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a b s t r a c t 

A dynamic two-scale model is developed for describing the mechanical behavior of suspensions of permeable 
ellipsoidal particles. The particle dynamics in the proposed model is described in terms of particle positions as well 
as conformation tensors that capture their size, shape, and orientation. Using non-equilibrium thermodynamics, 
the macroscopic fluid-dynamics and the particle dynamics on the microstructural level are mutually coupled in 
a consistent manner. So doing, the link between the macroscopic behavior, e.g. stresses, and the dynamics of the 
microstructure, e.g. particle shape and size, is established. Finally, the model is cast into a form in which the 
shape tensor is split into its volumetric and isochoric shape contributions, making it possible to model particles 
with both shape-preserving size-changes (e.g. swellable particles) and volume-preserving shape-changes (e.g. 
incompressible yet deformable particles). The size-shape model distinguishes itself in unifying prior knowledge 
of purely-shape models with that of purely-size models by appropriate choices of the Helmholtz free energy and 
the generalized mobility. 
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. Introduction 

A wide variety of applications nowadays relies on materials where
heir overall properties can be tailored to meet specific requirements.
oft, permeable particle suspensions provide the versatility required to
chieve exactly this purpose, making them particularly useful in paints
nd inks [1,2] , pharmaceuticals and cosmetics [3,4] , and foods [5] . The
ascinating properties of the overall suspension emanate primarily from
he properties of the individual particles. On the one hand, the elastic-
ty of the supporting network of the individual particle gives rise to its
lastic behavior. The flow of the viscous suspending solvent through this
lastic network, on the other hand, results in its viscoelastic behavior. 

The rich behavior of permeable-particle suspensions emerges from
he fact that permeable particles can undergo size and shape changes
n response to different stimuli. For instance, permeable particles in a
ufficiently-jammed state undergo rate-dependent volume changes as
he viscous background solvent is expelled from the interior of the par-
icle [6,7] . The shape changes in permeable particles are induced by
teric effects in concentrated suspensions as a particle impinges against
eighboring particles [7] . While elastic shape-changes can be accounted
or through soft-interaction potentials [8–10] , the effect of the viscous
ackground solvent on both the shape and size dynamics requires ac-
ounting for the particle internal degrees of freedom explicitly. 
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The dynamic two-scale model developed by Hütter et al.
11] presents a new class of models that provide insight about the de-
rees of freedom of permeable particles. The model accounts for the
ate-dependent size change of the particles by treating the particle size
s a separate degree of freedom. The developed model, however, focuses
n spherical particles for which the particle geometry is described by its
adius. Using this model, we have highlighted the effect of the size dy-
amics on the equilibrium properties [6] , the flow properties [12] , and
he stress-relaxation behavior [13] of permeable-particle systems. This
aper aims at generalizing the model developed by Hütter et al. [11] to-
ards non-spherical particles. This requires modeling the particle shape

xplicitly, which naturally includes both the size and shape dynamics. 
An essential step in the model development is the suitable choice of

 variable that describes the particle shape. Several morphology mea-
ures have been introduced in the past, particularly in the field of mix-
ng of immiscible fluids. The interfacial tensor in the Doi–Ohta model
14,15] provides an average description of the morphology of the en-
ire dispersed phase in emulsions and immiscible polymer blends. In the
resent paper, a tensor is used for each individual particle, due to our in-
erest in a many-particle description, as described in the following. For
oncentrated permeable-particle suspensions, tracking the exact parti-
le surface can be computationally expensive. Therefore, we consider
articles of ellipsoidal shape for simplicity. Ellipsoids cover a wide va-
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iety of shapes, ranging from platelets to spheres to threads [16,17] .
llipsoidal droplet shapes are commonly used as an approximation of
he microstructure of fluid blends. In fluid mixtures, this coarse-grained
escription depicts the local features of the microstructure, such as the
ize, shape, and orientation. An ellipsoid centered at the origin of the
oordinate system is described by a second-rank tensor whose eigen-
alues are the square of the (inverse) semi-axes lengths of the ellipsoid
nd whose eigenvectors give the direction of the principal axes of the
llipsoid. In general, the surface of an ellipsoid at a position Q of the
oordinate system and whose axes are not necessarily aligned with the
oordinate system is described by ( 𝒓 − 𝑸 ) ⋅ 𝑺 ⋅ ( 𝒓 − 𝑸 ) = 1 , with positive
efinite tensor S . Several efforts have been dedicated to developing mod-
ls describing the evolution of such tensors in response to deformation
elds. For instance, the Maffettone and Minale (MM) model [18] de-
cribes the dynamics of ellipsoid droplets in a general flow field, based
n a phenomenological description of the driving force and the relax-
tion mechanism. It has been shown experimentally and numerically
ow the internal morphology of a system affects its overall properties
19,20] . Rheology can be even a measure for probing the morphology
21] . Iza and Bousmina have highlighted the degree of complexity of the
orphologies developed in a fluid-fluid mixture subjected to shear and
pon cessation of flow [19] . This elucidates the importance of accurately
nd consistently describing the stress as a function of the microstructure.
n order to achieve this, the evolution of the ellipsoidal tensor in affine
eformation is used as the starting point. For purely affine deformation,
ach point in the ellipsoid is subjected to a velocity gradient 𝑳 = ( ∇ 𝒗 ) T ,
here 𝒗 is the applied flow field. Consequently, the evolution of the el-

ipsoid is given by 𝑺̇ = − 𝑳 

T ⋅ 𝑺 − 𝑺 ⋅𝑳 , which is a lower-convected time
erivative [17] . The evolution of the ellipsoid in affine deformation can
e equivalently described in terms of the inverse tensor 𝑻 = 𝑺 

−1 . The
volution of T is upper-convected, that is 𝑻̇ = 𝑳 ⋅ 𝑻 + 𝑻 ⋅𝑳 

T [17] . While
he evolution of the particle-related ellipsoidal tensors in this paper is
pper convected in nature, the interfacial tensor in the Doi–Ohta model
14,15] has lower-convected characteristics. 

In this work, the dynamic two-scale model developed by Hütter et al.
11] for permeable particles is extended to also account for the me-
hanics and dynamics of the particle shape. Each particle is described
ith an ellipsoidal tensor. Non-equilibrium thermodynamics, namely

he general equation for the non-equilibrium reversible-irreversible cou-
ling (GENERIC) [22–24] , is used to ensure that the developed model is
hermodynamically consistent. The developed model is expressed in the
orm of stochastic differential equations, that are suitable for particle-
ased simulations, i.e. Brownian dynamics simulations. 

This paper is organized as follows. In Section 2 , the weak formula-
ion of GENERIC is briefly described. This is used in Section 3 to develop
 dynamic two-scale model for permeable particles that undergo shape
nd size changes. In Section 4 , the model is presented in a form suit-
ble for particle-based simulations. In Section 5 , the model is split into
urely-size and purely-shape dynamics, and applied to the case of non-
nteracting ellipsoidal particles. Finally, the paper is concluded with a
iscussion in Section 6 . 

. Methods: Weak formulation of GENERIC 

The general equation for the non-equilibrium reversible-irreversible
oupling (GENERIC) [22–24] is exploited in this paper in order to de-
elop a model that mutually couples mesoscopic degrees of freedom to
acroscopic ones in a consistent manner. In this work, the weak for-
ulation of GENERIC formulated in [11,25] is used, summarized in

he following. For a closed system, the weak formulation of GENERIC
11,25] imposes the following conditions on the reversible (rev) and ir-
eversible (irr) contributions to the time evolution of the energy E and
he entropy S , respectively, 

̇
 |rev = 0 , (1a)

̇
 |rev = 0 , (1b)
24 
̇
 |irr = 0 , (1c) 

𝑆̇ |irr ≥ 0 . (1d) 

he conditions (1) depict the following features of the system. On the
ne hand, the energy and entropy remain unaffected by the reversible
ynamics, which is captured by (1a) and (1b) , respectively. On the other
and, the irreversible dynamics does not affect the total energy and leads
o non-negative entropy changes, as given by (1c) and (1d) , respectively.
t is noteworthy that, although the weak formulation of GENERIC (1) is
ess restrictive than its full formulation, it retains many of the essential
eatures. Particularly, the degeneracy conditions in the full GENERIC
ormulation are reflected in conditions (1b) and (1c) . 

