure 7, ASLR, first of all requires virtual memory
support on part of the operating system. This is necessary because
when ASLR places memory objects belonging to a given process at
a randomized location, it needs to ensure no other memory objects
belonging to any other process have already been placed there in
order to avoid shared memory conflicts. Virtual memory allows for
per-process private memory which prevents shared memory conflicts
by isolating processes from each other.
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Virtual Memory

Virtual Memory is "a scheme that permits a system to use vast
amounts of memory, even exceeding the amount that physically exists
on the system. Virtual memory systems use a paging unit, which (like
an MMU) translates addresses into physical addresses. The paging
unit, though, also tracks the location of a page of virtual memory,
which can be in physical memory or off on a hard disk. If not in
memory, it’s swapped in from the disk." [402]

In order for the operating system to offer virtual memory support,
it needs an MMU to facilitate address translation. Finally, ASLR re-
quires an operating system CSPRNG in order to generate strongly
random numbers for address randomization purposes.

OS Cryptographically Secure Pseudorandom Number Genera-
tor (CSPRNG)

We define an OS CSPRNG to be a cryptographically secure
random number generator provided and managed by the op-
erating system such as /dev/random on Unix-like systems or the
CryptGenRandom [143] API on Windows systems. This includes
entropy source management and reseed control.

3.3.3 Stack Canary Dependencies

As illustrated in Figure 8, the only stack canary dependency is OS
CSPRNG support in order to generate unpredictable canary values.
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Q U A N T I TAT I V E A N A LY S I S

In this chapter we will present the, to the best of our knowledge,
first quantitative evaluation of exploit mitigation adoption (as per
our baseline outlined in Section 3.1) and dependency support (as out-
lined in Section 3.3) among popular embedded operating systems
and hardware. While the results of our quantitative evaluation are
not weighed by market share and hence are not a direct reflection
of the current embedded systems market, they are a reflection of the
current embedded state of the art allowing us to identify clear gap ar-
eas as well as core challenges (outlined in more detail in Section 6)
faced by embedded operating system developers adversely affecting
mitigation adoption.

4.1 embedded os mitigation & dependency support

Unlike the general-purpose world, which is dominated by a relatively
small handful of operating systems with roughly similar capabilities,
the embedded world features a polyculture of different operating sys-
tems. In order to present an overview of the current state of embed-
ded OS mitigation adoption, we evaluated 41 popular embedded op-
erating systems. Our selection aims to be a representative sample
of embedded operating systems and includes those listed by recent
UBM Embedded Markets Studies [240–242], those listed by various
studies into embedded operating systems [7, 188, 269, 291, 415] as
well as some of the most popular mobile operating systems [165].

We evaluated our OS selection for exploit mitigation and depen-
dency support through a combination of vendor surveys, documen-
tation consultation, and experimental validation. Detailed results are
reported in Tables 1 and 2 and aggregate results in Figures 9 and 10.
We consider a mitigation or feature supported iff it is supported by
the OS for at least some (but not necessarily all) platforms. As this is a
quantitative assessment it does not evaluate the quality of the imple-
mentation nor whether the feature is enabled by default and as such
the assessment is an optimistic one. In addition, we mark an operat-
ing system as providing an OS CSPRNG iff provided PRNG function-
ality is advertised as such or can be reasonably assumed to provide
secure random number generation functionality (eg. the /dev/random

interface on Unix-like systems). Operating systems marked in our re-
sults as lacking an OS CSPRNG might still provide regular PRNG
functionality or provide support for interacting with hardware RNGs

43
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Figure 9: Embedded OS Exploit Mitigation Support

and those marked as providing an OS CSPRNG do not necessarily
provide a secure one as the results of our qualitative analysis in Chap-
ter 5 show.

4.2 embedded hardware feature support

The embedded world features a wide range of different processor ar-
chitectures and ’core families’ with different capabilities. In order to
establish an overview of common embedded hardware capabilities
with respect to exploit mitigation dependencies, we make sample se-
lection of several core families and map out their architectural style
and MPU, MMU and hardware ESP support capabilities.
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OS ESP ASLR Canaries

Android X X X

iOS X X X

Windows 10 Mobile X X X

BlackBerry OS X X X

Sailfish OS X X X

Ubuntu Core X X X

Brillo X X X

QNX X X X

RedactedOS × × ×
VxWorks X × ×
INTEGRITY X × ×
Yocto Project Linux X X X

Windows Embedded / IoT X X X

OpenWRT X X X

µClinux X × X

CentOS X X X

NetBSD X X X

Junos OS X × X

ScreenOS × × ×
Cisco IOS × × ×
eCos × × ×
Zephyr × × X

IntervalZero RTX X × X

Enea OSE × × ×
ThreadX × × ×
Nucleus × × ×
NXP MQX × × ×
Kadak AMX × × ×
Keil RTX × × ×
RTEMS × × ×
freeRTOS × × ×
Micrium µC/OS1 X × ×
TI-RTOS × × ×
DSP/BIOS × × ×
TinyOS × × ×
LiteOS × × ×
RIOT X × ×
ARM mbed X × ×
Contiki × × ×
Nano-RK × × ×
Mantis × × ×

Table 1: Embedded OS exploit mitigation adoption
1 A µC/OS-II kernel version with ESP support is available via a Micrium partner
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OS MPROT VMEM RNG

Android X X X

iOS X X X

Windows 10 Mobile X X X

BlackBerry OS X X X

Sailfish OS X X X

Ubuntu Core X X X

Brillo X X X

QNX X X X

RedactedOS X X X

VxWorks X X ×
INTEGRITY X X X

Yocto Project Linux X X X

Windows Embedded / IoT X X X

OpenWRT X X X

µClinux X X X

CentOS X X X

NetBSD X X X

Junos OS X X X

ScreenOS X X X

Cisco IOS × × X

eCos × × ×
Zephyr1 X × ×
IntervalZero RTX X X X

Enea OSE X X ×
ThreadX X × ×
Nucleus X × ×
NXP MQX X × ×
Kadak AMX × × ×
Keil RTX X × ×
RTEMS × × ×
freeRTOS X × ×
Micrium µC/OS X × ×
TI-RTOS X × ×
DSP/BIOS X × ×
TinyOS X × ×
LiteOS X × ×
RIOT X × ×
ARM mbed X × ×
Contiki × × ×
Nano-RK × × ×
Mantis × × ×

Table 2: Embedded OS exploit mitigation dependency support
1 While memory protection support is not yet available in the latest Zephyr release

as of writing, it will be rolled out in the upcoming Zephyr 1.8 release [163]
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Figure 10: Embedded OS exploit mitigation dependency support

Core Family

When we talk about ’cores’ we refer a specific implementation
of a (version of) a particular processor architecture. In our ter-
minology a core (derived from ARM Holdings’ use of their IP
core licensing terminology) can be an individual MCU, CPU or
SoC design but always refers to a specific implementation. We
use this concept (in a flexible fashion) to create a single termi-
nology and group individual cores into a ’core family’ (such as
ARM’s Cortex-A or Atmel’s ATmega series) whose members
are functionally mostly similar but might differ with respect to
some features and peripherals. We base our groupings of core
families on vendors’ own series groupings.

We evaluated 78 different core families for hardware dependency
support, with detailed results reported in Tables 3, 4 and 5 and ag-
gregate results in Figure 11, through documentation and datasheet
consultation. We consider a feature supported iff it is supported by
all members of a given core family and absent iff it is not supported
by any of them. Any variation with regards to dependency support
is denoted with ∼ and omitted from aggregate results. The core fami-
lies in our selection belong to the following embedded architectures:
ARM, MIPS32, PIC, PPC, x86, SuperH, AVR, AVR32, Intel 8051, Mo-
torola 68000, Infineon TriCore, MSP430, C166, Blackfin, ARC, RL78
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Figure 11: Core Family dependency support

and RX. Our selection aims to be a representative sample of core fam-
ilies belonging to major architectures and vendors in the embedded
space across industry verticals and includes, among others, the most
popular core families listed by recent UBM Embedded Markets Stud-
ies [240–242] and EDN reader surveys [59].

4.3 conclusions

Among the embedded operating systems surveyed, we can distin-
guish two major clusters in terms of capabilities and purposes:

• High-End: These operating systems are aimed at the higher
end of the embedded spectrum and offer virtual memory capa-
bilities as well as often being POSIX-compliant. This includes
mobile operating systems (eg. Android, iOS, etc.), lightweight
versions of operating systems common in the general-purpose
world (such as Linux, Windows or BSD) as well as operating
systems like QNX or RedactedOS .

• Low-End: These operating systems are aimed at deeply embedded
systems, often have real-time capabilities and do not offer vir-
tual memory support. As such, there is usually no separation be-
tween user- and kernelspace and instead of isolated processes,
there tends to be just a kernel running a limited set of tasks. Ex-
amples are RTOSes such as ThreadX, RTEMS, Micrium µC/OS
and TinyOS.

From the results in Figures 9a, 9b, 9c, 9d, 10a, 10b, 10c and 10d
we can observe that all mobile operating systems have support for
every exploit mitigation in our baseline and so do most Linux, BSD,
and Windows-based operating systems. Outside of those, apart from
QNX, almost all other operating systems lack support for any mitiga-
tions whatsoever. We can also see that while memory protection sup-
port is almost universally present, virtual memory and OS CSPRNG
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Core Family Arch. MPU MMU ESP

ARM

ARM1 N × × ×
ARM2 N × × ×
ARM3 N × × ×
ARM6 N × × ×
ARM7 N × × ×
ARM7T N ∼ ∼ ×
ARM7EJ N × × ×
ARM8 N × X ×
ARM9T N ∼ ∼ ×
ARM9E N ∼ ∼ ×
ARM10E N × X ×
ARM11 N ∼ ∼ X

ARM Cortex-A N × X X

ARM Cortex-R N X × X

ARM Cortex-M N ∼ × X

PIC

PIC10 H × × ×
PIC12 H × × ×
PIC16 H × × ×
PIC18 H × × ×
PIC24 H × × ×
dsPIC H × × ×
MIPS32

PIC32MX N × × ×
PIC32MZ EC N × X ×
PIC32MZ EF N × X X

PIC32MM N × X X

PowerPC

PPC e200 N ∼ ∼ X

PPC e300 N × X X

PPC e500 N × X X

PPC e600 N × X X

PPC 403 N × × ×
PPC 401 N × × ×
PPC 405 N × X X

PPC 440 N × X X

PPC 740 N × X X

PPC 750 N × X X

PPC 603 N × X X

PPC 604 N × X X

PPC 7400 N × X X

Table 3: Core Family dependency support
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Core Family Arch. MPU MMU ESP

x86

Intel Atom Z34XX N × X X

Intel Quark X10XX N × X X

Intel Quark µC1 N × X X

SuperH

SH-1 N × × ×
SH-2 N × × ×
SH-3 N × X ×
SH-4 N × X ×
AVR

ATtiny H × × ×
ATmega H × × ×
ATxmega H × × ×
AVR32

AVR32A N X × ×
AVR32B N × X ×
8051

Intel MCS-51 H × × ×
Infineon XC88X-I H × × ×
Infineon XC88X-A H × × ×
m68k

NXP M683XX N × × ×
NXP ColdFire V1 N × × ×
NXP ColdFire V2 N × × ×
NXP ColdFire V3 N × × ×
NXP ColdFire V4 N × X ×
NXP ColdFire V5 N × X ×
TriCore

Infineon TC11xx H × ∼ ×
Infineon AUDO Future H × × ×
C166

Infineon XE166 N X × X

Infineon XC2200 N X × X

MSP430

MSP430x1xx N × × ×
MSP430x2xx N × × ×
MSP430x3xx N × × ×
MSP430x4xx N × × ×
MSP430x5xx N × × ×
MSP430x6xx N × × ×
MSP430FRxx N X × ×

Table 4: Core Family dependency support
1 Intel Quark Microcontrollers (D1000/C1000/D2000)
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Core Family Arch. MPU MMU ESP

Blackfin

Analog Blackfin1 N X × ×
ARC

Synopsys ARC EM H ∼ × ×
Synopsys ARC 600 H ∼ × ×
Synopsys ARC 700 H × ∼ ×
RL78

Renesas RL78/G1x H × × ×
Renesas RL78/L1x H × × ×
RX

Renesas RX200 H ∼ × ×
Renesas RX600 H ∼ × ×

Table 5: Core Family dependency support
1 Although documentation mentions an MMU it does not support address

translation (and thus does not allow for virtual memory) which is why we consider
it an MPU for our purposes

support is almost universally lacking in the low-end operating sys-
tems aimed at deeply embedded systems. From these observations
we can conclude that exploit mitigation adoption (and underlying de-
pendency support) is generally present only on the high-end embed-
ded operating systems which derive from Linux, BSD or Windows.

When it comes to the hardware core families surveyed, we can see
from Figure 11b that under half of the (Von Neumann) core families in
our selection have MMU support. A small minority of core families has
MPU support, leaving just under half of the Von Neumann core fami-
lies in our selection without necessary hardware support for memory
protection and over half without the hardware support required for
virtual memory. This lack of MPU and MMU support makes sense
for the more constrained end of the spectrum such as MCUs which
only have support for integrated memory and no support for exter-
nal memory. Similarly under half of Von Neumann core families in
the selection have hardware ESP support meaning ESP can only be
implemented via software emulation on these systems. As observed
by Michael Barr [13], various UBM Embedded Markets studies [240–
242] and other observers [37], the embedded world is seeing a trend
towards deployment of 32-bit CPUs (and for the most high-end em-
bedded systems even 64-bit CPUs [209]) over the traditionally used 8-
or 16-bit CPUs. Since most popular 32-bit architectures are Von Neu-
mann this has security implications, though these are possibly offset
by the fact that certain modern CPU architectures offer hardware ESP
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support (eg. ARMv6+, MIPS32r3+, x86, etc.).

Based on the above observations we can conclude that there is a
clear gap area when it comes to deeply embedded systems. Only among
the high-end Linux, BSD and Windows-based operating systems is
there any significant exploit mitigation adoption and when it comes
to low-end OS capabilities the lack of virtual memory and OS CSPRNG
support present obstacles to ASLR and stack canary adoption.
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Q U A L I TAT I V E A N A LY S I S

In this chapter, we will present the, to the best of our knowledge,
first qualitative evaluation the exploit mitigations (and OS CSPRNGs)
of three embedded operating systems: QNX [24], RedactedOS and
Zephyr [186]. We believe this selection to be representative of popular
non Linux-, BSD- or Windows-based embedded operating systems.

We chose to evaluate OS CSPRNGs in addition to the exploit miti-
gations themselves because the security of the former is crucial to the
wider security ecosystem (eg. through their usage in cryptographic
software such as OpenSSL). In our analyses of these OS CSPRNGs we
did not perform a full FIPS or NIST standards validation but instead
opted for an offense-oriented approach by uncovering weaknesses us-
ing industry standard validation tools.

5.1 qnx

QNX [24, 122, 434] is a commercial, Unix-like real-time operating sys-
tem with POSIX support aimed primarily at the embedded market.
Initially released in 1982 for the Intel 8088 and later acquired by
BlackBerry it forms the basis of BlackBerry OS, BlackBerry Tablet OS
and BlackBerry 10 used in mobile devices as well as forming the basis
of Cisco’s IOS-XR [262] used in carrier-grade routers such as the CRS,
the 12000 and the ASR9000 series [258–260]. QNX also dominates the
automotive market [234] (particularly telematics, infotainment and
navigation systems) and is found in millions of cars from Audi, Toy-
ota, BMW, Porsche, Honda and Ford (among others) as well as being
deployed in highly sensitive embedded systems such as industrial
automation PLCs, medical devices, building management systems,
railway safety equipment, Unmanned Aerial Vehicles (UAVs), anti-
tank weapons guidance systems, the Harris Falcon III military radios,
Caterpillar mining control systems, General Electric turbine control
systems and Westinghouse and AECL nuclear powerplants [222–225].

QNX supports a wide range of CPU architectures and features a
pre-emptible microkernel architecture with multi-core support ensur-
ing virtually any component (even core OS components and drivers)
can fail without bringing down the kernel. QNX itself has a small
footprint but support is available for hundreds of POSIX utilities,
common networking technologies (IPv4/IPv6, IPSec, FTP, HTTP, SSH,
etc.) and dynamic libraries. As opposed to the monolithic kernel ar-

53
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Figure 12: QNX Architecture [233]
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Figure 13: QNX Private Virtual Memory [220]

chitecture of most general-purpose OSes, QNX features a microker-
nel which provides minimal services (eg. system call and interrupt
handling, task scheduling, IPC message-passing, etc.) to the rest of
the operating system which runs as a team of cooperating processes
as illustrated in Figure 12. As a result, only the microkernel resides
in kernelspace with the rest of the operating system and other typ-
ical kernel-level functionality (drivers, protocol stacks, etc.) residing
in userspace next to regular user applications (though separated by
privilege boundaries). In QNX the microkernel is combined with the
process manager in a single executable module called procnto.

QNX offers a full-protection memory model placing each process
within its own private virtual memory by utilizing the MMU as shown
in Figure 13. On QNX every process is created with at least one main
thread (with its own, OS-supplied stack) and any subsequently cre-
ated thread can either be given a customly allocated stack by the
program or a (default) system-allocated stack for that thread.

In this work, we focus on QNX Neutrino 6.6 which supports all
of the exploit mitigations [23] in our baseline: ESP, ASLR and Stack
Smashing Protection. The compiler- and linker parts of these mitiga-
tions rely on the fact that the QNX Compile Command (QCC) uses
GCC as its back-end. QNX, being Unix-like and POSIX-conformant,
also offers an operating system random number generator through
the /dev/random and /dev/urandom interfaces [228].
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5.1.1 Security History

Most of the relatively scarce public research available on QNX se-
curity has been the byproduct of research into BlackBerry’s QNX-
based mobile operating systems such as Tablet OS, BlackBerry OS
and BlackBerry 10 [9, 248, 322, 466, 467] most of which has not fo-
cussed on QNX itself. Recent work by Plaskett et al. [179, 285] has fo-
cussed on QNX itself, particularly security of the Inter-Process Com-
munication (IPC), message passing and Persistent Publish Subscribe
(PPS) interfaces as well as kernel security through system call fuzzing.
When it comes to specific vulnerabilities the work done by Julio Cesar
Fort [68] and Tim Brown [30] stands out in particular and the MITRE
CVE database [50] reports, as of writing, 34 vulnerabilities most of
which are setuid logic bugs or memory corruption vulnerabilities.

Curiously, a series of documents from the United States Central
Intelligence Agency (CIA) obtained and released by WikiLeaks under
the name ’Vault 7’ have shown interest on part of the CIA’s Engineer-
ing Development Group (EDG) (which develops and tests exploits and
malware used in covert operations) in targeting QNX [26]. However,
branch meeting notes dated October 23, 2014 [253] reveal that while
the Embedded Development Branch (EDB) has noted QNX as a target of
interest on account of its prominent role in vehicle systems, QNX had
not been addressed by any EBD work at that point.

Since no existing (public) research has evaluated QNX’s exploit mit-
igations, we will present the first reverse engineering analysis and
qualitative evaluation of QNX exploit mitigations in the following
sections.

5.1.2 QNX ESP

Since version 6.3.2, QNX has support for hardware ESP and in Table
6 we list QNX support for hardware ESP among those architectures
that both have a hardware ESP feature and that QNX supports. Here
we can see that ESP support is absent for MIPS and only present for
a subset of PowerPC families.

Insecure QNX ESP Configuration Policy: While QNX supports
ESP for several architectures, its implementation is dangerously weak-
ened due to insecure default settings. As a result, the stack (but not
the heap) is always executable regardless of hardware ESP support.
As the documentation [221] states, the QNX microkernel, and process
manager executable (procnto) has a memory management startup op-
tion relating to stack executability (available as of QNX 6.4.0 or later):
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Architecture Support

x86
1 X(requires PAE on IA-32e)

ARM X

MIPS ×
PPC 400 X

PPC 600 X

PPC 900 X

Table 6: QNX Hardware ESP Support
1 Available as of QNX 6.3.2 [226]

• -mx: (Default) Enable the PROT_EXEC flag for system-allocated
threads (the default). This option allows gcc to generate code
on the stack - which it does when taking the address of a nested
function (a GCC extension).

• -m~x: Turn off PROT_EXEC for system-allocated stacks, which in-
creases security but disallows taking the address of nested func-
tions. You can still do this on a case-by-case basis by doing an
mprotect() call that turns on PROT_EXEC for the required stacks.

Since the first option is the default any QNX system which starts
procnto without explicit -m~x settings will have an executable stack,
regardless of hardware ESP support or individual binary GNU_STACK [137]
settings. The rationale behind this decision seems to have been a
desire for backwards compatibility with binaries which require exe-
cutable stacks which has caused similar issues on Linux in the past [94].
This backwards compatibility is enforced on a system-wide (rather
than on an opt-out, per-binary basis) as confirmed by the fact that the
QNX program loader does not parse the GNU_STACK header of bina-
ries. The problem with the QNX approach here is that this setting is
applied on a system-wide basis and has an insecure default, putting
the burden on the end user deploying the system. In order to address
this, it is recommended to use an opt-out scheme with secure defaults
instead such as the GNU_STACK header mechanism.

5.1.3 QNX ASLR

QNX supports ASLR as of version 6.5 [218] (not supported for QNX
Neutrino RTOS Safe Kernel 1.0) but it’s disabled by default. QNX
ASLR can be enabled on a system-wide basis by starting the procnto

microkernel with the -mr option [221] and disabled with the -m∼r op-
tion and can be enabled or disabled on a per-process basis by using
the on utility [219] (with the -ae and -ad options respectively).
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Architecture User-Space Kernel-Space

x86 0x00000000− 0xBFFFFFFF 0xC0000000− 0xFFFFFFFF

ARM 0x00000000− 0xBFFFFFFF 0xC0000000− 0xFFFFFFFF

MIPS 0x00000000− 0x7FFFFFFF 0x80000000− 0xFFFFFFFF

PPC 0x40000000− 0xFFFB0000 0x00000000− 0x3FFFFFFF

SuperH 0x00000000− 0x7BFF0000 0x80000000− 0xCFFFFFFF

Table 7: QNX Address Boundaries
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Figure 14: QNX Memory Layout (x86)

Before we discuss the internals of QNX’s ASLR implementation
and address its quality, we will first consider its memory layout model.
Based on reverse-engineering we illustrate QNX user- and kernel-
space address boundaries in Table 7 and illustrate user- and kernel-
space layouts (when ASLR is disabled) for x86 in Figure 14. On QNX
systems where ASLR is not enabled libc is loaded by default at the
addresses illustrated in Table 8.

The QNX documentation mentions [218] that a child process nor-
mally inherits its parent’s ASLR setting, but in QNX 6.6 or later you
can change it by using the on [219] command’s -ae and -ad options
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Architecture Libc Addr.

x86 0xB0300000

ARM 0x01000000

MIPS 0x70300000

PPC 0xFE300000

SuperH 0x70300000

Table 8: QNX Default Libc Load Addresses

to respectively enable and disable it when starting a process from the
command line. Alternatively, one can use the SPAWN_ASLR_INVERT or
POSIX_SPAWN_ASLR_INVERT flags with the spawn [232] and posix_spawn [231]
process spawning calls. To determine whether or not a process is us-
ing ASLR, one can use the DCMD_PROC_INFO [217] command with the
devctl [229] device control call and test for the _NTO_PF_ASLR bit in
the flags member of the procfs_info structure.

