
 Eindhoven University of Technology

BACHELOR

The spherical pendulum
different solutions on a 2-sphere

Dohmen, Jesse L.P.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2025

https://research.tue.nl/en/studentTheses/ff08de91-1430-4e85-8e40-7c6aefd70db4


The Spherical Pendulum:
Different Solutions on a 2-Sphere

Bachelor Final Project Applied Mathematics

Eindhoven University of Technology

Supervisor: J.C. van der Meer

by Jesse Dohmen 0899975

August 13, 2017

1



1 Introduction

A well-known problem from mathematical physics is the simple (mathematical) pendulum, in
which the movement of a pendulum through a plane is described. The trajectory of the pendulum
is along a circle.
By generalising this movement to a 3-dimensional space, we obtain the spherical pendulum. An
example of a spherical pendulum is Foucalt’s pendulum, which is a big pendulum that is aimed
to demonstrate the rotation of the Earth. These pendulums are located in various museums and
universities, like the Radboud University in Nijmegen. The spherical pendulum is the research
topic of this project.

1.1 Physical situation

The physical situation is as follows. The suspension point of the pendulum is located in the centre
of a 2-sphere with radius 1. A 2-sphere S2 is the set of all points equidistant to a central point
in R3. In other words, it is the surface of a sphere in a 3-dimensional space like R3. The other
endpoint of the pendulum is a mass concentrated in one point that moves on the 2-sphere. There
is also only one gravitational force acting on the endpoint of the pendulum, and no friction is
involved in this problem. The connection between the endpoints is a rigid massless rope.

1.2 Coordinate spaces

Let q and p denote the canonical coordinates of the physical system, with q the coordinate
vector on the 2-sphere and p the momentum vector tangent to the 2-sphere at point q. So the
momenta p are perpendicular to the coordinates q. These are coordinates that can be used to
describe a physical system at any given point in time. The 3 coordinates q1, q2, q3 are in the
so called configuration space , which is the vector space defined by the coordinate vectors q.
Tangent to points q on the 2-sphere S2 are tangent planes spanned by the momenta p. All these
planes together with the points they are tangent to form the tangent bundle TS2. The tangent
bundle is the phase space of this problem. A phase space is a space in which all possible states
of a dynamical system are represented, with each point in the phase space representing a state
of the system at a certain time t. The system which will be investigated can be described by a
Hamiltonian system, which is a well known system when it comes to classic mechanical problems
like the spherical pendulum.

1.3 Overview

Let us now give an overview of the project.
The so called Poisson-brackets are introduced in the next section. This will be the main tool used
in this report to describe Hamiltonian systems.
As an introduction to the details of the spherical pendulum, section 3 deals with the mathematical
pendulum. This section is aimed to give the reader a feel of what is coming next in the report.
In section 4 the Hamiltonian equations for the spherical pendulum are being stated.
Section 5 deals with integrals that will help to characterise periodic solutions of the Hamilton
equations. Also Liouville’s Integrability theorem will be introduced, which plays a central role in
the theory of Hamiltonian dynamics.
Furthermore, in section 6 the Energy-Momentum-Mapping together with his critical values is
considered, which is a begin to the depicting of the phase space and the configuration space (the
real movement of the pendulum).
In section 7 the classification of the solutions that belong to the critical values of the Energy-
Momentum-Mapping is treated. The movements of the pendulum that are determined by these
solutions will also be illustrated.
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2 Poisson-brackets

In this section the so called Poisson-brackets are introduced. Poisson-brackets are an important
tool in the study of Hamiltonian equations. Although it is named after the Siméon Denis Poisson,
he was not the one who was mainly busy with it.

2.1 Definition of Poisson-bracket

Let qi and pi with i ∈ {1, ..., N} be the coordinates of the vector (q, p) in the 2N -dimensional
space M and let f ∈ C∞(M) and g ∈ C∞(M), where C∞(M) denotes the space of all infinitely
continuously differentiable functions that take elements of the space M and map it to R. Then
the Poisson-bracket is defined as the following.

Definition 2.1 (Poisson-bracket) A bracket is a Poisson-bracket if it is a map {·, ·} : C∞(M)×
C∞(M)→ C∞(M), which satisfies the next 4 properties:

• Anticommutativity: {f, g} = −{g, f} .

• Distributivity: {f + g, h} = {f, h}+ {g, h} .

• Product rule (Also known as Leibniz-identity): {fg, h} = g{f, h}+ f{g, h} .

• Jacobi-identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .

There is one form of a Poisson-bracket that is interesting for us to investigate, namely the so called
Standard Poisson-bracket.

Definition 2.2 (Standard Poisson-bracket) The Standard Poisson-bracket {f, g} for func-
tions f ∈ C∞(M) and g ∈ C∞(M), is defined as

{f, g} =

N∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

The claim is now that the Standard Poisson-bracket suffices the properties of a Poisson-bracket.
So to proof this, these properties need to be checked.

Theorem 2.3 The Standard Poisson-bracket is a Poisson-bracket.

Proof :

• Anticommutativity:

{f, g} =

N∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
= −

N∑
i=1

( ∂f
∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
= −{g, f} .

• Distributivity:

{f + g, h} =

N∑
i=1

(∂(f + g)

∂qi

∂h

∂pi
− ∂(f + g)

∂pi

∂h

∂qi

)
,

=

N∑
i=1

( ∂f
∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi
+
∂g

∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

)
,

=

N∑
i=1

( ∂f
∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi

)
+

N∑
i=1

( ∂g
∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

)
,

= {f, h}+ {g, h} .
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• Product rule (Leibniz rule):

{fg, h} =

N∑
i=1

(∂fg
∂qi

∂h

∂pi
− ∂fg

∂pi

∂h

∂qi

)
,

=

N∑
i=1

((
f
∂g

∂qi
+ g

∂f

∂qi

) ∂h
∂pi
−
(
f
∂g

∂pi
+ g

∂f

∂pi

) ∂h
∂qi

)
,

=

N∑
i=1

f
( ∂g
∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

)
+

N∑
i=1

g
( ∂f
∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi

)
,

= f

N∑
i=1

( ∂g
∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

)
+ g

N∑
i=1

( ∂f
∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi

)
,

= f{g, h}+ g{f, h} .

• Jacobi-identity: Let f and g and h be functions of some a ∈ {q1, ..., qN , p1, ..., pN}.
The the next identity holds,

∂

∂a
{f, g} =

∂

∂a

N∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

=

N∑
i=1

( ∂2f

∂a∂qi

∂g

∂pi
− ∂2f

∂a∂pi

∂g

∂qi
+
∂f

∂qi

∂2g

∂a∂pi
− ∂f

∂pi

∂2g

∂a∂qi

)
,

= {∂f
∂a
, g}+ {f, ∂g

∂a
} .
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Now the Poisson-bracket {h, {f, g}} can be expanded as follows,

{h, {f, g}} =
{
h,

N∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)}
,

=

N∑
i=1

({
h,
∂f

∂qi

∂g

∂pi

}
−
{
h,
∂f

∂pi

∂g

∂qi

})
(by the distributivity property) ,

=

N∑
i=1

( ∂f
∂qi

{
h,
∂g

∂pi

}
+
∂g

∂pi

{
h,
∂f

∂qi

}
− ∂f

∂pi

{
h,
∂g

∂qi

}
− ∂g

∂qi

{
h,
∂f

∂pi

})
(by the product rule) ,

=

N∑
i=1

( ∂f
∂qi

( ∂

∂pi
{h, g} −

{ ∂h
∂pi

, g
})

+
∂g

∂pi

( ∂

∂qi
{h, f} −

{ ∂h
∂qi

, f
})

− ∂f

∂pi

( ∂

∂qi
{h, g} −

{ ∂h
∂qi

, g
})
− ∂g

∂qi

( ∂

∂pi
{h, f} −

{ ∂h
∂pi

, f
}))

(by the earlier established identity) ,

= −{f, {g, h}} − {g, {h, f}}+

N∑
i=1

(
− ∂f

∂qi

{ ∂h
∂pi

, g
}
− ∂g

∂pi

{ ∂h
∂qi

, f
}

+
∂f

∂pi

{ ∂h
∂qi

, g
}

+
∂g

∂qi

{ ∂h
∂pi

, f
})

,

= −{f, {g, h}} − {g, {h, f}}+

N∑
i,j=1

∂f

∂qi

∂2h

∂pi∂qj

∂g

∂pj
+

N∑
i,j=1

∂f

∂qi

∂2h

∂pi∂pj

∂g

∂qj

−
N∑

i,j=1

∂g

∂pi

∂2h

∂qi∂qj

∂f

∂pj
+

N∑
i,j=1

∂g

∂pi

∂2h

∂qi∂pj

∂f

∂qj

+

N∑
i,j=1

∂f

∂pi

∂2h

∂qi∂qj

∂g

∂pj
−

N∑
i,j=1

∂f

∂pi

∂2h

∂qi∂pj

∂g

∂qj

+

N∑
i,j=1

∂g

∂qi

∂2h

∂pi∂qj

∂f

∂pj
−

N∑
i,j=1

∂g

∂qi

∂2h

∂pi∂pj

∂f

∂qj
.