Using the chain rule, conditions (1) have implications on the evolu-
ion of the system variables x . The chain rule for a general functional A
s given by 

̇
 [ 𝒙 ] = 

∑
𝐼 

∫
𝛿𝐴 

𝛿𝑥 𝐼 ( 𝒛 ) 
𝜕 𝑡 𝑥 𝐼 ( 𝒛 ) 𝑑 𝒛 , (2) 

here 𝛿A / 𝛿x I is a functional derivative of A with respect to x I , z is the
ntegration variable, and the summation runs over all variables in x . 

In the following, the conditions on the energy and entropy, (1), are
sed to develop a model for systems of permeable particles. This is
chieved by, first choosing a sufficient set of variables describing the
ystem, and second specifying the functionals of energy and entropy in
erms of the chosen variables. 

. Model development 

Similar to the model developed earlier in [11] , a two-scale model
s developed in this work, where both scales are mutually coupled. For
nstance, a deformation applied on the macroscopic level distorts the
icrostructure, this results in unbalanced interactions between the par-

icles, which in turn give rise to macroscopic stresses. In this section,
e derive a model that consistently couples both scales, particularly by
roviding a constitutive relation for the stress in terms of mesoscopic
ariables. 

.1. Choice of variables 

For the two-scale model described for spherical particles [11] , the
acroscopic level, i.e. the solvent-particle system, is treated as a non-

sothermal fluid. The macroscopic variables are, hence, the mass density
( r ), the momentum density 𝒖 ( 𝒓 ) = 𝒗 ( 𝒓 )∕ 𝜌, where v is the macroscopic
elocity field, and the temperature field ϑ( r ). In all these variables, r is
he macroscopic position. On the mesoscopic level, overdamped particle
ynamics is considered. That is the particle velocities relax to the equi-
ibrium distribution much faster than the time required for the applied
eformation to cause a significant change in velocity. The reader is re-
erred to [11] for more detail. Mesoscopically, each particle i is, hence,
escribed with the position of its center Q i measured relative to r , and
lso by a tensor that captures the shape of the particle T i . The latter is
ntroduced in place of the particle radius in [11] , in order to describe
he shape and size of the particle. 

For practical reasons, a distribution function p of the mesoscopic
tates of all particle positions { 𝑸 𝑖 } 𝑖 =1 , …,𝑁 and shape tensors { 𝑻 𝑖 } 𝑖 =1 , …,𝑁 

s used a dynamic variable for the mesoscopic level of description. To
ccount for inhomogeneous situations, the distribution function is made
ependent on the macroscopic position, leading to 𝑝 = 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) ,
here {…} denotes the collection of variables for all particles, i.e.

ncluding all terms from 𝑖 = 1 until 𝑖 = 𝑁 . Averages over mesoscopic
tates, denoted by ⟨ · ⟩, can be conveniently described in terms of p as 

⟨ℎ ⟩( 𝒓 ) = 𝑛 ( 𝒓 ) −1 ∫ ℎ 
(
𝒓 , 
{
𝑸 𝑖 

}
, 
{
𝑻 𝑖 

})
𝑝 
(
𝒓 , 
{
𝑸 𝑖 

}
, 
{
𝑻 𝑖 

})
𝑑 𝑸 𝑑 𝑻 , (3) 
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here n denotes the number of N -particle systems per unit volume, 

 ( 𝒓 ) = ∫ 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) 𝑑 𝑸 𝑑 𝑻 , (4) 

nd d Q d T denotes the volume element in the high-dimensional space of
ll particle position vectors and shape tensors. In summary, the full set of
ndependent variables describing both levels of description, macroscopic
nd mesoscopic, respectively, is given as 

 = ( 𝜌( 𝒓 ) , 𝒖 ( 𝒓 ) , 𝜗 ( 𝒓 ) , 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 })) . (5) 

.2. Energy and entropy functionals 

The model development involves the specification of the energy and
ntropy functionals in terms of the dynamic variables x . This step, how-
ver, is not essential at this point. Once the model has been developed in
 form that is as general as possible, the energy and entropy functionals
an be specified for the particles of interest. The only assumption that is
ade at this point is that the momentum density only affects the kinetic

nergy, which is part of the total energy of the system. The internal en-
rgy 𝐸 int and the entropy S , that both remain unspecified at this point,
o not depend on the momentum density. In other words, the energy
nd entropy functionals are given by 

[ 𝒙 ] = ∫
𝒖 2 

2 𝜌
𝑑 𝒓 + 𝐸 int [ 𝜌, 𝜗, 𝑝 ] , (6a) 

[ 𝒙 ] = 𝑆[ 𝜌, 𝜗, 𝑝 ] . (6b) 

.3. General form of the evolution equations 

In order to derive the full evolution equations of each variable in x
iven in (5) , one can make use of prior knowledge of some characteris-
ics of these evolution equations, in particular, in terms of kinematics.
n contrast, the constitutive relation for the stress tensor and the irre-
ersible contributions to the evolution equations are not known a priori.
hese contributions shall be worked out later. 

Concerning notation, throughout this paper, particle indices are de-
oted by lower-case Latin symbols i, j, k , … , while Cartesian indices are
iven in lower-case Greek symbols, e.g. 𝛼, 𝛽, 𝛾, … The Einstein nota-
ion is used for the Cartesian components, i.e. the summation notation
s suppressed for the repeated Greek subscripts. The general form of the
volution equations of the dynamic variables (5) can be written as 

 𝑡 𝜌 = − 𝜕 𝑟 𝛾 ( 𝑣 𝛾𝜌) , (7a) 

 𝑡 𝑢 𝛼 = − 𝜕 𝑟 𝛾 ( 𝑣 𝛼𝑢 𝛾 ) + 𝜕 𝑟 𝛾 𝜎𝛼𝛾 , (7b) 

 𝑡 𝜗 = − 𝑣 𝛾 ( 𝜕 𝑟 𝛾 𝜗 ) + Θ, (7c) 

 𝑡 𝑝 = − 𝜕 𝑟 𝛾 ( 𝑣 𝛾 𝑝 ) − 

∑
𝑖 

𝜕 𝑄 𝑖,𝛼 ( 𝑄̇ 𝑖,𝛼𝑝 ) − 

∑
𝑖 

𝜕 𝑇 𝑖,𝛼𝛽 ( ̇𝑇 𝑖,𝛼𝛽𝑝 ) , (7d) 

here 𝝈 is the total macroscopic stress tensor, Θ is the temperature
hange, and 𝑸̇ 𝑖 and 𝑻̇ 𝑖 stand for the rates of change of the particle posi-
ion and shape, respectively. All these terms are unknown at this point
nd will be discussed and specified in the following sections. It is to be
oted that Θ, 𝑸̇ 𝑖 , and 𝑻̇ 𝑖 have both reversible and irreversible contribu-
ions. It is also pointed out that, in deriving the above-equations and in
he following derivations, the boundary terms in the space of microstruc-
ure states are assumed to vanish. In addition, there are no macroscopic
uxes through the boundaries of the system, as it is a closed system. 

.4. Reversible dynamics 

The dynamics of each variable in x contains both reversible and ir-
eversible contributions. Reversible contributions arise from dynamics
25 
hat are invariant to time reversal [11] . This is analogous to affine de-
ormation in continuum mechanics. The reversible rate of change of the
osition and shape of each particle can be obtained in the case of affine
eformation under an imposed flow field v . 

