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Abstract

In this paper, we develop an ecological, multi-level model that can be used to study the evo-

lution of emerging technology. More specifically, by defining technology as a system com-

posed of a set of interacting components, we can build upon the argument of multi-level

density dependence from organizational ecology to develop a distribution-independent

model of technological evolution. This allows us to distinguish between different stages of

component development, which provides more insight into the emergence of stable compo-

nent configurations, or dominant designs. We validate our hypotheses in the biotechnology

industry by using patent data from the USPTO from 1976 to 2003.

Introduction

In our industrial and post-industrial societies, technology plays a highly important role, struc-

turing the relationship between individuals, groups, organizations, and industries [1, 2, 3, 4].

Emerging technologies–such as, for example, biotechnology and nanotechnology–are consid-

ered especially important, as these are argued to be a key driver of economic growth and devel-

opment [5]. Unfortunately, however, the process of how emerging technologies grow and

evolve is not well-understood [6]. While scholars have devoted much time and effort to under-

stand the evolution of mature (i.e., non-emerging) technologies, insights into the evolution of

emerging technologies have severely lagged behind. The main reason is that mature technolo-

gies are characterized by stable and predictable patterns of growth, whereas emerging technol-

ogies are associated with highly chaotic and fluid patterns of growth and development [7, 8, 9].

This implies that a mature technology can be modeled relatively easily, whereas emerging tech-

nologies defy traditional means of modeling.

In this paper, we argue that by considering the multi-level nature of technology, we can

generate valuable insights into the growth and evolution of emerging technologies. As technol-

ogy is inherently multi-level in nature [10], we conceive technology as comprising a system
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composed of a set of interacting technological components. This allows us to study an emerg-

ing technology on the basis of the growth and evolution of its principal components [11]. Spe-

cifically, we bring in insights from organizational ecology. We use organizational ecology’s

multi-level density dependence theory to study component-system interactions [12], and

define different stages of technological development at the component level, as well as at the

system level. We empirically validate our hypotheses in the biotechnology industry from 1976

to 2003 by using patent data from the United States Patent and Trademark Office (USPTO).

The contribution of this paper is threefold. First, by conceiving technology as a system that

is composed of a set of interacting technological components, we develop a multi-level model

that can be used to study the evolution of (emerging) technology. This allows us to examine

the microeconomic underpinnings of an emerging technology’s growth and development, and

explain how stable patterns of growth and development originate from the bottom up. Second,

by applying concepts from organizational ecology to the study of technology, we effectively

combine evolutionary and ecological models in the study of the evolution of technology (cf.

[13]). That is, by combining the different perspectives of environmental selection and adapta-

tion, we demonstrate the added value of applying both views at the same time, and provide a

platform for their further recombination (cf. [14]). Third, we empirically demonstrate that

an ecological logic can be effectively applied to study the growth and evolution of emerging

technology.

The organization of this paper is as follows. In the next section, we will discuss the literature

on the evolution and, on the basis of these insights, develop our hypotheses. Subsequently, in

the ‘Data and methodology’ section, we outline our empirical sample and estimation methods.

We then discuss our results, and finally, in the ‘Discussion and conclusion’, we discuss the lim-

itations of our study, position our findings in the broader academic debate, and provide some

thoughts on avenues for further research.

The evolution of technology

Even though economists already recognized the importance of technological progress early on

[15], they generally captured technological change as a mere shift along the production func-

tion. As a result, the process of technological change has largely remained unexplored until

Schumpeter [16] presented an evolutionary theory of the working of the capitalist system,

driven by forces of technological change. Schumpeter [17] conceived technological change as a

process of recombination, where (existing) components are brought together in new ways.

Since then, the process of technological change has no longer been treated as a ‘black box’ [18],

and has been–and still is, for that matter–receiving much attention.

Especially the field of evolutionary economics has contributed much to our understanding

of the process of technological change. According to evolutionary economics, due to an agent’s

limits in information-processing and problem-solving capacity, or bounded rationality [19],

there is a need to search and recombine locally from a limited set of components [20]. After

all, if the number of components that an agent considers increases linearly, the number of

potential (re-)combinations that can be made with these components and the associated cogni-

tive load grow exponentially [21]. Therefore, agents rely on heuristics to reduce their cognitive

load, rather than applying strict and rigid rules of optimization [19].

At the organizational level, these heuristics translate into organizational routines that

ensure regular and predictable patterns of behavior [2] that result in organizational inertia [22]

and path dependence. In the context of technological development, these heuristics result in

stable and predictable patterns of technological progress. These heuristics are well documented

in the literature, albeit under many different names. For example, Rosenberg [23] argues that
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technology acts as a so-called focusing device, where typical problems, opportunities and tar-

gets direct technological search (i.e., growth and development) in particular directions.

According to Sahal [24], technological guideposts and basic designs lay out definite paths of

development characterized by long periods of incremental improvements. In building upon

Kuhn’s [25] notion of scientific paradigms, Dosi [7] posits that the characteristic habits and

routines in searching and problem solving on the ground of a technological paradigm result in

path dependence. In the remainder of the current paper, we will refer to the heuristics that

underlie stable and predictable patterns of technological growth as stable technological design

configurations.

While these stable and predictable technological design configurations lead to stable and

predictable patterns of technological growth, they do not emerge ex nihilo, implying at least

two stages of technological evolution. These two stages of technological evolution have also

been documented extensively in the literature. For example, according to Utterback and Aber-

nathy [26], technological development evolves from an uncoordinated process, characterized

by fluid and unsettled relationships, into an efficient and tightly integrated system with highly

specialized and interdependent actors. Clark [27] argues that as development proceeds, tech-

nological diversity gives way to standardization, where performance criteria and processes are

more clearly specified. Furthermore, Anderson and Tushman [8] identify long eras of cumula-

tive and incremental changes that are punctuated by concise periods of ferment or brief peri-

ods of major discontinuities.

Hence, technological growth and evolution is characterized by two stages of development.

Initially, during the stage of emergence, through a process of social construction [28], stake-

holders in the environment seek to find the technological design configuration that enables

cumulative growth and development. Subsequently, during the stage of maturity, the stake-

holders in the environment have converged toward a single (stable) technological design con-

figuration (or, in popular parlance, a dominant design), which results in stable and predictable

patterns of growth and development. This means that we define an emerging technology as a

technology that is in an early stage of development [29, 30], characterized by the absence of a

stable technological design configuration. Due to this absence, this stage is characterized by

high uncertainty, as the exact form, capabilities, constraints, and uses of the technology are still

in flux [29, 30, 31, 32]. Accordingly, we define a mature technology as a technology that is

characterized by the existence of a stable technological design configuration that directs

growth and development in a predictable way.

The stable and predictable patterns of technological growth that characterize mature tech-

nologies are much better suited for formal modeling than the chaotic patterns of change that

are associated with emerging technologies. As we will explain below, formal models that are

tailored to study the growth and evolution of mature technologies are not well-suited to study

emerging technologies. Although emerging technologies are studied indirectly as part of

mature technologies, this is only done in retrospect, which severely limits our understanding

of the growth and evolution of emerging technology. When studying diffusion processes and

population evolution prospectively (i.e., while they evolve), better and more unbiased insights

result [33].

Technology lifecycle models

In what is considered as one of the first scientific works that treats the development of new

technology as an economic phenomenon, Zvi Griliches [34] found that the penetration of

corn seeds follows a characteristic S-shaped growth pattern (i.e., Pearl Reed/Logistics curve).