Since each term is summed over all i and j, each term is symmetric in i and j. So all pairs
of terms where qi and qj are replaced by pi and pj respectively cancel out and what remains
is

{h, {f, g}} = −{f, {g, h}} − {g, {h, f}} .

Bringing the right-hand side to the left gives the Jacobi-identity. [1]

2.2 Some important identities

There are some interesting identities that follow when taking the Poisson-Bracket of the coordi-
nates q and p.

• {qi, qj} =
∑N

k=1

( ∂qi
∂qk

∂qj
∂pk
− ∂qi
∂pk

∂qj
∂qk

)
= 0 .

Likewise it is true that {pi, pj} = 0 .

• {qi, pj} =
∑N

k=1

( ∂qi
∂qk

∂pj
∂pk
− ∂qi
∂pk

∂pj
∂qk

)
=
∑N

k=1

∂qi
∂qk

∂pj
∂pk

=
∂pj
∂pi

= δij , where δij =

{
1 if i = j
0 else

.

Using the Anti-symmetry property it follows that {pj , qi} = −{qi, pj} = −δij .
These equalities hold because only ∂qi/∂qi and ∂pi/∂pi are not zero. This follows from the
fact that qi and pi are the independent coordinates for the space R2N .
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Let J =

(
({qi, qj}) ({qi, pj})
({pi, qj}) ({pi, pj})

)
, with ({·, ·}) an N -dimensional matrix of standard Poisson-

brackets.
The identities {qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij and {pi, qj} = −δij imply that J looks
like the following, with N = 3 as an example,

J =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

 .

With this matrix the standard Poisson bracket of arbitrary functions f ∈ C∞(M) and
g ∈ C∞(M) can be expressed in the next way,

{f, g} = (∇f)T J∇g .

• {qi, H} =
∑N

k=1

( ∂qi
∂qk

∂H

∂pk
− ∂qi
∂pk

∂H

∂qk

)
=
∂H

∂pi
.

The function H can be regarded as the Hamiltonian, which will be explained later on.
The latter holds because

∂qi
∂qk

=

{
0 if k 6= i
1 if k = i

and
∂qi
∂pk

= 0 ∀k ∈ {1, ..., N}

In the same way it can be computed that {pi, H} = −∂H/∂qi.
From this it follows immediately that

{(q, p), H} =


∂H/∂p1
∂H/∂p2
∂H/∂p3
−∂H/∂q1
−∂H/∂q2
−∂H/∂q3

 = J∇H .
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3 Mathematical Pendulum

Before we are getting into the details about the spherical pendulum it is handy to talk about the
mathematical pendulum, which is a pendulum through a plane.
In this case, the suspension point of the pendulum is located in the midpoint of a circle with radius
1. The other endpoint of the pendulum is located on the circle.
The goal is to find the function known as the Hamiltonian. The Hamiltonian is a function that
describes the total energy of a physical system. It is a function of the canonical coordinates q
and p. First the law of conservation of energy will be applied to find the Hamiltonian H of a free
moving particle under the influence of gravity. Here the coordinates (q, p) are coordinates in the
4-dimensional space TR2, which consists of all pairs (q, p) in R4 for which p is tangent to q. Then
the Hamiltonian H∗ for the mathematical pendulum will be found by constraining the first found
Hamiltonian H to the circle. And so the coordinates (q, p) are part of the tangent bundle TS1.

3.1 Hamiltonian in TR2

Let q ∈ R2 be the position in m, t ∈ R the time in s and p = mq̇ = m(dq/dt) the momentum in
kg · (m/s), with m the mass of the endpoint of the pendulum.
Furthermore, let Etot be the total energy, Ekin the kinetic energy and Epot the potential energy
in J.
In this case, Epot is just the gravitational energy.
The Hamiltonian of a free moving particle under the influence of gravity can be found using the
law of conservation of energy,

Etot = Ekin + Epot .

Now Ekin =
p21 + p22

2m
and Epot = −mgq2, so

H(p, q) = Etot =
p21 + p22

2m
−mgq2 . (1)

It is important to note that the Hamiltonian is not explicitly dependent on the time t, which
makes it invariant and constant along solutions. More of this will be explained later on in section
5.
There is a system of four Hamiltonian equations that follows from this,

p1
dt

= −∂H
∂q1

= 0 ,

p2
dt

= −∂H
∂q2

= mg ,

q1
dt

= −∂H
∂p1

=
p1
m

,

q2
dt

= −∂H
∂p2

=
p2
m

.

A change of coordinates has to be chosen to make the problem dimensionless. This makes it more
convenient to work with the coordinates.
To find such a change, let pi = c1yi and let qi = c2xi ∀i ∈ {1, 2}. Substituting this in the
Hamiltonian system gives c1 = mg and c2 = g. So if we choose p = mgy and q = gx, then the
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system changes to

dy1
dt

= −∂H
∂q1

= 0 ,

dy2
dt

= −∂H
∂q2

= 0 ,

dx1
dt

=
∂H

∂p1
= y1 ,

dx2
dt

=
∂H

∂p2
= y2 .

3.2 Hamiltonian in TS1

The space TR2 concerns all points in R2, but we have to keep in mind that the pendulum only
moves on a circle and not on the whole R2.
This means that the position x of the pendulum is constrained to

||x||2 = x21 + x22 = 1 .

Here || · || denotes the vector two-norm. This holds if the radius of the circle is equal to one and
the origin of the coordinate plane is located at the centre of the circle.
The momentum y is also constrained to a certain condition. Because y has to be tangent to the
circle at point x, it has to be orthogonal to the coordinate vector x. Let < , > denote the inner
product of two vectors. So we have

< x, y >= x1y1 + x2y2 = 0 .

Hence the phase space has been reduced from a four-dimensional space TR2 to a two-dimensional
tangent bundle TS1 due to these two constraints.
As a consequence of this conversion it is not convenient anymore to work with the Hamiltonian
H, but another Hamiltonian H∗ is needed that takes the two constraints into account. This H∗

is chosen in such a way that the constraints ||x|| = 1 and < x, y >= 0 are incorporated in the
definition of H∗. As a result of that, the terms of H∗ that are multiples of expressions that vanish
on points on the circle cancel out. It turns out that at these points H∗ is still a Hamiltonian. For
more details, see [2]. Let ei be the standard basis vector, so ei = (0, 0, ..., 1, 0, ..., 0) with a 1 on
the i-th spot. Then the constrained Hamiltonian H∗ can be written as

H∗(x, y) =
1

2
< y, y > + < x, e2 > +

1

2
(< y, y > − < x, e2 >)(< x, x > −1)− 1

2
< x, y >2 .

Let XH∗(x, y) = (dx/dt, dy/dt) =

(
∂H∗/∂y
−∂H∗/∂x

)
be the Hamiltonian vector field of the constrained

Hamiltonian H∗. Calculating ∂H∗/∂y and −∂H∗/∂x then yields

dx

dt
= y + y(< x, x > −1)− < x, y > x ,

dy

dt
= −e2 +

1

2
e2(< x, x > −1)− (< y, y > − < x, e2 >)x+ < x, y > y .

(2)

It is true that the components of XH∗ are tangent to the tangent bundle TS1 and that they form
the flow on the tangent bundle of the constrained Hamiltonian. More on the flow will be explained
later on in section 5. Using the identities < x, x >= 1 and < x, y >= 0, equations (2) reduce to

ẋ = y ,

ẏ = −e2 + (< x, e2 > − < y, y >)x .