Under affine deformation, the reversible rates of change in the posi-
ion and shape of a particle i are given by 

̇
 𝑖,𝛼|rev = 𝐿 𝛼𝛽𝑄 𝑖,𝛽 , (8a) 

̇
 𝑖,𝛼𝛽 |rev = 𝐿 𝛼𝛾𝑇 𝑖,𝛾𝛽 + 𝑇 𝑖,𝛾𝛼𝐿 𝛽𝛾 , (8b) 

espectively, where 𝐿 𝛼𝛾 = 𝜕 𝑟 𝛾 𝑣 𝛼 . The former, Eq. (8a) , is identical to the
eversible dynamics of the particle position given in [11] . The reversible
ynamics of T i , (8b) , is based on the discussion in the introduction
 Section 1 ). The only difference is that (8b) is written in a form that,
hatever the symmetry properties of the actual state T i , the change of
 i is manifestly symmetric. In other words, the model is set-up for arbi-
rary T i , but that, when starting with symmetric T i , the symmetry of T i 

ill be preserved during the dynamics. This means that, the subset of
ymmetric tensors { T i } is invariant with respect to the dynamics. In this
ay, i.e. by not enforcing the symmetry of T i as part of their definition,

omplications when taking derivatives with respect to T i are avoided. 
In order to model rigid particles, it is noted that these particles do not

eform in size or shape, but they can change in orientation due to, for
nstance, the applied flow. To account for this case, one requires mixed
Gordon–Schowalter) derivatives instead of only upper convected (8b) ,
r lower convected, as described in [26–28] for the flow behavior of
igid axisymmetric particles. 

Using condition (1b) together with (8), the reversible contribution
o the temperature change can be obtained as 

rev = 𝐿 𝛼𝛾

(
𝛿𝑆 
𝛿𝜗 

)−1 [ ( 

− 𝑠 + 𝜌
𝛿𝑆 
𝛿𝜌

+ 𝑛 

⟨ 

𝛿𝑆 
𝛿𝑝 

⟩ ) 

𝛿𝛼𝛾

− 𝑛 

⟨ ∑
𝑖 

( 

𝜕 𝑄 𝑖,𝛼
𝛿𝑆 
𝛿𝑝 

) 

𝑄 𝑖,𝛾

⟩ 

− 𝑛 

⟨ ∑
𝑖 

( 

𝜕 𝑇 𝑖,𝛼𝛽
𝛿𝑆 
𝛿𝑝 

+ 𝜕 𝑇 𝑖,𝛽𝛼
𝛿𝑆 
𝛿𝑝 

) 

𝑇 𝑖,𝛾𝛽

⟩ ] 

, (9) 

here s is entropy density per unit volume. In deriving (9) , we have
sed the following relation 

𝛿𝐴 

𝛿𝜌

(
𝜕 𝑟 𝛾 𝜌

)
+ 

𝛿𝐴 

𝛿𝜗 

(
𝜕 𝑟 𝛾 𝜗 

)
+ ∫

𝛿𝐴 

𝛿𝑝 

(
𝜕 𝑟 𝛾 𝑝 

)
𝑑 𝑸 𝑑 𝑻 = 𝜕 𝑟 𝛾 𝑎, (10) 

ith 𝐴 = 𝑆 and 𝑎 = 𝑠 . 
In order to derive the stress tensor in terms of the particle dynam-

cs, the condition for the conservation of energy in reversible dynamics
1a) together with (9) is used. The stress tensor is obtained as 

𝛼𝛾 = 

(
𝑓 − 𝜌𝐹 ; 𝜌 − 𝑛 

⟨
𝐹 ; 𝑝 

⟩)
𝛿𝛼𝛾 + 𝑛 

⟨ ∑
𝑖 

(
𝜕 𝑄 𝑖,𝛼 𝐹 ; 𝑝 

)
𝑄 𝑖,𝛾

⟩ 

+ 𝑛 

⟨ ∑
𝑖 

(
𝜕 𝑇 𝑖,𝛼𝛽 𝐹 ; 𝑝 + 𝜕 𝑇 𝑖,𝛽𝛼 𝐹 ; 𝑝 

)
𝑇 𝑖,𝛾𝛽

⟩ 

, (11) 

here 

 = 𝑒 int − 𝜗𝑠, (12a) 

 ; 𝜌 = 

𝛿𝐸 int 

𝛿𝜌
− 𝜗 

𝛿𝑆 
𝛿𝜌

, (12b) 

 ; 𝑝 = 

𝛿𝐸 int 

𝛿𝑝 
− 𝜗 

𝛿𝑆 
𝛿𝑝 

, (12c) 

ith 𝑒 int the internal energy density of the system. The expressions
12b) and (12c) resemble derivatives of the Helmholtz free energy; for
ore detail, the reader is referred to [11] . 
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In deriving (11) , we have used relation (10) with 𝐴 = 𝐸 int and 𝑎 =
 int . In addition, we have assumed that the consistency relation 

𝛿𝐸 int 

𝛿𝜗 
= 𝜗 

𝛿𝑆 
𝛿𝜗 

(13)

olds. 

.5. Irreversible dynamics 

As stated in Section 3.3 , the temperature change Θ as well as the rate
f change of the mesoscopic variables { Q i } and { T i } contain contribu-
ions due to irreversible dynamics. In this section, we derive these con-
ributions making use of the thermodynamic conditions (1c) and (1d) .
n fact, also effects such as heat conduction and viscous flow can be
onsidered. However, in the present work, we neglect these effects for
larity, in order to focus on the particle dynamics. Interested readers are
eferred to [11] , where the effect of heat conduction and viscous flow
ave been discussed. 

In this work, we consider the overdamped particle dynamics as the
ain effect for irreversible dynamics. Forces acting on the particles re-

ult directly in a change in the particle positions and shapes, since inertia
ffects are neglected [11] . This dissipative effect results in a tempera-
ure change, in addition to a change in the particle distribution. In other
ords, it results in an irreversible contribution to Θ, { 𝑸̇ 𝑖 } , and { ̇𝑻 𝑖 } . 

Using condition (1c) , the irreversible contribution to the temperature
hange is obtained as 

irr = − 

( 

𝛿𝐸 int 

𝛿𝜗 

) −1 
𝑛 

[ ⟨ ∑
𝑖 

( 

𝜕 𝑄 𝑖,𝛼
𝛿𝐸 int 

𝛿𝑝 

) 

𝑄̇ 𝑖,𝛼|irr ⟩ 

+ 

⟨ ∑
𝑖 

( 

𝜕 𝑇 𝑖,𝛼𝛽
𝛿𝐸 int 

𝛿𝑝 

) 

𝑇̇ 𝑖,𝛼𝛽 |irr ⟩ ] 

. (14)

sing condition (1d) together with (14) , 

𝑛 
𝜗 

⟨ ∑
𝑖 

(
− 𝜕 𝑄 𝑖,𝛼 𝐹 ; 𝑝 

)
𝑄̇ 𝑖,𝛼|irr ⟩ 

𝑑 𝒓 

+ ∫
𝑛 
𝜗 

⟨ ∑
𝑖 

(
− 𝜕 𝑇 𝑖,𝛼𝛽 𝐹 ; 𝑝 

)
𝑇̇ 𝑖,𝛼𝛽 |irr ⟩ 

𝑑 𝒓 ≥ 0 . (15)

 quasi-linear solution to Eq. (15) for n > 0 and ϑ> 0 is given by 

̇
 𝑖,𝛼|irr = 

∑
𝑗 

𝜆𝑖𝑗,𝛼𝛽 (− 𝜕 𝑄 𝑗,𝛽 𝐹 ; 𝑝 ) , (16a)

̇
 𝑖,𝛼𝛽 |irr = 

∑
𝑗 

Λ𝑖𝑗,𝛼𝛽𝛾𝜀 (− 𝜕 𝑇 𝑗,𝛾𝜀 𝐹 ; 𝑝 ) , (16b)

here 𝝀 is a positive semi-definite and symmetric N ×N ×3 ×3 tensor
ith the property 

𝑖𝑗,𝛼𝛽 = 𝜆𝑗𝑖,𝛽𝛼 . (17)

he tensor 𝚲 is a positive semi-definite N ×N ×3 ×3 ×3 ×3 tensor that
as the symmetry properties 

𝑖𝑗,𝛼𝛽𝛾𝜀 = Λ𝑗𝑖,𝛾𝜀𝛼𝛽 , (18a)

𝑖𝑗,𝛼𝛽𝛾𝜀 = Λ𝑖𝑗,𝛽𝛼𝛾𝜀 . (18b)

Eq. (18b) ensures that irreversible changes in T i are symmetric. It is
oted that the ansatz (16) implies that the thermodynamic forces and
uxes related to position and shape are mutually decoupled. This is done

or simplicity rather than for necessity, and the model formulation can
e extended in this direction in a straightforward way. In order to keep
he model as general as possible, the tensors 𝝀 and 𝚲 remain unspecified
n deriving the model. Particularly, they may depend on the mesoscopic
egrees of freedom. 
26 
. Application of the model 

.1. Static building blocks 

In Section 3 , the model is developed for a general form of the system
nternal energy 𝐸 int and entropy S . The internal energy and entropy of
he system are defined in this section, in order to make the model system
pecific. 

