40 Gb/s indoor optical wireless system enabled by a cyclically arranged optical beamsteering receiver

Citation for published version (APA):

DOI:
10.1364/OL.43.000723

Document status and date:
Published: 15/02/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
40 Gb/s indoor optical wireless system enabled by a cyclically arranged optical beamsteering receiver

XUEBING ZHANG,¹ YU LIU,²,³,⁶ ZIZHENG CAO,¹,* FAN LI,⁴ ZHAOHUI LI,⁴ R. ISMAEEL,⁵ G. BRAMBILLA,⁵ Y. CHEN,⁵ and A.M.J. KOONEN¹

¹Eindhoven University of Technology, NL 5600 MB Eindhoven, Netherlands
²State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
³School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
⁴State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
⁵Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
⁶e-mail: yliu@semi.ac.cn
*Corresponding author: z.cao@tue.nl

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

Indoor optical wireless communication with capability of optical beamsteering attracts lots of attention. One major two dimensional (2D) optical beamsteering scheme is realized by 2D grating or its active counterpart which is usually based on spatial light modulator (SLM). However, there is a fundamental trade-off between field-of-view (FoV) and power efficiency due to the inherent feature of gratings. In this paper, we propose a new class of 2D beamsteering named cyclically arranged optical beamsteering (CAO-BS) which can break such trade-off. Traditional 2D gratings extend optical beam in Cartesian coordinate (1D grating in horizontal + 1D grating in vertical), while CAO-BS extend optical beam in polar coordinate (1D grating + angular rotation). Since only 1D grating is engaged, the power efficiency increases with the number of grating lobes reduced. In polar coordinate, the angle rotation tuning in a SLM is quasi-continuous in a range of full 2π. The CAO-BS is demonstrated at the receiving end in an indoor experimental system. The FoV is 18° by 360° in polar coordinate without any additional mechanical part. Based on the CAO-BS, 40 Gbit/s On-Off Keying (OOK) data is also successfully transmitted over 1km single mode fibre and 0.5 m free space. © 2015 Optical Society of America

OCIS codes: (060.2605) Free-space optical communication; (070.1170) Analog optical signal processing; (070.6110) Spatial filtering; (070.6120) Spatial light modulators.

http://dx.doi.org/10.1364/OL.99.099999

Recently, indoor optical wireless communication (OWC) technology is widely recognised as a popular access method due to its prominent bandwidth advantage [1]. Nowadays, fibre-to-the-home unlocks unlimited bandwidth in the fibre end however, the bandwidth is still limited by the radio frequency in the air. For example, mm-wave radio-over-fibre (RoF) techniques can largely reduce the complexity but it is still limited to available bandwidth of a few GHz at mm-wave band [2,3]. With the available fibre links of fibre-to-the-home, OWC at 1550 nm band is complementary to radio for high-speed short-range communication in the Fifth Generation (5G) networks [4]. Next to the 5G radio communication, OWC can boost the aggregate capacity to Tb/s level [5]. In order to track the mobile terminal users indoor, precise alignment between the transmitter and receiver is of demand. Therefore, beam reconfigurable receiver with a large total wide field-of-view (FoV) is interesting. Moreover, the allowed infrared power is limited due to the safety regulation, such receiver should be power efficient. To this end, beamsteering is of demand.

Spatial light modulator (SLM) is applied for beamsteering in indoor OWC systems [6-9]. The SLM can steer optical beam without mechanical movement. Comparing other means, the SLM has highly repeatable performance, high tolerance from device and atmosphere. The SLM also does not limit signal’s bandwidth [7]. F. Feng et al. have demonstrated a maximum 3° beam shifting in free space link by using an SLM [7]. Later, A. Gomez et al. extend the FoV to 60° by introducing an extra lens system as an angle magnifier (AM) [8]. Such AM concept is attractive since it can directly increase the FoV of all kinds of systems. However, so far, these SLM-based methods merely demonstrate two-dimensional (2D) beamsteering by using the 2D grating in Cartesian coordinate. For one-dimensional (1D) gratings, if we assume its number of grating lobes is N, when extending it to 2D, the number of grating lobes is N×N. As the number increase, its power efficiency decreases. The covered
range of grating lobes, or in other word, the Field-of-View (FoV) is traded off with the power efficiency. Additionally, it is difficult to implement beamsteering at (quasi-) continuous angle because the order of gratings is discrete. This results in only certain discrete angles in the steering area which can be accessed. Here, we proposed another 2D beamsteering scheme named cyclically arranged optical beamsteering (CAO-BS) to break the trade-off between FoV and power efficiency. Traditional 2D gratings extend optical beam in Cartesian coordinate (1D grating in horizontal + 1D grating in vertical), while CAO-BS extend optical beam in Polar coordinate (1D grating + angular rotation). Since only 1D grating is engaged, the power efficiency increases with the number of grating lobes reduced. In polar coordinate, the angle rotation tuning in a SLM is quasi-continuous in a range of full 2π. Even though the idea of CAO-BS has never been explored for indoor OWC systems, the similar idea to use rotation as a freedom for beamsteering is studied in Risley Prisms [10-11]. Based on the CAO-BS concept, a FoV of 18° is experimentally demonstrated by using a reflective SLM, where the FoV can be enlarged to almost 140° when an AM proposed in [8] is applied. The OWC transmission of 40Gbit/s On-Off Keying (OOK) data is also experimentally demonstrated over 1km standard single mode fibre and 0.5 m free space. This quasi-continuous $\pm 9^\circ$ FoV greatly releases the pressure from alignment and thus provides a promising solution for indoor OWC systems.