Since then, numerous empirical studies have contributed to establishing the S-shaped pattern
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as a general rule for technological growth and the diffusion of innovation [35, 36, 37, 38]. On

the basis of this characteristic growth curve, numerous forecasting models have been devel-

oped [39], which can be used to delineate the different stages of technological evolution. Basi-

cally, this methodology implies estimating the Logistics growth curve, and then distinguishing

between the different stages using threshold values of the cumulative density function of this

estimated growth curve. These so-called ‘technology lifecycle’ or TLC models usually distin-

guish between four stages of technological evolution, namely the (1) seed, (2) growth, (3)

maturity and (4) decline stage of development [40]. Table 1 provides the commonly used

threshold values for the cumulative density function to distinguish between these four stages.

Alternatives of the Pearl Reed/Logistics curve have also been proposed, such as an exponen-

tial [41] and Gompertz model [42]. However, all these models rely on a cumulative density

function, and can only be used effectively when the upper limit of technological development

is more or less known (i.e., when the cumulative density is close to its maximum value) or

when the upper limit can be estimated in a reliable way–for example, on the basis of the growth

patterns of highly similar technologies. This implies that these models only have a limited

applicability for completely new and emerging technologies, for which the upper limit is not

known and cannot be reasonably estimated. After all, due to the absence of a stable technologi-

cal design configuration, the potential of emerging technologies is unknown [30, 43, 44].

Another well-known model is Bass’ [35] rate of change model. This is an empirical version

of Roger’s [45] innovation diffusion model and is one of the most widely applied models in

management science [46]. The reason is that this model is associated with a simple and elegant

theory that explains the existence of an empirical generalization. According to Bass’ [35]

model, the probability that a technology will be initially adopted is a linear function of the

number of previous adopters. Bass’ model distinguishes between different stages, too, but

involves the adoption of technological products, the labels describing the characteristics of the

adopters in the process of technological diffusion. The labels of the different stages are as fol-

lows: innovators, early adopters, early majority, late majority, and laggards. Because Bass’

model also relies on a cumulative density function, it is also rather unstable when limited data

are available [47]. This is not surprising, as Bass [35] acknowledges that the model should be

supplemented with additional information (e.g., diffusion rates of comparable technologies or

products).

We believe that the main reason that these models are not well-suited for studying emerg-

ing technologies is that they do not consider the multi-level nature of technology. As the phe-

nomenon of technology is inherently multi-level in character [10], developing a systemic,

multi-level model of the evolution of technology can add insights above and beyond a singular

perspective. After all, a multi-level model allows for an analysis of how stable and predictable

patterns emerge at lower levels of analysis, and how these travel upwards in the hierarchy of

technology [48].

Table 1. Stages of technological evolution and threshold values of cumulative density function.

Stage of evolution Cumulative density

Seed 0.00–0.16

Growth 0.16–0.84

Maturity 0.84–0.99

Decline 0.99–1.00

Adapted from [40].

https://doi.org/10.1371/journal.pone.0197024.t001
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A multi-level model of emerging technology

In the current study, we develop a formal model to study the growth and evolution of emerg-

ing technology by explicitly acknowledging the hierarchical nature of technology. In nature

and society, many things are organized hierarchically [49], and technology is no exception

[10]. Hence, we introduce the notion of a technological system, which we define as a set of

interacting technological components, embedded in the broader technological environment.

On the basis of this definition, we can distinguish between emerging and mature technologies

in the following way. Mature technologies are characterized by the existence of a stable techno-

logical design configuration of its main (or core) technological components, which allows

stakeholders to concentrate on a single (component) configuration and stop investing in alter-

native configurations [50], which enables incremental and cumulative changes. Quite the

opposite, emerging technologies are characterized by experimentation with different compo-

nent configurations (see Fig 1), which results in highly chaotic and unstable patterns of growth

and development as it is yet unclear which design configuration will be selected (i.e., become

dominant) to enable cumulative and predictable patterns of growth and development.

Obviously, emerging technologies do not always display highly chaotic and unstable pat-

terns of growth and development, as the stable design (or component) configurations that

characterize mature technologies are (socially) constructed during the stage of emergence. For

example, in Fig 1, some of the links between the component technologies are present in all

alternative design configurations (e.g., components 1 and 4, 2 and 3, and 5 and 8 are linked in

all alternative design configurations). Hence, emerging technologies can be associated with dif-

ferent levels of stability, and this degree of stability can actually be used as an indication of the

stage of development of an emerging technology. It thus becomes important to identify stable

component configurations in emerging technologies. This can be done in numerous ways.

The approach we take in the current study is to build upon insights from organizational

ecology, a prominent sociological theory of the evolution of organizations and organizational

populations. The reason for doing so is that the theory of density dependence is highly devel-

oped in organizational ecology. As explained above, density dependence characterizes most

existing models of technological growth and development. This means that we can build upon

density dependence theory from organizational ecology to build a model of emerging technol-

ogies. Organizational ecology’s density dependence theory argues that population density

serves as a surrogate for the difficult-to-observe features of the material and social environ-

ment that affect population dynamics, particularly social legitimation (i.e., the standing as a

taken-for-granted element in a social structure) and diffuse competition (i.e., common

Fig 1. Alternative technological design configurations. The nodes are technological components.

https://doi.org/10.1371/journal.pone.0197024.g001
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dependence on the same resource pool). Even though density dependence logic has been pri-

marily applied to organizational populations [51], recent research suggests that this argument

can also be effectively applied to other settings as well, such as the domain of national laws [52,

53] and organizational rules [54, 55]. In this paper, we argue that density dependence logic can

also be fruitfully utilized to study technological populations, as technologies also need to be

legitimized [13, 56, 57, 58, 59] and compete with one another for the attraction of resources

and attention [60, 61].

Given the multi-level nature of our model, we build upon multi-level density dependence

theory [12]. This theory posits that legitimation processes operate more broadly than competi-

tion, because legitimation processes are tied to information while competition operates

through the flow of material resources [62]. As a result, competition is bound by physical and

political boundaries, while legitimation is not (or less so). Adopting this logic to our setting,

we can argue that the more integrated a technological system is, the more that its components

are legitimated at the system level. Hence, by investigating the extent to which individual com-

ponents are legitimated at the system level (i.e., by examining the effect of system density on

component growth), we can study the evolution of emerging technology. The logic is straight-

forward. The more components are legitimated at the system level (i.e., the more that the

growth and evolution of individual components is dependent upon the density of the techno-

logical system as a whole), the more stable the component configuration of the technological

system, and the closer an emerging technology is to maturity. We acknowledge that our

approach is somewhat simplistic, as it assumes the existence of only one stable component

configuration. Additional insights can be generated when allowing for the existence of multi-

ple configurations (e.g., by looking at their interactions). However, we limit our discussion to

the simpler case for two reasons. First, mature technologies are characterized by a single, dom-

inant component configuration, which makes this model appropriate for our current pur-

poses. Second, and related to the previous point, more complex models would contribute little

to the main thrust of this paper, while greatly increasing the complexity of our theory and

analyses.

The component-system interaction of an emerging technology (i.e., the legitimation of

technological components at the system level) also implies (at least) two stages of development

at the component level. Initially, when a focal component is first discovered, it is unclear how

this component relates to the other components (if any) of the system, implying that the com-

ponent is not legitimated at the system level. In line with the different stages of the technology

life cycle (see Table 1), we refer to this as the seed stage of component development. Then, as

stakeholders recombine the focal component with the other components, its role in the system

becomes apparent, and the component is legitimated at the system level (i.e., there is a positive

interaction between the focal component and the system’s remaining components). Now, the

component forms an integral part of the technological system, and legitimation processes at

the system level start to contribute positively to component growth. We refer to this stage as

the growth stage of component development. This effectively allows us to study the evolution

of emerging technologies by investigating the evolution of their principal components.

Accordingly, we develop several hypotheses regarding component evolution next.