As shown in Table 9, QNX ASLR randomizes the base addresses
of userspace and kernelspace stack, heap and mmap’ed addresses as
well as those of userspace shared objects (eg. loaded libraries) and
the executable image (if the binary is compiled with PIE [23]). It does
not, however, have so-called KASLR support in order to randomize
the kernel image base address. The QNX Momentics Tool Suite [227]
development environment (as of version 5.0.1, SDP 6.6) does not have
PIC/PIE enabled by default and indeed after an evaluation with a cus-
tomized version of the checksec [118] utility we found that none of the
system binaries (eg. those in /bin, /boot, /sbin directories) are PIE
binaries in a default installation.

We reverse-engineered QNX’s ASLR implementation (as illustrated
in Figure 15) and found that it is ultimately implemented in two func-
tion residing in the microkernel: stack_randomize and map_find_va

(called as part of mmap calls). QNX uses the Executable and Linking For-
mat (ELF) binary format and processes are loaded from a filesystem
using the exec*, posix_spawn or spawn calls which invoked the pro-
gram loader implemented in the microkernel. If the ELF binary in
question is compiled with PIE-support, the program loader will ran-
domize the program image base address as part of an mmap call. When
a loaded program was linked against a shared object, or a shared
object is requested for loading dynamically, the runtime linker (con-
tained in libc) will load it into memory using a series of mmap calls. A
stack is allocated automatically for the main thread (which involves
an allocation of stack space using mmap) and has its base address
(further) randomized by a call to stack_randomize. Whenever a new
thread is spawned, a dedicated stack is either allocated (and man-
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Memory Object Randomized

Userspace

Stack X

Heap X

Executable Image X

Shared Objects X

mmap X

Kernelspace

Stack X

Heap X

Kernel Image ×
mmap X

Table 9: QNX ASLR Memory Object Randomization Support

aged) by the program itself or (by default) allocated and managed
by the system in a similar fashion. Userspace and kernelspace heap
memory allocation, done using functions such as malloc, realloc

and free, ultimately relies on mmap as well. In kernelspace, a dedi-
cated stack is allocated for each processor using a call to _scalloc

and thus relies on mmap. As such, all ASLR randomization can be re-
duced to analysis of stack_randomize and map_find_va:

map_find_va ASLR: As shown in Listings 2, 3 and 4, the QNX
memory manager’s vmm_mmap handler function invokes map_create

and passes a dedicated mapping flag (identified only as MAP_SPARE1

in older QNX documentation) if the ASLR process flag is set. map_create
then invokes map_find_va with these same flags, which randomizes
the found virtual address with a randomization value obtained from
the lower 32 bits of the result of the ClockCycles [214] kernel call.
This 32-bit randomization value is then bitwise left-shifted by 12 bits
and bitwise and-masked with 24 bits resulting in a value with a mask
form of 0x00FFF000, ie. a randomization value with at most 12 bits of
entropy.

stack_randomize ASLR: Userspace processes have a main stack
and a dedicated stack for each subsequently spawned thread. The
main stack is allocated by the program loader using an mmap call and
subsequently has its start address randomized by stack_randomize

called as part of a ThreadTLS call. Dedicated thread stacks are spawned
by the thread_specret routine which allocates them with an mmap call
(invoked as part of a call to procmgr_stack_alloc) and subsequently
randomizes their start address with stack_randomize. This function,
as shown in reverse-engineered form in Listing 5, checks whether a
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Figure 15: QNX ASLR Memory Object Graph

process has the ASLR flag set and if so it generates a sizemask (be-
tween 0x000 and 0x7FF). A randomization value is drawn from the
lower 32 bits of the result of a ClockCycles kernel call which are then
bitwise left-shifted by 4 bits and have the sizemask applied to them.
The resulting value is subtracted from the original stack pointer value
and bitwise and-masked with 28 bits. This results of a randomization
value with a mask form of 0x000007F0, ie. 7 bits of entropy for the
maximum value of size_mask = 0x7FF.

Evaluation: We will proceed to evaluate the QNX ASLR implemen-
tation with respect to metrics outlined in Section 3.2.2.

Weak ASLR Randomization: As observed above, the randomiza-
tion underlying mmap introduces at most 12 bits of entropy and the
additional randomization applied to userspace stacks introduces at
most 7 bits of entropy, combining into at most 19 bits of entropy with
a mask of form 0x00FFF7F0. Addresses with such low amounts of en-
tropy can be easily bruteforced (in mere seconds or minutes locally
and minutes or hours remotely) and while ASLR on 32-bit systems
is generally considered inherently limited [356] one should remem-
ber that these are entropy upper bounds, ie. they express the maxi-
mum possible introduced entropy. Given that these upper bounds
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Architecture Implementation

x86 RDTSC [105]

ARM Emulation

MIPS Count Register [103]

PPC Time Base Facility [162]

SuperH Timer Unit (TMU) [198]

Table 10: QNX ClockCycles Implementations

already compare rather unfavorably against the measurements of ac-
tual ASLR entropy in Linux 4.5.0, PaX 3.14.21 and ASLR-NG 4.5.0
as per [356], this does not bode well for once we take the actual
entropic quality into account as well. Both QNX ASLR randomiza-
tion routines draw upon ClockCycles as the sole source of entropy.
The QNX ClockCycles [214] kernel call returns the current value of
a free-running 64-bit cycle counter using a different implementation
per processor and emulating such functionality when it’s not present
in hardware as outlined in Table 10. Even though QNX’s usage of
clock cycles seems to provide 32 bits of ’randomness’, it is an ill-
advised source of entropy due to its inherent regularity, non-secrecy,
and predictability.

In order to demonstrate this, we evaluated the entropic quality of
QNX ASLR randomized addresses of several userspace memory ob-
jects. We did this with a script starting 3000 ASLR-enabled PIE pro-
cesses logging the relevant address values per boot session and run-
ning 10 boot sessions, collecting 30000 samples per memory object in
total. We used the NIST SP800-90B [158] Entropy Source Testing (EST)
tool [155] in order to evaluate the entropic quality of the address sam-
ples by means of a min entropy [255] estimate, illustrated in Table 11.
Min entropy is a conservative way of measuring the (un)predictability
of a random variable X and expresses the number of (nearly) uni-
form bits contained in X, with 256 bits of uniformly random data
corresponding to 256 bits of min entropy. Being the smallest entropy
measure in the Rényi [256] family, H∞, min entropy is the strongest
(un)predictability measure of a discrete random variable.

From Table 11 we can see that, on average, a QNX randomized
userspace memory object has a min entropy of 1.11785975. This means
that it has a little more than 1 bit of min entropy per 8 bits of data.
If we extrapolate this to the full 32 bits of a given address this means
that the stack, heap, executable image and shared object base ad-
dresses have respectively min entropy values of 6.39944, 4.03656,
3.827172 and 3.622584, with an average of 4.471439 bits of min
entropy. This compares very unfavorably with the entropy measure-
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Memory Object Min Entropy (8 bits per symbol)

Stack 1.59986

Heap 1.00914

Executable Image 0.956793

Shared Objects 0.905646

Table 11: QNX ASLR Userspace Memory Object Min Entropy

ments for various Linux-oriented ASLR mechanisms in [356].

ASLR Brute-Force Susceptibility: On QNX, as is the case with
many operating systems, child processes inherit the memory layout
of parent processes. As explained in Section 3.2.2, this increases sus-
ceptibility to both brute-force attacks and malicious child processes
attacking siblings in Android Zygote-style sandboxing models. Given
QNX’s memory layout inheritance and the fact that its ASLR im-
plementation provides limited entropy and has no active relocation
(ie. memory object locations are randomized when they are mapped
and never re-randomized), QNX ASLR is susceptible to brute-force
attacks under the circumstances outlined in Section 3.2.2.

ASLR Information Leaks: QNX’s randomization routines don’t
use a PRNG but directly draw output from the entropy source. As
such the clock cycle counter value becomes more or less equivalent to
a PRNG internal state and should thus be both secret and unpredictable,
but unfortunately it is neither. Reading the clock cycle counter is not
a privileged operation and thus any local attacker can simply ob-
tain the current value. In addition, since clock cycle counter values
are usually not considered secret, it is not uncommon for them to be
leaked to remote attackers either (eg. directly as part of public system
information or implicitly when utilized for generation of some pub-
lic randomized value). Alternatively, a remote attacker who is able to
learn or approximate a target system’s time of boot (eg. via services
or protocols which broadcast uptime or through techniques such as
those suggested in [151]) might be able to infer the current clock
cycle counter value from this. Finally, since the clock cycle counter is
effectively a system-wide variable this means that it is identical across
applications (but not across CPUs for SMP systems) and as such an
information leak in one application disclosing this value might be uti-
lized against a completely different application.

Apart from this potential general information leak concerning QNX
ASLR entropy, we also discovered several system-wide information
leaks disclosing randomized addresses that could be used to circum-
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vent QNX ASLR:

• CVE-2017-3892: The proc filesystem (procfs [267]) is a pseudo-
filesystem on UNIX-like operating systems that contains infor-
mation about running processes and other system aspects via
a hierarchical file-like structure. This exposure of process infor-
mation often includes ASLR-sensitive information (eg. memory
layout maps, individual pointers, etc.) and as such has a his-
tory as a source for local ASLR infoleaks [206, 238, 452] with
both GrSecurity [475] and mainline Linux [57, 244] seeking to
address procfs as an infoleak source. On QNX procfs [216] is
implemented by the process manager component of procnto

and provides the following elements for each running process:

– cmdline: Process command-line arguments.

– exefile: Executable path.

– as: The virtual address space of the target process mapped
as a pseudo-file.

These procfs entries can be interacted with like files and sub-
sequently manipulated using the devctl [229] API to operate
on a file-descriptor resulting from opening a procfs PID entry.
Since process entries in QNX’s procfs are world-readable by
default, this means a wide range of devctl-based information
retrieval about any process is available to users regardless of
privilege boundaries. For example, the QNX pidin [230] util-
ity, which makes use of procfs to provide a wide range of
process inspection and debugging options, easily allows any
user to obtain stackframe backtraces, full memory mappings
and program states for any process. This effectively constitutes
a system-wide local information leak allowing attackers to cir-
cumvent ASLR. It should be noted this issue is not due to the
availability of any particular utility (such as pidin) but rather
results from a fundamental lack of privilege enforcement on
procfs.

• LD_DEBUG Infoleak: The LD_DEBUG [167] environment vari-
able is used on some UNIX-like systems to instruct the dy-
namic linker to output debug information during execution. On
QNX there are no cross-privilege restrictions on this environ-
ment variable, leading to a (local) information leak that can be
used to circumvent ASLR. Since there are no privilege checks
(akin to the ’secure-execution mode’ [243] offered by some Linux
distributions) on this environment variable, a local attacker can
execute setuid binaries with higher privileges using dynamic
linker debugging settings (eg. LD_DEBUG=all) in order to output
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sensitive information (eg. memory layout, pointers, etc.) which
can be used to circumvent ASLR. This issue is analogous to
CVE-2004-1453 [33] affecting certain versions of GNU glibc.

ASLR Correlation Attacks: As discussed in Section 3.2.2, ASLR
randomization of memory object base addresses can prove to be in-
sufficient if different memory objects are correlated. During our eval-
uation we found a partial correlation attack on QNX’s ASLR imple-
mentation, affecting both PIE and non-PIE binaries. The offset from
the program image base to the base address of the first loaded shared
library (libc) is of the mask form 0x00FFF000 with at most 12 bits be-
ing randomized. We evaluated the entropic quality of this offset value
in order to determine the feasibility of correlation attacks by collect-
ing 300 offset samples per boot session and running 10 boot sessions,
making for 3000 samples total. Using the NIST Entropy Source Testing
(EST) tool [155] we determined the min entropy of these offset values
to be 0.918311, making for less than 1 bit of min entropy per 8 bits
of data, which corresponds to 1.3774665 bits of min entropy for the
12 affected variable bits in the offset. Given that this is well below an
exhaustive search, this makes a variation of the offset2lib [355] attack
(where we perform a minor bruteforce against the offset instead of
assuming a constant) feasible.

5.1.4 QNX Stack Canaries

QNX’s QCC offers stack canary support in the form of the GCC
Stack Smashing Protector (SSP) [190] and supports all the usual SSP
flags (strong, all, etc.). Since the compiler-side of the QNX SSP im-
plementation is identical to the regular GCC implementation, the
master canary is stored accordingly and canary violation invokes the
__stack_chk_fail handler.

For user-space applications, this handler is implemented in QNX’s
libc. On the OS-side, reverse-engineering of libc shows us that viola-
tion handler (shown in cleaned-up form in Listing 6) is a wrapper for
a custom function called _ssp_fail which writes an alert message to
the /dev/tty device and raises a SIGABRT signal.

QNX generates the master canary values once upon program startup
(during loading of libc) and is not renewed at any time. Instead of the
regular libssp function __guard_setup, QNX uses a custom function
called __init_cookies (shown in Listing 7) invoked by the _init_libc
routine in order to (among other things) generate the master canary
value.

When it comes to kernel-space stack canary protection, the QNX mi-
crokernel (in the form of the procnto process) also features an SSP
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implementation covering a subset of its functions. Since the kernel
neither loads nor is linked against libc (and canary violations need to
be handled differently), SSP functionality is implemented in a custom
fashion here. We reverse-engineered the microkernel and found that
it has a custom __stack_chk_fail handler (illustrated in Listing 8)
but no master canary initialization routine (as discussed below).

Insecure QNX User-Space Canary Generation: As shown in List-
ing 7 QNX SSP canaries have a terminator-style NULL-byte in the
middle (as per the applied bitmask) and are generated using a custom
randomization routine (slightly resembling the "poor man’s randomiza-
tion patch" included in some Linux distrubtions for performance pur-
poses [76, 77]) rather than drawing it from a CSPRNG source. The
custom randomization routine draws upon three sources:

• _init_cookies: This is the function’s own address and as such,
the only randomization it introduces is derived from ASLR’s ef-
fect on shared library base addresses which means that if ASLR
is disabled (or circumvented with an infoleak) this is a per-glibc
static value.

• stackval: This is an offset to the current stack pointer and as
such, the only randomization it introduces is derived from ASLR’s
effect on the stack base which means that if ASLR is disabled
(or circumvented with an infoleak) this is simply a static value
known to the attacker.

• ClockCycles: The lower 32 bits of the result of a ClockCycles()

call are used to construct the master canary value.

Since it includes a terminator-style NULL-byte, the QNX master
stack canary value has at most 24 bits of entropy. When ASLR is dis-
abled on a target system (the default for QNX) the _init_cookies and
stackval address values contribute no entropy. If ASLR is enabled,
however, they contribute at most 12 and 19 bits of entropy respec-
tively as discussed in Section 5.1.3. All entropy in QNX stack canaries,
however, is ultimately based on invocations of the ClockCycles ker-
nel call. If ASLR is enabled, the stackval address gets randomized
when the main thread is spawned during program startup and the
_init_cookies address gets randomized when libc gets loaded by
the runtime linker. The ts0 value is generated when _init_cookies

is called by _init_libc which is invoked upon application startup (but
after libc is loaded).

In order to evaluate the entropic quality of QNX’s stack canary gen-
eration and investigate the extent to which ASLR contributes to it, we
collected canary values for three different process configurations: No
ASLR, ASLR but no PIE and ALSR with PIE. We used a script starting
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Settings Min Entropy (8 bits per symbol)

No ASLR 1.94739

ASLR, no PIE 1.94756

ASLR + PIE 1.94741

Table 12: QNX Stack Canary Min Entropy

785 instances of each configuration per boot session and repeated this
for 10 boot sessions, collecting 7850 samples per configuration in total.
We then used the NIST Entropy Source Testing (EST) tool [155] in order
to obtain min entropy estimates for the sample sets as illustrated in
Table 12. Based on these observations we can conclude that a) QNX
stack canary entropy is far less than the hypothetical upper bound
of 24 bits, being on average 7.78981332 bits for a 32-bit canary value
and b) ASLR plays no significant contributing role to the overall QNX
stack canary entropy.

An attacker with an information or sidechannel leak (as discussed
in Section 5.1.3) disclosing the current clock cycle counter value, could
be utilized by an attacker to mount an attack potentially faster than
brute-force. Given the current clock cycle counter value and an esti-
mate on memory object initialization times, an attacker can deduce
the clock cycle counter value at randomization time for a given mem-
ory object and reconstruct it as:

ccvt = ccvcurr − ((timecurr − timet) ∗ cyclessec)

where ccvt, ccvcurr, timet and timecurr are the target and current
clock cycle counter and timestamp values and cyclessec is the num-
ber of cycle increments per second. An attacker could use these re-
constructed clock cycle counter values to reconstruct the master ca-
nary value at creation time faster after a certain number of attempts,
thus reducing attack complexity from a full 24-bit brute-force to a
brute-force determined by our ’window of uncertainty’. The practical-
ity of this approach depends on two factors: a) our timing precision
and b) the target system’s clock speed. The former is relevant because
we will have to brute-force within any ’window of uncertainty’ that
we have regarding target randomization time and this is easier for
some memory objects (eg. the program image and main stack base
addresses) than others (eg. thread stack and heap addresses). The lat-
ter is relevant because QNX uses the 32 least significant bits of the
clock cycle counter for randomization. As such we need to take into
account that this value might ’wrap around’ several times. The speed
at which this value ’wraps around’ is determined by the clock speed,
eg. a 700 MHz CPU will cause a wraparound of the LSBs in roughly
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232=4294967295
700000000 ≈ 6.14 seconds. At high clock speeds, the lower 32

bits of the counter will wrap around too fast for reasonable attacker
timing granularity requirements, forcing an attacker to mount a brute-
force attack on the full search-space instead. Luckily for attackers, em-
bedded systems tend to feature CPUs running at lower clockspeeds.

Canary Brute-Force Susceptibility: Given the low entropic quality
of QNX stack canary values, its memory layout inheritance and the
fact that QNX’s SSP implementation only generates master canary
values once during program startup and never renews them, an at-
tacker could, under circumstances outlined in Section 3.2.3, mount a
brute-force attack on the stack canary [354]. When it comes to byte-
for-byte brute-force attacks [273, 354], this comes with the caveat that it
is unsuitable when exploiting certain string operations (eg. strcpy)
because of the NULL-terminator included in the QNX stack canary.

Absent QNX Kernel-Space Canary Generation: Since the QNX mi-
crokernel uses but never actually initializes the master canary value
it is always all-zero (ie. 0x00000000) and thus completely static and
known to the attacker, making it trivial to bypass and defeating the
purpose of stack canary protection for QNX kernel-space code.

5.1.5 QNX OS CSPRNG

QNX provides secure random number generation by means of the
random service [228] which runs as a userspace process started by
the /etc/rc.d/startup.sh script and addressed by the kernel re-
source manager. It exposes its output through the /dev/random and
/dev/urandom interfaces, both of which are non-blocking in practice.
The CSPRNG underlying the QNX random service is based on the
Yarrow CSPRNG [373] (which is also used by iOS, Mac OS X, AIX and
some BSD descendants) by John Kelsey, Bruce Schneier and Niels Fer-
guson rather than its recommended successor Fortuna [414].
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The QNX Yarrow implementation (as illustrated in Figure 16), how-
ever, is not based on the reference Yarrow-160 [373] design but instead
on an older Yarrow 0.8.71 implementation by Counterpane [45] which
has not undergone the security scrutiny Yarrow has seen over the
years and differs in the following key aspects:

• Single Entropy Pool: While Yarrow-160 has separate fast and
slow entropy pools, Yarrow 0.8.71 only has a single entropy pool.
The two pools were introduced so that the fast pool could pro-
vide frequent reseeds of the Yarrow key to limit the impact of
state compromises while the slow pool provides rare, but very
conservative, reseeds of the key to limit the impact of entropy
estimates which are too optimistic. Yarrow 0.8.71’s single pool
does not allow for such security mechanisms.

• No Blockcipher Applied To Output: As opposed to Yarrow-160,
Yarrow 0.8.71 does not apply a block cipher (eg. in CTR mode)
to the Yarrow internal state before producing PRNG output and
instead simply outputs the internal state directly which results
in a significantly weaker design than that of Yarrow-160.

In addition, the QNX Yarrow implementation diverges from Yarrow
0.8.71 as well in the following aspects:

• Mixes PRNG Output Into Entropy Pool: As part of its vari-
ous entropy collection routines, QNX Yarrow mixes PRNG out-
put back into the entropy pool. For example in the high perfor-
mance counter entropy collection routine (as per the snippet in
Listing 9) we can see PRNG output is drawn from QNX Yarrow,
used as part of a delay routine and subsequently mixed (via a
xor operation with the result of a ClockCycles call) back into
the entropy pool. This construction deviates from all Yarrow de-
signs and while not a crucial flaw, it is ill-advised in the absence
of further security analysis or justification.

• Absent Reseed Control (QNX < 6.6.0): In all QNX versions
prior to 6.6.0 reseed control is completely absent. While the
required functionality was implemented, the responsible func-
tions are never actually invoked, which means that while entropy
is being accumulated during runtime it is never actually used to
reseed the state and thus only boottime entropy is actually ever
used to seed the QNX Yarrow state in versions prior to 6.6.0.

• Custom Reseed Control (QNX 6.6.0): In QNX 6.6.0 there is a
custom reseeding mechanism integrated into the yarrow_do_sha1
and yarrow_make_new_state functions (as illustrated in Listings
10 and 11) which are called upon PRNG initialization and when-
ever output is drawn from the PRNG (which means it is also
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constantly called during entropy accumulation due to the above
mentioned output mixing mechanism). In both cases, a per-
mutation named IncGaloisCounter5X32 is applied to the en-
tropy pool before the pool contents are mixed into a SHA1 state
which eventually becomes the Yarrow internal state. Contrary
to Yarrow design specifications, no entropy quality estimation is
done before reseeding.

While all the above discussed divergences are at the very least ill-
advised, the reseeding control issues constitute a clear security issue.
In the case of absent reseeding control, it eliminates Yarrow’s intended
defense against state compromise as well as greatly increasing sys-
tem susceptibility to the so-called "boottime entropy hole" [407] that
affects embedded systems. In the case of the QNX Yarrow 6.6.0 cus-
tom reseeding control no entropy quality estimation is done before
reseeding the state from the entropy pool thus potentially allowing
for low-quality entropy to determine the entire state.

In order to evaluate the QNX Yarrow PRNG output quality we used
two test suites: DieHarder [29] and the NIST SP800-22 [157] Statistical
Test Suite (STS) [156]. DieHarder is a random number generator testing
suite, composed of a series of statistical tests, "designed to permit one to
push a weak generator to unambiguous failure" [29]. The NIST Statistical
Test Suite (STS) consists of 15 tests developed to evaluate the ’random-
ness’ of binary sequences produced by hardware- or software-based
cryptographic (pseudo-) random number generators by assessing the
presence or absence of a particular statistical pattern. The goal is to
"minimize the probability of accepting a sequence being produced by a gen-
erator as good when the generator was actually bad" [157]. While there are
an infinite number of possible statistical tests and as such no specific
test suite can be deemed truly complete, they can help uncover par-
ticularly weak random number generators.