In Figure 1 the circle with the pendulum (red) can be seen. The momentum p, tangent to the
circle, together with the red point q span the tangent bundle TS1.
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Figure 1: The situation for the mathematical pendulum

3.3 Energy mapping

As we know, the constrained Hamiltonian H∗ is a function that describes the total energy in a
system. It is thus interesting to consider a mapping that translates this energy from the tangent
bundle to the constrained Hamiltonian. This mapping is called the Energy mapping and is given
by

E : TS1 ⊆ TR2 → R :

(x, y)→ H∗ =
1

2
(y21 + y22) + x2 .

The image consists only of the constrained Hamiltonian H∗. The critical values of this Energy
mapping are then those values for x and y for which ∇H∗ = 0, or for which ẋ and ẏ are equal to
zero. These solutions are then called stationary solutions and they are found by solving

ẋ = y = 0 ,

ẏ = −e2 + (< x, e2 > − < y, y >)x = 0 .

From this it immediately follows that x1 = 0, x2 = ±1, y1 = 0 and y2 = 0. The stationary
solutions are thus (0,±1, 0, 0) in the phase space. So the critical values of the Energy-Mapping

are H∗ =
1

2
(y21 + y22) + x2 = ±1. As

1

2
(y21 + y22) ≥ 0 and −1 ≤ x2 ≤ 1 it is also immediately clear

that H∗ ≥ −1.
Now we turn to the classification of the solutions.

• If H = −1, then the pendulum rests in the point (0,−1, 0, 0). This is a stable solution.

• If H = 1, then the pendulum rests in the point (0, 1, 0, 0). This is an unstable solution.

• If H∗ 6∈ {−1, 1}, H∗ > −1, then the pendulum swings on the circle. The value of H∗

determines the highest value of x2 the pendulum reaches.
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4 Hamiltonian equations

The goal of this section is to find the Hamiltonian in the case of the spherical pendulum. First the
law of conservation of energy will be applied to find the Hamiltonian H of a free moving particle
under the influence of gravity. Here the coordinates (q, p) are coordinates in the 6-dimensional
space TR3, which consists of all pairs (q, p) in R6 for which p is tangent to q. Then the Hamiltonian
H∗ for the mathematical pendulum will be found by constraining the first found Hamiltonian H
to the circle. And so the coordinates (q, p) are part of the tangent bundle TS2.

4.1 Hamiltonian in TR3

Again, let q ∈ R3 be the position in m, t ∈ R the time in q and p = mq̇ = m
dq

dt
the velocity in kg

· (m/s).
Furthermore, let Etot be the total energy, Ekin the kinetic energy and Epot the potential energy
in J.
Now the Hamiltonian can be found using the law of conservation of energy

Etot = Ekin + Epot .

Now Ekin =
p21 + p22 + p23

2m
and Epot = −mgq3, so

H(p, q) = Etot =
p21 + p22 + p23

2m
−mgq3 . (3)

There is a system of six Hamiltonian equations that follows from this,

dp1
dt

= −∂H
∂q1

= 0 ,

dp2
dt

= −∂H
∂q2

= 0 ,

dp3
dt

= −∂H
∂q3

= mg ,

dq1
dt

=
∂H

∂p1
=
p1
m

,

dq2
dt

=
∂H

∂p2
=
p2
m

,

dq3
dt

=
∂H

∂p3
=
p3
m

.

In section 1 a change of coordinates was found to make the problem dimensionless. The results
were q = gx and p = mgy. The system of equations then changes to

dy1
dt

= −∂H
∂q1

= 0,

dy2
dt

= −∂H
∂q2

= 0,

dy3
dt

= −∂H
∂q3

= 1,

dx1
dt

=
∂H

∂p1
= y1,

dx2
dt

=
∂H

∂p2
= y2,

dx3
dt

=
∂H

∂p3
= y3 .
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One can describe a Hamiltonian system in terms of Poisson-brackets in the following way, with
z ∈ C∞(TR3) an arbitrary function that is not explicitly dependent on the time t,

ż = {z,H} .

This identity follows by the next reasoning.

ż =
dz

dt
=

3∑
i=1

∂z

∂xi

dxi
dt

+

3∑
i=1

∂z

∂yi

dyi
dt

.

This is the directional derivative of z to the components of the basis vectors that span TR3.
Now substitute the Hamiltonian equations dxi/dt = ∂H/∂yi and dyi/dt = −∂H/∂xi for ẋ and ẏ
to get

ż = (∇z)T


∂H/∂y1
∂H/∂y2
∂H/∂y3
−∂H/∂x1
−∂H/∂x2
−∂H/∂x3

 .

The second remark in section 2 says that this is equal to

ż = (∇z)T J∇H = {z,H} .

Likewise, for the position and momentum variables x and y the next holds,(
ẋ
ẏ

)
= {(x, y)T , H} = J∇H =

(
∂H/∂y
−∂H/∂x

)
.

4.2 Hamiltonian in TS2

The space TR3 concerns all points in R3, but we have to keep in mind that the pendulum only
moves on a two-sphere and not on the whole R3.
So the position x of the pendulum is constrained to

||x||2 = x21 + x22 + x23 = 1 .

This holds if the radius of the sphere is equal to one and the origin of the coordinate plane is
located at the centre of the sphere.
The momentum y is also constrained in the way that it has to be orthogonal to a certain point on
the manifold, because it has to be tangent to the sphere, so

< x, y >= x1y1 + x2y2 + x3y3 = 0 .

If this was not the case, then the pendulum would have the intention to go away from the two-
sphere, which is an undesirable property.
So the phase space has been reduced from a 6-dimensional space TR3 to a four-dimensional tangent
bundle TS2 due to these two constraints.
Due to this conversion it is not convenient anymore to work with the Hamiltonian H, but another
Hamiltonian H∗ is needed that takes the two constraints into account. This H∗ is chosen in such
a way that the constraints ||x|| = 1 and < x, y >= 0 are incorporated in the definition of H∗. As
a result of that, the terms of H∗ that are multiples of expressions that vanish on points on the
circle cancel out. It turns out that at these points H∗ is still a Hamiltonian. For more details, see
[2].

H∗(x, y) =
1

2
< y, y > + < x, e3 > +

1

2
(< y, y > − < x, e3 >)(< x, x > −1)− 1

2
< x, y >2 .

11



Figure 2: The situation for the spherical pendulum

Let XH∗(x, y) = (dx/dt, dy/dt) =

(
∂H∗/∂y
−∂H∗/∂x

)
be the Hamiltonian vector field of the constrained

Hamiltonian H∗. Calculating ∂H∗/∂y and −∂H∗/∂x then yields

dx

dt
= y + y(< x, x > −1)− < x, y > x ,

dy

dt
= −e3 +

1

2
e3(< x, x > −1)− (< y, y > − < x, e3 >)x+ < x, y > y .

(4)

It is true that the components of XH∗ are tangent to the tangent bundle TS2 and that they form
the flow on the tangent bundle of the constrained Hamiltonian. More on the flow will be explained
later on in section 5. Using the constraints < x, x >= 1 and < x, y >= 0, equations (4) reduce to

ẋ = y ,

ẏ = −e3 + (< x, e3 > − < y, y >)x .

In Figure 2 the sphere with pendulum (green) can be seen. The vectors p1 and p2 span the
tangent plane tangent to the sphere at point q. Together with point q the plane forms the tangent
bundle TS2.

12



5 Integrability

5.1 Liouville’s Integrability Theorem

In this section an important theorem is stated, known as Liouville’s Integrability theorem. With
this we can assign meaning to certain solutions of the Hamiltonian system of equations. But first
we need to know what integrability means. In the broadest sense we mean with Integrability the
finding of solutions x(t) and y(t) of the system(

ẋ
ẏ

)
= XH(x, y) .

for a general initial condition x(t0) = x0 and y(t0) = y0.
A helpful tool to find our periodic solutions is to find so called integrals that will characterise the
solution. But what are integrals?

Definition 5.1 A quantity A is an integral of a (Hamiltonian) vector field if it does not depend
explicitly on the time t and is constant along solutions. Furthermore, the derivative of an integral
in the direction of the vector field identically equals zero. Or, in terms of the Poisson-bracket,

{A,H} = (∇A)T J∇H = 0 .

It is the case here that H denotes the Hamiltonian of the system.
The main theorem tells us that n integrals are enough to fully characterise a periodic solution in
2n equations, but before we introduce that, we first need to know what a diffeomorphism is.

Definition 5.2 A diffeomorphism is a differentiable isomorphism of smooth spaces. An iso-
morphism is a bijective mapping that preserves algebraic structures, like vector spaces.