Component density

As mentioned, we will use the effect of the density of the technological system (i.e., the aggre-

gate density of all its components) to distinguish between two stages of component growth

(i.e., the seed and growth stage). As such, we cannot develop any hypotheses about the effect of

system density on the development and evolution of its component technologies. Hence, our
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first hypothesis explores the effect of the density of the component on its own development

and evolution. For this hypothesis, we will also build on organizational ecology’s density

dependence theory, by considering the technological components as populations of related

technological inventions. To clarify, let us illustrate this with an example. Imagine automobile

technology as the technological system. This technological system is comprised of several tech-

nological components, such as the engine, drive train, brake system, wheels, cooling system,

body, et cetera. Each of these component technologies were not invented out of nothing, but

are actually comprised of populations of related inventions, as scientists and engineers built

upon inventions from their predecessors to develop our modern-day internal combustion

engine.

As said, density dependence theory argues that population density can be used as a surro-

gate for the difficult-to-observe features of the material and social environment that affect pop-

ulation dynamics; i.e., social legitimation and diffuse competition. The theory also posits that

legitimation is mainly important in the formative stages of population development, while

competition is mainly important in the mature stage of population development [21, 51]. As

the defining characteristic of an emerging technology is the fact that it is not mature, we do

not expect to find any evidence for processes of competition, in either stage of component

development. Hence, we argue that only the process of legitimation characterize the develop-

ment and evolution of an emerging technology’s components, which implies that we only

expect to find a positive effect of component density on its subsequent development and evolu-

tion. Regarding the process of legitimation during the different stages of component evolution,

because the process of legitimation is mainly important during the early stages of population

development, we expect to find a stronger effect during the seed stage than during the growth

stage of component development. However, because technological growth only really takes off

after a stable technological design configuration has been established, the growth of emerging

technologies and their component technologies is limited. This means that we cannot be sure

to find a significant difference in the effect of component density on its evolution; we can only

be certain that the effect of component density is not significantly lower in the seed stage of

component development. We formulate our first hypothesis accordingly as:

Hypothesis 1: Component density is positively associated with component development, and

is not significantly lower in the growth stage of development versus the seed stage of com-

ponent development.

Organizational density

Nowadays, most technology is developed in the context of organizations. This means that

organizational density plays a highly important role in the development of technology, and

that the legitimation of technology is tied to the number of organizations adopting the technol-

ogy [35, 63, 64]. This is the result of a process called mimetic isomorphism, where stakeholders

imitate each other’s behavior under conditions of high uncertainty [65]. This process is mainly

important in the seed stage of the component’s development, when the component’s role in

the system is unknown, objective performance criteria are absent, and development is charac-

terized by extreme levels of uncertainty. Stakeholders thus have to resort to alternative means

to determine whether the component is worthy of their resources and attention, and start

copying one another’s behavior. So, especially in the seed stage of development, due to the

high levels of uncertainty [6], organizational density has a legitimating effect on technology

and, therefore, a positive effect on component growth. In the growth stage of development,

the legitimation of technology remains important, and technological developments are still

A multi-level model of emerging technology
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characterized by high levels of uncertainty. However, as the role of the component in the sys-

tem becomes more apparent, uncertainty is significantly lowered, and legitimation processes

start to operate more and more at the system level. Therefore, we expect legitimation effects of

organizational density to be less strong in the growth stage of development. This gives:

Hypothesis 2: Organizational density is positively associated with component growth, and

more strongly so in the seed stage of development.

Technological lineage and diversity

Conceiving technological change as a process of recombination naturally implies technological

lineage, where a focal invention builds upon antecedent inventions, and can subsequently

become the basis for future descendant inventions [66, 67]. This logic not only relates to indi-

vidual inventions, but can also be applied at higher levels of aggregation. So, besides the focal

technology of the component (i.e., the set of inventions that belong to the component), we can

also identify the antecedent technology of a components (i.e., the set of inventions on which

the component builds, or its knowledge base), and the descendant technology of a component

(i.e., the set of inventions that build upon the component’s technology, or the component’s

application domain). Clearly, different measures can be conceived to characterize the anteced-

ent, focal, and descendant technology of a component. Here, we will investigate the role of

technological diversity. After all, in the evolutionary logic of technological change, diversity is

a central notion, forming the input to the process of recombination, therefore being consid-

ered to be the ultimate source of novelty [68, 69, 70]. Diversity is a central notion in organiza-

tional ecology as well, since initial research in the field was centered on seeking an answer to

the question “Why are there so many different kinds of organizations?” [71].

Focal component diversity

Component diversity represents the degree to which technological development within the

component takes place within different subcomponents. This has different implications in dif-

ferent stages of technological development. On the one hand, in the seed stage of component

development, more subcomponents imply more alternative subcomponent configurations,

which is associated with more flexibility that prevents lock-in or path dependence [72, 73]. In

this respect, component diversity represents the broadness or niche width of a technological

component. The broader the appeal of the component to stakeholders, the more the compo-

nent is able to mobilize resources from these actors in different parts of the technological

environment, which stimulates component growth. Moreover, increasing the number of sub-

components also increases the potential for their recombination, so increasing the technologi-

cal opportunities within this component and the potential value of the component in the

larger technological system.

On the other hand, in the growth stage of development, the potential appeal of the compo-

nent’s technology to stakeholders in the wider technological environment is no longer rele-

vant. After all, the component’s stakeholders have collectively agreed upon working on the

dominant subcomponent configuration, specified in the component’s dominant design. This

enables actor specialization and facilitates cumulative development, thus transforming the

component’s potential value into real techno-economic value. In doing so, a (broad) direction

of technological development for the component has been chosen, and alternative directions

(i.e., alternative subcomponent configurations) have been foreclosed. Hence, diversity (i.e.,

divergence) implies a fragmentation of resources, and hampers convergence towards the com-

ponent’s stable subcomponent configuration. This suggests:
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Hypothesis 3: Component diversity is positively (negatively) associated with component

growth in the seed (growth) stage of development.

Antecedent diversity

The antecedent technology of a component can be seen as the knowledge base on which the

component builds. Because the development of the technological component is to a large extent

dependent on the underlying knowledge base [64], the more diverse this knowledge base, the

higher the recombination potential of the technological component [74]. Antecedent diversity

yields a potential for novel combinations to emerge, implying the expectation that antecedent

diversity positively impacts subsequent component growth. Although the number of possible

combinations can literally grow to infinity, given the limited number of potential components

that an inventor can simultaneously consider [20], it will become increasingly difficult for the

involved actors to develop a sensible interpretation of all the potential novel combinations [74].

Since every component can be incorporated in further re-combinations, an actor’s combinatory

potential [75] and associated cognitive burden [21] grow explosively. Consequently, individuals,

organizations and even entire communities cannot have more than an infinitesimal understand-

ing of all these potential combinations. Actors must focus and recombine locally from a limited

set of components and combinations, as too much diversity diminishes the likelihood that sensi-

ble meaning can be attached to novelty [69, 76]. This implies the need for a stable or dominant

subcomponent configuration that enables sense-making and provides both positive heuristics

that determine where to search, as well as negative heuristics that specify where not to search [7].

Conversely, before a dominant subcomponent configuration or sense-making structure does

emerge, stakeholders need to literally consider all potential (re-)combinations, as they can all

become the basis of the future dominant design. Increasing the diversity of the knowledge base

in this (seed) stage actually diminishes possibilities for sense-making and absorption, and yields

high integration costs. Hence, in the seed stage of component development, antecedent diversity

results in a fragmentation of resources and a duplication of research efforts. This logic provides:

Hypothesis 4: Antecedent diversity is negatively (positively) associated with component

growth in the seed (growth) stage of development.