QNX Yarrow passed both the DieHarder and NIST STS tests but this
only tells us something about the quality of PRNG output, leaving the
possibility open that raw noise / source entropy is (heavily) biased
which can result in predictable PRNG outputs as well as attackers be-
ing able to replicate PRNG internal states after a reasonable number
of guesses. As such we reverse-engineered and evaluated the QNX
random service’s boot- and runtime entropy sources.

Boottime Entropy Analysis: When random is initialized it gathers
initial boottime entropy from the following sources (as illustrated in
Figure 17) which are fed to the SHA1 hash function to produce a
digest used to initialize the PRNG initial state:

• ClockTime [215]: The current system clock time.
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• ClockCycles [214]: The current value of a free-running 64-bit
clock cycle counter.

• PIDs: The currently active process IDs by walking the /proc

directory.

• Device Names: The currently available device names by walk-
ing the /dev directory.

In order to evaluate random’s boottime entropy quality we used the
NIST SP800-90B [158] Entropy Source Testing (EST) tool [155] to eval-
uate boottime entropy by means of a min entropy [255] estimate. We
collected random’s boottime entropy from 50 different reboot sessions
on the same device (by instrumenting yarrow_init_poll and logging
the collected raw noise) and using NIST EST determined that the av-
erage min-entropy was 0.02765687, which is far less than 1 bit of min-
entropy per 8 bits of raw noise. In addition to the boottime entropy
of individual boot sessions being of low quality, the static or mini-
mally variable nature of many of the boottime noise sources (identi-
cal processes and devices available upon reboot, real-time nature of
QNX limiting jitter between kernel calls thus reducing ClockCycles

entropy, etc.) results in predictable and consistent patterns across re-
boots as shown in Figure 18 which visualizes (with darker sports rep-
resenting lower entropy) a concatenation of boot-time entropy sam-
ples from 50 different reboots.

Another boottime entropy issue with QNX’s random service is the
fact that the service is started as a process by startup.sh. As a result,
the CSPRNG is only available quite late in the boot process and many
services which need it (eg. sshd) start almost immediately after. Since
random only offers non-blocking interfaces, this means that one can
draw as much output from the CSPRNG as one wants immediately
upon availability of the device interface. Hence, many applications
which start at boot and require secure random data have their ’ran-
domness’ determined almost completely by the (very low quality)



5.1 qnx 71

Figure 18: QNX Yarrow Restart Boottime Entropy Visualization [43]

boottime raw noise since there is little time for the QNX random ser-
vice to gather runtime entropy before being queried thus amplifying
the impact of the "boot-time entropy hole" [407].

Runtime Entropy Analysis: The QNX random service leaves the
choice and combination of runtime entropy sources (as illustrated in
Figure 19) up to the person configuring the system with the following
options:

• Interrupt Request Timing: Up to 32 different interrupt num-
bers may be specified to be used as an entropy source. The en-
tropy here is derived from interval timing measurements (mea-
sured by the ClockTime kernel call) between requests to a spe-
cific interrupt.

• System Information Polling: This source collects entropy from
system information via the procfs [216] virtual filesystem in /proc.
This information is composed of process and thread informa-
tion (process and thread IDs, stack and program image base ad-
dresses, register values, flag values, task priority, etc.) for every
currently active process.

• High-Performance Clock Timing: This source draws entropy
from the PRNG (using the yarrow_output function), initiates
a delay (in milliseconds) based on the PRNG output, invokes
ClockCycles and xors the result against the earlier obtained
PRNG output and feeds this into the entropy pool.

• Library Hardware Entropy Source (Undocumented): This un-
documented entropy source (invoked using command-line pa-
rameter -l) allows a user to specify a dynamic library to supply
entropy collection callback functions named entropy_source_init
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and entropy_source_start. In order to be used the library has
to export a symbol named cookie with the NULL-terminated
value RNG (0x524E4700). Based on debugging information it seems
this is to allow for drawing from a hardware random number
generator as an entropy source.

• User-Supplied Input (Undocumented): In QNX 6.6 the random
service has a write-handler made available to users via the ker-
nel resource manager (in the form of handling write operations
to the /dev/(u)random interfaces) which takes arbitrary user in-
puts of up to 1024 bytes per write operation and feeds it directly
into the entropy pool by passing it to the yarrow_input opera-
tion. Write operations of this kind are restricted to the root user
only.

After initialization, random starts a thread for each entroy source
which will gather entropy and store it in the entropy pool. Contrary
to our analysis of QNX random’s boottime entropy, we did not per-
form a runtime entropy quality evaluation because during our con-
tact with the vendor (as part of a responsible disclosure process) they
had already indicated the current design would be overhauled in up-
coming patches and future releases as a result of our findings with
regards to the QNX Yarrow design and boottime entropy issues. In
addition, in all QNX versions except 6.6 runtime entropy is accumu-
lated but not used due to the previously mentioned absent reseeding
control. We did have the following observations however:

• Entropy Source Configuration: Configuring runtime entropy
sources is entirely left to system integrators. Since the entropic
quality of certain sources (eg. interrupt request timings or sys-
tem information polling) varies depending on the particular sys-
tem, it is non-trivial to pick suitable sources.

• System Information Entropy Source: System information polling
gathers raw noise from currently running processes (in the form
of process and thread debug info). A significant number of the
fields in the process and thread debug info structures, however,
are largely static values (eg. uid, flags, priority, stack and pro-
gram base in the absence of ASLR, etc.) with most randomness
derived from time-based fields (starttime, runtime) or program
state (ip, sp).

• Interrupt Request Timing Entropy Source: Interrupt request
timing gathers raw noise from interrupt invocation timings. As
such this means that if integrators choose to specify interrupts
that are rarely or never invoked, barely any runtime entropy is
gathered using this source. Interrupt invocation frequency can
be very system specific and picking the right interrupts is not
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trivial. The QNX documentation explicitly recommends to "min-
imize the impact of [interrupt request timing overhead] by specifying
only one or two interrupts from low interrupt rate devices such as disk
drivers and input/serial devices" [228], an advice which would re-
sult in less entropy being accumulated from this source. Further-
more, it seems that if for whatever reasons the random service
cannot attach to an interrupt, the interrupt entropy gathering
thread fails silently and no entropy is gathered for that inter-
rupt at all.

5.2 redactedos

Due to a non-disclosure agreement with the vendor we cannot name the
operating system in question and as such will refer to it as RedactedOS
throughout this work. RedactedOS is a commercial, Unix-like, POSIX-
conformant, real-time operating system aimed at the embedded mar-
ket which supports a wide range of CPU architectures, has a mono-
lithic (but modular) kernel architecture with multi-core support as
well as support for common networking technologies and applica-
tions. RedactedOS is used in highly sensitive systems such as civilian
jet airliners, multirole combat aircrafts, military radio systems and
space station equipment. In this work we focus on the latest release
of RedactedOS as of writing. Our research found RedactedOS to not
support any of the exploit mitigations in our minimum baseline as
per Section 3.1 and as such we will focus solely on the operating
system CSPRNG. There is no (publicly available) security history of
RedactedOS .
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5.2.1 RedactedOS OS CSPRNG

RedactedOS provides a Unix-style OS pseudo-random number gen-
erator used for cryptographic purposes via the /dev/(u)random in-
terfaces, both of which are non-blocking. The PRNG has a read han-
dler which returns N random bytes generated by the internal random
function, and a write handler which reseeds the PRNG using the
first 4 bytes drawn from a user-supplied buffer. We found that the
RedactedOS PRNG is insecure in its general design as well as suffering
from several specific implementation issues and as such is unsuitable
for its current cryptographic use as well as any future mitigation sup-
porting purposes. The potential impact here is significant as it allows
for the potential compromise of the entire RedactedOS cryptographic
ecosystem (eg. many 3rd party software packages such as OpenSSL
draws rely on /dev/urandom for secure randomness on Unix-like sys-
tems) by either local or remote attackers. Addressing these issues re-
quires a complete redesign of the RedactedOS /dev/urandom PRNG.
More precisely, we found the following issues:

Insecure PRNG Algorithm: After inspection, we found that the
algorithm underlying the RedactedOS PRNG is the GNU libc BSD
random PRNG [175] with modified constants for the initial state, lin-
ear congruential and lookahead parts. This PRNG, as explicitly stated
in the man pages, is not a cryptographically secure PRNG but a so-
called additive congruential pseudo-random number generator [268].
Using an insecure PRNG means that an attacker who learns a cer-
tain number of PRNG outputs might be able to reconstruct the cor-
responding PRNG internal state [295] (and hence predict all future
PRNG outputs) or even ’roll back’ the internal state to recover the
original seed [192] (and hence reconstruct past PRNG outputs as well)
as shown by attacks on insecure PRNGs commonly (mis)used for se-
curity purposes [112, 347].

Local Reseed Attack: To make matters worse, the RedactedOS PRNG
is vulnerable to a local reseeding attack. The write handler for the
/dev/(u)random interface allows for reseeding of the PRNG (there is
no reseed control) where a single reseed operation completely deter-
mines the internal state for the system-wide PRNG. Given that the
/dev/(u)random interface is world-writable by default this allows user
to force a PRNG reseed across privilege boundaries and thus com-
pletely control PRNG output drawn upon by privileged users, poten-
tially allowing for compromise of cryptographic or otherwise security
sensitive data.

Known Seed Attack: Finally, the RedactedOS PRNG is vulnerable
to a known seed attack exploitable by both local and remote attackers.
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After inspection, we found that not only does the RedactedOS PRNG
use an insecure PRNG, it uses a single static seed and doesn’t imple-
ment any form of reseed control meaning there is no actual entropy in
the system at any time and PRNG output sequences are identical upon every
new boot. Since PRNGs are deterministic this means that knowledge
of a PRNG seed is equivalent to knowledge of a secret key and allows
an attacker to reproduce all PRNG outputs generated from the start
(boottime) without having to mount a cryptanalytic attack on the al-
gorithm to recover the internal state. Needless to say, this completely
compromises the RedactedOS PRNG. Consider, for example, the fol-
lowing scenario (as illustrated in Figure 20):

1. Consider a public-private keypair (eg. RSA or DSA) generated
using the RedactedOS PRNG: (Kpub,Kpriv)

2. A remote attacker has access to public key Kpub and initial
RedactedOS PRNG seed S

3. The attacker clones the RedactedOS PRNG and initializes it with
seed value S and sets an index value I to 0

4. The attacker advances the PRNG state offset to position I (mea-
sured in bytes read from the PRNG interface)

5. The attacker generates a public-private keypair (Lpub,Lpriv) by
drawing from the cloned PRNG

6. The attacker compares Lpub to Kpub: if they mismatch incre-
ment I by 1 and go to step 4, if they match we’ve found our
target private key Kpriv = Lpriv

The only unknown element in the above attack is the PRNG state
offset at the time of target key generation, which varies depending on
how many bytes have previously been read from the PRNG interface.
Given that this number can be reasonably assumed to lie below 232

(ie. ∼ 4.29 GB), the exhaustive search in the above attack is very prac-
tical.

5.3 zephyr

Initially released in February 2016, Zephyr [164, 186] is an open source,
real-time operating system developed by the Zephyr Project as a col-
laboration project hosted by the Linux Foundation [69]. The Zephyr
kernel is derived from Wind River’s commercial VxWorks microker-
nel profile (in turn evolved from the Virtuoso DSP RTOS [104]) and
is identical to the Wind River Rocket RTOS kernel [176]. Zephyr is
optimized for and aimed primarily at resource constrained devices
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Figure 20: RedactedOS PRNG Known Seed Attack

(eg. wireless sensor nodes, connected light bulbs, wearables, small
IoT gateways, etc.) within the Internet of Things and has a minimal
code and memory footprint. Zephyr supports multiple architectures
(eg. x86, ARM, ARC and NIOS II) and is designed to be very mod-
ular so that almost every feature can be enabled or disabled to fit
particular device needs and constraints. In addition, Zephyr provides
support for various IoT-oriented connectivity protocols such as Blue-
tooth, Bluetooth Low Energy, Wi-Fi, 802.15.4, 6Lowpan, CoAP, IPv4,
IPv6, and NFC. In this work, we focus on Zephyr 1.7 but do include
an evaluation of the boards supported by the upcoming Zephyr 1.8
release in Table 27.

As illustrated in Figure 21, Zephyr has a ’two kernel’ design. The es-
sential RTOS services reside within the nanokernel, which is respon-
sible for executing top priority activity and runs a series of minimal
threads named fibers, while the full microkernel allows for more ex-
tensive functionality such as multitasking abilities, memory manage-
ment, etc. Zephyr is implemented as a ’library-based RTOS’ where all
code runs in a single address-space (without virtual memory support
but with upcoming memory protection support [163]) and applica-
tion code is combined with kernel code to create a single monolithic
image without runtime loading. System calls are implemented as sim-
ple function calls. While the Zephyr Project is explicitly committed to
security [186] and offers stack canary support, there is currently no
support for ESP or ASLR nor does it offer an OS CSPRNG. There
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Figure 21: Zephyr Architecture [186]

is no security history for Zephyr which is, given the project’s youth,
quite understandable.

5.3.1 Zephyr Stack Canaries

Zephyr supports GCC as the default compiler and as such follows
the GCC SSP [190] canary model. Analysis of the Zephyr source-code
shows that the __stack_chk_fail handler is implemented as an alias
for the _StackCheckHandler routine which invokes a fatal software
error handler in the nanokernel. This handler displays a stack check
failure message and debug log if kernel printing output is enabled
and invokes the system fatal error handler _SysFatalErrorHandler

which by default attempts to abort the current thread and allows the
system to continue executing but can be modified by system design-
ers to take other actions (eg. logging, rebooting, etc.).

There is one __stack_chk_guard master canary value for the entire
operating systems, shared among all tasks, which is stored in the
.noinit data section right above _interrupt_stack. Zephyr’s SSP
implementation protects both the user application as well as Interrupt
Service Routines (ISRs) written in C and all kernel functionality ex-
cept for the most rudimentary and early-boot ones (ie. those prior to
_Cstart).
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Random Number Generator Issues: Generation of the master ca-
nary is done as part of the _Cstart routine (shown in Listing 12) which
is invoked as part of the nanokernel initialization when the system
is ready to run C code. The master canary is generated by the Zephyr
random number generation API sys_rand32_get, the implementation
of which depends on the settings of the random driver Kconfig file.
Zephyr allows for the following RNG configuration options which
determine the implementation of sys_rand32_get:

• RANDOM_GENERATOR: This option signals random drivers should
be included in the system configuration and has the the follow-
ing ’sub-options’:

– TEST_RANDOM_GENERATOR: This option signifies that the ker-
nel’s random number APIs are permitted to return values
that are not truly random. While it is explicitly stated in
the documentation and source-code that this should only
be enabled for testing purposes, it is the only alternative
to implementing a custom OS CSPRNG in the absence of
hardware / true RNG support. This option has two ’sub-
options’:

* X86_TSC_RANDOM_GENERATOR: This option enables num-
ber generation based on the x86 timestamp counter
(TSC). The random API function becomes a call to
_do_read_cpu_timestamp32 which wraps the x86 rdtsc

instruction [105] to return the lower 32 bits (stored in
the EAX register) of the TSC. Given the real-time and
minimal nature of Zephyr and the fact that the master
canary value is generated during system startup (di-
rectly after nanokernel and basic hardware initializa-
tion), canary value variation is bound to be minimal
thus reducing canary entropy. In addition, an attacker
who learns a target system’s TSC value at some point
and who can estimate the system’s startup time can
carry out (depending on target clockspeed) an attack
similar to the one against QNX’s stack canary mecha-
nism as outlined in Section 5.1.4. Finally, because this
implementation of the random API simply outputs the
lower 32 bits of the x86 TSC, every non-secret use of
the random API (eg. a task generating a public random
value) constitutes an information leak since it allows the
attacker to learn (part of) the current TSC value from
which the master canary is directly derived.

* TIMER_RANDOM_GENERATOR: This option enables number
generation based on the system timer clock. The ran-
dom API implementation, illustrated in Listing 13, fetches
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the current clock counter value and adds an (increas-
ing) increment to it in order to ensure a series of rapid
calls to the API return different values. The current
clock counter fetching function k_cycle_get_32 is im-
plemented on a per-chip basis as part of the corre-
sponding timer device driver. In addition to suffering
from similar issues to the above rdtsc approach, this
approach is also particularly prone to information leaks
due to the fact that system timer values get used every-
where (eg. available as a shell command, when display-
ing uptime, etc.). As such in addition to any non-secret
usage of the random API constituting an information
leak, every non-secret use of k_cycle_get_32 also con-
stitues an information leak.

– RANDOM_HAS_DRIVER: This option to be enabled by individ-
ual random drivers to signal that there is a true random
number generator driver. This option has the following
’sub-options’:

* RANDOM_MCUX_RNGA: This option enables the random num-
ber generator accelerator (RNGA) driver. By default,
support is only available for NXP Kinetis K64F MCUs.
The RNGA is seeded using the result of a call to the
k_cycle_get_32 system timer function. This is ill-advised
given that the system timer is both a low entropy source
as well as a non-secret value (see discussion above).
The impact of this might be somewhat mitigated be-
cause the RNGA hardware uses two free running ring
oscillators to add entropy to the seed value but given
that: a) the ring oscillators are only active when the
RNGA is in active mode, b) the RNGA is only set in
active mode when entropy is drawn from it and c) the
master canary is the first random value drawn from the
RNGA during system boot, this might not be sufficient.
Finally, rather than use RNGA output as input for a
secure PRNG, it is returned directly by the RNG API
for use in cryptographic and security-sensitive appli-
cations. This is despite the fact that the Kinetis K64 ref-
erence manual explicitly states that this is ill-advised
in the face of potential attacks on the RNGA internal
shift registers [74].

* RANDOM_MCUX_TRNG: This option enables the true ran-
dom number generator (TRNG) driver, based on the
MCUX TRNG driver. By default, support is only avail-
able for NXP Kinetis KW41Z MCUs which feature a
NIST-compliant TRNG.
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System designers not working with the appropriate Kinetis MCUs
(and thus not able to make use of the RNGA and TRNG drivers) thus
have to either write their own hardware RNG drivers or integrate
third party ones. Furthermore, as shown in Table 27, the majority of
boards supported by Zephyr do not have hardware RNG support
and of those that do (all of which are ARM-based) many do not have
open-source driver support for the hardware RNG. In the absence
of both hardware RNG and OS CSPRNG support, system designers
wishing to deploy Zephyr with stack canary protection are forced to
either implement their own OS CSPRNG or rely on one of the two
insecure TEST_RANDOM_GENERATOR options.

Information Leak Issues: The fact that the master canary value is a
system-wide value, generated once during startup and shared across
Zephyr tasks makes it particularly prone to information leaks, regard-
less of the quality of the canary generation mechanism, since a leak
in one task can be reused against another task. Furthermore, the out-
put of the random number generation API sys_rand32_get is used
in public fields everywhere (eg. MAC addresses for various proto-
cols, TCP sequence numbers, ICMP echo request identifiers and se-
quence numbers, DNS transaction IDs, protocol timing delays, etc.)
which means it is absolutely crucial that the underlying RNG is cryp-
tographically secure.

Canary Brute-Force Susceptibility: While the nature of the Zephyr
operating system means it does not support the forked and pre-forked
networking server models so susceptible to canary bruteforcing at-
tacks [354], its __stack_chk_fail implementation effectively invokes
the system fatal error handler _SysFatalErrorHandler which, by de-
fault, attempts to abort the current task and allows the system to con-
tinue operating. Given that the master canary value is generated once
at startup and never renewed, a brute-force attack might be feasible
if violating tasks get restarted by the system after shutdown. Depend-
ing on the PRNG implementation (see discussion above) an exhaus-
tive brute-force attack might be feasible but a byte-for-byte brute-force
attack [354] is preferable here and less restricted than in the QNX case
since there is no default NULL-terminator in the canary. If system
designers have chosen to re-implement the _SysFatalErrorHandler

routine in such a fashion that it reboots the system or if tasks do not
get restarted after shutdown, however, brute-force attacks seem out
of the question.

5.4 conclusions

Table 13 presents an overview of the qualitative analysis of the exploit
mitigations and OS CSPRNGs of three embedded operating systems
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outlined in this chapter. From these analyses we can observe that miti-
gations are often: a) absent (even on operating systems which support
at least some mitigations), b) incomplete (eg. not covering all memory
objects for ASLR, not implementing canary generation handlers or
insecure default settings) and c) vulnerable (eg. insecure randomiza-
tion, information leaks or correlation attacks). Furthermore, we can
conclude that:

1. Operating systems not derived from a Linux-, BSD- or Windows
basis tend to face exploit mitigation and dependency integra-
tion challenges leading to (potentially insecure) design idiosyn-
crasies. In addition, a lack of (extensive) public security scrutiny
tends to translate into relatively easily exploited mitigation(-
related) vulnerabilities as evidenced by the information leaks
affecting QNX or the RedactedOS PRNG insecurities.

2. Proper (OS) CSPRNG support and integration into exploit mit-
igations is required to provide secure randomization as evi-
denced by issues affecting QNX ASLR and Stack Canaries as
well as Zephyr Stack Canaries on many development boards.

3. Issues in embedded (OS) CSPRNG design tend to translate to
insecure designs with issues of varying severity as evidenced
by our analyses of the QNX and RedactedOS OS CSPRNGs.

In the course of our qualitative analysis, we responsibly disclosed
the discovered issues to the vendors in question and collaborated
with those drafting fixes. As a result of our disclosures, QNX has
released patches for 6.6 and redesigned parts of the upcoming 7.0
release to incorporate fixes and improvements to their ESP, ASLR,
Stack Canary and OS CSPRNG designs as well as other vulnerabili-
ties we discovered but which are out of scope of this publication. In
Chapters 7, 8 and 9 we will propose mitigation designs that can be
incorporated in Zephyr.
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Component Support Issues

QNX

Userspace

ESP X Insecure Default Configuration

ASLR X Insecure Randomization, Infoleaks

Bruteforceable, Correlation Attacks

Stack Canaries X Insecure Randomization, Bruteforcable

OS CSPRNG X Insecure Design

Kernelspace

ESP X Insecure Default Configuration

ASLR ∼1 Insecure Randomization, Infoleaks

Stack Canaries X No Randomization

RedactedOS

ESP ×
ASLR ×
Stack Canaries ×
OS CSPRNG X Insecure Design

Zephyr

ESP ×
ASLR ×
Stack Canaries X Insecure Randomization, Infoleaks

Bruteforcable2

OS CSPRNG ×

Table 13: Qualitative Exploit Mitigation Analysis Overview
1 Stack, heap & mmap are supported but not kernel image, 2 Depending on system

fatal error handler implementation



6
E M B E D D E D C H A L L E N G E S

In order to explain the gaps in embedded exploit mitigation adop-
tion and implementation quality discussed in Chapters 4 and 5, this
chapter will discuss the challenges faced by embedded systems de-
velopers. Based on this discussion we will identify a series of open
problems in the field of embedded exploit mitigations and outline the
design criteria for exploit mitigations and OS CSPRNGs for deeply
embedded systems.