Fig. 1 shows the concept of SLM-based 2D CAO-BS. The general diffraction pattern is presented in Fig. 1a. By changing the grating pitch, we could alter the pointing direction of the first order beam, which is the common meaning of 1D beamsteering as shown in Fig. 1b. In terms of 1D case, the operation principles of CAO-BS and the conventional method are the same. As shown in Fig. 1c, for a traditional 2D beamsteering, a 1D grating is extended to a 2D grating, while for CAO-BS, a cyclical rotation is applied to a 1D grating as shown in Fig. 1d. This avoids the further power splitting in another dimension, which enables higher power efficiency.

Even though the 1D grating can be quasi-continuously rotated in the angle dimension, the angle 1D grating is still discrete due to the limitation of pixel size of SLM, leading to some unreachable directions. This is the main drawback of these SLM-based methods.

As suggested in [7], for an SLM, the maximum deflection angle α of the first order in full angle is determined by pixel pitch Δ of SLM device and laser wavelength λ, which is presented as $\alpha = \lambda / \Delta$. In the reported system in [7], Δ of SLM device is $\sim 20\mu m$ and the wavelength is 1060 nm and thus the maximum α is ~ 3.04 degree. In practice, Δ is the only adjustable parameter. To avoid the gap between two discrete angles, we propose a new structure that can meet this requirement as shown in Fig. 2.

Fig. 2a illustrates the general diffraction pattern used in optical beamsteering. L is the distance between SLM and receiver, which is an essential factor in our scheme. As we discussed above, we could clearly see an unreachable area between central spot and first order grating lobes. However, when we reduce L to $L' (L'<<L)$, for instance around 10 mm in our experiment, the grating lobes can be quite close to the central spot as shown in Fig. 2b. If we decrease L further, the uniformness will be better. When all grating lobes at the orders of interest are then close enough to fall in the coupling region (aperture) of collimator, a wide-FoV receiver without blind spots is realized as shown in Fig. 2c. Optical beams at different direction (illustrated by different colours) are projected to the grating. After the grating elliptical rings with different colours represent input signals at different angles. When the angle of input signal changes along one direction (eg. horizontal direction in Fig. 2c), the linear beam will shift a certain angle in the same direction as well but there is always a part of the beam falls in the aperture of the collimator. This radiated beam ensures a stable optical connection without blind area in a large scale of receiving angle. Fig. 2d shows the 2D principles. For arbitrary input light within the FoV of 1D grating, the grating is rotated to match the input direction by updating the phase profile of the SLM. For instance, when an incident plane rotates β degree anticlockwise, the grating angle should have the same rotation to make sure it is perpendicular to the new incident plane as shown in Fig. 2d. In this experiment, we demonstrate the optical receiver based on a reflective SLM produced by HOLOEYE (PLUTO Phase Only SLM). It should be pointed that for our receiver structure, the reflective SLM is same as transmissive type in terms of function [12].
The experimental setup is illustrated in Fig. 3 (a). A laser with narrow bandwidth (<100 kHz) is employed for the optical carrier with a wavelength of 1550 nm. 40Gb/s OOK signal is generated from a commercial transmitter (SHF10000B) and it is then amplified by a boosting amplifier (EDFA-1) before transmitted over 1 km single mode fibre. Then 1 km standard single mode fibre (SSMF) stands for the distance from central controlling room to users’ room in an indoor scenario. The SLM used here is a polarization-sensitive device. So a polarization controller (PC) is introduced to align the polarization to optimize the modulation efficiency of SLM. The light is fed into a transmitting collimator (NA=0.28) and is then transmitted over 0.5 m free space before it hits the SLM. As being detailed below, the angle of the transmitting collimator will be tuned as shown in Fig. 4. This free space link is used to emulate the distance between access point and terminal user. A lens with the focal length of 200 mm is employed to adjust the spot size. A much compact receiver can be constructed with a specially designed lens (system). The reflective SLM has 1920×1080 active pixels and 8 μm pixel pitch. The spatially modulated lightwave is then collected by a smaller collimator (NA=0.16) into a single mode fibre. The distance between this collimator and screen is ~10 mm. To compensate the insertion loss including the imperfect alignment loss, a pre-amplifier (EDFA-2) is used. An optical attenuator is introduced to measure the bit error rate (BER) versus received optical power curves.