Descendant diversity

The technological descendants of the focal niche can be seen as the technological extensions of

the component’s technology, or its application domain in the broader technological environ-

ment or landscape. The more diverse its application domain, the more the component’s tech-

nology is diffused, and the more attractive the component technology becomes for potential

adopters [66]. After all, technologies develop as they diffuse, and, as they progress, they

become more attractive for potential adopters [77], offering useful and sufficient ‘feedstock’

for subsequent descendant technologies. Obviously, increasing the attractiveness of the tech-

nological component enhances its subsequent growth. We therefore formulate:

Hypothesis 5: Descendant diversity is positively associated with component growth.

Data and methodology

Within innovation and technology studies, there is a long history of using patent data [78, 79,

80]. The reason is that patent statistics provide an extremely useful data source, given their

coverage, transparency and accessibility [81]. Therefore, patent data are considered by many
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as the most direct, detailed and objective measures of innovation [82, 83, 84]. In the words of

Zvi Griliches [80], who was one of the first to study technological change empirically, “in this

desert of data, patent statistics loom up as a mirage of wonderful plentitude and objectivity.”

Especially within biotechnology, patent statistics are a good indicator of the evolution of tech-

nology [85, 86, 87].

For many ‘dedicated biotechnology firms’, or DBFs, a common strategy is to patent and

subsequently license out or sell their technological knowledge. Large pharmaceutical firms also

use patents strategically–for example, as leverage or bargaining chips in negotiations, or to sti-

fle developments by competitors. Since the Bayh-Doyle act–which allows the patenting of

research findings funded by means of federal grants–research institutes, such as universities,

are also highly active to patent their newly discovered technology. As a result, all landmark

innovations within biotechnology have been patented. Many scholars therefore believe that

patent data are well suited to delineate different stages of technological evolution and the char-

acteristics of the technological (selection) environment in this domain. Although we acknowl-

edge that patent data only represent the explicit portion of technological knowledge contained

within an organization or industry, due to the importance of patents within biotechnology, it

is also a fair proxy for the tacit portion of technological knowledge. Especially within biotech-

nology, patents form a reliable indicator of technological developments [85, 86, 87]. As such,

biotechnology is also ideally suited for our current purposes. Moreover, biotechnology is also

almost purely science based, which is considered by several authors as a defining characteristic

of emerging technology [44, 88]. We have to note that this fact could potentially limit the gen-

eralizability of our model to other science-based technologies.

We use patent data from the United States Patent and Trademark Office (USPTO), as this

is the most complete dataset for technology analysis [61, 89]. Because the US is the largest mar-

ketplace for biotechnology, it is standard practice for non-US organizations to patent in the

US [90]. Additionally, because of the tight linkage between biotechnology and science, bio-

technology is a relatively autonomous technology that does not primarily depend on develop-

ments within other technologies. This makes biotechnology the ideal setting for an empirical

analysis of the kind that we are proposing here. Within the USPTO, biotechnology is repre-

sented by patent classes 435 and 800. We define our technological components at the primary

sub-class level of biotechnology, resulting in a total of 27 primary sub-classes (i.e., 18 primary

sub-classes in class 435, and 9 primary sub-classes in class 800). The classification system at the

USPTO actually distinguishes between 15 hierarchical levels, and classifies patents into one of

these levels depending upon the level of detail of the patent. Our primary sub-classes refer to

the highest hierarchical level. In total, biotechnology is composed of 750 sub-classes that are

distributed among 8 hierarchical levels.

Measures

Component growth, our dependent variable, is a count of the number of patents that enter a

focal technological component in a particular month from January 1976 until December 2003.

Because we have repeated observations for the same components, our data constitute a cross-

sectional time-series or panel data structure. This panel is unbalanced, though, as not all com-

ponents were in existence at the start of our time window.

Regarding our density measures, System density is a count of the total number of patents

(in thousands) contained within the whole domain of biotechnology in the month prior to our

dependent variable. To avoid double counting, we have subtracted focal component density.

Next, focal Component density is a count of the total number of patents (in thousands) in the

focal component in the month prior to the dependent variable. This measure represents the
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stock of patents contained in the focal component at any given time. Finally, Organizational

density is a count of the number of organizations active in the component in the previous

twelve months in thousands.

Component diversity represents the extent to which developments take place in different

subcomponents, and is measured by the distribution of patents across all USPTO sub-classes

over the previous twelve months. To measure component diversity, we use Shannon’s [91]

diversity measure, which implies

Dit �
Pj�J

j�1
Pijtln�1=pijt� �1�

where Dit denotes to the diversity of component i at time t, and Pijt is the share of patents in

subcomponent j at time t in component i, time t refers to the twelve-month period prior to the

month of observation of our dependent variable, and J denotes the number of subcomponents

associated with the component.

The component’s Antecedent diversity is calculated over the previous twelve months

according to (1), but now Pijt refers to the share of citations made from focal component j to

antecedent component i at time t. Correspondingly, the component’s Descendant diversity is

calculated over the previous twelve months using (1), where Pijt is the share of citations

received from descendant component i to focal component j at time t.
We also add a number of control variables. First, we include the number of previous entries

and its square–Previous entry and Previous entry2 –to allow for the estimation of dynamic

models [92]. This pair of measures effectively controls for the (un)favorable conditions within

the environment that may (dis)encourage component entry [62, 93]. We also include a num-

ber of Year dummies in all our analyses to control for year-specific effects. More specifically,

we enter year dummies for the years 1999 until 2003, because previous analyses have indicated

that these years are characterized by significantly lower entry rates. We have also run our anal-

yses with the full set of year dummies, which leads to both quantitatively and qualitatively simi-

lar results (available upon request). Descriptive statistics of the variables are provided in

Table 2, our correlation matrix is given in Table 3, and a description of symbols used is pre-

sented in Table 4.

As can be seen in Table 3, our density measures are highly correlated with one another,

which means that we must proceed with caution to prevent that our findings are the result of

multicollinearity. Theoretically, multicollinearity is not really an issue, as our theory needs

such a special model. Indeed, in most empirical studies in the organizational ecology tradition,

multicollinearity issues have to give way to what is required by theory. For example, to test the

famous density dependence theory, density and density squared have to be entered in the

Table 2. Descriptive statistics.

Variable mean S.D. min max 25th % 50th % 75th %

Component growth 5.017 14.354 0.000 217.000 0.000 1.000 4.000

Previous entry 0.005 0.014 0.000 0.217 0.000 0.001 0.004

System density 16.554 11.166 2.879 44.954 7.701 12.551 22.606

Component density 0.669 1.628 0.001 15.139 0.022 0.085 0.571

Organizational density 0.034 0.077 0.000 0.666 0.001 0.008 0.029

Component diversity 1.827 1.496 0.000 4.706 0.000 1.931 3.172

Antecedent diversity 1.794 1.208 0.000 4.270 0.684 2.040 2.790

Descendant diversity 1.823 1.055 0.000 3.940 1.070 2.060 2.660

https://doi.org/10.1371/journal.pone.0197024.t002
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same model. The near-perfect multicollinearity in this type of models that emerges as an inevi-

table result does not undermine these models’ value added.

Estimation

To distinguish between different stages of component evolution, we employ a structural break

model. As the name implies, a structural break model allows an investigation of whether a

time series features a structural break, which means that there is a significant change in the

effects of the model between two (or more) periods [92]. The general structural break model

captures a change both in the intercept and in the slope of one or more variables. However,

because we do not expect a sudden change in the intercept to occur between different stages,

we do not need to allow for a change in both intercept and coefficient values. Instead, we

expect a change only in the effect of system density on component growth. Our structural

break model can thus be specified as

Y �
Ss 0 Xs

0 Sg Xg

" #

b� ε �2�

where Y refers to our dependent variable (i.e., component growth), Ss to system density in the

seed stage, Sg to system density in the growth stage, X to variables whose coefficient values are

not expected to change, β to the coefficient vector, and ε to the associated error term.

Table 4. Description of symbols.