Looking at the constituents of the overall system, it is clear that the
uspending solvent as well as the N -particles contribute to the energy
nd entropy of the system. In particular, the free energy density of only
he solvent is given in terms of the densities of internal energy 𝜀 and
ntropy 𝜂 of the solvent as 

= 𝜀 − 𝜗𝜂, (19) 

here 𝜀 and 𝜂 depend on the density and temperature of the system. In
he presence of particles, an additional contribution emerges due to the
ffective interaction energy Φ of the particles. This effective interaction
nergy has the character of a Helmholtz free energy and can hence be
ecomposed into energetic and entropic contributions [11,22] , 

= Φ𝐸 + Φ𝑆 . (20) 

ach of these contributions is, in general, density- and temperature-
ependent in addition to their dependence on the microstructure. 

Based on (19) and (20) , the internal energy of the system consists
f a contribution due to the internal energy of the solvent, 𝜀 , and a
ontribution due to the particles, ΦE . Similarly, the entropy of the system
s composed of a contribution due to the entropy of the solvent, 𝜂, and
n entropic contribution due to the particles, ΦS . Therefore, 

 int [ 𝜌, 𝜗, 𝑝 ] = ∫ 𝜀 ( 𝜌, 𝜗 ) 𝑑 𝒓 + ∫ Φ𝐸 ( 𝜌, 𝜗, { 𝑸 𝑖 } , { 𝑻 𝑖 }) 

× 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) 𝑑 𝑸 𝑑 𝑻 𝑑 𝒓 , (21a) 

[ 𝜌, 𝜗, 𝑝 ] = ∫ 𝜂( 𝜌, 𝜗 ) 𝑑 𝒓 − ∫
1 
𝜗 
Φ𝑆 ( 𝜌, 𝜗, { 𝑸 𝑖 } , { 𝑻 𝑖 }) 

× 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) 𝑑 𝑸 𝑑 𝑻 𝑑 𝒓 − 𝑘 B ∫ 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) 

× ln 
𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) 

𝑝 0 
𝑑 𝑸 𝑑 𝑻 𝑑 𝒓 , (21b) 

here 𝑘 B is the Boltzmann constant and p 0 is a normalization constant
or the particle distribution. In (21) , it is assumed that the densities of
oth energy and entropy depend on the fields x only locally, i.e., they do
ot depend on their derivatives, e.g. ∇ r x . The last term in the entropy
xpression represents the configurational entropy, which eventually en-
ures that the Boltzmann distribution is recovered at equilibrium. It is
o be noted that f in (12a) denotes the free energy density of the en-
ire system, containing three contributions: (i) the free energy density
f the suspending solvent 𝜙, (19) , and two contributions related to the
uspended particles, namely (ii) due to the effective interaction Φ and
iii) due to the configurational entropy, i.e. the last contribution to the
ntropy (21b) . The expressions (21) are used in the following for giv-
ng explicit forms of the constitutive relation for the stress tensor as a
unction of the microstructure, and of the particle dynamics given by
he Fokker–Planck equation for the evolution of p . 

.2. Constitutive expression for the stress tensor 

Using the form of internal energy and entropy given in (21) , one
btains explicit expressions for F ; p and F ; 𝜌, 

 ; 𝜌 = 

𝜕 
𝜕𝜌
𝜙 + 𝑛 

𝜕 
𝜕𝜌

⟨Φ⟩, (22a) 
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 ; 𝑝 = Φ + 𝑘 B 𝜗 

( 

ln 𝑝 
𝑝 0 

+ 1 
) 

. (22b) 

The (non-dissipative contribution to the) stress tensor (11) , in turn,
ecomes 

𝛼𝛾 = 

[ 
− 𝑝 sol − 𝑛𝜌

𝜕 
𝜕𝜌

⟨Φ⟩ − 𝑛 (1 + 𝑁 + 4 𝑁) 𝑘 B 𝜗 
] 
𝛿𝛼𝛾

+ 𝑛 

⟨ ∑
𝑖 

(
𝜕 𝑄 𝑖,𝛼Φ

)
𝑄 𝑖,𝛾

⟩ 

+ 𝑛 

⟨ ∑
𝑖 

(
𝜕 𝑇 𝑖,𝛼𝛽Φ + 𝜕 𝑇 𝑖,𝛽𝛼Φ

)
𝑇 𝑖,𝛾𝛽

⟩ 

, (23) 

here the solvent pressure is defined as 

 sol = − 𝜙 + 𝜌
𝜕 
𝜕𝜌
𝜙. (24) 

.3. Particle dynamics 

By virtue of the specific forms of the internal energy and entropy
21) , a concrete realization of the evolution equation of the distribu-
ion function p ( Eq. (7d) ) can be obtained. Making use of the force-flux
elation (16) for the irreversible particle-dynamics and Eq. (22b) , the
ynamics of p is described by 

𝜕 𝑡 𝑝 = − 𝜕 𝑟 𝛾
(
𝑣 𝛾 𝑝 

)
− 

∑
𝑖 

𝜕 𝑄 𝑖,𝛼
(
𝐿 𝛼𝛽𝑄 𝑖,𝛽𝑝 

)
− 

∑
𝑖 

𝜕 𝑇 𝑖,𝛼𝛽
((
𝐿 𝛼𝛾𝑇 𝑖,𝛾𝛽 + 𝑇 𝑖,𝛾𝛼𝐿 𝛽𝛾

)
𝑝 
)

− 

∑
𝑖 

𝜕 𝑄 𝑖,𝛼

( ∑
𝑗 

𝜆ij ,𝛼𝛽

[(
− 𝜕 𝑄 𝑗,𝛽Φ

)
𝑝 − 𝑘 B 𝜗 

(
𝜕 𝑄 𝑗,𝛽 𝑝 

)]) 

− 

∑
𝑖 

𝜕 𝑇 𝑖,𝛼𝛽

( ∑
𝑗 

Λij ,𝛼𝛽𝛾𝜀 

[(
− 𝜕 𝑇 𝑗,𝛾𝜀 Φ

)
𝑝 − 𝑘 B 𝜗 

(
𝜕 𝑇 𝑗,𝛾𝜀 𝑝 

)]) 

. 