6.1 development practices & cost sensitivity

Embedded systems development practices and design cultures are
different [420] from those in desktop or web application develop-
ment. Compared to the general purpose world, the embedded world
is heavily fragmented [213]: markets for technologies are fragmented
among many different vendors and suppliers and technologies them-
selves are fragmented into competing standards without clear market
leaders and individual solutions for specific problems. For example,
a typical embedded product [202] is put together as the result of a
hardware vendor selling a chip, deployed with an operating system
and some drivers, to an embedded systems manufacturer (the original
device manufacturer (ODM)) who integrates it into the embedded sys-
tem in question (adding some hardware peripherals, writing some
software) and often resells it to a brand-name company who adds
a user- or machine-to-machine interface and put it on the consumer
market. This situation leads to the following issues:

1. Lowest Common Denominator: Vendors at the ’top’ of the chain
such as chip or embedded operating system vendors often cater
to very diverse customers and as such are bound by the de-
mands (in terms of capabilities, overhead and cost increases) of
their most constrained customers.

2. Fragmented Security Requirements: No single entity oversees
the entire software development lifecycle and as such, there is
no coherent, single set of security requirements.

3. Patching & Maintenance Issues: As discussed in Section 2.3, in
many cases no single entity has the ability to patch or upgrade
every piece of software on a given embedded device once it’s
shipped.

83
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4. Incentive Issues: While there might be a strong case for cer-
tain security measures when considering the end product as a
whole, there is usually little incentive on part of individual ven-
dors and manufacturers who are just a single link in a much
bigger chain. Embedded systems markets are often character-
ized [202, 213, 420] by a heavy focus on time-to-market (earlier
market introduction tends to mean deeper market penetration
and hence higher potential revenue) and novel features: since
embedded systems are designed for a specific purpose rather
than general purpose computing, vendors often differentiate
themselves on the basis of price and specific features rather
than generic capabilities unrelated to the specific utility of the
end product. As a result, there is little incentive for integrating
security measures if these are not already present by default.

Finally, embedded systems are often very cost sensitive [420, 421],
they tend to be produced in large quantities and as such even small
cost increases per unit rapidly amount to large overall production
cost increases. In addition, for the cheaper products a cost increase
on part of a single component soon amounts to a higher percentage
of total system cost making it harder to justify such a cost increase, es-
pecially with something that’s often so hard to quantify as ’improved
security’. Finally, any cost savings might aid in gaining a market ad-
vantage for price sensitive products. As such there usually is a pref-
erence for cheaper, simpler hardware such as chips with few features
and limited room for overhead. This matters from a security perspec-
tive because it makes many hardware-based security measures infea-
sible (because of the associated per-unit cost increases) and means
designers and implementers of embedded security measures have to
deal with limited hardware capabilities and resource constraints.

6.2 resource constraints

It is a well-known fact that embedded systems generally face signifi-
cant resource constraints [202, 420, 422, 423] since they are designed
with a specialized, dedicated purpose in mind rather than to provide
general purpose capabilities. As such all resources considered super-
fluous to this task are eliminated to reduce production cost which
results in limitations on code and data memory, processing power
and hardware capabilities. Embedded software, in turn is designed to
be efficient and have a minimal footprint in order to meet these con-
straints given the limited room for overhead. Table 28 in Appendix
A lists resources of several popular embedded / IoT-oriented devel-
opment boards commonly used for prototyping to illustrate these
resource constraints. In the context of this work we concern ourselves
with four major resource constraint areas:
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1. Code Storage Size: Code storage size constraints limit code size
overhead and the introduction of additional functionality. Many
embedded systems are diskless and do not have permanent stor-
age, storing code in flash memory of a few KB or MB instead.
Those systems that do have permanent storage use something
like a few KB of EEPROM, usually to store configuration data
only since the infrequent changing of code means it’s more eco-
nomical to arrange this via flashing a firmware update, or are
far more limited than hard disk capacities of desktop or server
systems (eg. using SD cards of a few GB).

2. Memory Size: Memory size constraints limit memory usage
overhead and often rule out the possibility of memory-intensive
computations. Embedded systems, particularly deeply embedded
systems, often don’t have external memory but rely only on a
few KB or MB of on-chip internal (S)RAM. Those systems that
do have external memory are often limited to anything from a
few dozen MB up to one or two GB.

3. Processing Power: While there is a trend towards usage of more
powerful 32-bit processors [13, 37, 240–242] running at clock-
speeds ranging from 100 MHz to around 1 GHz (the average in
2015 being 397 MHz according to [242]) and there are plenty
of embedded segments where even more serious computing
power is a must, many embedded systems continue to use sim-
pler 8- or 16-bit processors with clockspeeds ranging from 8 to
32 MHz as illustrated in Table 28. Such a lack of processing
power inhibits deployment of computationally intensive secu-
rity measures and certain cryptographic algorithms.

4. Power Consumption: Many embedded systems have serious
power consumption constraints [420, 421] as a result of being
battery operated, having to last months, years or indefinitely
on a single battery while others might get recharged more fre-
quently. As such, this constraint conflicts with security mea-
sures that introduce significant power consumption overhead
(eg. due to being computationally intensive or requiring ’power
hungry’ hardware).

6.3 safety, reliability & real-time requirements

Since embedded systems are often (part of) Cyber-Physical Systems
(CPS) they tend to have specific requirements relating to safety, relia-
bility and real-time computation [202, 420, 423]:

1. Safety & Reliability: As pointed out in Section 2.3, some em-
bedded systems have stringent safety and reliability require-
ments which would require certification of any security mea-
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sures upon their introduction and require them to be robustly
reliable (eg. maintain availability). This means, for example, that
exploit mitigations for these embedded systems will have to
avoid invocation of safety- and reliability-violating ’alert policies’
(such as abruptly terminating critical software upon detection
of attacks).

2. Real-Time: Many embedded systems are subject to real-time re-
quirements, where the system must guarantee response within
specified time constraints with varying degrees of ’hardness’,
and use real-time operating systems (RTOS) to accommodate this.
As such, security measures for those systems will need to re-
spect those constraints. Ideally, such real-time compliant secu-
rity measures are deterministic in nature and allow for accurate
predictions of worst case performance. However, such require-
ments might inherently conflict with certain exploit mitigation
designs or their dependencies.

Consider, for example, Address Space Layout Randomization (ASLR)
and its dependency on virtual memory. Traditionally, the use of
virtual memory in real-time operating systems has been avoided
due to timing analysis complications [365]. Virtual memory poses
predictability problems regarding worst-case execution time (WCET)
analysis largely because of two issues [316, 365, 462]:

a) Address Translation: Mapping virtual to physical addresses
is commonly done using a translation look-aside buffer (TLB) [265]:
a memory cache that is part of the MMU and stores recent
address translations. Address translation timings are un-
predictable because a) not all mappings are cached in the
TLB leading to cache misses requiring a subsequent page
table lookup and b) the TLB is shared between different
processes.

b) Paging: Since physical memory is shared between differ-
ent processes and any physical page may be selected for
replacement by the paging algorithm, predicting whether a
virtual memory reference results in a page fault is hard. In
addition, paging makes memory access timings dependent
on TLB and cache contents increasing unpredictability. Fi-
nally, page faults may incur significant overhead rendering
a system non-responsive for too long.

Various proposals for real-time compatible virtual memory exist,
ranging from composable schemes [316] and compile-time so-
lutions utilizing fixed page swapping points [365, 394] to ded-
icated MMU designs [462], but to the best of our knowledge
none of these have seen adoption by popular RTOSes and we
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consider widespread adoption unlikely in the near future due
to significant associated performance penalties or hardware cost
increases.

6.4 hardware & os limitations

As a result of the embedded cost sensitivity and resource constraints
discussed above, embedded hardware and operating systems are of-
ten lacking the features upon which modern security measures de-
pend which is illustrated in Chapter 4 with respect to exploit mitiga-
tion dependencies. In this section, we will briefly discuss the impli-
cations of these limitations for the future embedded adoption of the
exploit mitigations in our baseline as well as identify some related
open problems.

6.4.1 MPUs, MMUs & Hardware ESP

As shown in Figure 11b in Section 4.2, under half of surveyed embed-
ded core families have hardware ESP support. While 32-bit processors
are clearly gaining increasing traction within the embedded world
and are even displacing 8- and 16-bit processors [13, 37, 240–242],
smaller 8-bit processors continue to dominate a significant portion
of the embedded space and some report they have seen growth in
recent years as well [73]. Even though for many systems based on
those smaller 8- and 16-bit processors it’s quite reasonable to migrate
to popular Harvard architectures (eg. AVR, 8051, PIC, etc.), many
modern 32-bit processors tend to be Von Neumann and while many
popular architectures in this category have hardware ESP support
(eg. ARMv6+, MIPS32r3+, x86) there are others which do not. Com-
bined with the fact that older Von Neumann processors will continue
to be produced and integrated into new systems, this will leave a
segment of embedded devices without hardware ESP support. This
is something we need to consider in light of the fact that currently
existing software ESP solutions (eg. PaX’s NOEXEC [174]) only sup-
port a limited number of OS and architecture combinations. As such,
low-overhead software ESP support for a wide range of common em-
bedded operating systems and processor architectures is currently an
open problem.

Regardless of whether ESP is implemented using hardware ESP
support or via software emulation, memory protection support on
part of the operating system is required. And while Figure 10 shows
that the majority of embedded operating systems offer memory pro-
tection support, not all embedded hardware offers the required un-
derlying features to allow the OS to make use of this support. Fig-
ure 11b shows only 47.1% of all surveyed core families have MMU
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support and only 11.8% have MPU support, which leaves 41.1% un-
able to accommodate memory protection. And while these figures do
not take embedded market shares into account, the top embedded 32-
and 16-bit microcontroller families in 2015 according to [242] (STM32,
TI MSP430) are illustrative in that the both lack MMU support, the for-
mer has varying MPU support and the latter mostly lacks MPU sup-
port as well. And when it comes to 8-bit microcontrollers, MPU and
MMU support is generally out of the question and many even lack ex-
ternal memory support in the first place. Due to cost sensitivity as dis-
cussed in Section 6.1, embedded systems manufacturers are unlikely
to migrate to costlier higher end processors with MPU/MMU sup-
port mainly for security reasons and as such this leaves us with the
open problem of how to deal with these MPU/MMU-less platforms
which simply cannot accommodate memory protection, let alone ESP.

6.4.2 Virtual Memory

As discussed above, real-time requirements and lack of MMU support
adversely affect embedded virtual memory adoption. While Figures
10a and 9b in Section 4.1 show that 51.2% and 44.4% of respectively
all and all non-mobile embedded operating systems offer virtual mem-
ory support, this drops to a mere 17.1% if we eliminate the Linux-,
BSD- and Windows-based ones (as shown in Figure 10c). And when
it comes to the most constrained operating systems, those targeting
deeply embedded systems, virtual memory support is absent altogether
(as seen in Figure 10d). One also needs to take into account that even
if an embedded OS offers virtual memory support, diskless embed-
ded systems cannot use this to extend RAM since this would requir-
ing swapping to disk. All these constraints are so intrinsically tied to
the embedded space that it is highly unlikely that we will see uni-
versal virtual memory adoption and as such an alternative to ASLR
suitable for embedded systems without virtual memory remains an
open problem.

6.4.3 Advanced Processor Features

Many modern security measure proposals rely on advanced proces-
sor features to offset otherwise unacceptable overhead penalties. Such
features range from support for trusted computing (ARM TrustZone [3],
Intel TXT [266]), virtualization (VT-x, AMD-V), complication of kernel-
mode exploitation (SMEP [197], SMAP), isolation of code and data re-
gions in memory (SGX [264]) and pointer bounds checking (MPX [263])
to features utilized to support Control-Flow Integrity (CFI) (CET [108],
LBR [107], MPU [453]) as well as cryptographic hardware acceleration
(eg. AES-NI).
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When it comes to embedded systems, the problem with security
measures which rely on such advanced processor features is that
they’re only available on the newest and most high-end architectures.
Even among the more high-end embedded-oriented processors such
as the Intel Atom or the ARMv8-based APM HeliX and ARM Cortex-
A35, the vast majority of these features is unsupported. In fact, on the
more commonly encountered 32-bit processors such as the Intel Quark
or ARM Cortex-M series none of these features are supported, let
alone smaller 8- and 16-bit microcontrollers such as the Atmel ATtiny
or TI MSP430 series. And such advanced processor features aren’t
likely to be adopted by any embedded-oriented processors other than
the most high-end ones anytime soon either considering the corre-
sponding cost increase. Moreover, the sheer diversity of embedded
processors means that while advanced processor features might be
present in one core family they might not be present in another one,
reducing the potential deployment surface of any security measures
which rely on them. As such, any proposal for embedded security
measures seeking widespread adoption will need to avoid relying on
such advanced processor features.

6.4.4 OS CSPRNGs

Secure randomness plays a fundamental role in the wider security
ecosystem, not only for cryptographic purposes (eg. generation of
secret keys and nonces) but also as a dependency upon which ex-
ploit mitigations rely. As shown in Sections 5.1.3, 5.1.4 and 5.3.1, ex-
ploit mitigations which utilize insecure sources of randomness are
faced with security issues. Since the design and implementation of
a CSPRNG is not a trivial affair, the provision of secure randomness
can be considered an important OS service and many major operating
systems provide an OS CSPRNG for this reason (eg. /dev/(u)random
on Unix-like systems or CryptGenRandom [143] on Windows). But as
can be seen in Figure 10, OS CSPRNG support is far from universal in
embedded operating systems. This is particularly visible in the non
Linux-, BSD- and Windows-based operating systems (see Figure 10c)
and even more so in those aimed at deeply embedded systems (see Fig-
ure 10d). And those operating systems that do seek to implement an
OS CSPRNG, quite often make design and implementation mistakes
with serious security consequences (as shown in Sections 5.1.5 and
5.2.1 as well as related work [147, 326, 407]).

Porting existing OS CSPRNG designs from the general-purpose
world to the embedded world, even if it is from a GP-oriented ver-
sion to an embedded-oriented version of the same operating system,
is far from trivial for various reasons core among which are:
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1. OS & Hardware Polyculture: As discussed earlier in this work,
the embedded world is heavily fragmented. The fact that em-
bedded operating systems often seek to cater to platforms with
much more divergent capabilities than their general-purpose
counterparts means it is hard to identify universally available,
suitable entropy sources. So while there exists a sizeable body
of work around the design of embedded random number gener-
ators, these designs are generally very domain-specific as they
rely on entropy sources (eg. sensor values [313, 348, 384, 396,
428], gyroscope or accelerometer measurements [313], radio and
GPS data [302, 384], etc.) present only in specific embedded de-
vices.

2. Resource Constraints: The resource constraints discussed in
Section 6.2 also impact embedded PRNG design. Limited pro-
cessing power, memory and code size constraints translate to
a need for lightweight cryptography [159]: small, fast algorithms
which still offer the appropriate degree of security. In addition,
power consumption constraints necessitate a PRNG design that
avoids constant entropy collection, especially considering many
battery-operated deeply embedded devices spend most of their
time in standby modes waiting for event- or time-based activa-
tion to preserve battery life.

3. Low Entropy Environment: Perhaps the biggest hurdle in em-
bedded PRNG design is the fact that embedded systems are
generally a low entropy environment. Since they are designed
for specific, limited tasks and designed to perform those in a
reliable fashion, they are essentially ’boring’. PRNGs are deter-
ministic and effectively ’stretch out’ seed data into a stream of
pseudo-random bits, they need to collect this seed data from
an external source to avoid a ’chicken-and-egg problem’. Ideally,
this is done using a hardware True Random Number Generator
(TRNG) based on physical phenomena, either quantum-random
ones such as radioactive decay or shot noise or non-QR ones
such as thermal noise, atmospheric noise or sensor values. But
in practice, most systems lack such integrated TRNGs and thus
have to resort to using other entropy sources. In the general
purpose world, where one can assume most systems have user
peripherals and disks one can use the associated system events
(eg. keystroke timings, mouse movements, disk access timings,
etc.) as a source of entropy. But for most embedded systems,
being headless and/or diskless as well as having no user inter-
action, this is not an option.

These low entropy conditions are worst at boot. Boot sequences
are predictable and designed to be fast, with little interaction
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taking place and some entropy sources not being available for
entropy gathering yet, which leads to insufficient entropy be-
ing available in the PRNG pool. A big problem in embedded
systems, however, is that system services need to be available
rapidly after boot and as such many embedded systems with
OS CSPRNGs (as shown in Sections 5.1.5 and 5.2.1 and dis-
cussed in [407]) offer only non-blocking interfaces which allow
for drawing pseudo-random bits from the OS CSPRNG while
insufficient entropy is available, leading to the so-called ’boot-
time entropy hole’ [407]. Randomness generating during this ’boot-
time entropy hole’ is of low quality and unsuitable for security
purposes, but many embedded systems generate secrets based
on such randomness precisely straight after booting. This situ-
ation, together with the general low entropy conditions in em-
bedded systems, has led to a myriad of cryptographic vulnera-
bilities [133, 321, 327, 380, 407].

Ideally, this problem would be solved by having omnipresent,
on-chip, high-throughput TRNGs available but considering em-
bedded cost sensitivity issues this is not realistic. So in prac-
tice, one sees a lot of ’workarounds’ of dubious quality, which
tend to lead to security issues of their own. Common and in-
secure approaches are to use ’personalization data’ (eg. device
MAC addresses or serial numbers) as seed entropy [79, 331] or
rely on manufacturer-supplied initial entropy [353], sometimes
in the form of a so-called ’seed file’. Seed files are widely used
in general-purpose OS CSPRNG designs in order to supple-
ment boot-time entropy and work by having PRNG-generated
pseudo-random bits written to them upon system shutdown
and being drawn upon during system boot. This approach still
leaves various problems for embedded systems, however, such
as dealing with diskless nodes and not being applicable to the
first system boot (which is often when embedded devices gen-
erated their long-term cryptographic keys). An approach some-
times encountered is to include such a seed file with device
firmware but care needs to be taken here that these seed files are
unique per device, unpredictable and secret. Given these prob-
lems, many embedded systems designers often simply opt for
using hardcoded, pregenerated keys embedded in a firmware
image with all the accompanying security issues [41, 138].

6.5 open problems

Based on the material above we can identify two pressing open prob-
lems relating to embedded exploit mitigation adoption:
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1. Mitigation Designs for Deeply Embedded Systems

2. OS CSPRNG Design for Deeply Embedded Systems

We will seek to address these open problems in Chapters 7, 8 and
9.

6.5.1 Deeply Embedded Exploit Mitigation Criteria

We can distil the following criteria for deeply embedded exploit mitiga-
tions based on the observations in this chapter:

1. Limited Resource Pressure: Mitigations should limit pressure
on constrained resources to a minimum and provide low worst-
case (rather than average-case) overhead upper bounds. As ob-
served by Szekeres et al. [390] and the rules of the Microsoft
BlueHat contest [42], exploit mitigations are only likely to see
widespread industry adoption if the average-case imposed code
size, memory and runtime performance overhead is between at
most 5 and 10%. As such we require a worst-case overhead upper
bound of at most 5% for mitigations targeted at deeply embedded
systems.

2. Hardware Agnostic: Mitigation designs should be hardware ag-
nostic in order to widen deployability across the embedded
hardware polyculture. This rules out any dedicated hardware
proposals and any reliance on specific hardware features that
aren’t commonly available in deeply embedded systems. This
does not include hardware features commonly but not univer-
sally available such as hardware ESP.

3. Availability Preservation: Mitigations should offer multiple mea-
sures to take upon detection of an attack that allow for different
degrees of availability preservation, ranging from those that al-
low an attack to take place without interfering to those that
reduce availability disruption to a minimum. The rationale be-
hind the former is that if availability is of prime importance, the
worst-case scenario for an exploited vulnerability is to disrupt
this availability and as such an unhindered but reported attack
that gains control of the system and keeps it up is preferable
over a prevented attack that brings it down in the process.

4. Real-Time Friendly: Mitigations should not violate real-time re-
quirements and as such avoid non-deterministic constructs. As
discussed earlier, this rules out designs relying on virtual mem-
ory. Engineering mitigations for worst-case overhead estimates
as a result of resource pressure minimization aids with worst-
case execution time (WCET) analysis as well and thus benefits real-
time friendliness.
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5. Easy (RT)OS Integration: Mitigations should be easy to inte-
grate into existing operating systems without requiring signif-
icant redesign of the operating system itself in order to widen
deployability across the embedded OS polyculture and reduce
integration cost. For example, many deeply embedded operating
systems are implemented to be loaded as a single, monolithic
image executed in a single address space without any dynamic
run-time loading and as such cannot accommodate any run-
time randomization measures (eg. ASLR) without significant re-
engineering.

6.5.2 OS CSPRNG Design for Deeply Embedded Systems

We can distil the following criteria for non-domain specific deeply embed-
ded OS CSPRNGs based on the observations in this chapter:

1. Lightweight Cryptography: The CSPRNG will have to be based
on lightweight cryptographic primitives [159, 204] to accommo-
date code & data memory as well as processing power con-
straints. Given the diversity of systems falling under the deeply
embedded systems umbrella it is hard to delineate precise con-
straints, but any OS CSPRNG design targeting deeply embedded
systems should be deployable on a representative hardware plat-
form and only utilize a small fraction of available resources.

2. Entropy Gathering Limitations: The CSPRNG will have to be
designed in such a way as to not rely on constant runtime en-
tropy gathering in order to reduce power consumption. This
means entropy collection will have to be rapid and preferably
take place mostly during system startup, given that many battery-
operated embedded systems are in standby or powered off be-
tween small periods of event- or time-triggered activity.

3. Non-Domain Specific Entropy Sources: The CSPRNG will have
to draw upon entropy sources that are both suitable in terms of
entropic quality as well as nearly universally present in deeply
embedded systems. Ideally, such entropy sources have high through-
puts so sufficient entropy is rapidly available at system startup
and runtime entropy gathering can be limited. While there is
nothing preventing CSPRNG augmentation with additional platform-
or device-specific entropy sources (eg. sensor values), these should
not be the primary sources nor should the choice of entropy
sources be left up to the system integrator.
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µA R M O R D E S I G N

In this chapter we will propose µArmor : an exploit mitigation and OS
CSPRNG baseline design for deeply embedded systems. µArmor seeks to
address the relevant gap areas identified in Sections 4.3, 5.4 and 6.5
and is, to the best of our knowledge, the first deeply embedded solution
that adheres to the criteria outlined in Sections 6.5.1 and 6.5.2.

µArmor is targeted at those deeply embedded systems which satisfy
the following conditions:

1. Feature either a (modified) Harvard architecture CPU or Von
Neumann one with an MPU/MMU with hardware ESP sup-
port.

2. Run a low-end operating system (eg. Zephyr, FreeRTOS, TinyOS,
etc.) with a single address space and without virtual memory
support. The operating system is allowed to be multiple-stack,
multi-threading and real-time capable. µArmor could be mod-
ified to support bare metal systems with minimal engineering
effort.

We will show that µArmor improves significantly on the state-of-the-
art in embedded binary security by raising the bar for exploitation of
embedded memory corruption vulnerabilities while being adoptable
on the short term without incurring prohibitive extra cost.

7.1 representative platform

We have designed and implemented µArmor around a representative
platform, but µArmor is not intrinsically tied to any particular oper-
ating system or hardware configuration. Our representative platform
in question is a deployment of the Zephyr [186] real-time operating
system on a TI LM3S6965 [106] microcontroller, which is based on a
50 MHz ARM Cortex-M3 outfitted with 256 kB flash, 64 kB SRAM
and an MPU.