Symbol Description

C Component density

Dit Diversity of component i at time t
i Component

j Subcomponent

LL Base Log likelihood of the base model

LL ML Log likelihood of the multi-level model

O Organizational density

Pijt Share of patents in subcomponent j of component i at time t
Ss System density in the seed stage of component development

Sg System density in the growth stage of component development

t Time

Y Component growth

χ2 Chi square value of multi-level model

https://doi.org/10.1371/journal.pone.0197024.t004

Table 3. Correlation matrix.

Variable 1 2 3 4 5 8 9 10

1 Component entry 1.00

2 Previous entry 0.93 1.00

3 System density 0.11 0.12 1.00

4 Component density 0.88 0.88 0.10 1.00

5 Organizational density 0.94 0.94 0.15 0.95 1.00

8 Component diversity 0.38 0.38 -0.08 0.48 0.46 1.00

9 Antecedent diversity 0.34 0.34 0.30 0.39 0.42 0.63 1.00

10 Descendant diversity 0.29 0.29 0.34 0.36 0.37 0.55 0.84 1.00

https://doi.org/10.1371/journal.pone.0197024.t003
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By estimating this structural break model for each of our technological components indi-

vidually, we are able to determine at which point in time system density has a significant posi-

tive effect on component entry that marks the beginning of the growth stage of our

components. The dependent variable for this model is component growth, as reflected by the

entry of inventions into our components, which is a count variable. The baseline model for

analyzing count data is the Poisson distribution. After adding covariates to the distribution,

this gives the Poisson regression model. However, the restriction of applying the Poisson dis-

tribution in linear regression analysis is that, after adding covariates, the sample mean and

conditional variance of the dependent variable have to be equal [94]. Because our data suffer

from overdispersion, we accommodate for this by adding a dispersion parameter δ to the Pois-

son regression model. This results in a so-called negative binomial regression model (i.e., NB2

in [94]), and is defined as

Pr�ytjxt; dt� �
e� ltdt �ltdt�

yt

yt!
�3�

where λit is the deterministic function of covariates.

Our main covariate is system density, which we split on a yearly basis into a before (i.e.,

seed) and after (i.e., growth) part to determine the location of the structural break, if present.

For example, for the year 1980, we distinguish between system density before 1/1/1980 (i.e.,

1976–1979) and system density after 1/1/1980 (i.e., 1980–2003), to then investigate the coeffi-

cient values of the before and after part of system density. We accept the structural break as the

distinction between the seed and growth stage if (1) we find a non-significant effect for ‘before

system density’–that is, system density in the seed stage of development–and (2) we find a sig-

nificant positive effect for ‘after system density’–that is, system density in the growth stage of

development. In the case of multiple valid options, we select the breakpoint with the higher

Log-Likelihood value (i.e., the best fitting model).

We add several controls. First, we include the previous number of entries and its square as a

control for favorable conditions [62, 93]. We use a dynamic regression model to control for

unobserved heterogeneity or serial correlation. Moreover, we control for organizational and

component density using the Generalized Yule specification, which means that we include the

logarithmic and quadratic term of both organizational and component density as controls

[95]. Because of the high correlation between our density measures, we have built up our den-

sity dependent models incrementally through stepwise regressions using both the General-

ized-Yule and the Log-Quadratic specification (available upon request) of density dependence

in our analyses. These analyses indicate that our estimates are highly stable and not the result

of multicollinearity. We report the Generalized-Yule specification as this better connects to the

theory [95]. This implies

y0t � bOt � oCt � exp�a� C2

t � rO2

t � BSst � uSgt� � exp�εt� � ytdt �4�

where Ot is organizational density at time t, Ct is component density at time t, Sst is system den-

sity in the seed stage of development at time t, and Sgt is system density in the growth stage of

development at time t.
After delineating the different stages of component development, we can continue to test

our hypotheses. Our data involves monthly observations from 1976 to 2003 for 27 technologi-

cal components, so we are dealing with a cross-sectional time-series or panel data structure.

When modeling panel data, there are basically two options: employing a dynamic regression

model or a panel regression model. We already apply a dynamic regression model because we

include the previous occurrences of our dependent variable (i.e., previous entry) in our

A multi-level model of emerging technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0197024 May 24, 2018 13 / 27

https://doi.org/10.1371/journal.pone.0197024


analysis. We also employ a panel regression model, which comes in two basic flavors: (1) a

fixed effects model, which adds a dummy per panel, and so effectively removes all variance

between panels–also referred to as a within-variance model; and (2) a random effects model,

which assumes that heterogeneity is randomly distributed and therefore makes it possible to

utilize both the within- and between-panel variance. More specifically, according to Hausman,

Hall, and Griliches [96], the random effects negative binomial model allows the variance of the

effects to differ in the within and between dimensions, and is essentially a ‘variance compo-

nents’ version of the negative binomial. When this random effect is drawn from Gamma distri-

bution, mixing this Gamma distribution with the Poisson distribution (i.e., the baseline to

model count data) effectively creates a Beta distribution, with two parameters (i.e., r and s).
This yields the model

Pr�Yit � yitjxit; di� �
G�lit � yit�

G�lit�G�yit � 1�

1

1� di

� �lit di

1� di

� �yit

�5�

with

lit � exp�xitb� offsetit� �6�

In the random effects overdispersion model, δi is allowed to vary randomly across groups,

and 1/(1+ δi) ~ Beta(r,s). As the name already indicates, the random effects model has the lim-

iting assumption that the unobserved heterogeneity is randomly distributed, and therefore

independent from the regressors (we have used the XTNBREG, FE command in Stata 8 to esti-

mate our fixed effects model, and the XTNBREG, RE command in Stata 8 to estimate our ran-

dom effects model). To determine whether this is indeed the case, we apply Hausman’s [97]

specification test (i.e., the HAUSMAN command in Stata 8), which tests whether the coeffi-

cients from the consistent (i.e., the fixed effect) model are similar to the coefficients from the

efficient (i.e., the random effects) model. In other words, Hausman’s specification test allows

us to confirm that there is no correlation between our predictor variables and the error term,

and that our model is specified correctly (a misspecification would lead to biased coefficients).

Our data involve left-censoring, as data are missing for the beginning of the history of our

population (patent citations are missing for the pre-1976 period). However, this does not

imply a survivor bias, as we have all cohorts. Furthermore, while scientific developments in

biotechnology were surely stimulated after the discovery of DNA in 1972, commercial activity

only took off after 1980 [98]. Furthermore, we have data on a cross-section of different tech-

nologies within biotechnology, implying that several new and emerging technologies are

represented.

Results

In Table 5, we provide the estimates of our structural break model on the basis of the effect of

system density on component entry. As can be seen from this table, 13 out of a total of 27 com-

ponents display a structural break, and thus enter the growth stage during our window of

observation. All of these 13 components demonstrate significant model improvements when

using the suggested structural break point. The improvement in model fit can be determined

by comparing two times the difference in the Log-Likelihood to a χ2 distribution with one

degree of freedom (column 8 of Table 5). Even though component 800001 does not show a sig-

nificant coefficient value for community density in the growth stage of development (i.e., Sg in

Table 5), we do use the time of the break in our subsequent analysis. The reason is that (i) the

coefficient value is consistently positive after its structural break point and (ii) the model

improvement is significant (i.e., p< .05).
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For the remaining components, we did not find a structural break on the basis of our crite-

ria. This implies that these components are in the same stage of development for the whole

period of observation. The question then becomes whether they are in the seed or growth stage

of development during our time window. Again, on the basis of the effect of system density on

component entry, we can determine the appropriate stage. As can be seen in Table 5, compo-

nents 435002, 435005, 435009, 435010, 435015, 435016 and 800002 are assumed to be in the

growth stage from the start of our observation period. With the exception of component

435016, the effect of system density on component growth is significantly positive. The reason

that we assume that component 435016 is in the growth stage of development is that (1) the

effect of system density on component growth is consistently positive, (2) the mean of compo-

nent entry is 2.74, which is the 10th highest of all components, and (3) maximum component

Table 5. Negative binomial regression estimates of multi-level structural break model of biotechnology’s components.