Now the main theorem will be stated.

Theorem 5.3 (Liouville’s Integrability Theorem) Let H be the Hamiltonian of the system.
A Hamiltonian system with n degrees of freedom is Liouville integrable if it has a set of n
integrals Fi that are almost everywhere independent of each other, except on sets of Lebesgue-
measure zero, if {Fi, H} = 0 ∀i ∈ {1, ..., n} and if {Fi, Fj} = 0 ∀i, j ∈ {1, ..., n}, with Fi and Fj

integrals of XH∗ .
If this is the case, then if the level sets Lci = {Fi(p, q) = ci} are compact, they are diffeomorphic
to n-dimensional invariant tori Tn.[3]

5.2 Integrals in the case of the Spherical Pendulum

There are 2 candidates to suffice the conditions for being integrals that satisfy the conditions
for Liouville’s Integrability Theorem. This is because the restriction to the tangent bundle of
the 2-sphere is 2n = 4-dimensional, with n = 2. The candidate quantities are the Hamiltonian

H∗ =
1

2
(y21 + y22 + y23) + x3 itself and the quantity J = x1y2 − x2y1. The flow on the Hamiltonian

vector field of H∗ describes the overall movement of the pendulum adding swinging. The flow on
the Hamiltonian vector field of J describes the rotation around the x3-axis. One can recognise
J also as the third component of the vector product of x and y. So according to Liouville’s
Integrability Theorem they have to satisfy

{H∗, J} = 0 , {H∗, H∗} = 0 ,

13



in order to let their level sets be diffeomorphic to invariant 2-dimensional tori. To prove the claim
that {H∗, J} = 0, we can write

{H∗, J} = {H∗, x1y2 − x2y1} ,
= −{x1y2 − x2y1, H∗} , (by Anti− symmetry)

= −
(
{x1y2, H∗} − {x2y1, H∗}

)
, (by distributivity)

= {x2y1, H∗} − {x1y2, H∗} ,
= x2{y1, H∗}+ y1{x2, H∗} − x1{y2, H∗} − y2{x1, H∗} , (by the product rule)

= −x2
∂H∗

∂x1
+ y1

∂H∗

∂y2
+ x1

∂H∗

∂x2
− y2

∂H∗

∂y1
, (by the last remark in section 2)

= 0 + y1y2 + 0− y1y2 = 0 .

The identity {H∗, H∗} = 0 can easily be confirmed by

{H∗, H∗} = (∇H∗)T J∇H =

(
∂H∗

∂x1

∂H∗

∂x2

∂H∗

∂x3

∂H∗

∂y1

∂H∗

∂y2

∂H∗

∂y3

)


∂H∗/∂y1
∂H∗/∂y2
∂H∗/∂y3
−∂H∗/∂x1
−∂H∗/∂x2
−∂H∗/∂x3

 = 0 .

So the candidates H∗ and J are indeed integrals of the Hamiltonian system for the spherical
pendulum that suffice the conditions of Liouville’s Integrability Theorem. There is a certain
property that integrals also have.

Theorem 5.4 Theorem 5.5: The Poisson-bracket {H,J} is also an integral.

Proof : According to the Jacobi-identity,

{{H,J}, H} = {H, {J,H}}+ {J, {H,H}} = 0 + 0 = 0 .

Theorem 5.5 Let f ∈ C∞(M) for some 2N -dimensional space M . Then f(H,J) is also an
integral.

Proof : We have to show that {f(H,J), H} = 0 by the definition of an integral. According to the
definition of the standard Poisson bracket,

{f(H,J), H} =

N∑
i=1

( ∂f
∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
. (5)

Now by the Chain rule we get

∂f

∂qi
=

∂f

∂H

∂H

∂qi
+
∂f

∂J

∂J

∂qi
∂f

∂pi
=

∂f

∂H

∂H

∂pi
+
∂f

∂J

∂J

∂pi

So substituting this in equation (5) gives

{f(H,J), H} =

N∑
i=1

(
∂H

∂pi

( ∂f
∂H

∂H

∂qi
+
∂f

∂J

∂J

∂qi

)
− ∂H

∂qi

( ∂f
∂H

∂H

∂pi
+
∂f

∂J

∂J

∂pi

))

=
∂f

∂J

N∑
i=1

(∂H
∂pi

∂J

∂qi
− ∂H

∂qi

∂J

∂pi

)
=
∂f

∂J
{J,H} = −∂f

∂J
{H,J} = 0

14



So a smooth function f of integrals H and J is also an integral. However, because f(H,J) is
dependent on the integrals H and J it is never an independent integral. So it does not suffice
Liouville’s Integrability Theorem.

5.3 Flow and symmetries

Let the Hamiltonian vector field of J be denoted by XJ .
So

XJ =



∂J

∂y1
∂J

∂y2
∂J

∂y3

− ∂J

∂x1

− ∂J

∂x2

− ∂J

∂x3


=


−x2
x1
0
−y2
y1
0

 .

If the Hamiltonian system is completely integrable, then the Hamiltonian vector fields XH∗ and
XJ commute with each other. Furthermore, they are tangent to and independent at the level sets
Lc1 = {H = c1} and Lc2 = {J = c2} for some c1, c2 ∈ R.
It is also true that solutions are mapped from XH∗ to XH∗ by XJ [4]. In order to bring the latter
more into perspective, a few concepts have to be introduced.

Definition 5.6 (Flow) Let ψ : R×R3×R3 → R6 be the map given by ψ(t, x0, y0) = (x(t), y(t)),
where (x(t), y(t)) is the solution of the vector field XF with initial value (x0, y0) and with F the
Hamiltonian.
Then the map ψt : R3 × R3 → R6, given by ψF

t (x, y) = ψ(t, x, y) is called the flow of the vector
field XF .

This basically means that a point on the solution curve of the vector field is mapped to another
point on the same curve per time t.

Definition 5.7 (Symmetry) Let f ∈ C∞(M) be a smooth function.
A symmetry ψ is a map that leaves a function unchanged: ψ ◦ f = f .

Let the flow on the Hamiltonian vector field XJ be denoted by ϕJ
t : R3×R3 → R6, with ϕJ

t given
by

ϕJ
t =


cos(t) sin(t) 0 0 0 0
−sin(t) cos(t) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(t) sin(t) 0
0 0 0 −sin(t) cos(t) 0
0 0 0 0 0 1

 .

It can be seen that this flow describes a rotation around the x3-axis, as it leaves x3 and y3 in its
place and x1 and x2 are described by trigonometric functions that describe circles.
Now because {H∗, J} = 0, it follows that ϕJ

t is for each t a symmetry of XH∗ . In conclusion, if
{(x(t), y(t))|t ∈ R} is a solution curve of XH∗ , then {ϕJ

t (x(t), y(t))|t ∈ R} is a solution curve as
well.
Now ϕJ

t is also a so called Poisson-map.

Definition 5.8 (Poisson-map) A map ψ is called a Poisson-map if for each f, g ∈ C∞(M)
the identity {f ◦ ψ, g ◦ ψ} = {f, g} ◦ ψ holds. Or in other words, if the map commutes with the
bracket.
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If ϕJ
t is a symmetry of H∗, then the next identity holds.

{z ◦ ϕJ
t , H

∗ ◦ ϕJ
t }(x) = {z ◦ ϕJ

t , H
∗}(x) =

d

dt
(z ◦ ϕJ

t ) = {z,H∗}(ϕJ
t (x)) .

If the flows on the Hamiltonian vector fields XH∗ and XJ will leave the surfaces R1 =
x21 + x22 + x23 − 1 = 0 and R2 = x1y1 + x2y2 + x3y3 unchanged, this means that solutions on
the 2-sphere do not change either. This means that the symmetries of XH∗ and XJ indeed map
solution curves to solution curves. To prove that this is the case, we have to check the Poisson-
brackets {H,R1}, {H,R2}, {J,R1} and {J,R2}.