We chose Zephyr because it is an actively developed, open-source
operating system with a permissive license aimed at resource-constrained
embedded devices and is supported by the Linux Foundation and ma-
jor chip vendors such as Intel, NXP, Synopsys and Nordic as well as
explicitly committed to security.

97
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We chose the TI LM3S6965 microcontroller because it is supported
by Zephyr (including via a Qemu profile) and is representative of a
typical deeply embedded system with limited resources.

7.2 attacker model

µArmor is designed for the following attacker model:

• Control-Flow Hijacking via Memory Corruption: µArmor seeks
to protect against control-flow hijacking attacks [390] which ex-
ploit memory corruption vulnerabilities. µArmor does not seek to
protect against data-flow hijacking or data-only attacks nor against
non-memory corruption related attacks such as logical vulnera-
bilities.

• Arbitrary Code Execution: The assumed attacker goal is arbi-
trary code execution as per [412], ie. the attacker desires to be
able to invoke arbitrary system functionality with arbitrary pa-
rameters.

• Remote Attacker: µArmor assumes a remote attacker attempting
to exploit a vulnerability over a networking protocol (eg. Eth-
ernet, WiFi, ZigBee, Bluetooth, LoRaWAN, etc.) and considers
physical access attacks (eg. sidechannel attacks, firmware ex-
traction and replacement attacks, JTAG attacks, attacks influenc-
ing environmental conditions such as temperature, etc.) out of
scope. Hence we assume the attacker does not have access to the
specific firmware image of the target device but they may have
access to the firmware image of another instance of the system
(eg. a device they bought themselves for reverse-engineering
and exploit development purposes).

As such, µArmor does not seek to protect against threats outside the
above attacker model such as information leaks or Denial of Service
(DoS) attacks.

7.3 high-level design

As illustrated in Figure 22, µArmor incorporates three mitigations
measures in order to match the functionality of the baseline outlined
in Chapter 3: µESP , µScramble and µSSP . In addition, it includes
µRNG in order to provide required OS CSPRNG support.

µESP is a microcontroller-oriented ESP design that relies on hard-
ware ESP support and can be implemented as part of the operat-
ing system’s memory management subsystem. µScramble is a soft-
ware diversification technique that aims to complicate code-reuse at-
tacks by randomizing code memory layout on a per-device basis at
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Figure 22: µArmor High-Level Design as a subgraph of Figure 2

compile-time and thus seeks to provide a lightweight alternative to
ASLR for systems without virtual memory. µScramble is implemented
in the compiler and can be transparently integrated into a vendor’s
firmware updating mechanism. µSSP is a hardened stack canary im-
plementation for operating systems with a single address space and is
implemented partially in the compiler and partially in the operating
system (in the form of canary generation, validation and failure han-
dlers). µSSP also comes with a dedicated failure handler that allows
for a degree of system availability preservation rather than the default
of terminating the violating task. µRNG is a small OS CSPRNG using
lightweight cryptography and non-domain specific entropy sources
to generate secure random numbers for use in µSSP (and potentially
other purposes) and is implemented in the operating system.

7.4 µesp design

µESP is the Executable Space Protection (ESP) component of µArmor and
differs from regular ESP designs in that it is explicitly designed for
MCUs running single address space operating systems. µESP assumes
the operating system can be modified for ESP-compliance, ie. it al-
lows for for separating code and data memory regions as well as
avoiding code constructs such as dynamically generated code, stack-
stored trampolines, etc. As illustrated in Figure 23, µESP explicitly
sets the hardware ESP non-executable bit for every memory region
belonging to a non-code region, while not setting it for those belong-
ing to code region. In addition, it ensures that no write permissions
are set for memory regions beloging to a code region to avoid code
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Figure 23: µESP Design

modification attacks.

Furthermore, dynamic data memory objects (eg. stack, heap) are
ensured to be fully placed in a data memory region and the stack is
instructed to grow away from other data regions. This is generally
recommended in embedded systems [200] to prevent stack overflows
(not to be confused with stack buffer overflows), resulting from unsafe
embedded programming practices such as recursion, from corrupting
data memory. Since most stacks grow downward, by placing the stack
at the bottom of data memory an overflow will cause an exception
either because it is a code region in RAM (thus caught by µESP per-
missions) or because we try to write outside of RAM. In a multi-stack
environment, individual stacks overflowing into each other could be
caught by placing a guard at the end of each stack if MPU granularity
and region count allows for this.

Finally, after setting up permissions µESP will mark any code re-
gions responsible for MPU interaction or flash rewriting (eg. in the
bootloader) as non-executable to avoid code-reuse attacks targeting
these regions for permission-changing payloads or ret2bootloader at-
tacks [85, 288, 303] and will disable further changes to the MPU by
making the relevant control registers non-writable.

Since µESP is designed for single address space operating systems,
with no separation between individual tasks or task and kernel mem-
ory, it is either enabled on a uniform system-wide basis or disabled
altogether. Allowing µESP to be enabled or disabled on a per-task ba-
sis (eg. for backwards compatibility with older ESP-violating code)
would expose the entire address space to compromise. µESP can be
integrated into an existing operating system and development envi-
ronment by either modifying the bootloader or, if the OS in question
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already has memory protection support, by integrating it into the
memory management subsystem.

7.5 µscramble design

As noted in Section 6.4, various limitations inherent to the embedded
world inhibit widespread adoption of ASLR for code-reuse attack mit-
igation in deeply embedded systems. As ASLR is a runtime software
diversification scheme which diversifies code and data memory lay-
out, a functionally similar alternative could be drawn from the field
of software diversification [369, 418, 447]. As pointed out by Larsen et
al. [418], software diversification has two major parameters: when to
diversify and what to diversify. With respect to the former, Larsen et
al. identify six moments: implementation, compilation & linking, instal-
lation, loading, execution and updating. To this we could add booting
(to distinguish diversification at system startup from diversification
at program startup) and for many deeply embedded operating sys-
tems we could drop loading (given that small, single address space
OSes don’t make use of program loaders but tend to implement ap-
plications as kernel tasks).

While this field is broad and includes many diversification schemes,
most of them are not suited for deeply embedded systems. As discussed
among the related work in Chapter 10, we consider currently existing
embedded boot-time diversification schemes such as PASLR, MAVR [371]
and AVRAND [439] unsuited due to security flaws, requiring hardware
modifications or reducing device lifespan. Since load- and execution-
time solutions [418] tend to impose significant runtime overhead as
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well as relying on either virtual memory, reliable binary analysis, ded-
icated hardware features or presenting problems for Harvard proces-
sors this leaves us with implementation-, compile-, install- and update-
time as suitable moments of diversification.

We opted to have µScramble diversify code at compile-time be-
cause it imposes absolutely minimal runtime overhead, allows us to
leverage high-level information available to the compiler, target mul-
tiple hardware platforms implicitly, avoid the need for disassembly
and binary analysis as well as operate in an automatic fashion (as
part of the regular compilation process) transparent to software devel-
opers (since no modifications are made to source-code). In addition,
since compiler modifications should preserve program semantics, we
restrict ourselves to semantics-preserving diversification transforma-
tions allowing us to preserve any guarantees on program safety which
would require perfect binary analysis for non-compiler solutions. Fi-
nally, this approach is compatible with binary signing or integrity-
verification mechanisms common in embedded environments.

µScramble is a hybrid compile- and update-time solution: since
updates to program code for deeply embedded systems come in the
form of firmware updates, µScramble is integrated into the firmware
distribution process (see Figure 24) and involves the manufacturer
compiling a randomized factory firmware image for each produced
embedded device and involves the updating mechanism contacting a
firmware distribution backend which compiles a randomized firmware
update image per request. This is to ensure the µScramble diversifi-
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cation routine is run for each device in order to ensure per-device di-
versity which in turn ensures code memory randomization.

Next, we need to decide what to diversify. Since the goal of µScramble
is to thwart code-reuse attacks, we aim to either eliminate gadgets,
randomize them (to break the attacker’s control- and data-flow as-
sumptions) or make it infeasible to guess their location in memory.
µScramble seeks to achieve this by diversifying code in a fine-grained
manner at compile-time as illustrated in Figure 25. There exists a
large body of work on compile-time diversification transformations [317,
346, 418, 447] but many of these are either mixed compile- and run-
time solutions or their transformations are not suitable for deeply em-
bedded systems: a) They need to be semantics-preserving b) They need
to take into account embedded resource constraints regarding code
size, memory usage and performance overhead. Based on these con-
straints we have drawn upon work in [293, 369, 455, 456] and aug-
mented it, yielding the diversification transformations listed below
for µScramble :

1. Register-Preservation Reordering: Most architectural calling con-
ventions specify which registers are callee-saved and which are
considered ’scratch’ registers. Compilers take note of all registers
used within a given subroutine and will ensure that those which
are callee-saved are stored to the stack during the function pro-
log and restored from it during the epilog. Such sequences one
of the most common targets for code-reuse gadgets due to their
ability to act as register-setters terminated by a return instruc-
tion. Since the exact order in which these registers are saved to
and restored from the stack doesn’t matter, however, we can ran-
domize it and thus break gadget chain assumptions about what
values end up in what registers.

It should be noted, however, that this technique does not apply
to all architectures since some (eg. ARM [4]) always push and
pop registers to and from the stack in a fixed order. However,
on those architectures where it does apply (eg. x86, 8051, AVR,
MIPS, 68k, etc.) it significantly complicates code-reuse payload
construction.

2. Dead Code Insertion: While the number and ordering of basic
blocks within a given function can be randomized, basic block
placement affects compiler optimizations [282, 315] and as such
randomization would introduce potentially significant runtime
overhead. As such we opted for a dead code insertion transforma-
tion [38, 312, 317, 372, 455, 456] which creates a random-length
basic block at the bottom of a given function. The sole purpose
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of this insertion is to introduce variation into function size and
as such diversify the offsets of all instructions with respect to
their function entry points and offsets from one function ad-
dress to another. Since basic block is introduced at the bottom
of a function, after the final branch instruction, it is never exe-
cuted.

When it comes to selecting the content of the dead code we need
to avoid introducing additional gadgets as part of the dead code
basic block. We support two possible approaches here: a) We fill
the block with no-operation (NOP)-equivalent instructions that
do not present opportunities for unaligned instruction gadgets
b) We fill the block with trap instructions which activate a vi-
olation policy handler upon execution (something which never
happens during regular execution). The latter has the benefit
of raising alerts while any attempt to brute-force gadgets is in
progress.

Finally, since this transformation grows code size, we limit it
by developer-tunable parameter DCI indicating the maximum
amount of dead code instructions introduced to the overall final
image. Given the number of functions N in the target code, this
gives us DCf = DCI

N as the maximum number of dead code in-
structions introduced on any given function.

3. Function Reordering: Randomization of the order in which
functions within a given firmware image are laid out is a com-
mon compile-time diversification technique [317, 455] which
randomizes function offsets with respect to a given image base
which complicates function reuse-style attacks (eg. ret2lib) in ad-
dition to more general gadget-based code-reuse attacks. Here we
randomize only the function order and as such the degree of
diversification introduced is determined by the number of func-
tions present in the target code.

The above transformations affect both code topology and code itself
by randomizing the offsets of a) instructions with respect to a func-
tion address, b) functions with respect to the image base and c) one
function with respect to another function as well as randomizing the
order of register preservation code. Due to the fine-grained nature of
our diversification we reduce memory object correlation and offer bet-
ter protection against information leaks and brute-force attacks than
coarse-grained schemes such as base-address only randomization (eg.
regular ASLR).
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7.6 µssp design

µSSP , illustrated in Figure 26, is the stack canary component of
µArmor and is based on Zephyr’s adaption of the GCC Stack Smash-
ing Protector (SSP), extended to meet the criteria outlined in Section
6.5.1. While based on the Zephyr SSP design, µSSP is not limited to
any operating system or compiler in particular and is designed to be
easily integrated into comparable deeply embedded (real-time) oper-
ating systems.

On the compiler side, µSSP ensures proper separation of data and
pointers within a given local stackframe by placing the latter below
the former so that stack overflows cannot target code- or datapoint-
ers residing on the stack while the stack canary shields the stackframe
metadata (saved framepointer, return address, etc.). Note that this
separation has its limitations, for instance: structures cannot be inter-
nally reordered and this could allow for stack overflows overwriting
pointers. µSSP also complies with regular GCC SSP function coverage
parameters and is capable of protecting all kernel- and application-
code that runs after early kernel and C support initialization.

On the operating system side, µSSP uses a single master canary
generated once at system boot for all OS tasks and threads. Since
on deeply embedded systems without virtual memory there is no
memory isolation for OS tasks nor a separation between kernel- and
userspace, periodic canary renewal would lead to synchronization
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conflicts for a shared canary. A possible solution for this would be
assigning a dedicated master canary for each thread (or possibly only
OS tasks) as well as one for the kernel and renewing canaries upon
thread startup. The problem here, however, is that without virtual
memory different threads utilize shared code which would require
the compiler to figure out which code is used exclusively by a given
thread and which code is shared, assigning a single common master
canary for all shared code to prevent synchronization problems. This
limits renewal effectiveness to such a degree, especially compared to
incurred overhead cost, that we simply opt for the single master ca-
nary approach. In addition to that, the single address space nature
(and accompanying lack of privilege separation) of most deeply em-
bedded OSes would render a multi-canary scheme rather moot as
well.

As far as canary generation is concerned, µSSP assumes the pres-
ence of either an OS CSPRNG (eg. µRNG described in Section 7.7) or
a TRNG. It draws a 32-bit random number from the random number
generator and, if specified, it applies a bitwise and-mask of 0xFF00FFFF
to it in order to turn it into a terminator canary with 24 bits of entropy,
otherwise it uses a non-terminator canary with 32 bits of entropy.

The final components of µSSP is its modular canary violation han-
dlers. As discussed in Section 6.5.1, deeply embedded exploit mitiga-
tions should offer multiple courses of action to be taken upon attack
detection to allow for different degrees of availability preservation.
While Zephyr treats canary violations as a regular fatal error, µSSP
seeks to offer more flexibility since fatal error handler implementa-
tions can vary from system integrator to integrator and potentially
conflict with the desired canary violation behavior (to distinguish
safety from security violations). We outline the following policies that
can be taken upon canary violation, all of which raise an alert (which
can be implemented in the form of an external alert or local event
logging):

• Passive: The attack is allowed to continue uninterrupted after
raising the alert.

• Fatal: The violation is treated as a regular fatal error and of-
floaded to the default system fatal error handler.

• Thread Restart: The current thread is restarted by the kernel
and the system is allowed to continue running. In this manner,
thread availability interruption is kept to a minimum. Note that
this approach makes the canary more susceptible to brute-force
attacks.
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• System Restart: The system is restarted and memory is cleaned
upon startup. In this manner, system availability interruption is
kept to a minimum.

• Thread Shutdown: The current thread is terminated and the
system is allowed to continue running, potentially with degraded
capabilities.

• System Shutdown: The system is shut down as gracefully as
possible.

Which measure is most suitable depends on system-specific criteria.
For example, in high availability systems where no other measures
are in place, a passive alert might be most suitable. The rationale be-
hind this is that in scenarios where system availability is important
and there is no replication in place or where there is a lack of fail-
safe mechanisms to mitigate undefined behavior from the system, it
might be preferable to allow an attacker to successfully run their ex-
ploit while system availability is maintained rather than terminate
a thread or the entire system with potentially worse consequences.
In other systems, eg. safety-critical ones where replication and other
fail-safe mechanisms are in place the most suitable option might be
a thread or system restart and in systems where security concerns
win out over availability or where system degradation might have
safety consequences a thread or system shutdown might be most
suitable. Note that thread and system restart measures can only be
implemented if the system in question supports it.

7.7 µrng design

µRNG , as illustrated in Figure 27, is a CSPRNG designed for deeply
embedded operating systems conforming to the criteria outlined in
Section 6.5.2. The main purpose of µRNG in the context of this work
is to serve as a dependency for exploit mitigations (such as stack ca-
nary mechanisms) but depending on chosen security strength it is
perfectly suitable as a general purpose CSPRNG. While, for the sake
of convenience, this work describes and implements µRNG in the con-
text of our representative platform in Section 7.1, the µRNG design is
not restricted to any operating system or platform in particular and
can be easily integrated into existing (real-time) operating systems for
deeply embedded systems.

µRNG is based on a compact, software-only CSPRNG design for
ARM Cortex-M by Van Herrewege et al. [299] with a 128 bit secu-
rity strength level and utilizes the lightweight Keccak [351] sponge
function as a CSPRNG [350], though this can be replaced by any sim-
ilarly lightweight sponge function meeting the desired security cri-
teria. Entropy accumulation is done by Keccak’s sponge ’absorbtion’
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Figure 28: µRNG Reseed Control

functionality while random number generation is done by ’squeez-
ing’ the Keccak sponge, allowing us to use the same algorithm for
both purposes. µRNG uses the Keccak-f[200] permutation with rate
and capacity parameters r = 64 and c = 136 respectively which re-
sults in a Keccak internal state of 25 bytes and generation of 64-bit
pseudo-random numbers per ’squeeze’ operation. With regards to en-
tropy gathering, we initially seed µRNG with at least 256 bits of entropy
and ensure reseeding is done with at least 256 bits of entropy as well
to ensure all seeding is done with an amount of entropy that’s at least
double the PRNG security strength.

When designing reseed control we need to take into account the
applicability of passive and active state recovery attacks [350]. In case
of the former, the attacker cannot influence seed data while in case
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of the latter the attacker can. As per the original design by Van Her-
rewege et al. [299] upon which µRNG is based, µRNG provides the re-
quired security against passive state recovery attacks as long as reseed-
ing occurs at least every r ∗ 2 r

2 = 64 ∗ 232 = 32GB of PRNG output
and against active attacks as long as reseeding happens at least every
28 ∗ r = 256 ∗ 64 = 2KB of output. Since our attacker model explic-
itly assumes a remote attacker, incapable of influencing our entropy
sources remotely, we only take passive state recovery attacks into ac-
count. We have to consider a tradeoff between overhead and security
with respect to reseed frequency: ideally reseeding is done regularly
to keep as much entropy in the PRNG as possible at all times but
frequent entropy gathering puts pressure on embedded resources in
terms of memory and power consumption. We have opted for ensur-
ing µRNG is fully reseeded every 1GB of output, well within desired
security bounds for passive attack resistance. µRNG has two options
for reseed control, as illustrated in Figure 28, to accommodate differ-
ent types of systems:

• Consistent: Suitable for systems where a consistent invocation
of minimal overhead is preferable. Reseed control here is inte-
grated into the PRNG output function, ensuring at least 1 bit
of entropy is accumulated for every 64 bits of PRNG output,
thus ensuring a full 256-bit reseed every 2KB of output (inci-
dentally also meeting active attacker criteria). The downside of
this approach is that every call to PRNG output comes with a
little additional overhead. If real-time guarantees are important
here, system integrators need to ensure reseed entropy sources
provide worst-case timing estimates on 1 bit throughput times.

• Periodic: Suitable for systems where a periodic invocation of
a slightly more overhead-intense routine is preferable. Here re-
seed control is integrated into the PRNG output function as
well, together with a 32-bit reseed counter which keeps track
of the number of bytes output, but actual reseed functionality is
only invoked after the counter exceeds a certain threshold value
T. Reseed functionality is designed to run for at most S seconds
(to facilitate worst-case timing estimates) and accumulate en-
tropy while resetting the reseed counter. We determine reseed
threshold value T as follows: T = N

2∗M∗E∗S where N is our full
reseeding upper bound in bytes (ie. 1GB), M is the PRNG se-
curity strength in bits (ie. 128), E is reseed entropy throughput
in bits per second and S is the reseed runtime limit in seconds.
For example, with values E = 512KB/s,S = 0.001 this gives
us T = 10243

256∗4194304∗0.001 = 1000 meaning µRNG would invoke
reseed control every 1000 bytes of PRNG output.
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In order to meet criterium 3 (Section 6.5.2), µRNG uses only non-
domain specific entropy sources that can be found on most embed-
ded devices and divides these sources into two groups as illustrated
in Figure 27:

1. Initial: Initial entropy is gathered during early boot and should
be rapidly available in sufficient quantity upon system startup
to accommodate rapid system startup times while avoiding the
so-called ’boot-time entropy hole’ [407].

• SRAM Startup Values: We follow [299] in using SRAM
Startup values (SUVs) [478] as our primary source of initial
entropy. SRAM is a type of volatile memory where gener-
ally each cell consists of six transistors and two cross cou-
pled inverters. The circuit formed in this fashion can as-
sume two stable logical states forming the SUV: 0 (AB=01)

and 1 (AB=10). When powered up the SRAM cell state is
unstable and will converge eventually to one of the two
stable states. Due to manufacturing differences, the invert-
ers tend to be slightly different which results in one be-
ing faster than the other and thus introducing a bias in
this convergence resulting in a static SUV. In some cases,
however, the difference is so small that the convergence
is governed by thermal and shot noise, effectively render-
ing their SUV ’random’. While the ’static’ SRAM cells have
been a subject of interest in the field of PUF security [319,
342, 403, 478], the ’random’ cells are of interest as a source
of RNG entropy [96, 132, 298, 299, 319]. Using SRAM SUVs
as a source of initial entropy allows us to have an entropy
source that is present on most embedded devices, instantly
available in (very) early boot and differs from boot session
to boot session as well as (due to the ’static’ cells) from de-
vice to device even when two different devices operate un-
der identical environmental conditions. As noted by [299],
the entropy provided by SRAM SUVs is singular (ie. one
can draw upon it only once) and whether it is sufficient for
seeding a PRNG depends on the type of device used.

As discussed in [96, 298, 299, 403], the amount of entropy
in modern microcontroller SRAM tends to be around 5% of
its total size at normal operating temperatures. This means
that, on average, µRNG would require at least 2∗128

0.05∗8 = 640

bytes of SRAM to guarantee a security strength level of 128

bits, a reasonable restriction for most modern microcon-
trollers. The only limitation of this approach is that it can-
not be applied to microcontrollers with low-entropy SRAM
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SUVs (eg. the PIC16F1825 [96]), heavy SRAM constraints
(eg. less than 1 KB of available SRAM) or a combination
of sensitive SRAM and unusual operating environments
(very low or high temperatures reducing entropy). If one
seeks to use µRNG only as an exploit mitigation dependency,
lowering the security strength level to accommodate avail-
able initial entropy might be an option. Otherwise, we con-
sider these limitations acceptable for the purposes of this
work.

2. Reseed: Reseed entropy is gathered upon invocation of reseed
control functionality and should be able to provide either at
least 1 bit of entropy per invocation (in case of consistent reseed
control) or an appropriate throughput rate (in case of periodic
reseed control).

• Clock Jitter & Drift: The various oscillators (eg. RC, Ring
or VC oscillators) acting as microcontroller clock signal
sources are never completely stable and are influenced by
factors such as supply voltage, temperature, etc. As such,
their periods tend to vary in the time (named clock jitter)
and frequency (named clock drift) domains [461]: the for-
mer manifests as short-term variations of a clock’s ’true
period’ while the latter manifests as one clock desynchro-
nizing with respect to another clock.