Component S LL Base Growth Ss Sg LL ML χ2

435001† 0.271��� -298.91 1/1987 0.100 0.292��� -292.75 12.32���

435002 0.464��� -368.42 1/1976 n.a. n.a. n.a. n.a.

435003 -0.053 -137.24 n.a. n.a. n.a. n.a. n.a.

435004† 0.063 -1,202.77 1/1979 0.067 0.142��� -1,199.34 6.86���

435005 0.385��� -1,123.33 1/1976 n.a. n.a. n.a. n.a.

435006† 0.098��� -482.18 1/1981 -0.167 0.130��� -478.74 6.88���

435007† 0.181��� -216.34 1/1986 0.063 0.246��� -213.91 4.86��

435008 -0.083�� -553.06 n.a. n.a. n.a. n.a. n.a.

435009 0.295��� -868.42 1/1976 n.a. n.a. n.a. n.a.

435010 0.305��� -437.80 1/1976 n.a. n.a. n.a. n.a.

435011† 0.117 -670.91 1/1984 0.109 0.189��� -668.58 4.66��

435012† 0.134�� -356.59 1/1984 0.029 0.185��� -354.16 4.86��

435013 0.033 -46.67 n.a. n.a. n.a. n.a. n.a.

435014 0.002 -743.54 n.a. n.a. n.a. n.a. n.a.

435015 0.214��� -420.27 1/1984 n.a. n.a. n.a. n.a.

435016 0.081 -583.04 1/1976 n.a. n.a. n.a. n.a.

435017 -0.013 -751.86 n.a. n.a. n.a. n.a. n.a.

435018† 0.485��� -55.19 1/1990 0.169 0.438��� -52.63 5.12��

800001† 0.347 -116.09 1/1996 -0.769 0.101 -113.17 5.84��

800002 0.848��� -78.29 1/1991 n.a. n.a. n.a. n.a.

800003† 0.290��� -211.29 1/1992 -0.818 0.295��� -208.82 4.94��

800004† 0.180��� -124.32 1/1991 0.022 0.380��� -118.3 12.04���

800005† 0.099� -402.28 1/1996 0.062 0.902�� -398.92 6.72���

800006† 1.193��� -40.97 1/1988 -0.592 1.067��� -39.2 3.54�

800007 0.051 -28.99 n.a. n.a. n.a. n.a. n.a.

800008 0.060 -363.91 n.a. n.a. n.a. n.a. n.a.

800009† 0.083 -471.99 1/1986 -0.082 0.162�� -468.06 7.86���

� significant at 10%.

�� significant at 5%.

��� significant at 1%.
† Component experiences a structural break during our window of observation; standard errors in brackets.

S = system density. Ss = system density in the seed stage of development. Sg = system density in the growth stage of development. LL = Log likelihood.

Base = comparison model. ML = multi-level structural break model. Growth = month of start growth stage component. χ2 = Chi square value of multi-level model = -2 �

(LL Base–LL ML).

https://doi.org/10.1371/journal.pone.0197024.t005
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entry is 14 components per month, which is 12th highest of all components. The other compo-

nents (i.e., components 435003, 435008, 435013, 435014, 435017, 800007, and 800008) are

assumed to be in the seed or formative stage during the observation period. To determine the

performance of our multi-level structural break model, we have also estimated different stages

of component development using a Bass [35] model and a random assignment model. We

have compared the quality of the alternative distinctions between the different stages of devel-

opment using negative binomial panel regression models. Our multi-level structural break

model performs significantly better (results available on request).

To determine whether we are indeed observing different stages of technological develop-

ment for our components, we first have a look at the confidence interval of our dependent var-

iable (i.e., component entry). As can be seen in Table 6, the mean count of patents that enter

our technological components (entry) in the growth stage is significantly higher than in the

seed stage of development. However, this is rather obvious because the seed stage is temporally

positioned before the growth stage and the entry of inventions increases over time. So, this

does not say too much about the quality of the structural break according to our multi-level

model. However, as can be seen in Table 6, the growth rate (i.e., growth = entry/density) is also

significantly higher in the growth stage. So, it appears that the distinction between the different

stages of technological development is a substantive rather than a spurious one. Therefore, we

proceed with this distinction in our subsequent analysis. More specifically, we estimate two

negative binomial random effects panel models, namely one for the seed period and one for

the growth period, to prevent possible multicollinearity issues that would result from a struc-

tural break model.

We have performed Hausman’s specification test, revealing that a random effects specifica-

tion is indeed appropriate, as our independent variables are not correlated with the random

disturbance term.

Table 7 presents the estimates for the random-effects negative binomial dispersion model

of patent counts in the seed and growth stage of component development that we use to evalu-

ate our hypotheses.

Hypothesis 1 posits that, following density dependence logic, component density is posi-

tively associated with component growth in both stages of technological development, and

that this effect is not significantly weaker in the growth stage of development. We find strong

support for this hypothesis. In the seed (growth) stage of development, moving niche density

from its 1st quartile to its 3rd quartile increases niche entry with 216% (136%). At first sight, it

might appear that component density has a different effect in the different stages of compo-

nent development. However, this is mainly due to the different value ranges of component

density in the different stages of development. To determine whether the effect of density is

significantly weaker in the growth stage of development, we have estimated a structural break

model following (2) where component density was split into its seed and growth part. Accord-

ing to this analysis, the effect of component density is not significantly lower in the growth

stage of development, thus providing support for our hypothesis.

Table 6. Confidence interval for entry and growth in different stages of technological development.

Variable Obs Mean S.E. 95% confidence interval

Growth (seed) 2996 0.0082 0.0008 0.0067 0.0097

Growth (growth) 5052 0.0131 0.0008 0.0115 0.0146

Entry (seed) 2996 1.8435 0.0623 1.7214 1.9655

Entry (growth) 5052 6.8804 0.2481 6.3941 7.3668

https://doi.org/10.1371/journal.pone.0197024.t006
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Hypothesis 2 implies the assumption that the number of organizations that adopt the com-

ponent technology is a proxy for the legitimation of technology. Because legitimation processes

are more important in the formative (seed) stage of development, a stronger positive effect is

expected in this stage. Our estimates provide some, but not full support for this hypothesis. We

do find a stronger effect for the linear term of organizational density in the seed stage of devel-

opment, which means that the effect of organizational density is stronger in the seed stage than

in the growth stage. However, additional analyses (not reported here, for the sake of brevity;

available upon request) do not reveal a significant difference in the two functions. Even though

Table 7. Negative binomial dynamic multi-level panel regression estimates of the seed and growth stage of tech-

nological evolution.

Seed stage Growth stage

Previous entry 24.035� 7.376���

(-13.895) (-1.198)

Previous entry2 -599.037 -20.217

(-666.034) (-5.454)

LN(Organizational density�1000) 0.538��� 0.445���

(-0.078) (-0.047)

Organizational density2 0.000 0.000

(0.000) (0.000)

System density 0.092 0.066���

(-0.082) (-0.023)

System density2 -0.000 -0.000

(-0.001) (-0.000)

LN(Component density�1000) 0.290��� 0.283���

(-0.070) (-0.041)

Component density2 0.000 0.000

(0.000) (0.000)

Component diversity 0.446��� -0.151���

(-0.107) (-0.049)

Antecedent diversity -0.300��� 0.033

(-0.068) (-0.037)

Descendant diversity 0.200��� 0.164���

(-0.075) (-0.046)

Constant -4.768��� -3.795

(-1.457) (-0.553)

Observations 2976 5045

Number of components 20 20

Degrees of freedom 29 29

R 3.655��� 1.880���

S 2.291��� 1.216���

LL Constant -3,584 -10,413

LL Comparison -3,223 -8,842

LL Full model -3,051 -8,419

Pseudo R2 0.149 0.191

� significant at 10%.