(25) 

his Fokker–Planck equation can be expressed in the form of stochastic
ifferential equations in the Itô interpretation [29] as 

𝑄 𝑖,𝛼 = 𝐿 𝛼𝛽𝑄 𝑖,𝛽𝑑𝑡 + 

∑
𝑗 

𝜆𝑖𝑗,𝛼𝛽 (− 𝜕 𝑄 𝑗,𝛽Φ) 𝑑𝑡 

+ 

∑
𝑗 

𝑘 B 𝜗 ( 𝜕 𝑄 𝑗,𝛽 𝜆𝑖𝑗,𝛼𝛽 ) 𝑑𝑡 + 

∑
𝑗 

𝑏 𝑖𝑗,𝛼𝛽𝑑𝑤 𝑡,𝑗,𝛽 , (26a) 

𝑇 𝑖,𝛼𝛽 = 

(
𝐿 𝛼𝛾𝑇 𝑖,𝛾𝛽 + 𝑇 𝑖,𝛾𝛼𝐿 𝛽𝛾

)
𝑑𝑡 + 

∑
𝑗 

Λ𝑖𝑗,𝛼𝛽𝛾𝜀 (− 𝜕 𝑇 𝑗,𝛾𝜀 Φ) 𝑑𝑡 

+ 

∑
𝑗 

𝑘 B 𝜗 ( 𝜕 𝑇 𝑗,𝛾𝜀 Λ𝑖𝑗,𝛼𝛽𝛾𝜀 ) 𝑑𝑡 + 

∑
𝑗 

𝐵 𝑖𝑗,𝛼𝛽𝛾𝜀 𝑑𝑊 𝑡,𝑗,𝛾𝜀 , (26b) 

ith 

𝑘 

𝑏 𝑖𝑘,𝛼𝛾 𝑏 𝑗𝑘,𝛽𝛾 = 2 𝑘 B 𝜗𝜆𝑖𝑗,𝛼𝛽 , (27) 

𝑘 

𝐵 𝑖𝑘,𝛼𝛽𝜎𝜏𝐵 𝑗𝑘,𝛾𝜀𝜎𝜏 = 2 𝑘 B 𝜗 Λ𝑖𝑗,𝛼𝛽𝛾𝜀 , (28) 

epresentative of the fluctuation-dissipation theorem [22,30] . The sym-
etry property of the increment of T i in time leads to 

 𝑖𝑗,𝛼𝛽𝛾𝜀 = 𝐵 𝑖𝑗,𝛽𝛼𝛾𝜀 . (29) 

sing the fluctuation-dissipation relations (27) and (28) , as well as the
ymmetry property (29) , it can be shown that the symmetry properties
f 𝝀 in Eq. (17) and 𝚲 in Eq. (18) follow. Each of the increments in the
iener processes, namely d w for the position dynamics and d W for the

hape dynamics, should be uncorrelated in time. This implies 

𝑑𝑤 𝑡,𝑖,𝛼⟩ = 0 , (30a) 
s  

27 
𝑑 𝑤 𝑡,𝑖,𝛼𝑑 𝑤 𝑡 ′ ,𝑗,𝛽⟩ = 𝛿𝑖𝑗 𝛿𝛼𝛽𝛿( 𝑡 − 𝑡 ′) 𝑑 𝑡𝑑 𝑡 ′, (30b) 

nd 

𝑑𝑊 𝑡,𝑖,𝛼𝛽⟩ = 0 , (31a) 

𝑑 𝑊 𝑡,𝑖,𝛼𝛽𝑑 𝑊 𝑡 ′ ,𝑗,𝛾𝜀 ⟩ = 𝛿𝑖𝑗 𝛿𝛼𝛾𝛿𝛽𝜀 𝛿( 𝑡 − 𝑡 ′) 𝑑 𝑡𝑑 𝑡 ′. (31b) 

It is also pointed out that fluctuations in the particle position are not
orrelated with fluctuations in the particle shape, 

𝑑 𝑤 𝑡,𝑖,𝛼𝑑 𝑊 𝑡 ′ ,𝑗,𝛾𝜀 ⟩ = 0 . (32) 

. Split of shape and size changes 

The model developed in Section 3 and applied in Section 4 employs
he shape tensor T i for the quantification of the microstructure. The
hape tensor T i , in its general form, contains information about both
he shape and the size of particle i . For practical reasons, it is sometimes
seful to separate the effects of size and shape. Considering for instance
he case of incompressible particles, these are particles that undergo
hape changes while keeping their volume constant. This situation is
ather common in treating dilute fluid mixtures, in which fluid particles
re dispersed in another fluid matrix [18,31] . 

This section aims at differentiating between changes in size and
hape, making it suitable to recover limiting cases such as incompress-
ble particles and particles that are rigid in terms of shape change. The
nconstrained shape tensor T i is split into (i) a volumetric part ex-
ressed in terms of the particle volume,  𝑖 = 

√
det 𝑻 𝑖 , and (ii) an iso-

horic part that accounts only for the particle shape expressed in terms
f 𝑻̂ 𝑖 = 𝑻 𝑖 ∕ 3 

√
det 𝑻 𝑖 . It is noted that the actual volume of an ellipsoid

s given by (4 𝜋∕3)  𝑖 , but for convenience the prefactor 4 𝜋/3 is not in-
luded in the definition of  𝑖 . In this section, we show the procedure
f expressing the model obtained in Sections 3 and 4 in terms of con-
trained shape tensors { ̂𝑻 𝑖 } and particle volumes {  𝑖 } . In addition, it is
hown how the model presented in [11] can be recovered as a special
ase. 

.1. Static building blocks 

Let us first consider the static building blocks, particularly deriva-
ives of the Helmholtz free energy Φ with respect to the unconstrained
ensors { T i }. These terms appear in the constitutive relation for the stress
ensor (23) , as well as in the driving forces for irreversible dynamics in
25) and (26) . The partial derivatives can be re-written as 

 𝑇 𝑖,𝛼𝛽
Φ = ( 𝜕 𝑇̂ 𝑖,𝜇𝜈Φ) uc | 𝑖 𝜕 𝑇 𝑖,𝛼𝛽 𝑇̂ 𝑖,𝜇𝜈 + ( 𝜕  𝑖 Φ) |

𝑻̂ 𝑖 
𝜕 𝑇 𝑖,𝛼𝛽 𝑖 , (33a) 

= ( 𝜕 𝑇̂ 𝑖,𝜇𝜈Φ) uc | 𝑖  − 2 3 𝑖 𝑃 𝑖,𝜇𝜈𝛼𝛽 + 

1 
2 
( 𝜕  𝑖 Φ) |

𝑻̂ 𝑖 
 𝑖 𝑇 −1 𝑖,𝛽𝛼 , (33b) 

here the subscript (uc) denotes the unconstrained derivative, i.e. the
erivative where the constraint on 𝑻̂ 𝑖 is not taken into account. The
rojection tensor P i is defined as 

 𝑖,𝜇𝜈𝛼𝛽 = 𝛿𝜇𝛼𝛿𝜈𝛽 − 

1 
3 
𝑇̂ −1 𝑖,𝛽𝛼𝑇̂ 𝑖,𝜇𝜈 , (34) 

ith 

̂
 

−1 
𝑖,𝜈𝜇𝑃 𝑖,𝜇𝜈𝛼𝛽 = 0 , (35a) 

̂
 𝑖,𝛼𝛽𝑃 𝑖,𝜇𝜈𝛼𝛽 = 0 . (35b) 

The reader is referred to [25,32,33] for more detail on the issue of
onstrained derivatives. The relation (33) can be used, e.g., in (23) to
btain an expression for the stress tensor as a function of the constrained
hape tensors { ̂𝑻 } and sizes {  } . For symmetric T and given that the
𝑖 𝑖 i 
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ymmetry of the increments of T i is preserved ( Eqs. (26b) and (29) ),
he term involving derivatives with respect to T i in the stress tensor
23) assumes the form 

 

(
𝜕 𝑇 𝑖,𝛼𝛽Φ

)sym 

𝑇 𝑖,𝛾𝛽 = 

[ 
2 
(
𝜕 𝑇̂ 𝑖,𝛼𝛽Φ

)sym 

uc 

|||| 𝑖 𝑇̂ 𝑖,𝛾𝛽
] dev 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
deviatoric 

+  𝑖 
(
𝜕  𝑖 Φ

)||||𝑇̂ 𝑖 𝛿𝛼𝛾
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

volumetric 

, (36)

here the symmetric and deviatoric parts of a second-rank tensor are
enoted by 

 

sym 

𝛼𝛽
= 

1 
2 
(
𝐴 𝛼𝛽 + 𝐴 𝛽𝛼

)
, (37a)

 

dev 
𝛼𝛽 = 𝐴 𝛼𝛽 − 

1 
3 
𝐴 𝜎𝜎𝛿𝛼𝛽 . (37b)

It is to be noted that, in deriving (36) , the symmetry of T i has been
nly used in explicit occurrences of T i , but not when calculating partial
erivatives with respect to 𝑻̂ 𝑖 . Eq. (36) shows that the split of the shape
ensor naturally decomposes the stress tensor into a stress contribution
hat is deviatoric and related to derivatives of Φ with respect to 𝑻̂ 𝑖 , and
n isotropic contribution that is related to derivatives of Φ with respect
o  𝑖 . A similar procedure can be used to express the driving forces for
he irreversible dynamics. 