Clock jitter has been used as a source of entropy in true
random number generators [377, 460, 461] but due to mea-
surement issues and the fact that jitter is an unwanted
phenomenon which manufacturers have sought to reduce,
clock drift is a more suitable source of entropy for PRNGs
[177, 380, 439] for which there are multiple ways to extract
entropy (eg. clock domain crossings, active comparisons of
one clock against a reference clock, etc.) via software-based
methods. A downside of this approach is that it relies on
the existence of multiple clocks, which might make it un-
suitable for the most constrained of devices.

• ADC Noise: Many embedded systems are outfitted with
analog-to-digital converters (ADCs) which have been used as
PRNG entropy sources [18, 65, 305] by sampling the least
significant bit of ADC output corresponding to floating in-
puts. While many modern microcontrollers are equipped
with ADCs [160, 161], their general suitability as crypto-
graphic entropy sources is currently unevaluated and as
such we recommend against integration unless proper device-
specific evaluation indicates suitability.
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µRNG is by no means limited to the above entropy sources and
prior work regarding embedded systems entropy has shown the suit-
ability of less omnipresent (but still non-domain specific) sources of
initial and reseed entropy: respectively DRAM Decay [380] and ra-
dio frequency-related sources (such as wireless transmission bit er-
rors [302] or avalanche noise [304]). The former comes with the down-
side of being uncommon in most deeply embedded systems and not
being instantly available like SRAM SUVs, while the latter comes with
the downside of potentially being susceptible to a remote attacker in-
fluencing the RF source.



8
µA R M O R I M P L E M E N TAT I O N

This chapter describes our implementation of µArmor for our rep-
resentative platform: the Zephyr operating system running on a TI

LM3S6965. While our implementation is specific to this representative
platform, it is easily portable to comparable operating systems and
architectures. Our implementation is meant to be a proof-of-concept
suitable for demonstration and evaluation purposes rather than an
upstreamable patch.

8.1 µesp implementation

µESP can be implemented using features such as the ARM Cortex-M3’s
optional MPU [2] (present in the TI LM3S6965 [106]) or Intel Quark’s
Memory Protection Regions (MPRs) [109]. Since Zephyr memory pro-
tection support will be rolled out in the upcoming Zephyr 1.8 re-
lease [163], we have chosen to implement µESP as a standalone com-
ponent which could be integrated µESP into Zephyr’s memory man-
agement subsystem in the future.

We consider the following two common approaches to dealing with
code and data memory in embedded systems: a) Program code is lo-
cated in and executed from flash and data is copied to RAM and b)
Both program code and data are copied from flash to RAM by a first
stage bootloader and further code (eg. the operating system kernel)
is executed from RAM. For µESP this corresponds to the permission
policies outlined in Table 14. The ’sensitive’ code is that code which
handles rewriting flash memory, copying data from flash to RAM and
setting up memory permissions and is made non-executable after ex-
ecution. The MPU Config refers to MPU configuration registers which
are made read-only after memory permissions have been set up and
the SCB config refers to the System Control Block (SCB) [90] config-
uration registers.

With the Cortex-M3’s MPU we can enforce µESP ’s policies by mak-
ing use of its support for up to 8 memory regions. Memory regions
can cover the full 4 GB address space and come with size (specified in
bytes as a power of 2 with a minimum of 32 B) and permission (in the
form of XN and data access flags) attributes. Memory regions start
addresses must be size-aligned (ie. a 2 KB region must start at an ad-
dress that is a multiple of 2 KB). We do not make use of the available
privilege modes because we do not want to assume OS compatibility
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Memory Permissions

Code (sensitive) RO+XN

Code (other) RO+X

Data RW+XN

Peripherals RW+XN

SCB Config RO+XN

MPU Config RO+XN

Table 14: µESP Memory Permission Policies

with them and as such our permissions apply to both privileged and
unprivileged modes. Based on the policies in table 14, we construct a
µESP configuration for the TI LM3S6965 in tables 15 and 16 represent-
ing settings for execute-from-flash and RAM code relocation scenarios
respectively. Listing 1 shows the pseudo-code for setting up the MPU
according to µESP guidelines.

We start with a default region, using the lowest region number,
which covers the entire address space with RW+XN permissions. If two
memory regions overlap on the Cortex-M3 MPU, region attributes fall
back to the region with the highest region number. We can use this
feature to limit the number of regions we have to specify and define
overlapping regions for exceptions to default ’data memory’. SRAM
and peripherals are covered by this default region as well. We define a
region for code (covering all of flash memory) with RO+XN permissions
and use a higher region as an XN overlay for any sensitive code (except
the final line which locks the MPU) to be made non-executable after
system initialization. For the scenario where code is executed from
RAM, we provide identical regions to be placed wherever in RAM the
bootloader relocates code to. Keep in mind that since aliased address

Listing 1: µESP MPU Setup Pseudo-Code

1 // mpu_set_region(id, name, perms, start, lg2size)

// setup default region

mpu_set_region(0, ’ default ’, RW+XN, 0x00000000, 32)

// setup code region

6 mpu_set_region(6, ’code_other ’, RO+X, 0x00000000, 18)

// protect SCB by making RO

mpu_set_region(4, ’scb ’, RO+XN, 0xE000ED00, 6)

// make sensitive code non-executable

mpu_set_region(7, ’ code_sensitive ’, RO+XN, *, *)

11 // lock MPU by making configuration area RO

mpu_set_region(5, ’mpu’, RO+XN, 0xE000ED80, 6)
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Region No. Description Perms. Start Addr. Size

0 Default RW + XN 0x00000000 4 GB

4 SCB RO + XN 0xE000ED00 64 B

5 MPU RO + XN 0xE000ED80 64 B

6 Code (other) RO + X 0x00000000 256 KB

7 Code (sensitive) RO + XN * *

Table 15: TI LM3S6965 MPU µESP Settings, execute-from-flash

Region No. Description Perms. Start Addr. Size

0 Default RW + XN 0x00000000 4 GB

2 SCB RO + XN 0xE000ED00 64 B

3 MPU RO + XN 0xE000ED80 64 B

4 Code (other, RAM) RO + X * * MB

5 Code (sensitive, RAM) RO + XN * *

6 Code (other, flash) RO + X 0x00000000 256 KB

7 Code (sensitive, flash) RO + XN * *

Table 16: TI LM3S6965 MPU µESP Settings, execute-from-RAM

ranges need to be covered by the same permissions, this might mean
memory regions could need sizes bigger than the actual amount of
on-chip SRAM.

The MPU configuration register area is located in the memory re-
gion from 0xE000ED90 to 0xE000EDBC [106] but since this is an area of
44 bytes and the region size must be a power of 2, we will have to set-
tle on a region size of 64. This means we also have to start the region
at 0xE000ED80 because this is a multiple of 64 and 0xE000ED90 is not.
Luckily the fact that this region covers more than the intended area
is not an issue since there is nothing in the ’surrounding area’ [270].

In addition to the above we have to consider the following security-
sensitive memory regions: Interrupt Vector Table (IVT) and System

Control Block (SCB). The IVT holds exception vectors such as the
stack pointer reset value and start address (loaded upon system re-
set) as well as interrupt handler addresses. The IVT would be an
interesting overwriting target for attackers but luckily by default it
lives completely within the lower region of flash memory starting
at 0x00000000 and as such is covered by the RO+X permissions of
our code region. It is possible, however, to relocate the vector ta-
ble using the Vector Table Offset Register (VTOR) in the System

Control Block (SCB). If the vector table is relocated to RAM along
with other code as part of a bootloader, this is not an issue because
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it will be covered by the relevant code region. But in order to protect
an attacker from forcing a malicious relocation as part of an exploit
(among other things), we mark the SCB as read-only. If some SCB func-
tionality should be writable during runtime, µESP uses the MPU’s sub-
region feature which divides a region into 8 equally large sub-regions
(provided the region size is at least 256 B) that can be disabled indi-
vidually (thus falling back to default RW+XN permissions). If so desired,
one could merge the SCB and MPU memory regions into a single region
using disabled sub-regions to cover any addresses within the range
which should have different permissions.

8.2 µscramble implementation

There are two popular compilers providing extensible architectures:
GCC and LLVM [183]. We chose to implement µScramble as an exten-
sion for the LLVM framework, as illustrated in Figure 29, since it is
more flexible and has been used extensively in prior software diversi-
fication work [293, 317, 346, 369]. While GCC is supported as Zephyr’s
default compiler and Clang [185] (using LLVM as a backend) is not as
thoroughly tested yet, future efforts to change this and extend LLVM
support and testing has been announced by the Zephyr Project [163].

LLVM is a language- and target-agnostic compiler infrastructure
that translates source-code to an intermediate representation (IR) and
finally translates that into a machine code. This translation process
consists of a sequence of transformation passes which includes func-
tionality such as instruction selection and scheduling, register allo-
cation and optimizations. Since LLVM uses a custom, abstract IR it
facilitates implementing powerful new passes at different levels able
to draw upon a wealth of high-level information provided by the
compiler. Since LLVM is language agnostic, µScramble is as well and
supports any source language.

Due to time constraints on this project, we have chosen to im-
plement our diversification transforms only for code making proper
LLVM passes. Given that LLVM passes assembly code directly to the
assembler rather than through the LLVM pass infrastructure, our di-
versification does not affect code written directly in assembly. While
operating systems often contain specific assembly code highly sensi-
tive to modification, our lack of support for assembly diversification
is by no means intrinsic to our design but merely to our implemen-
tation. As shown by Gionta et al. [369], diversification support for
assembly code can be added to an LLVM-based solution by making
use of the MicroArchitectural Optimizer (MAO) [426].
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Figure 29: µScramble LLVM Implementation

The µScramble diversification transformations were implemented
as LLVM passes as follows:

1. Register-Preservation Reordering: This transformation is im-
plemented as a MachineFunctionPass [184] which obtains the
callee-saved registers of a function using getCalleeSavedRegs [182],
shuffles their order using the LLVM PRNG and sets the new
order using setCalleeSavedRegs [182]. Note that on our repre-
sentative platform this transformation has no effect since ARM
(re)stores registers in fixed numerical order from and to the
stack [4].

2. Dead Code Insertion: This transformation is implemented as a
MachineFunctionPass which identifies the final basic block of a
given function and generates a dead code-stub of b ∈R B instruc-
tions where B = {n|n ∈N,n 6 DCf}. It then places this stub, as
a new basic block, at the end of the function. We allow develop-
ers to specify what type of dead code-stub (NOP or trap) they wish
to generate with a compiler flag.

NOP-stubs consist of a single, repeated, architecture-dependant
NOP instruction or equivalent chosen to ensure minimal gadget
usefulness if the architecture lacks a dedicated NOP-equivalent
instruction. Our implementation currently supports ARM and
x86 using andeq r0, r0, r0 (opcode: 0x00000000) and xchg

eax, eax (opcode: 0x90) instructions respectively but could be
trivially extended to other architectures. Trap-stubs consist of
branch instructions to a violation policy handler, in our case we
use the same handler used for µSSP violations described below.
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3. Function Reordering: This transformation is implemented as
a ModulePass [184] which retrieves the current module’s func-
tion list and shuffles it using the LLVM PRNG. The linker will
ensure functions are organized in the randomized order in the
produced firmware image.

All randomization operations used in µScramble draw upon the
LLVM PRNG which draws upon a developer-supplied true random
seed (ensured to have enough entropy to prevent frequent collisions
or brute-forcing, eg. at least 128 bits). Since this PRNG is deterministic
this means a given firmware build can be reproduced from the seed
as is done in [369]. While the default LLVM PRNG is not secure, this
does not matter much for diversification purposes because any attack
on the PRNG itself would require an attacker to disclose a significant
part of the firmware image thus defeating the purpose of the PRNG
attack in the first place.

8.3 µssp implementation

We implemented µSSP as an augmentation of Zephyr’s Stack Smashing
Protector (SSP) implementation. Since Zephyr uses the GCC SSP [190]
model it already meets µSSP ’s compiler-side criteria. It should be
noted Clang supports GCC-style SSP as well [25]. On the OS-side, it
stores a single master canary value as a global variable in .bss and
initializes it at boot (as part of the _Cstart function, after hardware
initialization but before the main thread is activated) by drawing from
the sys_rand32_get API.

We augmented this SSP implementation by adding optional sup-
port for a terminator-style canary bitmask, ensuring an OS CSPRNG
is available for secure canary generation (see µRNG implementation
below) and implementing a modular canary violation handler (com-
monly referred to as __stack_chk_fail). All violation handlers call
an alert-raising function (to be implemented by the system integrator)
before activating their policy measure:

• Passive: Here the violation handler simply returns to the violat-
ing function.

• Fatal: This approach, which is the default Zephyr approach, has
the violation handler invoke the system fatal error handler with
the _NANO_ERR_STACK_CHK_FAIL argument. By default, this will
try to terminate the violating thread and continue running the
system.

• Thread Restart: In order to properly handle thread restarts we
maintain a global list (eg. a hash table or association list) of thread
restart handlers associated with thread IDs. We require the thread
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ID be registered together with the restart handler (to be im-
plemented by the system integrator) upon thread start and de-
registered upon thread termination. Upon invocation of the vi-
olation handler, the violating thread’s ID is looked up in the
restart handler list, the associated restart handler is fetched, the
thread in question is terminated and the restart handler is in-
voked.

• System Restart: Here we invoke the sys_reboot API with the
SYS_REBOOT_COLD argument to perform a system restart. Imple-
mentation of the API is SoC-specific, however.

• Thread Shutdown: This approach is identical to the default
Zephyr fatal error handler.

• System Shutdown: This approach depends on SoC capabili-
ties and power management subsystem implementations (eg.
ACPI [257], deep sleep support, etc.) and as such implementation
is left to the system integrator. In the absence of such function-
ality we default to terminating all running threads and moving
into permanent idle mode.

8.4 µrng implementation

We implemented µRNG as a driver for the Zephyr random API. µRNG out-
put can be requested with the sys_rand32_get API which ’squeezes’
the µRNG keccak object to produce 64 bits (the rate minimum) of
PRNG output, the upper and lower halves of which are xor-summed
together to produce a 32-bit random number as per API specifica-
tions.

Since our µRNG implementation uses SRAM SUVs as its initial en-
tropy source, it is important that this entropy collection takes place
as early as possible to reduce SRAM contamination (from code stor-
ing variables, using the stack, etc.) as much as possible. This means
that µRNG initialization code should be integrated either in the system
bootloader or within early kernel initialization routines. We chose to
integrate µRNG initialization in Zephyr’s __start routine which is the
firmware code entrypoint and used as the reset handler in the ARM
Cortex-M’s vector table. This ensures SRAM is untouched before
our µRNG initialization code is invoked. We have not, however, used
any performance or overhead-optimized keccak implementation. Af-
ter µRNG has been initialized it is important to preserve the internal
state (stored as a global in .bss) throughout the further boot process.
To this end we modified the _PrepC routine, which sets up Zephyr for
running C code, to ensure memory cleanup skips KeccakState.
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µA R M O R E VA L U AT I O N & L I M I TAT I O N S

In this chapter we will evaluate µArmor with respect to real-time com-
patibility, safety issues, overhead and security against the criteria out-
lined in Section 6.5.1.

9.1 real-time compatibility & safety issues

In order for a security solution to be real-time compatible it needs to
ensure the system remains capable of meeting deadlines and remains
amenable to worst-case execution time (WCET) analysis. Since µESP ,
µSSP , and µRNG are deterministic they are real-time compatibile. And
while µScramble introduces a minimal degree of variability between
different firmware images, meaning one firmware image might exe-
cute a little slower than another as a result of diversification, this does
not pose a problem to real-time compatibility because: a) µScramble
does not render firmware behavior non-deterministic.

In embedded systems design a tension exists between allocating
too much memory to the stack and wasting a scarce resource, and
too little which potentially causes stack overflows. As such stack us-
age is often determined a priori using either testing-based techniques
or stack depth analysis [110, 364] and security solutions which modify
stack usage (such as stack canaries) should take this tension into ac-
count and allow for deterministic computation of additional stack us-
age. As already hinted at by Zephyr’s inclusion of stack canaries, µSSP
’s modification of stack usage is amenable to both analysis techniques
in a multi-stack environment since it is deterministic: it introduces
an additional 32-bit word for every function call. In addition, µESP ’s
stack placement is designed to have the stack grow away from other
data regions in order to limit the safety-related impact of any stack
overflows as is recommended [200].

9.2 overhead evaluation

We evaluate the overhead imposed by µArmor in terms of code size,
data size, memory usage and runtime increases. Due to time and
measurement equipment limitations, we consider energy consump-
tion overhead out of scope for this work. Code and data size figures
represent increases in code (in flash) and constants (in SRAM) re-
spectively. Memory usage increases represents a worst-case SRAM
overhead imposition (by use of dynamic data structures) at any point
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during execution. We instrumented application code to measure run-
time performance using a hardware high precision counter. Runtime
performance figures represent increases in the number of clockcycles
consumed for a given amount of code to run, reported as the average
of 25 runs.

We evaluate µESP , µSSP , µRNG separately in Tables 17, 18 and 19

and µScramble in Tables 20, 21, 22 and 23. In order to get an idea of
the overhead on realistic applications we chose three sample Zephyr
IoT applications stressing different subsystems:

• philosophers [274]: An implementation of the dining philoso-
phers problem using multiple preemptible and cooperative threads
of differing priorities.

• net/echo_server [275]: An IPv4/IPv6 UDP/TCP echo server
application.

• net/telnet [276]: An IPv4/IPv6 telnet service providing a shell
with two shell modules: net and kernel.

We evaluate µESP , µSSP and µRNG against the above representative
applications compiled for the TI LM3S6965 with GCC as provided by
the Zephyr SDK. We evaluate µScramble against a different set of ap-
plications, however, since the overhead imposed by µScramble on a
single application is non-deterministic and scales strongly with re-
spect to parameters such as the number of functions. As such we
chose to evaluate µScramble against a set of 50 benchmarks and
applications from the TACLeBench suite [357] as listed in Tables 29

and 30. TACLeBench is designed for Worst-Case Execution Time (WCET)
analysis and consists of self-contained programs without external or
OS dependencies drawn from well-known (embedded) benchmark-
ing suites such as DSPStone [39], MRTC WCET [141], SNU-RT [134],
MiBench [399], MediaBench [40], NetBench and HPEC [135]. The bench-
marks in question are drawn from various embedded domains rang-
ing from automotive and networking to security and telecommunica-
tions and are sub-divided into application, kernel, sequential and test
groups implementing realistic applications, small kernel functions,
large sequential functions and artificial stress tests respectively.

We are not interested in average memory usage overheads but
rather in worst case figures because of potentially unacceptable SRAM
pressure. Using stack depth analysis [110, 364] embedded developers
get an indication of the maximum amount of memory used by the
stack in their application. Obtaining an absolute stack depth upper
bound is done using static analysis but is complicated by various fac-
tors such as recursion, indirect function calls, input-dependant code
paths, loops without explicit limits and multi-threading and requires
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Application % Code Size % Data Size % Memory1 % Runtime2

Wrt. application

philosophers 1.2 0 × (0 B) 0

net/echo_server 0.2 0 × (0 B) 0

net/telnet 0.2 0 × (0 B) 0

Wrt. resources

philosophers 0 0 0 ×
net/echo_server 0 0 0 ×
net/telnet 0 0 0 ×

Table 17: µESP Overhead Evaluation
1 Worst-Case Estimate, 2 Average of 25 runs

proprietary tools. As such we have decided to obtain a stack depth
estimate in between the usual lower bounds derived from experimen-
tal observation and the upper bounds derived from static analysis.
This estimate is derived from multiplying the longest identified call
chain in the program Control Flow Graph (CFG) by the overhead im-
posed by a single canary. Ideally, we would obtain such an estimate
using source-code analysis but given Zephyr’s mix of C and assembly
source-code files we chose to write a custom IDAPython [99] script for
the IDA Pro [181] binary analysis framework that would perform this
analysis. While limited by the inherent incompleteness of binary anal-
ysis, we believe the impact of this on simple IoT applications such as
the case studies below to be negligible.

Note we report overhead figures both with respect to the original
unprotected application and with respect to total device resources
since the former represents the resource consumption increase µArmor
components impose upon an individual application while the latter
more accurately represents actual resource pressure. Exceptions to
this are memory usage and runtime overhead figures. The former
are reported in absolute terms only since they express a worst-case
scenario with respect to total device resources and the latter can be
reported with respect to the original application only. We round over-
head to 1 decimal place.