�� significant at 5%.

��� significant at 1%.

Standard errors in brackets.

https://doi.org/10.1371/journal.pone.0197024.t007
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the coefficients are not significantly different, the difference in effects is rather large. Moving

organizational density from the 1st to the 2nd quartile in the growth stage of development,

increases component growth with 71%; moving organizational density from its median value

to the 3rd quartile, further increases component growth with 85% (236%) in the growth (seed)

stage of development.

Hypothesis 3 argues that niche diversity is positively (negatively) associated with compo-

nent entry in the seed (growth) stage of development. This hypothesis is fully confirmed by

our estimates. In the seed (growth) stage of development, a standard deviation increase in

niche diversity increases (decreases) niche entry with 95% (20%).

Hypothesis 4 states that antecedent diversity is negatively (positively) associated with com-

ponent entry in the seed (growth) stage of technological development. We only find partial

support for this hypothesis. On the one hand, although the effect of antecedent diversity is pos-

itive in the growth stage of development, this effect is non-significant. On the other hand, ante-

cedent diversity does have a significant negative effect on component growth in the seed stage,

and increasing antecedent diversity with one standard deviation decreases component entry

with 34%. Additional analyses (available upon request) also reveal that the coefficients of ante-

cedent diversity are significantly different in the two stages of development.

Finally, Hypothesis 5, which postulates that descendant diversity has a positive effect in

both stages of development, can also be confirmed by our estimates. Increasing the value of

descendant diversity with one standard deviation in the seed (growth) stage of development,

increases niche entry with 27% (16%). Further analysis indicates that there is no significant dif-

ference in the coefficient value for descendant diversity in the two stages of development.

Discussion and conclusion

Contribution

Overall, our estimates generate broad support for many of our hypotheses, providing evidence

for our claim that there are indeed different stages of technological evolution at the component

level, each associated with specific stage-dependent evolutionary processes. This allows us to

move beyond a mere caricature of technological evolution as an S-shaped growth pattern [99],

and enables an investigation into the processes that underlie this characteristic growth pattern.

Our estimates reveal an intricate, but characteristic pattern of technological evolution, with

different processes operating at different stages of development and at different levels of analy-

sis. Obviously, this is not a surprising observation, as it is well documented that technological

change is a highly complex, dynamic, and inherently multi-level phenomenon [10]. Although

it is impossible to draw strong conclusions and implications on the basis of a single study, our

pattern of significant findings does demonstrate that further investigation is certainly war-

ranted–not only to further refine our theory, but also to validate our findings in other settings

(e.g., for non-emerging technologies).

By conceiving of technology as a system composed of a set of interdependent components

that evolve through different stages of technological development, we have effectively created a

multi-level and systemic evolutionary model of technological growth. According to our model,

when a component develops a stable role within a technological system (i.e., after a dominant

subcomponent configuration is established), it begins to form an integral part of that system,

and the processes that direct the component’s growth and evolution change. On the one hand,

before the emergence of this dominant subcomponent configuration (i.e., in the seed stage of

development), focal diversity has a positive effect on component growth. Hence, alternative

subcomponent configurations attract resources and attention to further the development of

this array of alternative technological structures (or technological options). However, despite
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the advantageous effect of alternative technological structures (i.e., subcomponent configura-

tions), these alternative configurations should not be based upon diverse technological knowl-

edge, which is indicated by the negative effect of antecedent diversity in this stage. That is, due

to the lack of a dominant subcomponent design, diverse knowledge reduces the sense-making

capabilities and increases integration costs.

On the other hand, after a dominant design has been established, the component is legiti-

mated at the system level, which means that it now forms an integral part of the system’s struc-

ture. This means that alternative subcomponent configurations (i.e., indicated by component

diversity) thwart resources and attention from the agreed-upon dominant subcomponent con-

figuration, which hampers technological growth. Moreover, because the dominant design pro-

vides a means to make sense of the environment, knowledge-base diversity no longer has a

negative effect on technological growth. The dominant subcomponent configuration (i.e., a

dominant design) acts as some sort of filter or heuristic, which not only redirects resources

and attention in the technological environment, but also acts as a sense-making structure with

which to interpret the environment. Hence, stability is needed to make sense of the world,

hereby reducing uncertainty, enabling specialization, and facilitating cumulative changes.

When taking this previous argument to a higher level of aggregation, after each component

is identified and has established a stable role within the technological system, the system itself

becomes a stable and predictable integrated whole, and enters the growth stage of develop-

ment. That is, the system has formed a dominant component configuration, or a dominant

system design. In other words, stability travels upward. This connects to Barley’s [100] finding

that technology-induced micro-social dynamics travel upwards in an orderly manner. By

explicating how this stability develops from the bottom up, it is possible to elucidate the emer-

gence of structures at higher levels of analysis. Furthermore, the model proposed here can be

easily extended to include multiple levels of analysis. Then, it can allow for fine-grained analy-

ses of technological systems and subsystems. For example, it is possible to conceive inventions

bundled into components, components bundled into products and processes, and products

and processes bundled into paradigms. Within such a hierarchically nested multi-level model,

levels are nested within one another, and wholes are composed of elements at lower levels,

which are themselves part of more extensive wholes [101]. Indeed, more and more work recog-

nizes the value added of paying explicit attention to the nested nature of multiple levels of anal-

ysis [102]. By investigating the formation of these stable configurations or structures at

multiple levels of analysis, we can develop greater insight into the path-dependent nature of

technology, and draw important managerial and policy implications. Obviously, our work

here implies only an initial first step, and much work needs to be done to develop a solid foun-

dation for the development of such a hierarchically nested, multi-level model of technology.

The current literature on technology and innovation treats the origins of novelty as exoge-

nous and random, and focuses mainly on processes of diffusion and absorption [20, 103]. In

contrast, in the current study, by distinguishing between the seed and growth stage of develop-

ment, separated by a dominant design, we focus on both the process of knowledge creation

and the process of knowledge diffusion. On the one hand, the seed stage of development can

be characterized by the (social) construction of a dominant subcomponent design, in which

the basic configuration of the technological component is created. On the other hand, in the

growth stage of technological development, a dominant component design exists that outlines

the basic configuration of the component and directs its future growth, development and evo-

lution. So, the growth stage can be characterized as technologically deterministic, where the

dominant subcomponent design of the technological component diffuses throughout the envi-

ronment, and the stakeholders in the environment adjust their structures and procedures to

facilitate the development of the agreed upon dominant subcomponent design configuration
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of the technological component. Our systemic multi-level evolutionary model thus enables an

analysis of both the process of knowledge creation and the subsequent diffusion of the created

knowledge.

By taking into account the lineage of technology in combination with diversity, we found

that the embeddedness of a component (i.e., how it relates to other technological components)

has a substantial effect on its growth rate, illustrating the importance of a socialized perspective

towards technological change. Both sides of a component’s technological lineage, namely the

diversity of its antecedent and of its descendant technologies, have a strong effect on the focal

component’s growth rate. As illustrated above, this has generated more insight into the twin

processes of knowledge creation and diffusion, characterized by the different stages of techno-

logical development. Even though we have demonstrated the significance of the diversity of

these dimensions of the technological component, it is also possible to conceive of other char-

acteristics of these dimensions. For example, results from some preliminary analyses indeed

indicate that antecedent and descendant stability also play an important role in the evolution

and growth of technology. A thorough investigation of the effect of different characteristics of

antecedent and descendant technology on technological development would surely contribute

much to our understanding of the growth and evolution of technology.