.2. Particle shape and size dynamics 

According to Itô’s formula [29,34] for stochastic calculus, the evolu-
ion of the constrained tensor 𝑻̂ 𝑖 and size  𝑖 can be expressed, in terms
f the evolution of T i , respectively. To make the following steps more
ransparent, the evolution of T i , given by (26b) , is expressed in the form 

 𝑇 𝑖,𝛼𝛽 = 𝐴 𝑖,𝛼𝛽𝑑 𝑡 + 

∑
𝑗 

𝐵 𝑖𝑗,𝛼𝛽𝜎𝜏𝑑𝑊 𝑡,𝑗,𝜎𝜏 . (38)

he evolution of the constrained shape tensors 𝑻̂ 𝑖 can be written in the
orm, 

 ̂𝑇 𝑖,𝛾𝜀 = ( 𝜕 𝑇 𝑖,𝛼𝛽 𝑇̂ 𝑖,𝛾𝜀 ) 𝑑𝑇 𝑖,𝛼𝛽

+ 

1 
2 
( 𝜕 𝑇 𝑖,𝛼𝛽 𝜕 𝑇 𝑖,𝜇𝜈 𝑇̂ 𝑖,𝛾𝜀 ) 

∑
𝑗 

𝐵 𝑖𝑗,𝛼𝛽𝜎𝜏𝐵 𝑖𝑗,𝜇𝜈𝜎𝜏 𝑑𝑡, (39a)

≡ 𝐴̂ 𝑖,𝛾𝜀 𝑑𝑡 + 

∑
𝑗 

𝐵̂ 𝑖𝑗,𝛾𝜀𝜎𝜏𝑑𝑊 𝑡,𝑗,𝜎𝜏 . (39b)

Based on (39a) and (38) , the quantities 𝑨̂ and 𝑩̂ can be expressed in
erms of A and B as 

̂
 𝑖,𝛾𝜀 =  − 2 3 𝑖 𝑃 𝑖,𝛾𝜀𝛼𝛽𝐴 𝑖,𝛼𝛽

+ 

1 
3 
𝑘 B 𝜗  − 

4 
3 

𝑖 

(
𝑇̂ −1 𝑖,𝛽𝜇𝑇̂ 

−1 
𝑖,𝜈𝛼𝑇̂ 𝑖,𝛾𝜀 − ̂𝑇 −1 𝑖,𝛽𝛼𝛿𝜇𝛾𝛿𝜈𝜀 − ̂𝑇 −1 𝑖,𝜈𝜇𝑃 𝑖,𝛾𝜀𝛼𝛽

)
Λ𝑖𝑖,𝛼𝛽𝜇𝜈 , (40a)

̂
 𝑖𝑗,𝛾𝜀𝜎𝜏 =  − 2 3 𝑖 𝑃 𝑖,𝛾𝜀𝛼𝛽𝐵 𝑖𝑗,𝛼𝛽𝜎𝜏 , (40b)

here the projection tensor P i is defined by Eq. (34) . The increment
f the constrained tensor 𝑻̂ 𝑖 should respect the conservation of particle
olume, that is 𝑑( det 𝑻̂ 𝑖 ) = 0 . In the following, it is shown that (39b) with
40) does not lead to any volume changes. Based on Itô’s formula, using
39b) and (40) , and with 

 𝜕 𝑇̂ 𝑖,𝛾𝜀 ln ( det 𝑻̂ 𝑖 )) uc = 𝑇̂ −1 𝑖,𝜀𝛾 , (41a)

 𝜕 𝑇̂ 𝑖,𝛾𝜀 𝜕 𝑇̂ 𝑖,𝜇𝜈 ln ( det 𝑻̂ 𝑖 )) uc = − ̂𝑇 −1 𝑖,𝜀𝜇𝑇̂ 
−1 
𝑖,𝜈𝛾 , (41b)

nd with (35a) , one finds 

 ln ( det 𝑻̂ ) = 0 , (42)
𝑖 

28 
hich implies that the volume of the particle remains constant over
ime. The above derivation highlights the importance of using proper
tochastic calculus in terms of Itô’s formula, specifically the second-
rder derivative terms. If the second-order terms were not considered,
he increments of 𝑻̂ 𝑖 given by (39b) with (40) would not be volume
reserving. 

Similarly to the relation between (38) and (39b) , the quantities 
nd  in the evolution equation for the volume  𝑖 , 
 𝑖 = ( 𝜕 𝑇 𝑖,𝛼𝛽 𝑖 ) 𝑑𝑇 𝑖,𝛼𝛽

+ 

1 
2 
( 𝜕 𝑇 𝑖,𝛼𝛽 𝜕 𝑇 𝑖,𝜇𝜈 𝑖 ) 

∑
𝑗 

𝐵 𝑖𝑗,𝛼𝛽𝜎𝜏𝐵 𝑖𝑗,𝜇𝜈𝜎𝜏 𝑑𝑡, (43a) 

≡  𝑖 𝑑𝑡 + 

∑
𝑗 

 𝑖𝑗,𝜎𝜏𝑑𝑊 𝑡,𝑗,𝜎𝜏 , (43b) 

re related to the quantities A and B as 

 𝑖 = 

1 
2 
 1 3 𝑖 𝑇̂ −1 𝑖,𝛽𝛼𝐴 𝑖,𝛼𝛽

+ 

1 
2 
𝑘 B 𝜗  − 

1 
3 

𝑖 

(1 
2 
𝑇̂ −1 𝑖,𝜈𝜇𝑇̂ 

−1 
𝑖,𝛽𝛼 − 𝑇̂ −1 𝑖,𝛽𝜇𝑇̂ 

−1 
𝑖,𝜈𝛼

)
Λ𝑖𝑖,𝛼𝛽𝜇𝜈 , (44a) 

 𝑖𝑗,𝜎𝜏 = 

1 
2 
 1 3 𝑖 𝑇̂ −1 𝑖,𝛽𝛼𝐵 𝑖𝑗,𝛼𝛽𝜎𝜏 . (44b) 

One obtains explicit forms for ( ̂𝑨 , 𝑩̂ ) and (  ,  ) by inserting explicit
xpressions for A and B in (40) and (44) , respectively. It is to be noted
hat the evolution of 𝑻̂ 𝑖 and  𝑖 are mutually coupled through the depen-
ence of ( ̂𝑨 , 𝑩̂ ) and (  ,  ) on both 𝑻̂ 𝑖 and  𝑖 (see (40) and (44) ). 