{H,R1} = {H,x21 + x22 + x23 − 1}
= {H,x21}+ {H,x22}+ {H,x23} − {H, 1}
= 2(x1{H,x1}+ x2{H,x2}+ x3{H,x3})

= 2
(
x1
∂H

∂y1
+ x2

∂H

∂y2
+ x3

∂H

∂y3

)
= 2(x1y1 + x2y2 + x3y3) = 0

{H,R2} = {H,x1y1 + x2y2 + x3y3}
= {H,x1y1}+ {H,x2y2}+ {H,x3y3}
= x1{H, y1}+ y1{H,x1}+ x2{H, y2}+ y2{H,x2}+ x3{H, y3}+ y3{H,x3}

= −x1
∂H

∂x1
+ y1

∂H

∂y1
− x2

∂H

∂x2
+ y2

∂H

∂y2
− x3

∂H

∂x3
+ y3

∂H

∂y3

= x1(x3 − y21 + y22 + y23)x1 + y21

+ x2(x3 − y21 + y22 + y23)x2 + y22

+ x3(−1 + (x3 − y21 + y22 + y23)x3) + y23

= −(x21 + x22 + x23)(y21 + y22 + y23) + (y21 + y22 + y23) + (x21 + x22 + x23)x3 − x3
= 0

{J,R1} = {J, x21 + x22 + x23 − 1}
= {x1y2 − x2y1, x21 + x22 + x23 − 1}
= {x1y2, x21}+ {x1y2, x22}+ {x1y2, x23} − {x1y2, 1} − {x2y1, x21} − {x2y1, x22} − {x2y1, x23}+ {x1y2, 1}
= −2(x1{x1y2, x1}+ x2{x1y2, x2}+ x3{x1y2, x3} − x1{x2y1, x1} − x2{x2y1, x2} − x3{x2y1, x3})
= −2(x21{y2, x1}+ x1y2{x1, x1}+ x1x2{y2, x2}+ x2y2{x1, x2}+ x1x3{y2, x3}
+ x3y2{x1, x3} − x1x2{y1, x1} − x1y1{x2, x1} − x22{y1, x2}
− x2y1{x2, x2} − x2x3{y1, x3} − x3y1{x2, x3}
= −2(−x1x2 + x1x2) (because {xi, yj} = δi,j)

= 0

{J,R2} = {J, x1y1 + x2y2 + x3y3}
= {x1y2, x1y1}+ {x1y2, x2y2}+ {x1y2, x3y3} − {x2y1, x1y1} − {x2y1, x2y2} − {x2y1, x3y3}
= x1{y2, x1y1}+ y2{x1, x1y1}+ x1{y2, x2y2}+ y2{x1, x2y2}+ x1{y2, x3y3}+ y2{x1, x3y3}
− x2{y1, x1y1} − y1{x2, x1y1} − x2{y1, x2y2} − y1{x2, x2y2} − x2{y1, x3y3} − y1{x2, x3y3}
= −x21{y2, y1} − x1y1{y2, x1} − x1y2{x1, y1} − y1y2{x1, x1} − x1x2{y2, y2} − x1y2{y2, x2}
− x2y2{x1, y2} − y22{x1, x2} − x1x3{y2, y3} − x1y3{y2, x3} − y2x3{x1, y3} − y2y3{x1, x3}
+ x1x2{y1, y1}+ x2y1{y1, x1}+ x1y1{x2, y1}+ y21{x2, x1}+ x22{y1, y2}+ x2y2{y1, x2}
+ x2y1{x2, y2}+ y1y2{x2, x2}+ x2x3{y1, y3}+ x2y3{y1, x3}+ x3y1{x2, y3}+ y1y3{x2, x3}
= −x1y2 + x1y2 − x2y1 + x2y1 (because {xi, yj} = δi,j)

= 0
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So the Poisson-brackets are all zero, which means that the symmetries of XH∗and XJ indeed
map solution curves to solution curves. If the curves of XH∗and XJ coincide, the solutions of
the Hamiltonian equations are called periodic solutions. In the next section a way to find these
solutions will be presented.
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6 Energy momentum mapping

In this section we consider the Energy momentum mapping to study the system

EM : TS2 ⊆ TR3 → R2 :

(x, y)→ (H∗, J) =
(1

2
(y21 + y22 + y23) + x3, x1y2 − x2y1

)
.

As determined in section 5, these H∗ and J are integrals of the Hamiltonian vector field XH∗ and
they commute almost everywhere by Liouville’s Integrability theorem. The vector fields of H∗ and
J are by the same theorem almost everywhere independent, except for sets of Lebesgue-measure
zero. The interesting places to investigate are thus the points where the integrals are dependent
of each other. It is in these points where the critical values of EM are found. This implies that at
these points Liouville’s Integrability Theorem no longer holds. Important cases to keep in mind
also are the special cases ∇H∗ = 0 and ∇J = 0. The solutions to these equations are called the
stationary solutions. This implies that the phase space no longer will be described by invariant
tori, but solutions that are called periodic solutions together with the stationary solutions. For
the sake of completion it is thus necessary to investigate these critical values.
In mathematical terms, we have to find the solutions of

∇H∗ = 0 ,

∇J = 0 ,

∇H∗ + λ∇J = 0 .

Here λ ∈ R is taken, but normally we are not interested in the value of λ, because this will not
give us information about the solutions.

The Hamilton equations
dx

dt
=
∂H∗

∂y
and

dy

dt
= −∂H

∗

∂x
yield together with the last two equations

of section 4 the following equation,

∇H∗ =


−(x3 − |y|2)x1
−(x3 − |y|2)x2

1− (x3 − |y|2)x3
y1
y2
y3

 .

Now ∇J is equal to

∇J =


y2
−y1

0
−x2
x1
0

 .

The stationary solutions are described in section 7.1.
To determine the periodic solutions, the following system has to be solved,

−(x3 − |y|2)x1 + λy2 = 0 ,

−(x3 − |y|2)x2 − λy1 = 0 ,

1− (x3 − |y|2)x3 = 0 ,

y1 − λx2 = 0 ,

y2 + λx1 = 0 ,

y3 = 0 .
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Furthermore there are 2 additional constraints

|x|2 = x21 + x22 + x23 = 1 ,

< x, y >= x1y1 + x2y2 + x3y3 = 0 .

The purpose now is to find expressions that express certain combinations of variables in other
variables, but in such a way that these combinations are easy to work with and important for the
rest of the approach.
From the last equation y3 = 0 in the system it follows that |y|2 = y21 + y22 and x1y1 + x2y2 = 0.
Now J satisfies the identity

(x1y1 + x2y2)2 + J2 = (x21 + x22)(y21 + y22) .

From here it follows that
J2 = (x21 + x22)(y21 + y22) .

Combining this with the equation x21 + x22 + x23 = 1 gives

J2 = (1− x23)(y21 + y22) .

The third equation 1− (x3 − |y|2)x3 = 0 gives

y21 + y22 =
x23 − 1

x3
.

So until now the next expressions for H∗ and J are found,

H∗ =
x23 − 1

2x3
+ x3 =

3x23 − 1

2x3
,

J2 = − (1− x23)2

x3
.

(6)

Here are H∗ and J essentially parametrized by x3. The next step is to find the explicit relation
between H∗ and J rather than just a parametrization in the variable x3. First, equations (6) are
rewritten as

3x23 − 2x3H
∗ − 1 = 0 ,

x43 − x3J2 − 2x23 + 1 = 0 .
(7)

These are polynomials in x3, so it is interesting to look now for the resultant of these polynomials.

Definition 6.1 A Resultant is a polynomial expression of the coefficients of two polynomials,
which is equal to zero if and only if the polynomials have a common root.[5]

Equations (7) having a common root means that x3 in the first equation is the same as the x3
in the second equation. Now keep in mind that this does not hold for points where the integrals
H∗ and J are independent of each other. So this characterises that the points where the resultant
is zero are critical values of the Energy momentum mapping. Computing the resultant of the
equations (7) gives

27J4 + (72H∗ − 8(H∗)3)J2 + 32(H∗)2 − 16(H∗)4 − 16 = 0 .

Solving this equation for J gives

J = ± 2

3
√

3

√
9H∗ − (H∗)3 +

√
((H∗)2 + 3)3 .

The positive J is seen in figure 3. Likewise, the negative J is the mirroring of the positive graph
in the H∗-axis.
Again, the derived relations between x1, x2, x3, y1, y2, y3, H

∗ and J only hold on the graphs, not
in the area they enclose.
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Figure 3: J as a function of H∗. The coloured points are points whose counter-images are
investigated

7 Classification of solutions

In this section there will be elaborated on the four different types of solutions.