Future research

In this paper, we have found that an emerging technology’s components are characterized by

two stages of development: i.e., the seed and growth stage. We have shown that the different

levels of analysis are not independent from one another. More specifically, the growth of com-

ponent technology not only influences the growth of the system as a whole (as the system is an

aggregation of its individual components), but the configuration of components at the system

level also influences subsequent component growth (i.e., components are legitimated at the

system level). As such, our analysis stresses the crucial role of cross-fertilization at the level of

underlying technological components and the existence of an intricate link between different

levels of analysis. Actually, we believe that the S-shaped growth pattern characterizes techno-

logical populations at multiple levels of analysis, and that the different stages of the technology

lifecycle (i.e., the seed, growth, maturity, and decline stage) at different levels of analysis are

linked to one another. Obviously, future research is needed to really move deeper ‘inside the

black box’ of technology development [18]. Some of the avenues that should be explored to

peek inside this black box are as follows.

First, future research could explore how to draw the boundaries of technological popula-

tions at multiple levels of analysis. Ecological theories are typically silent about how boundaries

should be drawn [12]. In this paper, we have used the classification system of the USPTO to

identify the boundaries of our technological system and its component technologies. Clearly,

this is not without its limitations, and there is no guarantee that this delineation of boundaries

is indeed correct. Future research could explore alternative demarcations of technological sys-

tems and components. For example, the pattern of patent citations between technological

components could be used to construct technological systems from the ground up. Such an

analysis could also explore the fluidity of component and system boundaries in different stages

of technological development. In the seed stage of technological development, stakeholders in

the environment explore and experiment with alternative (sub-)component configurations in

an effort to find the configuration that will become the basis for future cumulative growth and

development, which implies a fluidity of component boundaries. Additionally, when consider-

ing the impact of general-purpose technologies (i.e., technologies that impact many other tech-

nologies), it would be highly informative to study the boundaries of different technological
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systems (i.e., the boundary between the general-purpose technology and the technologies on

which it has an impact).

Second, to determine whether different levels of analysis are indeed characterized by the

different stages of the technological lifecycle with intimate links between these stages across

different levels of analysis would require studying technologies in their (near) final stages of

development: i.e., mature technologies. For example, researchers could study the evolution of

semiconductor technology, as this technology is mature and has penetrated much of our

society.

Third, we implicitly assume that the seed stage of technological development is character-

ized by competition between alternative component configurations. However, in the current

paper, we do not measure this competition in any way. Future research could explore whether

processes of competition can indeed be witnessed between alternative component configura-

tions. This implies the need of being able to identify different component configurations dur-

ing the seed stage of system development. Although this is not an easy task, requiring an

intimate understanding of the technological system that is being investigated, this would imply

an important next step toward a deeper understanding of processes of technological develop-

ment and evolution.

Fourth, we have established that technological populations are internally differentiated, and

have explored how this internal differentiation influences technological growth and develop-

ment by introducing insights from organizational ecology. An interesting avenue of future

research could be to explore whether a further integration of organizational ecological insights

would be beneficial. For example, researchers could more explicitly focus on how processes of

natural selection affect the growth and evolution of technological populations. Using ecologi-

cal frameworks, it is possible to study the competition and legitimation between technological

populations at multiple levels of analysis. One interesting avenue would be to investigate the

process of technological substitution: i.e., the replacement of one technology for another.

Fifth, to concentrate our attention on the evolution of technology, we have largely

abstracted from the role of the organization. Obviously, the insights from this analysis should

be integrated with extant knowledge about organizational evolution, first by means of theoreti-

cal exploration, and subsequently by means of empirical investigation. Here, we have opened

the door to a plethora of highly interesting research questions that can be further developed

and explored. More specifically, by providing a quantitative model that facilitates a distinction

between different stages of technological evolution, it becomes possible to explore the conse-

quence of these different stages for individual organizations, by examining the position of

organizations within a technological component (or system) at different stages of develop-

ment, and by relating this position to organizational performance and survival. At higher levels

of analyses (i.e., at the level of an organizational population and community), we can relate the

different stages of technological development to the processes of entry and exit of organiza-

tions and organizational forms. This would be an important contribution to the literature.

After all, even though it is widely acknowledged that technology drives ecological processes, in

population ecology, with few exceptions, connections between technological change and orga-

nizational evolution are not of central interest [104]. Moreover, a formal model of the evolu-

tion of technology would allow a systematic investigation into the co-evolution of technologies

and organizations, a phenomenon that is recognized by many as being highly important [2, 8,

57, 104]. After all, even though technology is structured (mainly) by organizations (i.e.,

through the creation of a dominant design), technology subsequently structures organizations

(i.e., after a dominant design has been established). Hence, technological growth is highly path

dependent. So, technology not only liberates us, but also entraps us [105]. Hence, it is clear

that technological change deserves a central role in any organization theory [10].
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Policy implications

There is a “considerable and growing interest in the emergence of novel technologies, especially

from the policy-making perspective” [6]. The reason is that that emerging technologies have the

ability to change the status quo [44, 88]. This has resulted in several policy initiatives, such as

the”Future and Emerging Technologies” (FET) initiative funded by the European Commission

in 2013 and the”Foresight and Understanding from Scientific Exposition” (FUSE) program

funded by the US Intelligence Advanced Research Projects Activities (IARPA) in 2011 [6].

Typically, policy-makers want to know which technologies to support. However, one of the

biggest problems in technology selection is how to derive promising technology alternatives

from blurred and diverging development directions that tend to characterize an emerging

technology [106]. On the basis of our findings in this paper, we can provide some initial points

of advice for policy-makers. The fact that diversity is positive in seed stages implies that policy

should stimulate many alternatives in the initial stages of technological evolution. However,

after the emergence of a dominant design, it is important to stop exploring and/or supporting

alternatives, and instead focus on developing the dominant configuration that has been cre-

ated. Hence, now, alternative programs could be terminated and resources could be redirected

into developing the dominant technological design configuration (see Fig 2). At a lower level

of analysis, policy-makers could use our model to identify which components are already legit-

imated at the system level, and therefore highly likely to become part of the stable design con-

figuration. This way, instead of supporting broad technological developments, policy-makers

can direct their resources to specific developments that are highly promising (i.e., the technol-

ogy’s core components).

Fig 2. The organization’s strategy and stages of technological development.

https://doi.org/10.1371/journal.pone.0197024.g002
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Managerial implications

In firms, technology plays a highly important role and, on average, accounts for more than

one-third of all business capital spending [106]. To remain competitive, technology-based

firms need to rely on the renewal of existing technological resources and exploitation of new

technologies [107]. To do so, firms are confronted with the difficult task to select which tech-

nological opportunities to pursue [108], and invest in those technological fields (and compo-

nents) that provide a comparative (and competitive) advantage [106]. An important strategy is

to actively pursue synergies and cross-fertilizations [40]. On the basis of our model, firms are

able identify synergies and cross-fertilizations between technological components within a

technological system.

Additionally, firms can also use the insights from Fig 2 to inform their technology strategy

within technological systems. More specifically, in the seed stage of technological divergence,

due to the existence of alternative design configurations, a firm has two options. First, it can

support alternative design configurations to guarantee that the firm will have a stake in the

future stable (or dominant) design configuration (i.e., applying a hedging strategy), whatever

one will emerge as the winner. Second, the firm can also concentrate its attention by support-

ing one single design configurations under the expectation that this will become the future sta-

ble design configuration (i.e., applying a strategy of placing all eggs in one basket). In the

growth stage of technological convergence, a stable design configuration does exist and the

firm again has two options. First, it can work on alternative design configurations in an effort

to overthrow the ‘current’ dominant design configuration. Alternatively, it can contribute to

the development of (a part of) the dominant design configuration. Obviously, a mixture

between strategies is also possible.
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