.3. Limit of spherical particles 

The interpretation of the evolution of the shape tensor in terms of
he evolution of the constrained tensor 𝑻̂ 𝑖 and the volume  𝑖 facilitates
escribing the dynamics of spherical particles. These are particles that
ndergo no or only insignificant shape changes. A spherical particle is
escribed by an isotropic shape tensor 𝑻 𝑖 = 𝑅 

2 
𝑖 𝑰 , or equivalently a con-

trained shape tensor 𝑻̂ 𝑖 = 𝑰 and  𝑖 = 𝑅 

3 
𝑖 , where R i is the instantaneous

article radius. To obtain a model for spherical particles, on the one
and, one can explicitly describe the particles with an isotropic shape
ensor, by enforcing 𝑻̂ 𝑖 = 𝑰 as a mathematical constraint. On the other
and, one can eliminate (significant) shape changes via the (Helmholtz
ree) energy Φ, by strongly penalizing deviations from the spherical
hape. In this case, the shape dynamics is governed by rapid relaxation
owards equilibrium, the latter being the subset of spherical particles.
oreover, the shape changes introduced by imposed deformation are

onsidered insignificant compared to the shape relaxation. This justi-
es the use of an isotropic tensor, in particular 𝑻̂ 𝑖 = 𝑰 , in the evolution
quation of the particle volume (see (43b) and (44) ). Doing so, i.e., us-
ng 𝑻̂ 𝑖 = 𝑰 in (43b) with (44) , for example the reversible deformation of
he particle volume is found to be ̇ 𝑖 |rev =  𝑖 𝐿 𝛼𝛼, which leads to 

̇
 𝑖 |rev = 

1 
3 
𝑅 𝑖 𝐿 𝛼𝛼 (45) 

or the reversible dynamics of the particle radius. Eq. (45) is in fact
dentical to what has been used in the derivation of the model by Hütter
t al. [11] , in the limit of affine deformation of the particle surface. 

With respect to the transition from particle volume to particle radius,
he following general comment is in place. In order to recover the dis-
ribution of the mesoscopic states in terms of particle radii ( p R ) instead
f volumes ( 𝑝  ), the transformation of the measure must be taken into
ccount for each particle, 

  𝑖 = 3 𝑅 

2 
𝑖 𝑑 𝑅 𝑖 , (46) 

hich implies 

 𝑅 ({ ̂𝑻 𝑖 } , { 𝑅 𝑖 }) = 

( ∏
𝑖 

3 𝑅 

2 
𝑖 

) 

𝑝  ({ ̂𝑻 𝑖 } , {  𝑖 = 𝑅 

3 
𝑖 }) . (47) 
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t is well known that a transformation of variables leads to a modifica-
ion of the entropy (e.g., see [22] ). Since the entropy enters the stress
ensor (23) and the irreversible dynamics (25) , special care must be
aken when relating R -based and -based models. 

.4. Application of the shape-size model 

In this section, the model split in terms of the shape and size is further
oncretized. In all of that, it is assumed for simplicity that the model is
ormulated in three spatial dimensions, which is relevant particularly
hen using the Cayley–Hamilton theorem. Furthermore, we restrict our
ttention to non-interacting ellipsoids, i.e. the (Helmholtz free) energy

is a sum of single-particle contributions, called 𝜑 i . In general, 𝜑 i is
n arbitrary function of the invariants of T i . However, without loss of
enerality, it proves to be convenient to write 𝜑 i as a function of the
rst ( ̂𝐼 1 ,𝑖 ) and second ( ̂𝐼 2 ,𝑖 ) invariants of the constrained shape tensor
̂
 𝑖 , and the third invariant ( I 3, i ) of the unconstrained tensor T i , 

𝐼 1 ,𝑖 = t r 
(
𝑻 𝑖 

)
, (48a) 

𝐼 2 ,𝑖 = 

1 
2 

[ (
t r ̂𝑻 𝑖 

)2 
− t r 

(
𝑻 
2 
𝑖 

)] 
, (48b) 

 3 ,𝑖 = det 𝑻 𝑖 . (48c) 

herefore, 

= 

∑
𝑖 

𝜑 𝑖 ( ̂𝐼 1 ,𝑖 , 𝐼 2 ,𝑖 , 
√ 

𝐼 3 ,𝑖 ) . (49) 

t is noted that, in order to develop a model for the unconstrained tensors
 T i }, the energy (49) is considered as a function of the unconstrained
ensors, rather than the corresponding isochoric and volumetric parts.
ased on (49) and making use of the Cayley–Hamilton theorem, the
xpression (36) related to the stress tensor (23) can be written in the
orm 

 

(
𝜕 𝑇 𝑖,𝛼𝛽Φ

)sym 

𝑇 𝑖,𝛾𝛽 = 2 𝜑 𝑖, 1 ̂𝑇 dev 𝑖,𝛼𝛾 − 2 𝜑 𝑖, 2 
(
𝑇̂ −1 𝑖,𝛼𝛾

)dev 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
deviatoric 

+  𝑖 𝜑 𝑖, 3 𝛿𝛼𝛾
⏟⏞⏞⏟⏞⏞⏟
volumetric 

, (50) 

here 𝜑 i, K denotes the derivative of 𝜑 i with respect to its K th argument.
he first two terms on the right-hand side (r.h.s.) are deviatoric in na-

ure, by virtue of t r ( ̂𝑻 
−1 
𝑖 ) = 𝐼 2 ,𝑖 , and related to the dependence of 𝜑 i on

 ̂1 ,𝑖 and 𝐼 2 ,𝑖 . In contrast, the third contribution on the r.h.s. is isotropic,
.e. volumetric, and originates from the dependence of 𝜑 i on I 3, i . In the
bove and in the sequel, it is used that T i is symmetric, given that the
nitial condition is symmetric, and that this symmetry is not violated by
he dynamics. 

The particle mobility tensor 𝚲 is chosen as follows. First, it is as-
umed that the ellipsoids also do not interact dynamically, more pre-
isely that Λij, 𝛼𝛽𝛾𝜖 should vanish for i ≠ j . And second, for the further
pecification, the approach in [17] is inspiring, where also the concept
f an ellipsoidal shape tensor is employed. For the example in this paper,
he following choice is made, 

𝑖𝑗,𝛼𝛽𝛾𝜖 = 2Λ
(
𝑇 𝑖,𝛼𝛾𝑇 𝑖,𝛽𝜖 + 𝑇 𝑖,𝛼𝜖𝑇 𝑖,𝛽𝛾

)
𝛿𝑖𝑗 , (51a) 

here Λ is a scalar prefactor that does not depend on the shape tensor.
or completeness, it is mentioned that the restriction to constant Λ is
erely used to keep this illustrative example simple; relaxation of this

estriction (e.g. to exactly match cases studied in [17] ) is straightfor-
ard and does not pose any conceptual difficulties. The mobility tensor

51a) satisfies the symmetry properties (18). By expressing the symmet-
ic and positive T i as 𝑻 𝑖 = 𝑪 𝑖 ⋅ 𝑪 

T 
𝑖 , one can show that 

 𝑖𝑗,𝛼𝛽𝜎𝜏 = 

√
2 𝑘 B 𝜗 Λ

(
𝐶 𝑖,𝛼𝜎𝐶 𝑖,𝛽𝜏 + 𝐶 𝑖,𝛼𝜏𝐶 𝑖,𝛽𝜎

)
𝛿𝑖𝑗 , (51b) 
l  

29 
ndeed satisfies not only the symmetry condition (29) , but also the
uctuation-dissipation theorem (28) . Based on (51a) , the divergence of
he mobility tensor can be calculated. A careful calculation results in
see [35] for details) 

 𝑇 𝑖,𝛼𝛽
Λ𝑖𝑖,𝛼𝛽𝛾𝜖 = 16Λ𝑇 𝑖,𝛾𝜖 . (51c) 

Based on the Helmholtz free energy (49) and the relaxation-tensor
elated terms (51) , and using the Cayley–Hamilton theorem, the quan-
ities 𝑨̂ and 𝑩̂ given by (40) in the evolution of the constrained tensor
39b) are obtained as 

̂
 𝑖,𝛾𝜖 = 𝐿 

dev 
𝛾𝜇 𝑇̂ 𝑖,𝜇𝜖 + 𝑇̂ 𝑖,𝜇𝛾𝐿 

dev 
𝜖𝜇

− 4Λ
[
𝜑 𝑖, 1 

(
𝑇̂ 2 𝑖,𝛾𝜖 − 

1 
3 
𝐼 1 ,𝑖 ̂𝑇 𝑖,𝛾𝜖

)
+ 𝜑 𝑖, 2 

( 1 
3 
𝐼 2 ,𝑖 ̂𝑇 𝑖,𝛾𝜖 − 𝛿𝛾𝜖

)]
+ 

20 
3 
𝑘 B 𝜗 Λ𝑇̂ 𝑖,𝛾𝜖 , (52a) 