Based on the reported figures above, we can conclude code size
overheads stay below 5% with respect to the application for all com-
ponents except µSSP and µRNG and are less than or equal to 5% with
respect to total device resources for all components. Data size, mem-
ory usage and runtime overheads all stay well below 1% both with
respect to the application as well as with respect to total device re-
sources. µSSP code size overheads are clearly the heaviest overhead
imposition of all metrics and components. µSSP introduces roughly 4
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Application % Code Size % Data Size % Memory1 % Runtime2

Wrt. application

philosophers 30.5 0 × (48 B) 0

net/echo_server 26.4 0 × (84 B) 0.7

net/telnet 27.3 0 × (84 B) 0.7

Wrt. resources

philosophers 0.9 0 0 ×
net/echo_server 5 0 0 ×
net/telnet 5 0 0 ×

Table 18: µSSP Overhead Evaluation
1 Worst-Case Estimate, 2 Average of 25 runs

Application % Code Size % Data Size % Memory1 % Runtime2

Wrt. application

philosophers 10.2 0.4 × (52 B) 0

net/echo_server 1.4 0.1 × (52 B) 0

net/telnet 1.5 0.1 × (52 B) 0

Wrt. resources

philosophers 0.3 0 0 ×
net/echo_server 0.3 0 0 ×
net/telnet 0.3 0 0 ×

Table 19: µRNG Overhead Evaluation
1 Worst-Case Estimate, 2 Average of 25 runs
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Application % Code Size1 % Data Size2 % Memory3 % Runtime4

Application

lift 1.5 0 0 0

powerwindow 2.2 0 0 0

Kernel

binarysearch 3.8 0 0 0

bitcount 2.3 0 0 0

bitonic 4.2 0 0 0

bsort 3.5 0 0 0

complex_updates 1.6 0 0 0

countnegative 3.4 0 0 0

fac 4 0 0 0

fft 2.6 0 0 0

filterbank 1 0 0 0

fir2dim 1.5 0 0 0

iir 2.2 0 0 0

insertsort 1.9 0 0 0

jfdctint 1.3 0 0 0

lms 1.4 0 0 0

ludcmp 0.9 0 0 0

matrix1 3 0 0 0

md5 1.9 0 0 0

minver 0.8 0 0 0

pm 0.8 0 0 0

prime 1.8 0 0 0

quicksort 0.9 0 0 0

recursion 4.6 0 0 0

sha 1.8 0 0 0

st 2 0 0 0

basicmath 0.7 0 0 0

Table 20: µScramble Overhead wrt. Application
1 Average of 25 variants, 2 Average of 25 variants, 3 Average of 25 runs of 25

variants, 4 Average of 25 runs of 25 variants
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Application % Code Size1 % Data Size2 % Memory3 % Runtime4

Sequential

adpcm_dec 1.1 0 0 0

adpcm_enc 1.3 0 0 0

ammunition 1.1 0 0 0

anagram 1.8 0 0 0

audiobeam 1.6 0 0 0

cjpeg_transupp 1.2 0 0 0

cjpeg_wrbmp 2.1 0 0 0

dijkstra 1.9 0 0 0

epic 1.6 0 0 0

fmref 1 0 0 0

gsm_dec 1.3 0 0 0

h264_dec 0.8 0 0 0

huff_dec 1.8 0 0 0

huff_enc 1.6 0 0 0

mpeg2 1.1 0 0 0

ndes 1 0 0 0

petrinet 0.2 0 0 0

rijndael_dec 0.3 0 0 0

rijndael_enc 0.3 0 0 0

statemate 0.5 0 0 0

Test

cover 1.2 0 0 0

duff 3 0 0 0

test3 0.4 0 0 0

Table 21: µScramble Overhead wrt. Application
1 Average of 25 variants, 2 Average of 25 variants, 3 Average of 25 runs of 25

variants, 4 Average of 25 runs of 25 variants
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Application % Code Size1 % Data Size2 % Memory3 % Runtime4

Application

lift 0 0 0 0

powerwindow 0.1 0 0 0

Kernel

binarysearch 0 0 0 0

bitcount 0 0 0 0

bitonic 0 0 0 0

bsort 0 0 0 0

complex_updates 0 0 0 0

countnegative 0 0 0 0

fac 0 0 0 0

fft 0 0 0 0

filterbank 0 0 0 0

fir2dim 0 0 0 0

iir 0 0 0 0

insertsort 0 0 0 0

jfdctint 0 0 0 0

lms 0 0 0 0

ludcmp 0 0 0 0

matrix1 0 0 0 0

md5 0 0 0 0

minver 0 0 0 0

pm 0 0 0 0

prime 0 0 0 0

quicksort 0 0 0 0

recursion 0 0 0 0

sha 0 0 0 0

st 0 0 0 0

basicmath 0 0 0 0

Table 22: µScramble Overhead wrt. Resources
1 Average of 25 variants, 2 Average of 25 variants, 3 Average of 25 runs of 25

variants, 4 Average of 25 runs of 25 variants
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Application % Code Size1 % Data Size2 % Memory3 % Runtime4

Sequential

adpcm_dec 0 0 0 0

adpcm_enc 0 0 0 0

ammunition 0.1 0 0 0

anagram 0 0 0 0

audiobeam 0 0 0 0

cjpeg_transupp 0 0 0 0

cjpeg_wrbmp 0 0 0 0

dijkstra 0 0 0 0

epic 0 0 0 0

fmref 0 0 0 0

gsm_dec 0 0 0 0

h264_dec 0 0 0 0

huff_dec 0 0 0 0

huff_enc 0 0 0 0

mpeg2 0.1 0 0 0

ndes 0 0 0 0

petrinet 0 0 0 0

rijndael_dec 0 0 0 0

rijndael_enc 0 0 0 0

statemate 0 0 0 0

Test

cover 0 0 0 0

duff 0 0 0 0

test3 0.1 0 0 0

Table 23: µScramble Overhead wrt. Resources
1 Average of 25 variants, 2 Average of 25 variants, 3 Average of 25 runs of 25

variants, 4 Average of 25 runs of 25 variants
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RNG ROM RAM

µRNG 1
709 81

TinyRNG [302]2
11086 471

TinyKey [428]3
5990 790

Table 24: µRNG Resource Consumption Comparison
1 for TI LM3S6965, 2 for MICA2, 3 for TMote Sky

instructions of prolog and 5 instructions of epilog overhead amount-
ing to 36 bytes per protected function. While the average overhead
with respect to the unprotected application is 28.1% we can see over-
head in terms of total resource pressure remains equal to or below
5%. As such we consider our overhead criteria met.

Furthermore, it should be noted that while our µRNG implementa-
tion has not been optimized in any way it still compares favorably
against existing IoT-oriented RNG implementations by virtue of its
lightweight design as illustrated in Table 24 (here RAM is taken to
include both data size and memory usage increases).

9.3 security evaluation

9.3.1 µESP Security

µESP protects against both code injection and code modification by
enforcing a separation between code and data memory, forcing an
attacker to use a code-reuse payload. By ’locking’ the MPU and ren-
dering µESP and bootloader code non-executable after it has been
run, µESP protects against code-reuse attacks that seek to circumvent
µESP by means of permission-changing payloads or ret2bootloader at-
tacks [85, 288, 303] that seek to rewrite flash memory with attacker-
injected code. This approach does not protect against ret2bootloader
attacks against chips with a bootloader stored in mask ROM, however,
and as such we reiterate advice from prior work [85, 457] against such
bootloaders.

9.3.2 µScramble Security

Contrary to µESP , µScramble offers probablistic security and we will
evaluate it with respect to the following aspects: entropic quality and
relocation frequency (which determine bruteforce susceptibility) as well
as information leak susceptibility. When we consider the entropic qual-
ity of diversification schemes on deeply embedded devices we are
immediately confronted with the limitations imposed by the size of
the address space which tends to range between 16 and 32 bits. In ad-
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dition, code is often restricted to a limited subregion of that address
space (eg. ROM only or sometimes part of RAM). The TI LM3S6965,
our representative MCU, has 256 KB of on-chip flash which translates
to an 18 bit code address space but more constrained devices (such as
some of those listed in Table 28) have to make do with 8 or 32 KB of
flash which translates to 13 or 15 bit address spaces respectively. On
top of this, a given piece of code is not equally likely to end up any-
where within this region because of a) randomization granularity and
b) areas that are tied to special functionality such as designated boot-
loader regions. As such the real entropic quality of a given randomized
code address on deeply embedded systems is even less than what the
already limited address space would allow for.

Despite this inherent limitation, one needs to keep in mind that the
reason we employ software diversification here is to prevent code-
reuse attacks as a complement to µESP ’s prevention of code injec-
tion and modification attacks. The degree to which this approach is
successful depends on the feasibility of an attacker being able to con-
struct a useful code-reuse payload. Assuming an attacker is able to
discover enough gadgets to construct one in the first place, deploying
such a payload under software diversification conditions (eg. ASLR,
µScramble , etc.) can be done either through use of information leaks
(as discussed below) or through bruteforcing gadget addresses. Being
a compile-time diversification scheme, µScramble ’s relocation frequency
is limited to firmware updates and as such isn’t re-randomized for
prolonged periods of time. While this certainly reduces attack com-
plexity, µScramble ’s randomization is much more fine-grained than
regular ASLR and as such more resilient because reduced correlation
means disclosure of a single code address does not disclose the entire
memory map.

In order to get an idea of the entropic quality of µScramble ’s trans-
formations we performed a coverage analysis consisting of taking
our selection from the TACLeBench suite and generating 1000 differ-
ent µScramble -diversified variants for each benchmark. We then pro-
ceeded to harvest all gadgets from each variant using a ROP gadget
harvester [199] and determined, for each gadget in each variant, in
how many other variants the gadget still resides at the same address.
We then obtained the average and maximum gadget ’survival’ rates.
These gadget survival rates give us an indication as to the quality of
µScramble ’s ’coverage’ of the target gadget space and the amount of
work required on part of an attacker to scale their exploits. The re-
sults of this analysis are reported in Tables 25 and 26.

From Tables 25 and 26 we can see that highest average gadget sur-
vival rate is 101.5 (for insertsort) and the highest maximum gad-
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Set Avg. GS1 Max. GS1

Application

lift 2 9

powerwindow 1.2 10

Kernel

binarysearch 1.4 13

bitcount 63.3 180

bitonic 85.15 166

bsort 58.5 171

complex_updates 68.1 199

countnegative 2 11

fac 2.5 4

fft 1.2 5

filterbank 59.9 209

fir2dim 70.5 210

iir 2.5 8

insertsort 101.5 202

jfdctint 97 193

lms 64.2 193

ludcmp 55.4 166

matrix1 68.8 203

md5 0.6 7

minver 1.3 5

pm 12.5 97

prime 0.9 5

quicksort 1.5 9

recursion 91.6 188

sha 2.3 6

st 0.8 3

basicmath 1 4

Table 25: µScramble Coverage Analysis
1 Gadget Survival
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Set Avg. GS1 Max. GS1

Sequential

adpcm_dec 0.5 4

adpcm_enc 0.6 5

ammunition 3.6 147

anagram 0.6 4

audiobeam 4 79

cjpeg_transupp 32 96

cjpeg_wrbmp 1.4 3

dijkstra 1.3 5

epic 0 0

fmref 0.5 3

gsm_dec 1.3 43

h264_dec 100 181

huff_dec 18.8 91

huff_enc 5.8 55

mpeg2 0 0

ndes 0.6 2

petrinet 2 2

rijndael_dec 2.5 16

rijndael_enc 3 11

statemate 16.4 97

Test

cover 29.8 143

duff 1.6 7

test3 0 0

Table 26: µScramble Coverage Analysis
1 Gadget Survival
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get survival rate is 210 (for fir2dim) while most remain well below
those numbers. This means that in a worst case scenario, a single gad-
get survives across roughly 10.15% of variants on average and across
21% of them at most, requiring brute-force for all other variants. Thus
an attacker constructing a code-reuse payload from a given firmware
variant cannot expect any gadget in this payload to work beyond at
best 10.15% of target devices and needs to keep in mind that the
devices for which one gadget might work, another will not (ie. the
gadget survival variants of different gadgets do not necessarily inter-
sect). As such, prospects for gadget chain survival are even worse and
brute-force search space scales with respect to payload length as well.
Furthermore, since µScramble diversification operates with respect
to the number of functions and the available space for dead code in-
sertion, we expect gadget survival rates to go down for increasingly
complicated applications on less constrained platforms.

While µArmor offers no explicit protection against information leaks,
their impact is heavily reduced compared to other diversification so-
lutions such as ASLR due to the fine-grained nature of µArmor ’s di-
versification: ie. since function positions are decorrelated due to order
and size randomization, leakage of one code address does not give
away others outside of a single function scope. In order to limit the
impact of information leaks even further, future work could explore
the applicability of register allocation randomization and call site lifting
transformations [369] or techniques like Execute-only Memory (XoM) /
Execute-no-Read (XnR) [445, 446] and code-pointer hiding (CPH) [383] to
deeply embedded systems. Finally, we observe that µArmor does not of-
fer protection against code-reuse attacks targeting functionality resid-
ing at inherently fixed addresses (eg. interrupt vector table entries) [85,
288].

Based on our coverage analysis above we consider the security of-
fered by µArmor sufficient with respect to our attacker model but do
note that code-reuse attacks incorporating platform- or application-
specific fixed addresses remain unaddressed. We leave this issue to
future work.

9.3.3 µSSP Security

The security offered by µSSP is inherently constrained by the lim-
its of stack canaries: they only protect against stack buffer overflows
targeting stackframe metadata and not against other types memory cor-
ruption vulnerabilities nor against stack buffer overflows targeting
local code- or data pointers. That being said, µSSP draws upon an
OS CSPRNG (provided by µArmor in the form of µRNG ) to generate
canaries with 32- or 24 bits of entropy (depending on whether they
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are configured to be terminator style or not) which are, as such, not
susceptible to either the insecure randomness issues or the system-
side information leaks affecting the original Zephyr SSP canaries in
the absence of a TRNG (see Section 5.3.1). Since the master canary
value is refreshed upon system boot, the system restart, thread shut-
down and system shutdown violation policies are not susceptible to
bruteforce approaches at all. The thread restart policy is susceptible to
bruteforce attacks, the fatal policy’s susceptibility depends on system
integrator implementation and the passive policy naturally offers no
attack prevention security. All approaches, however, raise at least an
alert upon invocation. We believe that given our attacker model (con-
sidering remote attackers only), 32 bits of entropy is sufficient for a
bruteforce attack to be infeasible. With regards to information leaks,
since a single master canary is shared among all threads this means
that a sufficiently powerful information leak in any of the threads
or kernel affects the entire OS. We consider this acceptible given the
overhead and renewal issues otherwise incurred and general absence
of privilege separation in most deeply embedded OSes.

9.3.4 µRNG Security

Finally, we will consider the security of µRNG . µRNG is based on the
Keccak [351] sponge function which has withstood professional crypt-
analytic scrutiny as a CSPRNG [334, 350, 352], offers 128 bits of secu-
rity and is (re)seeded with at least 256 bits of entropy. Initial entropy
is immediately available from SRAM Startup Values (SUVs) and as
such µRNG does not suffer from the so-called boot-time entropy hole. As
discussed in Section 7.7 µRNG reseeds every 1 GB of PRNG output,
well within 32 GB bound for passive state recovery attacks. And while
out of scope for our attacker model, µRNG reseed control could be triv-
ially modified to meet the active state recovery protection 2 KB bound
provided the reseed entropy source has sufficient throughput. If sys-
tem integrators decide to drop reseed control (eg. due to overhead
constraints), µRNG can securely produce up to 32 GB of output before
’locking’ and requiring a system restart.

For µRNG to function securely it is important sufficient initial en-
tropy is available. And while prior work [96, 298, 299, 403] has ob-
served the amount of entropy in modern microcontroller SRAM tends
to be around 5% of total SRAM size at normal operating tempera-
tures, the suitability of on-chip SRAM still varies from device to de-
vice and hence conducting adequate measurements before deciding
on SRAM SUV-based PRNG designs is important [96]. In [96] the
authors provide an overview of SRAM suitability for PUF and PRNG
purposes of four different microcontrollers: STM32F100R8, ATmega328P,
MSP430F5308 and PIC16F1825. All of these except the last one (with a
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worst-case min-entropy of 1.2% corresponding to 100 bits of entropy)
were found suitable for PRNG purposes since those with low intra-
device min-entropy percentages (ranging from worst cases of 2% to
5.25%) tended to make up for it by slightly larger SRAM (thus corre-
sponding to sufficiently available entropy in bits).

While we considered evaluating intra-device min-entropy for our
representative microcontroller to be out of scope for this work, we
believe we can reasonably assume a very conservative lower bound
of 1%. We also need to consider the fact that in reality, SRAM will be
contaminated somewhat during SUV accumulation and that entropy
is not uniformly distributed upon collection. If we make no further
assumptions about SRAM entropy distribution, we assume the worst-
case scenario where every ’contaminated’ SRAM byte removes a full
8 bits of entropy. In order to limit this contamination one could de-
sign keccak_absorb to avoid touching SRAM by avoiding stack vari-
ables, using in-place operations only and using branches that do not
touch the stack (eg. jumps) thus reducing SRAM contamination to the
Keccak-f[200] internal state of 25 bytes only. But even assuming an
un-optimized implementation such as the one in [299] upon which
µRNG is based, SRAM contamination is limited to 52 bytes. Now con-
sider the following formula [96] for evaluating whether we meet the
desired security bounds:

2 ∗ T 6 8 ∗ (Ssize ∗ E− Susage)

where T is desired security strength in bits, Ssize and Susage are
respectively microcontroller SRAM size and SRAM contamination in
bytes and E is intra-device min-entropy percentage. For our conserva-
tive estimates on the TI LM3S6965 this yields:

2 ∗ 128 6 8 ∗ (216 ∗ 0.01− 52)

which holds just fine. This is, of course, merely a very conservative
estimate and as such neither a substitute for an actual measurement
of the TI LM3S6965 specifically nor popular modern microcontroller
SRAM in general. We leave such a thorough evaluation to future
work.

Finally, we need to consider memory retention and initial SRAM
state exposure. SRAM retention effects have been shown [375] to be
minimal at normal ambient temperatures but some microcontrollers
show clear loss of min-entropy correlated to colder ambient temper-
atures [96] which again emphasizes the need for adequate individ-
ual microcontroller evaluation. Care should also be taken to ensure
full SRAM resets between power cycles by grounding positive supply
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lines upon shutdown [96] to avoid retention. Our µRNG implementa-
tion takes care of initial SRAM state exposure by being integrated
into Zephyr’s __start routine which is closely followed by zero’ing of
the SRAM.

9.4 limitations

First of all, µArmor requires either a (modified) Harvard or Von Neu-
mann CPU featuring an MPU/MMU with hardware ESP support. We
believe that this limitation is within reasonable bounds for our sys-
tem to be considered ’hardware agnostic’, since it only excludes older
Von Neumann architectures for which there is currently no way to
enforce low-overhead ESP.

Secondly, µArmor only protects against control-flow hijacking memory
corruption vulnerabilities carried out by remote attackers: it doesn’t pro-
tect against other types of vulnerabilities and doesn’t protect against
attackers with physical access. In addition, the µScramble component
only diversifies code memory and only provides per-device diversity: it
doesn’t diversify data memory nor does it diversify on a per-boot or
per-application run basis.

Finally, the µRNG component requires on-chip SRAM to have suit-
able SRAM SUV entropy (ideally evaluated on a per-chip model basis)
or otherwise requires an alternative source of initial entropy meeting
criteria 2 and 3 outlined in Section 6.5.2. As discussed in Section 9.3.4,
prior work seems to suggest most modern microcontroller SRAM is
suitable as a source for PRNG entropy.
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R E L AT E D W O R K

10.1 embedded mitigation support & quality

To the best of our knowledge no quantitative evaluations for embed-
ded OS exploit mitigation and dependency support exists prior to this
work’s Chapter 4. There is a large body of work dealing with memory
corruption on embedded systems but this work is generally limited
to either Linux-, Windows- and BSD-based systems or bare metal sys-
tems. The body of work dealing with RTOS binary security is far
smaller and includes work on QNX [9, 179, 248, 285, 322, 466, 467],
VxWorks [1, 67, 153, 324], Cisco IOS [136, 140, 296] and ThreadX [247,
307]. None of this work, however, deals with the quality of RTOS ex-
ploit mitigation or OS CSPRNG implementations (if they are present
at all) and as such we believe the evaluation in Chapter 5 to be the
first.

10.2 embedded mitigation design

A large body of work exists on memory corruption and exploit mitiga-
tions, an excellent overview of which is provided in [390, 459]. Most
of that work, however, deals with general purpose systems. As such
we will restrict the discussion in this section to exploit mitigations
specifically designed for embedded systems, deeply embedded systems
in particular.

Address Space Layout Randomization (ASLR) is a well-established
exploit mitigation technique in the general purpose world and has
seen adoption in parts of the embedded world as well. Particularly
mobile operating systems such as Android [124, 148, 172, 306, 360,
378, 404] and iOS [35, 58, 146, 280, 307, 387, 398] have a long his-
tory of ASLR adoption, scrutiny and subsequent improvements. This
level of attention is, however, largely limited to mobile operating sys-
tems and where deeply embedded systems are concerned there are only
three ASLR proposals: PASLR, MAVR and AVRAND. Physical/Pseudo Ad-
dress Space Layout Randomization (PASLR) [210] is an exploit mitigation
for the Nintendo 3DS game console that randomizes code memory lay-
out by shuffling chunks of memory around in physical memory. As
evidenced by exploits [187, 211] from the homebrew scene [261], PASLR
was poorly designed and could be trivially bypassed and as such is
not suitable.

139
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MAVR [371] is a boottime diversification scheme, developed for Ardupi-
lot Mega 2.5 (APM) UAV control systems, that randomizes binary code
at a per-function granularity level. MAVR introduces specialized hard-
ware modifications (in the form of an additional master processor and
external flash chip) to the platform and works by having the master
processor randomize function chunks in the original application proces-
sor firmware and reflashing the latter during boot-time after every N

restarts or after a crash. This approach does not meet our criteria since
it requires (costly) hardware modifications and reduces device lifes-
pan (proportional to the number of restarts) by reflashing firmware
every randomization since the number of write/erase cycles of flash
memory is inherently limited. An attacker could even weaponize this
drawback by forcing a large number of system restarts (by triggering
a crash or invoking a watchdog reset) which would rapidly reduce
device lifespan.

AVRAND [439] is a boottime diversification scheme, developed for
the Arduino Yun platform, that randomizes binary code at a per-page
granularity level. AVRAND is a software-only solution that preprocesses
a binary firmware image, divides it into chunks which can be random-
ized and adds metadata for proper control-flow reconstruction. The
bootloader section is modified to include the randomization code in
question and reflashes the randomized firmware image. The AVRAND

approach does not meet our criteria since it imposes an average code
size increase of 20%, requires sizable metadata storage in EEPROM
and has the same device lifespan reduction drawback as MAVR stem-
ming from its firmware reflashing approach. And while both the MAVR

and AVRAND approaches, if ported from their original AVR-oriented de-
signs, could avoid these drawbacks on a Von-Neumann style proces-
sor, the µArmor criteria require a hardware-agnostic approach suitable
to both (modified) Harvard and Von Neumann processors.

There is a large body of work, of which ASLR is a part, on us-
ing software diversification [418] for probabilistic security purposes.
With regards to using software diversity to complicate code-reuse at-
tacks on embedded systems, prior works has proposed diversification
of system calls [284] and APIs [441].

Most Linux-, Windows- and BSD-based embedded operating sys-
tems support some sort of stack canary scheme and if they don’t it
can usually be trivially ported. When it comes to RTOSes, however,
stack canary support is minimal with Zephyr being the only RTOS in
our sample set from Section 4.1 having canary support. Embedded-
oriented alternatives for stack canaries have been proposed in the
form of hardware-facilitated separate return stacks [72] and saved
return address encryption [448] but the former does not meet our
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hardware agnosticism criteria while the latter does not allow for avail-
ability preservation.

There exists a significant body of work on embedded random num-
ber generation. Mobile operating systems tend to be Linux-, Windows-
or BSD-based and as such inherit (a modified version of) their respec-
tive OS random number generators, though this is not without its
problems as evidenced by attacks on the Android [326, 327], iOS [147]
and Brillo [450] PRNGs. Unlike mobile devices, most embedded sys-
tems do not have the peripherals and user interaction from which to
draw PRNG entropy. As such many embedded systems come equipped
with on-board True Random Number Generators (TRNGs), the body
of work on which is too large to summarize here. The problem with
TRNGs is that a) they are not omnipresently available (due to cost,
legacy hardware, etc.) and b) they tend to have low throughputs. As
such entropy collection for secure random number generation is a
significant problem in the embedded world [380, 407]. Prior work
has tried to address this by exploring the possibilities offered by a
variety of potential entropy sources such as sensor values [313, 396,
428], clock jitter and drift [377, 460, 461], ADC noise [18, 65, 305,
348], avalanche noise [304], wireless transmission bit errors [302] and
SRAM startup values [96, 132, 298, 299, 319, 403].

Control-Flow Integrity (CFI) [408] is a technique that seeks to
thwart control-flow hijacking attacks by checking whether program
execution conforms to a valid control-flow graph (or a relaxed super-
set thereof) at runtime. The technique has seen much academic inter-
est over the past years and variants of it have been rolled out in major
compilers such as Microsoft’s Control-Flow Guard (CFG) [142, 235, 272],
Clang’s CFI [473] and grsecurity GCC RAP [474]. In the embedded
world, there have been CFI proposals targeted at mobile operating
systems [368, 391], real-time operating systems [28, 338], Industrial
Control Systems [376] and constrained embedded systems in gen-
eral [392, 411]. Of these works HCFI [411], HAFIX [392] and OCFMM [338]
are all hardware based and as such do not meet our mitigation crite-
ria, while µShield [376], MoCFI [391] and CFR [368] are all designed
for Linux- or BSD-based operating systems running on high-end em-
bedded systems. The work in [28] proposes a hardware agnostic CFI
implementation for bare-metal or RTOS-running constrained embed-
ded systems but imposes 30% execution time and just under 10%
code size overheads and thus does not meet our overhead criteria.