• Stationary solutions (For points (H∗, J) = (−1, 0) and (H∗, J) = (1, 0))

• Periodic solutions (Solutions on the branches)

• Invariant tori (Solutions in between the branches)

• Pinched Torus (For points nearby the point (H∗, J) = (1, 0))

7.1 Stationary solutions

The claim is that the points (H∗, J) = (−1, 0) and (H∗, J) = (1, 0) are singular points of the
energy-momentum Mapping. Indeed, if the equations ∇H∗ = 0 and ∇J = 0 are regarded, it
follows immediately that x1 = x2 = y1 = y2 = y3 = 0 and 1− x23 = 0, so x3 = ±1. The stationary
solutions are thus (0, 0,±1, 0, 0, 0) in the phase space.
After substituting these solutions in the equations

1

2
(y21 + y22 + y23) + x3 = H∗ ,

x1y2 − x2y1 = J ,

it follows that (H∗, J) = (±1, 0) are the critical values of the Energy momentum mapping for
which the counter-images contain the stationary solutions in the phase space. The flow on both
solutions describe the movement of the pendulum. This movement comes down to resting in the
points (0, 0,−1, 0, 0, 0) if (H∗, J) = (−1, 0) and (0, 0, 1, 0, 0, 0) if (H∗, J) = (1, 0) in the phase
space. It is intuitively clear that the solution (0, 0,−1, 0, 0, 0) is a stable solution and the solution
(0, 0, 1, 0, 0, 0) is an unstable solution.
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7.2 Periodic Solutions

The counter-images of points (H∗, J) on the branches are to be determined now.
In order to do this, the system

1

2
(y21 + y22 + y23) + x3 = H∗ ,

x1y2 − x2y1 = J ,

x21 + x22 = 1− x23 ,
x1y1 + x2y2 + x3y3 = 0 ,

(8)

has to be used together with the relations derived from the equations that belong to the Energy
momentum mapping, which are

H∗ =
3x23 − 1

2x3
,

J2 = − (1− x23)2

x3
,

y21 + y22 =
x23 − 1

x3
,

y3 = 0 .

A first step is to determine x3 as function of H∗ in order to compute the radii of the circles x21 +x22
and y21 + y22 . This yields

3x23 − 2x3H
∗ − 1 = 0 .

So

x3 =
2H∗ ±

√
4(H∗)2 + 12

6
=

1

3
H∗ ± 1

3

√
(H∗)2 + 3 .

Now it is interesting to know which of the two values for x3 is appropriate for which value of H∗.
There are always both a positive and a negative value for x3, because (

√
(H∗)2 + 3)/3 > H∗/3

and (
√

(H∗)2 + 3)/3 > 0.
So the + in the solution of x3 always gives a positive value and the − always gives a negative
value.
From the identity y21 + y22 = (x23 − 1)x−13 it immediately follows that x3 has to be negative. Oth-
erwise the left hand side would be negative, which gives a contradiction. This is all regardless of
the value of H∗

Now that x3 is established, it can easily be computed that y21+y22 = (x23−1)x−13 and x21+x22 = 1−x23
and the periodic solution described by 2 circles follows.

As an example H∗ and J expressed in x and y are taken for the point on the branch that in-
tersects the positive J-axis. With a calculation (which consists of substituting H∗ = 0 in the

equation J = ±(2
√

9H∗ − (H∗)3 +
√

((H∗)2 + 3)3)/(3
√

3) it can be shown that this point is

(H∗, J) = (0,
2

3

√√
3). So substituting these values in the first two equations of the system (8)

gives

1

2
(y21 + y22 + y23) + x3 = 0 ,

x1y2 − x2y1 =
2

3

√√
3 .

It is established earlier that x3 has to be negative, from which it follows that −1 ≤ x3 < 0. Then
it is the case that x3 = H∗/3 − (

√
(H∗)2 + 3)/3 = −

√
3/3. Substituting this value for x3 in the

equation y21 + y22 = (x23 − 1)x−13 gives y21 + y22 = 2
√

3/3. And substituting this value for x3 also in
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the equation x21 + x22 = 1− x23 gives x21 + x22 = 2/3. This yields a periodic solution described by 2
circles, which corresponds to a horizontal circle in the configuration space.
To give more examples and to show the difference between periodic solutions that are contained
by the flow on the counter-images of various points on the branches in the (H∗, J)-plane, the next
points have been chosen:

• Point (H∗, J) = (−0.5, 0.469).
Then x3 = H∗/3− (

√
(H∗)2 + 3)/3 = −0.768.

Furthermore it turns out that y21 + y22 = 0.535 and x21 + x22 = 0.411.

• Point (H∗, J) = (0.5, 1.231).
Then x3 = H∗/3− (

√
(H∗)2 + 3)/3 = −0.434.

Furthermore it turns out that y21 + y22 = 1.869 and x21 + x22 = 0.811.

• Point (H∗, J) = (2, 2.056).
Then x3 = H∗/3− (

√
(H∗)2 + 3)/3 = −0.215.

Furthermore it turns out that y21 + y22 = 4.431 and x21 + x22 = 0.954

It can be noticed that how bigger H∗ becomes, how bigger the circle y21 + y22 becomes and how
closer x21 + x22 gets to 1 and thus how closer x3 gets to 0. This is in agreement with the earlier
established fact that −1 ≤ x3 < 0.
Because we can easily calculate the radii of the circles x21 +x22 and y21 + y22 with the value of x3 for
points on the branches and because the equality J = x1y2 − x2y1 holds, we can find initial values
for x and y in order to solve the system of differential equations numerically. Now let x21 +x22 = c1
and y21 + y22 = c2 with c1, c2 > 0. Then x1 =

√
c1 − x22 and y1 =

√
c2 − y22 and

y2

√
c1− x22 − x2

√
c2 − y22 = J ,

y22(c1 − x22)− 2Jy2

√
c1 − x22 + J2 = x22(c2 − y22) ,

c1y
2
2 − 2Jy2

√
c1 − x22 + J2 − c2x22 = 0 ,

y2 =
1

2c1

(
2J
√
c1 − x22 ±

√
4x22(c1c2 − J2)

)
.

(9)

It is noticed earlier that J2 = (x21 + x22)(y21 + y22) = c1c2.
The last equation of equations (9) then reduces to y2 = (J

√
c1 − x22)c−11 .

So if there is given some x2 ∈ [0,
√
c1], then x1, y1 and y2 are fixed by that choice. In Mathematica

a program is made to determine the solutions of x1(t), x2(t), x3(t) in the configuration space both
parametrically and as functions of t.
After having solved the system, a parametric 3D-plot is made of the functions x1(t), x2(t) and
x3(t) and this indeed corresponds to a circle (see Figure 4). Furthermore, a plot of these functions
against the time t is made (see Figure 5). From here it is obvious that x1 and x2 are a cosine and
a sine respectively with amplitude

√
c1 and a certain period ω. As expected, x3 is constant along t.

x1(t) =
√
c1cos(ωt) ,

x2(t) =
√
c1sin(ωt) ,

x3(t) = c, c ∈ [−1, 1] .

The example used for the making of the graphs is the point (H∗, J) = (0,
2

3

√√
3). But for other

points on the branches in the (H∗, J)-plane the same kind of results hold.
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Figure 4: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (0, 0.877)

Figure 5: Time series plot of x1(t) (blue), x2(t) (orange) and x3(t) (green) for (H∗, J) = (0, 0.877)
against the time t

7.3 Invariant Tori

The counter-images of all points between the branches are by Liouville’s Integrability theorem
invariant tori, because the gradients of the integrals H∗ and J are there independent of each
other. Furthermore, the level sets {H∗ = c1} ∩ {J = c2} are compact by the following reasoning.
By the equality x21 + x22 + x23 = 1 it follows directly that x1, x2 and x3 are bounded. Then on the
level set (y21 + y22 + y23)/2 + x3 = c1 the term (y21 + y22 + y23)/2 is bounded also.
So the level set {H∗ = c1} is ∀x ∈ S2 closed and bounded and thus compact. So the intersection
{H∗ = c1} ∩ {J = c2} is also compact.
The theorem then says that the phase space is foliated with invariant tori near a regular point.
The flow on these tori determines the movement of the pendulum in the phase space. In the
configuration space the movement of the pendulum then translates to a simultaneous swinging
and rotating around the x3-axis.
Because the invariant surfaces {H∗ = c1} ∩ {J = c2} are bounded, the counter-images of points
on the outside of the branches are not invariant tori. Only points in the (H∗, J)-plane that are
locate in the area enclosed by the branches are thus to be investigated.
In the following part of this subsection the counter-images of the points in between the branches
in the (H∗, J)-plane will be explored. The integrals H∗ and J will be treated as if they were
variables. In this way a general approach can be made in order to determine the solutions x and
y in the phase space.
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For this approach we have to choose initial values for x ad y such that the next system holds,

1

2
(y21 + y22 + y23) + x3 = H∗ ,

x1y2 − x2y1 = J ,

x21 + x22 + x23 = 1 ,

x1y1 + x2y2 + x3y3 = 0 .