The experimental results are analysed as shown in Fig. 4, 5, and 6. As we discussed in Fig. 2 (d), the uniformness of reflective beams are evaluated by a movable multimode fibre with a small aperture (Ø=62.5 μm). Such small aperture allows the accurate measurement of power distribution with high spatial resolution. The location and angle receiving collimator (multimode fibre) are adjusted while fix the transmitting collimator. The adjusting steps of location is 0.5 mm within a full range of ~10 mm. A slight angular adjustment is implemented to optimize the power collection. The results are shown in Fig. 4. We set the input power is 9 dBm, the measured output power is between -34.5 dBm and -37.8 dBm. The variation is less than 3.3 dB, which suggests a quite uniform power distribution along a line. As expected, there is no apparent blind spot.

Then the receiving collimator with a NA=0.16 replaces the multimode fibre. The other conditions are fixed, including the input power and the configurations of the free-space optical system. The transmitting collimator is then tuned at five different angles of -9°, -4.5°, 0°, 4.5° and 9°. The corresponding received power are -25.01 dBm, -23.1 dBm, -19 dBm, -25.6 dBm and -22.7 dBm, as shown in Fig. 5. The power variation is less than 6.6 dB, which shows our proposed method could provide relatively stable reception within 18° FoV of 1D grating. The power loss is ~33 dB in our experiment mainly due to two factors. The major one is the overlapping fraction of between the converted beam and the aperture of the receiving collimator is quite small. Actually, if we increase active area of a collimator or substitute a photodetector for this collimator, the power loss could be reduced a lot. The other is that the free optic system is lack of optimization. In the future, the well-designed optic system can further improve it.

The bit error rate (BER) performance of the system is tested by transmitting 40Gb/s OOK signal. In this experiment, we select -9°, 0° and 9° input angles to evaluate the system transmission performance. The BER curves are shown in Fig. 6. At BER=1×10^-3, the received power at the angle of -9°, 0° and 9° are -7.8, -7.4, and -7.0 dBm. As a reference, the corresponding receiver power is -9.2 dBm for the case of optical back-to-back. The received sensitivity at the angle of 0° is the best among all the transmission cases at three different angles. It suggests a 1.4 dB degradation compared...
with optical back-to-back (BTB). This is mainly because of the introduction of the boosting amplifier (EDFA-1) and pre-amplifier (EDFA-2). The difference of receiver sensitivity between at the angles of 0° and 9° are 0.4 dB. The performance at the angle of −9° is with 0.8 dB decrease compared with at the angle of 0°. This coincides well with the imbalanced received power shown in Fig. 5. Such imbalance may be caused by the angle-dependent efficiency of the SLM. As shown in the lower part of Fig. 6, the eye diagrams for OBTB, and at angles of −9°, 0° and 9° are all measured at 0 dBm. No drastic changing in rising/falling edges is observed, which suggests that the optical manipulation does not affect the received electrical bandwidth.

To conclude this paper, we proposed a novel 2D beamsteering scheme named cyclically arranged optical beamsteering (CAO-BS) to break the trade-off between FoV and power efficiency. Different from traditional 2D gratings, CAO-BS extend optical 1D beamsteering to 2D beamsteering in polar coordinate (1D grating + angular rotation). Since only 1D grating is engaged, the power efficiency increases with the number of grating lobes reduced. Moreover, in polar coordinate, the angle rotation tuning in a SLM is quasi-continuous in a range of full 2π. Based on this concept, we propose a novel beamsteering receiver with quasi-continuous angle utilizing a SLM and a conventional collimator. A FoV of 18° by 360° in polar coordinate is experimentally demonstrated in the CAO-BS receiver without using mechanical movement. This FoV could be further extended to ~140° by 360° in polar coordinate when an angle magnifier proposed is applied. In addition, 40 Gbit/s bit-rate OOK transmission experiment is demonstrated over 1km standard single mode fibre and 0.5 m free space. We believe that this technique provides a promising solution for indoor OWC systems.

Funding. FP7 Ideas: European Research Council (IDEASERC) (291632); National Natural Science Foundation of China (NSFC) (61575186, 61635001); Open Fund from State Key Laboratory of Advanced Optical Communication Systems Networks, China; NWO China Exchange Programme (530-5CDP06).

References