̂
 𝑖𝑗,𝛾𝜖𝜎𝜏 = 

√
2 𝑘 B 𝜗 Λ

(
𝐶̂ 𝑖,𝛾𝜎𝐶̂ 𝑖,𝜖𝜏 + 𝐶̂ 𝑖,𝛾𝜏 𝐶̂ 𝑖,𝜖𝜎 − 

2 
3 
𝐶̂ 𝑖,𝛾𝜇𝐶̂ 𝑖,𝜖𝜇𝛿𝜎𝜏

)
𝛿𝑖𝑗 , (52b) 

here 𝑪̂ 𝑖 =  − 1 3 𝑖 𝑪 𝑖 , i.e., 𝑻̂ 𝑖 = 𝑪̂ 𝑖 ⋅ 𝑪̂ 

T 
𝑖 . The explicit form of  and  given

y (44) in the evolution of the particle volume (43b) are obtained as 

 𝑖 =  𝑖 𝐿 𝜇𝜇 − 3Λ 2 𝑖 𝜑 𝑖, 3 + 15 𝑘 B 𝜗 Λ 𝑖 , (53a) 

 𝑖𝑗,𝜎𝜏 = 

√
2 𝑘 B 𝜗 Λ 𝑖 𝛿𝜎𝜏𝛿𝑖𝑗 . (53b) 

Similar to the discussion with respect to the stress-tensor related
erms in (50) , the following can be noted about the dynamics of shape
nd volume described by (52) and (53) , respectively. The relaxation of
hape contained in (52a) is driven by the change in 𝜑 i with respect to
 ̂1 ,𝑖 and 𝐼 2 ,𝑖 . In contrast, the relaxation of volume contained in (53a) is
riven by the change in 𝜑 i with respect to I 3, i . 

The thermal fluctuations in shape, described by (51b) , make use of
he multiplicative decomposition of the shape tensor, and similarly for
52b) . In order to implement that in a numerical simulation, the fol-
owing procedure can be used. Omitting the particle index i to simplify
otation, it can be shown that a choice for C that satisfies 𝑻 = 𝑪 ⋅ 𝑪 

T 

as the following components in a Cartesian coordinate system, 

 𝐶 ] = 

⎛ ⎜ ⎜ ⎝ 
√
𝑇 11 0 0 

𝑇 12 ∕ 
√
𝑇 11 

√
𝐽 2 ∕ 𝑇 11 0 

𝑇 13 ∕ 
√
𝑇 11 𝐽 2 ∕ 

√
𝑇 11 𝐽 2 

√
𝐼 3 ∕ 𝐽 2 

⎞ ⎟ ⎟ ⎠ , (54) 

ith 𝐽 2 = 𝑇 11 𝑇 22 − 𝑇 2 12 and 𝐽 2 = 𝑇 11 𝑇 23 − 𝑇 12 𝑇 13 . It is pointed out that
one of the arguments in the square-roots are negative for a positive
efinite T . What could happen though is that T 11 and/or J 2 approach
ero (e.g. when imposing severe uniaxial elongation in the 3-direction).
n order to avoid, in a practical way, the division by small numbers in
54) as much as possible, one can rotate the coordinate system in such
 way that for the rotated 𝑻̃ one obeys 𝑇̃ 11 ≥ 𝐽 2 ≥ 𝐼 3 . 

. Discussion 

This paper presents a dynamic two-scale model that describes the
echanics of suspensions of permeable ellipsoidal particles. Follow-

ng the principles of non-equilibrium thermodynamics, the macroscopic
uid dynamics is consistently coupled with the particle dynamics. In
ddition to the particle positions, the particle dynamics is captured by
onformation tensors that describe the particle size, shape, and ori-
ntation of each particle. The general form of the model highlights
he connection between the macroscopic response, i.e. the constitu-
ive relation for the stress tensor (23) , and the mesoscopic particle dy-
amics, i.e. the Fokker–Planck equation for the distribution of parti-
le positions, shapes, and sizes (25) . The particle dynamics is equiva-
ently expressed in the form of stochastic differential equations (26) ,
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hat are suited for Brownian dynamics simulations. The fluctuation-
issipation theorem holds not only for the particle-position dynamics,
ut also for the particle-shape dynamics. A specific system realization
s achieved by the appropriate choice of the generalized mobility ten-
or and the Helmholtz free energy. For example, the effective particle
ermeability can be captured by the former, while particle interactions
nd their elastic properties can be described through the latter. Specif-
cally, different material properties for each individual particle can be
mplemented. 

The model is conveniently expressed in a form that differenti-
tes between changes in size and shape, respectively. This inter-
retation facilitates the application of constraints on the shape or
he size of the particles. Modeling particles with volume-preserving
hape changes and shape-preserving size-changes can be practically
chieved by strongly penalizing size and shape changes, respectively,
hrough the Helmholtz free energy. Furthermore, the significance of
he formulation using the size-shape split lies in the fact that it pro-
ides a natural unification of well-known models for purely-shape dy-
amics, e.g. [17,18] , and the work based on purely-size dynamics
6,11–13] . 

The concrete realization of the split size-shape model, presented in
his work for non-interacting particles, allows for direct comparison
ith, for instance, the Maffettone Minale (MM) model [18] . In light of

he recent work of Mwasame et al. [17] , the MM model is recovered us-
ng a Helmholtz free energy function 𝜑 MM 

𝑖 that depends solely on the sec-
nd invariant of the constrained shape tensor, i.e. 𝜑 MM 

𝑖 = 𝜑 MM 

𝑖 ( ̂𝐼 2 ,𝑖 ) . The
article relaxation in the MM model is driven by the particle surface ten-
ion which allows the particle to recover its equilibrium spherical shape.
oing beyond only-shape dynamics, one can modify the Helmholtz free
nergy to accommodate size changes as well. In particular, this can be
chieved, e.g., via an additive contribution to the Helmholtz free en-
rgy function, 𝜑  𝑖 , that depends only on the particle volume, that is
 𝑖 = 𝜑 MM 

𝑖 ( ̂𝐼 2 ,𝑖 ) + 𝜑  𝑖 ( 𝐼 3 ,𝑖 ) . The volume contribution to the energy could
ake a form that depends on the particle elastic properties in a fashion
imilar to the energy used in [6] . 

Although non-interacting particles have been considered in the ap-
lication of the size-shape model, this restriction was used merely to
inimize the complexity of the derivation. The application of the gen-

ral approach can be readily extended to interacting particles, if so de-
ired. An essential step in accounting for interacting ellipsoids is the
alculation of the distance between ellipsoids. Numerical algorithms
ave been developed for the calculation of (i) the surface-surface dis-
ance between non-overlapping ellipsoids [36] and the signed distance
etween overlapping ellipsoids [37] , and (ii) the distance of closest
pproach [38] . Alternatively, a contact function has been formulated
39] which distinguishes between overlapping, non-overlapping, and
xternally-tangent ellipsoids. One can in principle employ the measure
f choice for accounting for the distance between ellipsoids in an in-
eraction potential, e.g. [40–43] . Doing so, the tools presented in this
aper can be employed to elucidate the effect of microstructure on the
echanical and dynamical behavior of suspensions of permeable ellip-

oidal particles, by numerical studies. 
In order to model complex particles that are not necessarily sym-

etric and/or convex, one needs to think about how to account for the
ffect of the imposed flow and for the particle interactions. For both of
hese issues, lack of symmetry and/or lack of convexity (e.g. red blood
ells) lead to intricacies. In this, the choice of structural variables for
escribing the particles plays a crucial role. For instance, Janus parti-
les can be described with a vector that points towards the direction of
referred properties [44] , while liquid-crystal banana-shaped structures
an be approximated by v-shaped particles described by two unit vectors
nd a bend angle [45,46] . Applying the model presented in the current
aper to non-symmetric/non-convex particles requires approximating
heir shape by an ellipsoid. This approximation could result in inaccu-
ate descriptions of the deformation behavior and of the calculation of
article interactions. 
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