Different initial values for x and y result in different solutions, but all of these solutions are
described by the same flow on a torus. So the trajectory of the solution stays the same, but the
orientation is different. This holds for all solutions that are explored in not only this subsection,
but also the next one.
A way to solve the problem is to express x1, x2 and x3 in terms of y1, y2 and y3 and then to
choose two of the last three quantities wisely such that the system still holds.
The second equation gives

x1 =
J + x2y1

y2
.

Substituting this in the fourth equation then gives

Jy1 + x2y
2
1 + x2y

2
2 + x3y2y3 = 0 ,

x2 =
−x3y2y3 − Jy1

y21 + y22
.

We have as intermediate results

x1 =
J + x2y1

y2
,

x2 =
−x3y2y3 − Jy1

y21 + y22
.

Now x3 = H∗ − (y21 + y22 + y23)/2. Putting z = y21 + y22 + y23 and substituting this in the previous
expressions gives

x1 =
Jy2

y21 + y22
+
y1y3

(1

2
z −H∗

)
y21 + y22

,

x2 = − Jy1
y21 + y22

+
y2y3

(1

2
z −H∗

)
y21 + y22

,

x3 = H∗ − 1

2
z .

(10)

Substituting these expressions in the third equation x21 + x22 + x23 = 1 gives

J2y22
y21 + y22

+
Jy1y2y3

(1

2
z − 2H∗

)
(y21 + y22)2

+
y21y

2
3

(1

2
z −H∗

)2
(y21 + y22)2

+
J2y21
y21 + y22

−
Jy1y2y3

(1

2
z − 2H∗

)
(y21 + y22)2

+
y22y

2
3

(1

2
z −H∗

)2
(y21 + y22)2

+
(
H∗ − 1

2
z
)2

= 1 .

After some rearranging and eliminating this equation reduces to

J2 + z
(1

2
z −H∗

)2
y21 + y22

= 1 . (11)
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It follows that y21 + y22 = J2 + z
(1

2
z −H∗

)2
.

Add y23 to both the right and left side to get

1

4
z3 −H∗z2 + ((H∗)2 − 1)z + J2 + y23 = 0 .

Now there are some points in the (H∗, J)-plane that are interesting to investigate:

• Points on the line segment l : {H∗ = 0,−2

3

√√
3 < J <

2

3

√√
3} are investigated. This

value for H∗ is chosen such tht a comparison can be made with the earlier investigated point

(H∗, J) = (0,
2

3

√√
3). The interesting thing to know is how the movement of the pendulum

changes as one goes over this line. The next three points are chosen: (H∗, J) = (0, 0),
(H∗, J) = (0, 0.435) and (H∗, J) = (0, 0.87).

• Points for which it holds that H∗ > 1 are investigated. Such points are expected to give
more wilder results as the ones on the line l. As an example the point (H∗, J) = (2, 1) is
taken.

• Points nearby the point (H∗, J) = (1, 0) are investigated. Included are the points (H∗, J) =
(0.99, 0) and (H∗, J) = (1.01, 0). These points are saved for the next subsection about the
pinched torus.

Point (H∗, J) = (0, 0)

First the point (H∗, J) = (0, 0) is taken.
Now y3 must be chosen such that z has non-negative solutions, because z = y21 + y22 + y23 ≥ 0.
If we take y3 = 0.5, then z has a negative and two positive solutions, i.e.

z ≈ −2.11491, z ≈ 0.254102, z ≈ 1.86081

We take z ≈ 1.86081 as a solution. From this it follows that y21 + y22 ≈ 1.61081. If we take
y1 = 1, then y2 ≈

√
0.61081 ≈ 0.781543. These values for y1, y2 and y3 are then substituted in

the expressions (10) for x1, x2 and x3 to give

x1 = 0.2888 ,

x2 = 0.22571 ,

x3 = −0.930405 ,

y1 = 1 ,

y2 = 0.781543 ,

y3 = 0.5 .

Unfortunately, the closed expressions for z are very cumbersome and complex moreover, so we
were not able to put these expressions explicitly in Mathematica, but used only the approxima-
tions. The results are therefore slightly off, but not significantly much.
Putting these approximations in Mathematica and plotting the solutions results in Figures 6 and
7. It can be seen immediately in Figure 6 that the pendulum only swings up and down. This
is the result of the fact that J = 0, because then the rotation around the x3-axis vanishes. The
solution of x3 is not dependent on this, and will always move between −1 and 0, regardless of the
initial values of y1, y2 and y3, as can be seen in Figure 7. Moreover, it can be noted from the graphs
of x1(t) and x2(t) in this Figure that the pendulum stays a few seconds in the neighbourhood of
x3 = 0.

Point (H∗, J) = (0, 0.435)
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Figure 6: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (0, 0)

Figure 7: Time series plot of x1(t) (blue), x2(t) (beige) and x3(t) (green) for (H∗, J) = (0, 0)
against the time t
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Figure 8: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (0, 0.435)

Figure 9: Time series plot of x1(t) (blue), x2(t) (beige) and x3(t) (green) for (H∗, J) = (0, 0.435)
against the time t

Going upwards on the line l, we take as an example the point halfway the line (H∗, J) = (0, 0.435).
Choosing y3 = 0.5 and solving the equation (z3−z+J2 +y23)/4 = 0 again, but now for J = 0.435,
gives as a solution z ≈ 1.72706. Consequently we take y1 = 1, so that y2 =

√
1.47706 ≈ 0.690695.

Plugging y1, y2 and y3 in the expressions for x1, x2 and x3 gives

x1 = 0.495726 ,

x2 = −0.0926042 ,

x3 = −0.86353 ,

y1 = 1 ,

y2 = 0.690695 ,

y3 = 0.5 .

Putting these approximations in Mathematica and plotting the solutions results in figures 8 and
9. Figures 8 and 9 show that the pendulum swings everywhere in the lower half of the sphere,
but will not go above x3 = 0, because x3(t) stays below zero as can be seen in figure 9. As it does
not reach above x3 = 0, the pendulum does not make turnovers.

Point (H∗, J) = (0, 0.87)
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Figure 10: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (0, 0.87)

Figure 11: Time series plot of x1(t) (blue), x2(t) (beige) and x3(t) (green) for (H∗, J) = (0, 0.87)
against the time t

Going upwards again on the line l, we take as an example the point close to the branch (H∗, J) =
(0, 0.87).

Choosing y3 = 0.01 and solving the equation
1

4
z3 − z + J2 + y23 = 0 again, but now for J = 0.87,

gives as a solution z ≈ 1.08781. Consequently we take y1 = 0, so that y2 =
√

1.08771 ≈ 1.04293.
Plugging y1, y2 and y3 in the expressions for x1, x2 and x3 gives

x1 = 0.834186 ,

x2 = −0.00521515 ,

x3 = −0.543905 ,

y1 = 0 ,

y2 = 1.04293 ,

y3 = 0.01 .

Putting these approximations in Mathematica and plotting the solutions results in Figures 10 and
11. It can be seen in Figures 10 and 11 that the pendulum almost moves in a circle, but with a
regular oscillation of x3(t) around the value −

√
3/3, as was derived in the previous subsection.

Point (H∗, J) = (2, 1)

Another interesting type of point is the type where H∗ > 1.
As an example the point (H∗, J) = (2, 1) is taken.
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Figure 12: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (2, 1)

Figure 13: Time series plot of x1(t) (blue), x2(t) (beige) and x3(t) (green) for (H∗, J) = (2, 1)
against the time t

Using the same approach as on the line l, but now with H∗ = 2 one gets z = 5.77016 and as initial
values for x and y

x1 = 0.465314 ,

x2 = −0.0107117 ,

x3 = −0.88508 ,

y1 = 1 ,

y2 = 2.12607 ,

y3 = 0.5 .

