Flow and stress-relaxation properties of dense spongy-particle systems

Citation for published version (APA):

Document status and date:
Published: 01/01/2017

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Flow and stress-relaxation properties of dense spongy-particle systems

M. E. A. Zakhari1,2, M. Hütter1, and P. D. Anderson1
1Eindhoven University of Technology, Polymer Technology, Netherlands
2Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AK Eindhoven, Netherlands

Introduction
Permeable particles (envisaged as sponges) are widely used in nature, e.g. casein micelles in dairy products, and in industrial applications, e.g. paints. Their permeable structure allows them to undergo rate-dependent volume changes as their elastic network takes up or expels the viscous suspending solvent. We study the effect of the single-particle elastic modulus and permeability on the flow properties and on the stress-relaxation behavior of dense permeable-particle suspensions, using the Brownian Dynamics simulations developed in [1].

Flow properties[2]
\begin{itemize}
 \item shear-induced ordering
\end{itemize}

\begin{itemize}
 \item long-time shear stress
 \item transition time
\end{itemize}

\rightarrow long-time stress values of spongy-particle suspensions are governed by the particle modulus
\rightarrow the particle permeability affects the rate at which the final state is reached

Stress-relaxation[3]
\begin{itemize}
 \item flow-cessation simulations
\end{itemize}

\rightarrow stress relaxation occurs on shorter time scales in the case of permeable particles compared to impermeable particles.

\rightarrow stress relaxation is promoted by the motion of the particles within the cages formed by the surrounding particles, rather than by cage escape.

Conclusions
a. Under imposed deformation: Long-time stress is governed by particle elasticity, while the rate at which the final state is reached depends strongly on particle permeability.
b. Upon flow cessation: Particle permeability accelerates stress relaxation, due to particle compression induced during pre-shear, which renders their cages less effective

References