Execute-Only Memory (XoM), Execute-no-Read (XnR) and No-
Execute-After-Read (NEAR) [367, 383, 401, 445, 446] are a collection
of security techniques that prevent code from being read (or read
memory from being subsequently execute in the case of NEAR) in
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order to prevent information leaks or IP theft and acts as a strong
complementary protection to software diversification schemes. These
techniques can be implemented purely in software or by using hard-
ware support [89]. While prior work exists exploring these techniques
on mobile operating systems such as Android [367], no work seems
to exist exploring it for RTOSes and deeply embedded systems.

Firmware Integrity Verification seeks to protect against malicious
firmware modifications resulting from vulnerabilities in the firmware
update process, physical tampering attacks or vulnerabilities in the
firmware itself. It does this by cryptographically verifying code and
data integrity at a given moment. The body of work around firmware
integrity verification is too big and diverse to summarize here, but
verification techniques can be applied at different operational stages
such as by means of secure (over-the-air) updating [329, 345, 406], se-
cure boot [75, 149, 300, 370] and runtime verification [340, 343, 389,
463]. While firmware integrity verification does not seek to protect
against memory corruption exploitation, some techniques might com-
plicate exploitation by prohibiting code modification attacks or persis-
tence payloads.

Ideally, memory corruption vulnerabilities would be prevented by
introduction of omnipresent memory safety in embedded systems.
While, as discussed in Section 2.4, unsafe languages dominate em-
bedded systems development, safe languages like Ada and Rust are
well-suited for embedded development purposes:

Ada is a strongly typed, imperative, object-oriented language de-
rived from Pascal, ALGOL 68 and other languages. It was designed in
the late 1970s for the US Department of Defense for use in embedded
and real-time systems with high safety requirements and has built-
in support for design-by-contract and numerous compile-time and
run-time safety checks. Ada, and its safety-critical oriented dialects
such as Ravenscar and SPARK, is used in a wide range of sensitive
systems including avionics, railway transportation, banking and mili-
tary and aerospace applications [63, 362, 363]. Despite the availability
and adoption of safe languages like Ada in critical embedded systems,
two trends complicated the picture: a) certain low-level code (such as
device drivers or software for bare metal systems) still tended to be
written in unsafe languages even in Ada-dominant systems [363] and
b) Ada has slowly been replaced by unsafe languages in many indus-
try verticals. The latter is illustrated by the US DoD withdrawing Ada

support during the 1990s and permitting the use of languages such
as C(++), with the bulk of F-35 application code written in C++ and
software for the F-16E/F even being ported from Ada to C++ [362].
There are many reasons for this shift but factors like a desire for in-
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creased commercial COTS adoption, performance, longevity and a
lack of qualified programmers all play an important role.

Rust is a programming language that first appeared in 2010 and
is aimed at creating safe and highly concurrent systems. It supports
functional and imperative-procedural paradigms and is well-suited
for low-level programming (eg. by providing memory safety without
garbage collector [47]). While maturity and adoption in the embed-
ded world are still in the early stages, there is promising work such
as the Rust Embedded project [476], operating systems such as Tock

OS [239, 290] and intermezzOS [117], firmware development [246], the
ARM software stack Zinc [480] and safe and efficient parsers [46] all
written either exclusively in Rust or with a minimal amount of C and
assembly mixed in.

In addition, projects like Safe TinyOS [409] seek to provide mem-
ory safety by means of a modified toolchain producing code that en-
forces memory and type safety at runtime but requires code annota-
tion by programmers thus introducing extra development effort and
leaving room for error.





11
D I S C U S S I O N , C O N C L U S I O N S & F U T U R E W O R K

11.1 discussion

The research goal of this work was to summarize the state-of-the-art
in embedded operating system binary security and contribute to im-
prove the security of embedded systems, in particular against mem-
ory corruption attacks. In order to achieve this goal we posed and
answered four research questions:

RQ-1: What would a minimum exploit mitigation baseline for embedded
systems look like?

In Chapter 3 we established a minimum exploit mitigation baseline
based on the three mitigations most commonly integrated in mod-
ern general purpose OSes and toolchains: Executable Space Protection
(ESP), Address Space Layout Randomization (ASLR) and Stack Canaries.

These mitigations complement each other and are well adopted in
the GP world and as such provide a suitable absolute minimum base-
line for embedded systems. We outlined their security requirements
based on prior work and subsequently mapped out the hardware and
software dependencies of these mitigations in order to facilitate our
quantitative and qualitative analyses.

RQ-2: What is the current state-of-the-art in embedded operating system
exploit mitigations in terms of adoption, dependency support and implemen-
tation quality?

In order to get an idea of the state of embedded binary security,
we performed the first quantitative analysis of embedded mitigation
and dependency support in Chapter 4. This analysis used a selection
of 41 popular embedded operating systems and 78 popular embed-
ded processor core families and shows that while mobile operating
systems have support for all mitigations in our baseline, the rest does
not. In particular, operating systems not based on Linux, Windows
or BSD, tend to lack support for most mitigations and often don’t
support the required hardware- and software dependencies either. Es-
pecially so-called low-end operating systems offer no support for cru-
cial dependencies such as virtual memory or a secure random number
generator. When it comes to embedded processors, many lack crucial
dependencies like MMUs or hardware ESP support. While the latter is

145
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increasingly common on modern 32-bit processors the former is not,
especially for various types of microcontrollers.

The history of existing mitigations in the general purpose world
and the level of scrutiny they have been exposed to over the years
means that porting them to Linux-, Windows- and BSD-based em-
bedded operating systems is usually easier and results in more ro-
bust mitigations than for operating systems which do not share this
lineage. For those OSes, mitigations have to be implemented from
scratch to fit within architectures not designed to accommodate them.
In Chapter 5 we performed the first qualitative analysis of the exploit
mitigations and OS CSPRNGs of three non Linux-, Windows- or BSD-
based embedded operating systems: QNX, RedactedOS and Zephyr.
We discovered that all of them suffer from various flaws, ranging
from insecure default settings, insecure random number generation
and information leaks to incomplete implementations. We responsi-
bly disclosed these issues to the vendors and collaborated in drafting
fixes, resulting in QNX releasing patches for 6.6 and redesigning parts
of QNX 7.0 to incorporate corresponding improvements.

RQ-3: What are the gap areas and open problems within the current state-
of-the-art and what are the challenges underlying them?

In Chapter 6 we explained the observed gaps in mitigation sup-
port and quality among embedded operating systems by identifying
a range of challenges. First of all, incentive issues are a major chal-
lenge for the embedded world as exemplified by the heavy focus on
time-to-market and novel features as well as the fact that most ven-
dors’ security concerns relate to the company rather than the product
user. Secondly, the embedded development landscape is very diverse
and fragmented which complicates mitigation adoption. On top of
that, cost cutting practices result in cheap hardware with limited re-
sources and often make it hard to justify the cost of security improve-
ments. Finally, safety, reliability, and real-time requirements and OS
and hardware limitations mean many of the features that mitigations
depend on (such as MMUs, virtual memory or OS CSPRNGs) are not
be widely adopted. Based on those challenges and the results of RQ-
2, we identified two pressing open problems: a) mitigation designs for
deeply embedded systems and b) deeply embedded OS CSPRNG design.

RQ-4: Given the clearest gap area identified, what would an effective so-
lution look like and what criteria should it meet?

In Section 6.5.1, we outlined the criteria mitigation designs for
deeply embedded systems should meet: 1) Limited Resource Pressure,
2) Hardware Agnostic, 3) Availability Preservation, 4) Real-Time Friendly,
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and 5) Easy (RT)OS Integration.

In Section 6.5.2, we outlined the criteria OS CSPRNG designs for
deeply embedded systems should meet: 1) Lightweight Cryptography,
2) Entropy Gathering Limitations, and 3) Non-Domain Specific Entropy
Sources.

In Chapter 7 we designed µArmor to meet these criteria: the first
exploit mitigation baseline for constrained embedded systems run-
ning a low-end operating system lacking virtual memory support
and having either a Harvard-style processor or a Von-Neumann one
with hardware ESP support. µArmor consists of µESP , µScramble ,
µSSP and µRNG being an ESP component, a compile- and update-time
diversification component providing address randomization, a stack
canary component and an OS CSPRNG component respectively.

In Chapter 8 we showed how we implemented µArmor for the
Zephyr RTOS on the TI LM3S6965 microcontroller. µESP was imple-
mented using the ARM Cortex-M3 MPU, µScramble was implemented
as a collection of LLVM compiler passes, µSSP was implemented by
modifying the pre-existing Zephyr stack canary scheme to support a
modular violation handler and µRNG was implemented as a modifica-
tion of a Keccak-based PRNG using entropy sources omnipresent on
microcontrollers such as SRAM startup values and clock jitter/drift.

Finally, in Chapter 9, we performed an overhead evaluation of
µArmor and found it to impose overheads of at most 5% for code
size and below 1% for data size, memory usage, and runtime in all
cases. We also performed a security evaluation in the form of a theo-
retical analysis for all components as well as an additional coverage
analysis for µScramble , all of which found µArmor to hold up to our
attacker model.

11.2 conclusions

Memory corruption issues are one of the most common vulnerabili-
ties affecting embedded devices and are further compounded by em-
bedded patching issues which cause prolonged (sometimes indefi-
nite) vulnerability exposure windows. This is worrying given the crit-
ical nature of many embedded systems and their projected growth
and increasing interconnectedness with the rise of the IoT. Ideally, the
issue of memory corruption is addressed by getting to the root of the
problem and using safe languages. But embedded development prac-
tices continue to be dominated by unsafe languages like C(++). As
such, there is a clear need for short-term solutions which at least re-
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duces the problem’s scale and impact. We believe exploit mitigations,
while not a ’silver bullet’, to be such a solution and consider a mini-
mum mitigation baseline to consist of ESP, ASLR and Stack Canaries.
This opinion is confirmed by the track record of exploit mitigations
in the general-purpose world.

While Linux-, Windows- and BSD-based embedded operating sys-
tems (mobile operating systems in particular) tend to support this min-
imum baseline, there is significantly less support for it in OSs used
in embedded systems. And among the low-end operating systems
targeted at deeply embedded systems, there is basically no support
for any mitigations nor for most of their software dependencies. On
top of that, many embedded processors lack the hardware features
required to support this baseline. When it comes to the quality of mit-
igation implementations on non Linux-, Windows- and BSD-based
embedded OSes, we can see that this too tends to be worse than it is
in general-purpose operating systems. As such, we can conclude that
embedded binary security lags behind the general purpose world sig-
nificantly.

However, porting existing exploit mitigation designs from the GP
world or designing completely new ones will not be trivial due to a
myriad of challenges and limitations inherent to the embedded world.
One particular ’open problem’ area are deeply embedded systems,
for which there are no existing exploit mitigation designs. We out-
lined the criteria for such designs and proposed µArmor as a first step
towards a viable exploit mitigation baseline for deeply embedded sys-
tems.

11.3 future work

We see two main trajectories for future work on embedded binary se-
curity: long-term and short-term solutions. The former trajectory aims
to develop robust techniques tackling the problem at the root and
requires changes along the whole development chain. Examples are
increased adoption and expansion of the capabilities of embedded-
oriented safe languages and secure and scalable patching solutions.

The short-term trajectory should aim to develop solutions which
reduce the impact of embedded memory corruption vulnerabilities
and which can be rapidly adopted. Examples are scalable vulnera-
bility discovery and exploit mitigation design for embedded systems.
The latter includes addressing the limitations of µArmor such as ex-
tending it to support Von Neumann processors without hardware
ESP, exploring initial entropy alternatives to SRAM Startup Values
for the subset of chips without suitable entropy and providing more
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robust address randomization (eg. higher relocation frequency, cov-
ering both code and data memory, etc.). It also includes the explo-
ration of more advanced mitigations for embedded systems in order
to continue raising the bar and close the binary security gap between
general purpose and embedded systems.
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Board TRNG Architecture

Arduino/Genuino 101 (Application) × x86

Galileo Gen1/Gen2 × x86

MinnowBoard Max X x86

Quark D2000 Development Board × x86

tinyTILE × x86

96Boards Carbon X ARM

96Boards Carbon nRF51 × ARM

96Boards Nitrogen × ARM

Arduino Due X ARM

CC3200 LaunchXL × ARM

CC3220SF LaunchXL X ARM

ST Disco L475 IOT01 X ARM

NXP FRDM-K64F X ARM

NXP FRDM-KL25Z × ARM

NXP FRDM-KW41Z X ARM

Hexiwear X ARM

Hexiwear KW40Z X ARM

ARM V2M MPS2 × ARM

nRF51-PCA10028 × ARM

nRF52840-PCA10056 X ARM

nRF52-PCA10040 × ARM

Redbear Labs Nano v2 × ARM

ST Nucleo F334R8 × ARM

ST Nucleo F401RE X ARM

ST Nucleo F411RE X ARM

ST Nucleo F412ZG X ARM

ST Nucleo F413ZH X ARM

ST Nucleo L432KC X ARM

ST Nucleo L476RG X ARM

OLIMEX-STM32-E407 X ARM

OLIMEXINO-STM32 × ARM

SAM4S Xplained × ARM

SAM E70 Xplained X ARM

STM3210C-EVAL × ARM

STM32373C-EVAL × ARM

ST STM32F469I Discovery X ARM

ST STM32F4DISCOVERY X ARM

ST STM32L496G Discovery X ARM

ARM V2M Beetle X ARM

Arduino/Genuino 101 (Sensor Subsystem) × ARC

DesignWare ARC EM Starter Kit × ARC

Altera MAX10 × NIOS II

Table 27: TRNG support among Zephyr 1.8 supported boards
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Board Speed Flash (S)RAM Storage

General

Arduino Uno 16 MHz 32 KB 2 KB 1 KB EEPROM

BLE NANO v1.5 16 MHZ 256 KB 32 KB ×
Arduino 101

1
32 MHz 196 KB 24 KB ×

Arduino 101
2

32 MHz × × ×
RPi Zero W 1 GHz × 512 MB MicroSDHC

RPi Model B 3 1.2 GHz × 1 GB MicroSDHC

Industrial

Controllino Maxi 16 MHz 64-256 KB 8 KB ×
Arduino Industrial3

16 MHz 32 KB 2.5 KB 1 KB EEPROM

Arduino Industrial4
400 MHz 16 MB 64 MB ×

UniPi Neuron S103 1.2 GHz × 1 GB MicroSDHC

Wearables

Arduino Gemma 8 MHz 8 KB 512 B 512 B EEPROM

Hexiwear5
48 MHz 160 KB 20 KB ×

Hexiwear6
120 MHz 1 MB (+8 MB) 256 KB ×

Table 28: Popular Embedded Development Board Resources
1 Intel Quark SE Core, 2 ARC EM Core, 3 ATmega32U4 Core, 4 AR9331 Core, 5

Cortex-M0+ Core, 6 Cortex-M4 Core
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Name Desc. SLOC1

Application

lift Lift controller 361

powerwindow Distributed power window control 2533

Kernel

binarysearch Binary search of 15 integers 47

bitcount Couting number of bits in an integer array 164

bitonic Bitonic sorting network 52

bsort Bubblesort program 32

complex_updates Multiply-add with complex vectors 18

countnegative Counts signes in a matrix 35

fac Factorial function 21

fft 1024-point FFT, 13 bits per twiddle 78

filterbank Filter bank for multirate signals 75

fir2dim 2-dimensional FIR filter convolution 75

iir Biquad IIR 4 sections filter 27

insertsort Insertion sort 35

jfdctint Discrete-cosine transformation on a 8x8 pixel block 123

lms LMS adaptive signal enhancement 51

ludcmp LU decomposition 68

matrix1 Generic matrix multiplication 28

md5 Message digest algorithm 344

minver Floating point matrix inversion 141

pm Pattern match kernel 484

prime Prime number test 41

quicksort Quick sort of strings and vectors 992

recursion Artificial recursive code 18

sha NIST secure hash algorithm 382

st Statistics calculations 90

Table 29: Benchmarks & Applications selected from TACLeBench Suite [357]
1 Source Lines of Code (SLOC)
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Name Desc. SLOC1

Sequential

adpcm_dec ADPCM decoder 293

adpcm_enc ADPCM encoder 316

ammunition C compiler arithmetic stress test 2431

anagram Word anagram computation 2710

audiobeam Audio beam former 833

cjpeg_transupp JPEG image transcoding routines 608

cjpeg_wrbmp JPEG image bitmap writing code 892

dijkstra All pairs shortest path 117

epic Efficient pyramid image coder 451

fmref Software FM radio with equalizer 680

gsm_dec GSM provisional standard decoder 543

h264_dec H.264 block decoding functions 460

huff_dec Huffman decoding with a file source to decompress 183

huff_enc Huffman encoding with a file source to compress 325

mpeg2 MPEG2 motion estimation 1297

ndes Complex embedded code 260

petrinet Petri net simulation 500

rijndael_dec Rijndael AES decryption 820

rijndael_enc Rijndael AES encryption 734

statemate Statechart simulation of a car window lift control 1038

Test

cover Artificial code with lots of different control flow paths 620

duff Duff’s device 35

test3 Artificial WCET analysis stress test 4235

Table 30: Benchmarks & Applications selected from TACLeBench Suite [357]
1 Source Lines of Code (SLOC)
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Listing 2: QNX vmm_mmap Routine

int vmm_mmap(PROCESS *prp, uintptr_t vaddr_requested, size_t

size_requested,

int prot, int flags, OBJECT *obp, uint64_t boff, unsigned

alignval,

3 unsigned preload, int fd, void **vaddrp, size_t *sizep,

part_id_t mpart_id)

{

...

create_flags = flags;

8

...

if ( prp->flags & _NTO_PF_ASLR )

create_flags |= MAP_SPARE1;

13

r = map_create(..., create_flags);

}

Listing 3: QNX map_create Routine

int map_create(struct map_set *ms, struct map_set *repl, struct

mm_map_head *mh,

uintptr_t va, uintptr_t size, uintptr_t mask, unsigned

flags)

{

...

5

if(flags & (MAP_FIXED|IMAP_GLOBAL)) {

...

} else {

repl->first = NULL;

10

va = map_find_va(mh, va, size, mask, flags);

if(va == VA_INVALID) {

r = ENOMEM;

goto fail1;

15 }

}

...

}
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Listing 4: QNX map_find_va Routine

1 uintptr_t map_find_va(struct mm_map_head *mh, uintptr_t va,

uintptr_t size,

uintptr_t mask, unsigned flags)

{

sz_val = size - 1;

6

...

if ( flags & MAP_SPARE1 )

{

11 uint64_t clk_val = ClockCycles();

unsigned int rnd_val = ((_DWORD)clk_val << 12) & 0xFFFFFF

;

if ( flags & MAP_BELOW )

{

16 start_distance = start - best_start;

if ( start != best_start )

{

if ( rnd_val > start_distance )

rnd_val %= start_distance;

21 start -= rnd_val;

}

}

else

{

26 end_distance = best_end - sz_val - start;

if ( best_end - sz_val != start )

{

if ( rnd_val > end_distance )

rnd_val %= end_distance;

31 start += rnd_val;

}

}

}
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Listing 5: QNX stack_randomize Routine

1 uintptr_t stack_randomize(const THREAD *const thp, uintptr_t

new_sp)

{

uintptr_t rnd_sp;

size_t stack_size;

unsigned int size_mask;

6

rnd_sp = new_sp;

if ( thp->process->flags & _NTO_PF_ASLR )

{

11 stack_size = thp->un.lcl.stacksize >> 4;

if ( stack_size )

{

size_mask = 0x7FF;

if ( stack_size <= 0x7FE )

16 do { size_mask >>= 1; } while ( size_mask >

stack_size );

rnd_sp = (new_sp - ((ClockCycles() << 4) & size_mask)

) & 0xFFFFFFF0;

}

}

21 return rnd_sp;

}

Listing 6: QNX Stack Canary Failure Handler (User-Space)

void __stack_chk_fail(void)

{

3 if ((fd = open("/dev/tty ", 1)) != -1)

write(fd, " *** stack smashing detected *** ");
raise(SIGABRT);

}
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Listing 7: QNX Stack Canary Generation Handler

void _init_cookies(void)

{

void* stackval;

4

ts0 = (ClockCycles() & 0xffffffff);

canary0 = (ts0 ^ (((&stackval) ^ (_init_cookies)) >> 8));
_stack_chk_guard = canary0;

9 ts1 = (ClockCycles() & 0xffffffff);

canary1 = (((&stackval) ^ canary0) >> 8);
_atexit_list_cookie = (canary1 ^ ts1);

ts2 = (ClockCycles() & 0xffffffff);

14
_atqexit_list_cookie = (canary1 ^ ts2);

_stack_chk_guard &= 0xff00ffff;

}

Listing 8: QNX Stack Canary Failure Handler (Kernel-Space)

void __stack_chk_fail(void)

{

3 kprintf(" *** stack smashing detected in procnto *** ");
__asm{ int 0x22 };

}

Listing 9: QNX Yarrow HPC Entropy Collection Snippet

if( Yarrow )

{

yarrow_output( Yarrow, (uint8_t *)&rdata, sizeof( rdata )

);

timeout = ( rdata & 0x3FF ) + 10;

5 }

delay( timeout );

clk = ClockCycles();

clk = clk ^ rdata;

10

if( Yarrow )

yarrow_input( Yarrow, (uint8_t *)&clk, sizeof( clk ),

pool_id, 8 );
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Listing 10: QNX 6.6.0 yarrow_do_sha1 function

void yarrow_do_sha1( yarrow_t *p, yarrow_gen_ctx_t *ctx )

{

3 SHA1Init(&sha);

IncGaloisCounter5X32(p->pool.state);

sha.state[0] ^= p->pool.state[4];

sha.state[1] ^= p->pool.state[3];

8 sha.state[2] ^= p->pool.state[2];

sha.state[3] ^= p->pool.state[1];

sha.state[4] ^= p->pool.state[0];

SHA1Update(&sha, ctx->iv, 20);

13 SHA1Update(&sha, ctx->out, 20);

SHA1Final(ctx->out, &sha);

}

Listing 11: QNX 6.6.0 yarrow_make_new_state function

void yarrow_make_new_state(yarrow_t *p, yarrow_gen_ctx_t *ctx,

uint8_t *state )

{

for(i = 0; i < 20; i++)

ctx->iv[i] ^= state

5

SHA1Init(&sha);

IncGaloisCounter5X32(p->pool.state);

sha.state[0] ^= p->pool.state[4];

10 sha.state[1] ^= p->pool.state[3];

sha.state[2] ^= p->pool.state[2];

sha.state[3] ^= p->pool.state[1];

sha.state[4] ^= p->pool.state[0];

15 SHA1Update(&sha, ctx->iv, 20);

SHA1Final(ctx->out, &sha);

}
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Listing 12: Zephyr Stack Canary Generation Handler

FUNC_NORETURN void _Cstart(void)

{

3 ...

/* perform basic hardware initialization */
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_1);
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_2);

8

/* initialize stack canaries */

#ifdef CONFIG_STACK_CANARIES
__stack_chk_guard = (void *)sys_rand32_get();

#endif

13 ...

}

Listing 13: Zephyr Timer Random Number Generator

1 static atomic_val_t _rand32_counter;

#define _RAND32_INC 1000000013

uint32_t sys_rand32_get(void)

6 {

return k_cycle_get_32() + atomic_add(&_rand32_counter,
_RAND32_INC);

}
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