Putting these approximations in Mathematica and plotting the solutions results in Figures 12 and
13. From Figures 12 and 13 it can be noticed that the pendulum swings more and faster than
in the case (H∗, J) = (0, 0.435). And while the behaviours of x1(t) and x2(t) are very irregular in
Figure 9, in Figure 13 they are somewhat regular. Only the amplitude of the functions change,
but the overall shape stays the same. It is also the case here that x3(t) attains its maximum at
approximately 0.8. So in this case the pendulum is able to make turnovers on the 2-sphere. It does
not make it to x3 = 1 however, which is due to the presence of the rotation around the x3-axis.
This also leaves a trail of a circle behind at x3 ≈ 0.8.
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7.4 Pinched Torus

One of the other stationary solutions is the point (x, y) = (0, 0, 1, 0, 0, 0). It is deduced in section
7.1 that this point corresponds with the point (H∗, J) = (1, 0) in the (H∗, J)-plane. However,
this point is very unstable. So it is interesting to determine the behaviour of the pendulum in the
neighbourhood of this point. Here the counter-image is a pinched torus, which is a torus that
is pinched in the point that corresponds to the stationary solution (x, y) = (0, 0, 1, 0, 0, 0).
The flow on this torus then determines the behaviour of the pendulum in the phase space. The
movement of the pendulum complementary to this point is an infinitely long trip from the top
around the sphere to the top again in the configuration space. This is not easily depicted, but
various points close to (H∗, J) = (1, 0) will be investigated in order to find out what is going on at
this weird point. Furthermore it will be described what the corresponding solutions will do and it
will be pointed out what the differences are between the behaviour of the solutions corresponding
to these points.

Point (H∗, J) = (0.99, 0)

First the point (H∗, J) = (0.99, 0) is investigated.
Let xi,0 and yi,0 be denoted by the i-th component of x respectively y, that is the initial value at
time t = 0.
We have to find initial values for x and y such the next system is satisfied,

1

2
(y21 + y22 + y23) + x3 = 0.99 ,

x1y2 − x2y1 = 0 ,

x21 + x22 + x23 = 1 ,

x1y1 + x2y2 + x3y3 = 0 .

First we set x3,0 = 0.98. This value is chosen such that the initial values y1,0, y2,0 and y3,0 do
not have to be all equal to zero, which would be silly. Second we set x1,0 = x2,0 and y1,0 = y2,0
in order to satisfy the second equation immediately. From the third equation it then follows that
x1,0 = x2,0 =

√
(1− (0.98)2)/2 ≈ 0.141.

Substituting this in the third equation gives

2x1,0y1,0 + x3,0y3,0 = 0 ,

y3,0 ≈ −0.287y1,0 .
(12)

Then substituting this result in the first equation gives

y21,0 +
1

2
y23,0 + x3,0 − 0.99 = 0 ,

y21,0 + 0.041y1,0 − 0.01 = 0 ,

y1,0 =
1

2
(0.041±

√
0.0417) ≈ 0.0815 = y2,0 .

Substituting the value y1,0 ≈ 0.0815 in (12) then gives y3,0 = −0.287× 0.0815 ≈ −0.0234.
In Mathematica all six initial values were substituted. Subsequently, Figure 14, which displays the
parametric plot of x1(t), x2(t), x3(t) against each other, and Figure 15, which displays the time
series of functions x1(t), x2(t), x3(t) against the time t, were found. It is to be noted that the
graphs of x1(t) and x2(t) are exactly the same, because the initial values were chosen in such a
way, that is x1,0 = x2,0, that the roles of x1 and x2 were identical ∀t ∈ R.

Point (H∗, J) = (1.01, 0)
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Figure 14: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (0.99, 0)

Figure 15: Time series plot of x1(t), x2(t) (beige) and x3(t) (green) for (H∗, J) = (0.99, 0) against
the time t

For the point (H∗, J) = (1.01, 0) the same trial and error strategy was applied as in the case
(H∗, J) = (0.99, 0), but now with x3,0 = 0.99. Ultimately this gives

x1,0 = x2,0 ≈ 0.0997 ,

x3,0 = 0.99 ,

y1,0 = y2,0 ≈ 0.132 ,

y3,0 ≈ −0.0265 .

These six initial value were substituted again in Mathematica and Figures 16 and 17 were the
results. Again, Figure 16 displays the parametric plot of x1(t), x2(t), x3(t) against each other, and
Figure 17 displays the time series of functions x1(t), x2(t), x3(t) against the time t.

Figure 14 shows that the pendulum falls from a point close to (0, 0, 1) down to (0, 0,−1) and
then goes all the way up again to the neighbourhood of (0, 0, 1), but never reaches this point after
which is falls down again. This is illustrated by the gap at the top.
In contrast, this gap is closed in Figure 16, which shows that the pendulum will make it to the
top and go further at the other side, making endless 2π trips around the sphere.
This contrast is also clarified by the time series plots of both (0.99, 0) and (1.01, 0). Whereas in
Figure 15 the graphs of both x1(t) and x2(t) do not come above the t-axis when x3(t) goes to 1
around t = 5, the graphs in Figure 17 do.
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Figure 16: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (1.01, 0)

Figure 17: Time series plot of x1(t), x2(t) (beige) and x3(t) (green) for (H∗, J) = (1.01, 0) against
the time t
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In an attempt to display a more general trajectory rather than only circles (with or without a
gap), the points (H∗, J) = (0.99, 0.01) and (H∗, J) = (1.01,−0.01) are investigated also. This is
done by the same approach as in the previous subsection. Equation (11) is thus used also.

Point (H∗, J) = (0.99, 0.01)

For the point (H∗, J) = (0.99, 0.01) the value z = 3.91506 was the result and with the choices
y3 = 0.5 and y1 = 1 the next approximations for the initial values were found,

x1 = 0.136448 ,

x2 = 0.212751 ,

x3 = −0.96753 ,

y1 = 1 ,

y2 = 1.6325 ,

y3 = 0.5 .

Putting these approximations in Mathematica and plotting the solutions results in figures 18 and
19.

Point (H∗, J) = (1.01,−0.01)

For the point (H∗, J) = (1.01,−0.01) the approach gave z = 3.95574 as a result and the next
approximations for the initial values were found,

x1 = 0.126152 ,

x2 = 0.217509 ,

x3 = −0.96787 ,

y1 = 1 ,

y2 = 1.64491 ,

y3 = 0.5 .

Putting these approximations in Mathematica and plotting the solutions results in figures 20 and
21.

Figure 18 shows that the pendulum falls from a point close to (0, 0, 1) down to (0, 0,−1) and
then goes all the way up again to the neighbourhood of (0, 0, 1) but never reaches this point after
which it falls down in another direction. This is illustrated by the gap at the top.
In contrast, this gap is closed in Figure 20, which shows that the pendulum will make it to the
top and swing further at the other side.
The behaviour is thus similar to the behaviour in Figures 14 and 16, but now the pendulum falls
back or swings further in another direction. There is also a contrast between the time series plots
of both (0.99, 0.01) and (1.01,−0.01) and the time series plots of (0.99, 0) and (1.01, 0), but these
are not very instructive, as they are very irregular.
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Figure 18: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (0.99, 0.01)

Figure 19: Time series plot of x1(t) (blue), x2(t) (beige) and x3(t) (green) for (H∗, J) = (0.99, 0.01)
against the time t

Figure 20: Parametric plot of x1(t), x2(t) and x3(t) for (H∗, J) = (1.01,−0.01)
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Figure 21: Time series plot of x1(t) (blue), x2(t) (beige) and x3(t) (green) for (H∗, J) =
(1.01,−0.01) against the time t

8 Conclusion

In this project we learned about Hamiltonian systems and their solutions in regard of the spherical
pendulum. These solutions were found with the help of the Energy momentum mapping. The
flow on the counter-images of its critical values (H∗, J) described the periodic solutions and the
stationary solutions of the spherical pendulum. Inside the area enclosed by the critical values, the
counter-images were described by tori. This is a result of Liouville’s Integrability Theorem. The
flow on these tori then determined the simultaneous swinging and rotating of the pendulum in the
configuration space. Lastly there has been taken a look in the neighbourhood of the weird point
(H∗, J) = (1, 0). It turned out that this point marks the difference between turnovers (H > 1)
and fall-backs (H < 1) of the pendulum. In this way we have seen 4 different types of solutions.
Further research can expand on the role of the flow of Hamiltonian vector fields in this process.
This was mentioned several times, but not deep enough. Moreover, the theory of chaos can step
in when the pendulum reaches heights it never reached before.
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